|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/mmu_notifier.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/mm_inline.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/khugepaged.h> | 
|  | #include <linux/freezer.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/hashtable.h> | 
|  | #include <linux/userfaultfd_k.h> | 
|  | #include <linux/page_idle.h> | 
|  | #include <linux/page_table_check.h> | 
|  | #include <linux/rcupdate_wait.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/shmem_fs.h> | 
|  | #include <linux/dax.h> | 
|  | #include <linux/ksm.h> | 
|  |  | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include "internal.h" | 
|  | #include "mm_slot.h" | 
|  |  | 
|  | enum scan_result { | 
|  | SCAN_FAIL, | 
|  | SCAN_SUCCEED, | 
|  | SCAN_PMD_NULL, | 
|  | SCAN_PMD_NONE, | 
|  | SCAN_PMD_MAPPED, | 
|  | SCAN_EXCEED_NONE_PTE, | 
|  | SCAN_EXCEED_SWAP_PTE, | 
|  | SCAN_EXCEED_SHARED_PTE, | 
|  | SCAN_PTE_NON_PRESENT, | 
|  | SCAN_PTE_UFFD_WP, | 
|  | SCAN_PTE_MAPPED_HUGEPAGE, | 
|  | SCAN_LACK_REFERENCED_PAGE, | 
|  | SCAN_PAGE_NULL, | 
|  | SCAN_SCAN_ABORT, | 
|  | SCAN_PAGE_COUNT, | 
|  | SCAN_PAGE_LRU, | 
|  | SCAN_PAGE_LOCK, | 
|  | SCAN_PAGE_ANON, | 
|  | SCAN_PAGE_COMPOUND, | 
|  | SCAN_ANY_PROCESS, | 
|  | SCAN_VMA_NULL, | 
|  | SCAN_VMA_CHECK, | 
|  | SCAN_ADDRESS_RANGE, | 
|  | SCAN_DEL_PAGE_LRU, | 
|  | SCAN_ALLOC_HUGE_PAGE_FAIL, | 
|  | SCAN_CGROUP_CHARGE_FAIL, | 
|  | SCAN_TRUNCATED, | 
|  | SCAN_PAGE_HAS_PRIVATE, | 
|  | SCAN_STORE_FAILED, | 
|  | SCAN_COPY_MC, | 
|  | SCAN_PAGE_FILLED, | 
|  | }; | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/huge_memory.h> | 
|  |  | 
|  | static struct task_struct *khugepaged_thread __read_mostly; | 
|  | static DEFINE_MUTEX(khugepaged_mutex); | 
|  |  | 
|  | /* default scan 8*512 pte (or vmas) every 30 second */ | 
|  | static unsigned int khugepaged_pages_to_scan __read_mostly; | 
|  | static unsigned int khugepaged_pages_collapsed; | 
|  | static unsigned int khugepaged_full_scans; | 
|  | static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; | 
|  | /* during fragmentation poll the hugepage allocator once every minute */ | 
|  | static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; | 
|  | static unsigned long khugepaged_sleep_expire; | 
|  | static DEFINE_SPINLOCK(khugepaged_mm_lock); | 
|  | static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); | 
|  | /* | 
|  | * default collapse hugepages if there is at least one pte mapped like | 
|  | * it would have happened if the vma was large enough during page | 
|  | * fault. | 
|  | * | 
|  | * Note that these are only respected if collapse was initiated by khugepaged. | 
|  | */ | 
|  | unsigned int khugepaged_max_ptes_none __read_mostly; | 
|  | static unsigned int khugepaged_max_ptes_swap __read_mostly; | 
|  | static unsigned int khugepaged_max_ptes_shared __read_mostly; | 
|  |  | 
|  | #define MM_SLOTS_HASH_BITS 10 | 
|  | static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); | 
|  |  | 
|  | static struct kmem_cache *mm_slot_cache __ro_after_init; | 
|  |  | 
|  | struct collapse_control { | 
|  | bool is_khugepaged; | 
|  |  | 
|  | /* Num pages scanned per node */ | 
|  | u32 node_load[MAX_NUMNODES]; | 
|  |  | 
|  | /* nodemask for allocation fallback */ | 
|  | nodemask_t alloc_nmask; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct khugepaged_scan - cursor for scanning | 
|  | * @mm_head: the head of the mm list to scan | 
|  | * @mm_slot: the current mm_slot we are scanning | 
|  | * @address: the next address inside that to be scanned | 
|  | * | 
|  | * There is only the one khugepaged_scan instance of this cursor structure. | 
|  | */ | 
|  | struct khugepaged_scan { | 
|  | struct list_head mm_head; | 
|  | struct mm_slot *mm_slot; | 
|  | unsigned long address; | 
|  | }; | 
|  |  | 
|  | static struct khugepaged_scan khugepaged_scan = { | 
|  | .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_SYSFS | 
|  | static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs); | 
|  | } | 
|  |  | 
|  | static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | unsigned int msecs; | 
|  | int err; | 
|  |  | 
|  | err = kstrtouint(buf, 10, &msecs); | 
|  | if (err) | 
|  | return -EINVAL; | 
|  |  | 
|  | khugepaged_scan_sleep_millisecs = msecs; | 
|  | khugepaged_sleep_expire = 0; | 
|  | wake_up_interruptible(&khugepaged_wait); | 
|  |  | 
|  | return count; | 
|  | } | 
|  | static struct kobj_attribute scan_sleep_millisecs_attr = | 
|  | __ATTR_RW(scan_sleep_millisecs); | 
|  |  | 
|  | static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs); | 
|  | } | 
|  |  | 
|  | static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | unsigned int msecs; | 
|  | int err; | 
|  |  | 
|  | err = kstrtouint(buf, 10, &msecs); | 
|  | if (err) | 
|  | return -EINVAL; | 
|  |  | 
|  | khugepaged_alloc_sleep_millisecs = msecs; | 
|  | khugepaged_sleep_expire = 0; | 
|  | wake_up_interruptible(&khugepaged_wait); | 
|  |  | 
|  | return count; | 
|  | } | 
|  | static struct kobj_attribute alloc_sleep_millisecs_attr = | 
|  | __ATTR_RW(alloc_sleep_millisecs); | 
|  |  | 
|  | static ssize_t pages_to_scan_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan); | 
|  | } | 
|  | static ssize_t pages_to_scan_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | unsigned int pages; | 
|  | int err; | 
|  |  | 
|  | err = kstrtouint(buf, 10, &pages); | 
|  | if (err || !pages) | 
|  | return -EINVAL; | 
|  |  | 
|  | khugepaged_pages_to_scan = pages; | 
|  |  | 
|  | return count; | 
|  | } | 
|  | static struct kobj_attribute pages_to_scan_attr = | 
|  | __ATTR_RW(pages_to_scan); | 
|  |  | 
|  | static ssize_t pages_collapsed_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed); | 
|  | } | 
|  | static struct kobj_attribute pages_collapsed_attr = | 
|  | __ATTR_RO(pages_collapsed); | 
|  |  | 
|  | static ssize_t full_scans_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | return sysfs_emit(buf, "%u\n", khugepaged_full_scans); | 
|  | } | 
|  | static struct kobj_attribute full_scans_attr = | 
|  | __ATTR_RO(full_scans); | 
|  |  | 
|  | static ssize_t defrag_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | return single_hugepage_flag_show(kobj, attr, buf, | 
|  | TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); | 
|  | } | 
|  | static ssize_t defrag_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | return single_hugepage_flag_store(kobj, attr, buf, count, | 
|  | TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); | 
|  | } | 
|  | static struct kobj_attribute khugepaged_defrag_attr = | 
|  | __ATTR_RW(defrag); | 
|  |  | 
|  | /* | 
|  | * max_ptes_none controls if khugepaged should collapse hugepages over | 
|  | * any unmapped ptes in turn potentially increasing the memory | 
|  | * footprint of the vmas. When max_ptes_none is 0 khugepaged will not | 
|  | * reduce the available free memory in the system as it | 
|  | * runs. Increasing max_ptes_none will instead potentially reduce the | 
|  | * free memory in the system during the khugepaged scan. | 
|  | */ | 
|  | static ssize_t max_ptes_none_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none); | 
|  | } | 
|  | static ssize_t max_ptes_none_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | int err; | 
|  | unsigned long max_ptes_none; | 
|  |  | 
|  | err = kstrtoul(buf, 10, &max_ptes_none); | 
|  | if (err || max_ptes_none > HPAGE_PMD_NR - 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | khugepaged_max_ptes_none = max_ptes_none; | 
|  |  | 
|  | return count; | 
|  | } | 
|  | static struct kobj_attribute khugepaged_max_ptes_none_attr = | 
|  | __ATTR_RW(max_ptes_none); | 
|  |  | 
|  | static ssize_t max_ptes_swap_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap); | 
|  | } | 
|  |  | 
|  | static ssize_t max_ptes_swap_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | int err; | 
|  | unsigned long max_ptes_swap; | 
|  |  | 
|  | err  = kstrtoul(buf, 10, &max_ptes_swap); | 
|  | if (err || max_ptes_swap > HPAGE_PMD_NR - 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | khugepaged_max_ptes_swap = max_ptes_swap; | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static struct kobj_attribute khugepaged_max_ptes_swap_attr = | 
|  | __ATTR_RW(max_ptes_swap); | 
|  |  | 
|  | static ssize_t max_ptes_shared_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared); | 
|  | } | 
|  |  | 
|  | static ssize_t max_ptes_shared_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | int err; | 
|  | unsigned long max_ptes_shared; | 
|  |  | 
|  | err  = kstrtoul(buf, 10, &max_ptes_shared); | 
|  | if (err || max_ptes_shared > HPAGE_PMD_NR - 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | khugepaged_max_ptes_shared = max_ptes_shared; | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static struct kobj_attribute khugepaged_max_ptes_shared_attr = | 
|  | __ATTR_RW(max_ptes_shared); | 
|  |  | 
|  | static struct attribute *khugepaged_attr[] = { | 
|  | &khugepaged_defrag_attr.attr, | 
|  | &khugepaged_max_ptes_none_attr.attr, | 
|  | &khugepaged_max_ptes_swap_attr.attr, | 
|  | &khugepaged_max_ptes_shared_attr.attr, | 
|  | &pages_to_scan_attr.attr, | 
|  | &pages_collapsed_attr.attr, | 
|  | &full_scans_attr.attr, | 
|  | &scan_sleep_millisecs_attr.attr, | 
|  | &alloc_sleep_millisecs_attr.attr, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | struct attribute_group khugepaged_attr_group = { | 
|  | .attrs = khugepaged_attr, | 
|  | .name = "khugepaged", | 
|  | }; | 
|  | #endif /* CONFIG_SYSFS */ | 
|  |  | 
|  | int hugepage_madvise(struct vm_area_struct *vma, | 
|  | vm_flags_t *vm_flags, int advice) | 
|  | { | 
|  | switch (advice) { | 
|  | case MADV_HUGEPAGE: | 
|  | #ifdef CONFIG_S390 | 
|  | /* | 
|  | * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 | 
|  | * can't handle this properly after s390_enable_sie, so we simply | 
|  | * ignore the madvise to prevent qemu from causing a SIGSEGV. | 
|  | */ | 
|  | if (mm_has_pgste(vma->vm_mm)) | 
|  | return 0; | 
|  | #endif | 
|  | *vm_flags &= ~VM_NOHUGEPAGE; | 
|  | *vm_flags |= VM_HUGEPAGE; | 
|  | /* | 
|  | * If the vma become good for khugepaged to scan, | 
|  | * register it here without waiting a page fault that | 
|  | * may not happen any time soon. | 
|  | */ | 
|  | khugepaged_enter_vma(vma, *vm_flags); | 
|  | break; | 
|  | case MADV_NOHUGEPAGE: | 
|  | *vm_flags &= ~VM_HUGEPAGE; | 
|  | *vm_flags |= VM_NOHUGEPAGE; | 
|  | /* | 
|  | * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning | 
|  | * this vma even if we leave the mm registered in khugepaged if | 
|  | * it got registered before VM_NOHUGEPAGE was set. | 
|  | */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __init khugepaged_init(void) | 
|  | { | 
|  | mm_slot_cache = KMEM_CACHE(mm_slot, 0); | 
|  | if (!mm_slot_cache) | 
|  | return -ENOMEM; | 
|  |  | 
|  | khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; | 
|  | khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; | 
|  | khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; | 
|  | khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __init khugepaged_destroy(void) | 
|  | { | 
|  | kmem_cache_destroy(mm_slot_cache); | 
|  | } | 
|  |  | 
|  | static inline int hpage_collapse_test_exit(struct mm_struct *mm) | 
|  | { | 
|  | return atomic_read(&mm->mm_users) == 0; | 
|  | } | 
|  |  | 
|  | static inline int hpage_collapse_test_exit_or_disable(struct mm_struct *mm) | 
|  | { | 
|  | return hpage_collapse_test_exit(mm) || | 
|  | mm_flags_test(MMF_DISABLE_THP_COMPLETELY, mm); | 
|  | } | 
|  |  | 
|  | static bool hugepage_pmd_enabled(void) | 
|  | { | 
|  | /* | 
|  | * We cover the anon, shmem and the file-backed case here; file-backed | 
|  | * hugepages, when configured in, are determined by the global control. | 
|  | * Anon pmd-sized hugepages are determined by the pmd-size control. | 
|  | * Shmem pmd-sized hugepages are also determined by its pmd-size control, | 
|  | * except when the global shmem_huge is set to SHMEM_HUGE_DENY. | 
|  | */ | 
|  | if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && | 
|  | hugepage_global_enabled()) | 
|  | return true; | 
|  | if (test_bit(PMD_ORDER, &huge_anon_orders_always)) | 
|  | return true; | 
|  | if (test_bit(PMD_ORDER, &huge_anon_orders_madvise)) | 
|  | return true; | 
|  | if (test_bit(PMD_ORDER, &huge_anon_orders_inherit) && | 
|  | hugepage_global_enabled()) | 
|  | return true; | 
|  | if (IS_ENABLED(CONFIG_SHMEM) && shmem_hpage_pmd_enabled()) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void __khugepaged_enter(struct mm_struct *mm) | 
|  | { | 
|  | struct mm_slot *slot; | 
|  | int wakeup; | 
|  |  | 
|  | /* __khugepaged_exit() must not run from under us */ | 
|  | VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm); | 
|  | if (unlikely(mm_flags_test_and_set(MMF_VM_HUGEPAGE, mm))) | 
|  | return; | 
|  |  | 
|  | slot = mm_slot_alloc(mm_slot_cache); | 
|  | if (!slot) | 
|  | return; | 
|  |  | 
|  | spin_lock(&khugepaged_mm_lock); | 
|  | mm_slot_insert(mm_slots_hash, mm, slot); | 
|  | /* | 
|  | * Insert just behind the scanning cursor, to let the area settle | 
|  | * down a little. | 
|  | */ | 
|  | wakeup = list_empty(&khugepaged_scan.mm_head); | 
|  | list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head); | 
|  | spin_unlock(&khugepaged_mm_lock); | 
|  |  | 
|  | mmgrab(mm); | 
|  | if (wakeup) | 
|  | wake_up_interruptible(&khugepaged_wait); | 
|  | } | 
|  |  | 
|  | void khugepaged_enter_vma(struct vm_area_struct *vma, | 
|  | vm_flags_t vm_flags) | 
|  | { | 
|  | if (!mm_flags_test(MMF_VM_HUGEPAGE, vma->vm_mm) && | 
|  | hugepage_pmd_enabled()) { | 
|  | if (thp_vma_allowable_order(vma, vm_flags, TVA_KHUGEPAGED, PMD_ORDER)) | 
|  | __khugepaged_enter(vma->vm_mm); | 
|  | } | 
|  | } | 
|  |  | 
|  | void __khugepaged_exit(struct mm_struct *mm) | 
|  | { | 
|  | struct mm_slot *slot; | 
|  | int free = 0; | 
|  |  | 
|  | spin_lock(&khugepaged_mm_lock); | 
|  | slot = mm_slot_lookup(mm_slots_hash, mm); | 
|  | if (slot && khugepaged_scan.mm_slot != slot) { | 
|  | hash_del(&slot->hash); | 
|  | list_del(&slot->mm_node); | 
|  | free = 1; | 
|  | } | 
|  | spin_unlock(&khugepaged_mm_lock); | 
|  |  | 
|  | if (free) { | 
|  | mm_flags_clear(MMF_VM_HUGEPAGE, mm); | 
|  | mm_slot_free(mm_slot_cache, slot); | 
|  | mmdrop(mm); | 
|  | } else if (slot) { | 
|  | /* | 
|  | * This is required to serialize against | 
|  | * hpage_collapse_test_exit() (which is guaranteed to run | 
|  | * under mmap sem read mode). Stop here (after we return all | 
|  | * pagetables will be destroyed) until khugepaged has finished | 
|  | * working on the pagetables under the mmap_lock. | 
|  | */ | 
|  | mmap_write_lock(mm); | 
|  | mmap_write_unlock(mm); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void release_pte_folio(struct folio *folio) | 
|  | { | 
|  | node_stat_mod_folio(folio, | 
|  | NR_ISOLATED_ANON + folio_is_file_lru(folio), | 
|  | -folio_nr_pages(folio)); | 
|  | folio_unlock(folio); | 
|  | folio_putback_lru(folio); | 
|  | } | 
|  |  | 
|  | static void release_pte_pages(pte_t *pte, pte_t *_pte, | 
|  | struct list_head *compound_pagelist) | 
|  | { | 
|  | struct folio *folio, *tmp; | 
|  |  | 
|  | while (--_pte >= pte) { | 
|  | pte_t pteval = ptep_get(_pte); | 
|  | unsigned long pfn; | 
|  |  | 
|  | if (pte_none(pteval)) | 
|  | continue; | 
|  | pfn = pte_pfn(pteval); | 
|  | if (is_zero_pfn(pfn)) | 
|  | continue; | 
|  | folio = pfn_folio(pfn); | 
|  | if (folio_test_large(folio)) | 
|  | continue; | 
|  | release_pte_folio(folio); | 
|  | } | 
|  |  | 
|  | list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) { | 
|  | list_del(&folio->lru); | 
|  | release_pte_folio(folio); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __collapse_huge_page_isolate(struct vm_area_struct *vma, | 
|  | unsigned long start_addr, | 
|  | pte_t *pte, | 
|  | struct collapse_control *cc, | 
|  | struct list_head *compound_pagelist) | 
|  | { | 
|  | struct page *page = NULL; | 
|  | struct folio *folio = NULL; | 
|  | unsigned long addr = start_addr; | 
|  | pte_t *_pte; | 
|  | int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0; | 
|  |  | 
|  | for (_pte = pte; _pte < pte + HPAGE_PMD_NR; | 
|  | _pte++, addr += PAGE_SIZE) { | 
|  | pte_t pteval = ptep_get(_pte); | 
|  | if (pte_none(pteval) || (pte_present(pteval) && | 
|  | is_zero_pfn(pte_pfn(pteval)))) { | 
|  | ++none_or_zero; | 
|  | if (!userfaultfd_armed(vma) && | 
|  | (!cc->is_khugepaged || | 
|  | none_or_zero <= khugepaged_max_ptes_none)) { | 
|  | continue; | 
|  | } else { | 
|  | result = SCAN_EXCEED_NONE_PTE; | 
|  | count_vm_event(THP_SCAN_EXCEED_NONE_PTE); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | if (!pte_present(pteval)) { | 
|  | result = SCAN_PTE_NON_PRESENT; | 
|  | goto out; | 
|  | } | 
|  | if (pte_uffd_wp(pteval)) { | 
|  | result = SCAN_PTE_UFFD_WP; | 
|  | goto out; | 
|  | } | 
|  | page = vm_normal_page(vma, addr, pteval); | 
|  | if (unlikely(!page) || unlikely(is_zone_device_page(page))) { | 
|  | result = SCAN_PAGE_NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | folio = page_folio(page); | 
|  | VM_BUG_ON_FOLIO(!folio_test_anon(folio), folio); | 
|  |  | 
|  | /* See hpage_collapse_scan_pmd(). */ | 
|  | if (folio_maybe_mapped_shared(folio)) { | 
|  | ++shared; | 
|  | if (cc->is_khugepaged && | 
|  | shared > khugepaged_max_ptes_shared) { | 
|  | result = SCAN_EXCEED_SHARED_PTE; | 
|  | count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (folio_test_large(folio)) { | 
|  | struct folio *f; | 
|  |  | 
|  | /* | 
|  | * Check if we have dealt with the compound page | 
|  | * already | 
|  | */ | 
|  | list_for_each_entry(f, compound_pagelist, lru) { | 
|  | if (folio == f) | 
|  | goto next; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We can do it before folio_isolate_lru because the | 
|  | * folio can't be freed from under us. NOTE: PG_lock | 
|  | * is needed to serialize against split_huge_page | 
|  | * when invoked from the VM. | 
|  | */ | 
|  | if (!folio_trylock(folio)) { | 
|  | result = SCAN_PAGE_LOCK; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if the page has any GUP (or other external) pins. | 
|  | * | 
|  | * The page table that maps the page has been already unlinked | 
|  | * from the page table tree and this process cannot get | 
|  | * an additional pin on the page. | 
|  | * | 
|  | * New pins can come later if the page is shared across fork, | 
|  | * but not from this process. The other process cannot write to | 
|  | * the page, only trigger CoW. | 
|  | */ | 
|  | if (folio_expected_ref_count(folio) != folio_ref_count(folio)) { | 
|  | folio_unlock(folio); | 
|  | result = SCAN_PAGE_COUNT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Isolate the page to avoid collapsing an hugepage | 
|  | * currently in use by the VM. | 
|  | */ | 
|  | if (!folio_isolate_lru(folio)) { | 
|  | folio_unlock(folio); | 
|  | result = SCAN_DEL_PAGE_LRU; | 
|  | goto out; | 
|  | } | 
|  | node_stat_mod_folio(folio, | 
|  | NR_ISOLATED_ANON + folio_is_file_lru(folio), | 
|  | folio_nr_pages(folio)); | 
|  | VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); | 
|  | VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); | 
|  |  | 
|  | if (folio_test_large(folio)) | 
|  | list_add_tail(&folio->lru, compound_pagelist); | 
|  | next: | 
|  | /* | 
|  | * If collapse was initiated by khugepaged, check that there is | 
|  | * enough young pte to justify collapsing the page | 
|  | */ | 
|  | if (cc->is_khugepaged && | 
|  | (pte_young(pteval) || folio_test_young(folio) || | 
|  | folio_test_referenced(folio) || | 
|  | mmu_notifier_test_young(vma->vm_mm, addr))) | 
|  | referenced++; | 
|  | } | 
|  |  | 
|  | if (unlikely(cc->is_khugepaged && !referenced)) { | 
|  | result = SCAN_LACK_REFERENCED_PAGE; | 
|  | } else { | 
|  | result = SCAN_SUCCEED; | 
|  | trace_mm_collapse_huge_page_isolate(folio, none_or_zero, | 
|  | referenced, result); | 
|  | return result; | 
|  | } | 
|  | out: | 
|  | release_pte_pages(pte, _pte, compound_pagelist); | 
|  | trace_mm_collapse_huge_page_isolate(folio, none_or_zero, | 
|  | referenced, result); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static void __collapse_huge_page_copy_succeeded(pte_t *pte, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned long address, | 
|  | spinlock_t *ptl, | 
|  | struct list_head *compound_pagelist) | 
|  | { | 
|  | unsigned long end = address + HPAGE_PMD_SIZE; | 
|  | struct folio *src, *tmp; | 
|  | pte_t pteval; | 
|  | pte_t *_pte; | 
|  | unsigned int nr_ptes; | 
|  |  | 
|  | for (_pte = pte; _pte < pte + HPAGE_PMD_NR; _pte += nr_ptes, | 
|  | address += nr_ptes * PAGE_SIZE) { | 
|  | nr_ptes = 1; | 
|  | pteval = ptep_get(_pte); | 
|  | if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { | 
|  | add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); | 
|  | if (is_zero_pfn(pte_pfn(pteval))) { | 
|  | /* | 
|  | * ptl mostly unnecessary. | 
|  | */ | 
|  | spin_lock(ptl); | 
|  | ptep_clear(vma->vm_mm, address, _pte); | 
|  | spin_unlock(ptl); | 
|  | ksm_might_unmap_zero_page(vma->vm_mm, pteval); | 
|  | } | 
|  | } else { | 
|  | struct page *src_page = pte_page(pteval); | 
|  |  | 
|  | src = page_folio(src_page); | 
|  |  | 
|  | if (folio_test_large(src)) { | 
|  | unsigned int max_nr_ptes = (end - address) >> PAGE_SHIFT; | 
|  |  | 
|  | nr_ptes = folio_pte_batch(src, _pte, pteval, max_nr_ptes); | 
|  | } else { | 
|  | release_pte_folio(src); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ptl mostly unnecessary, but preempt has to | 
|  | * be disabled to update the per-cpu stats | 
|  | * inside folio_remove_rmap_pte(). | 
|  | */ | 
|  | spin_lock(ptl); | 
|  | clear_ptes(vma->vm_mm, address, _pte, nr_ptes); | 
|  | folio_remove_rmap_ptes(src, src_page, nr_ptes, vma); | 
|  | spin_unlock(ptl); | 
|  | free_swap_cache(src); | 
|  | folio_put_refs(src, nr_ptes); | 
|  | } | 
|  | } | 
|  |  | 
|  | list_for_each_entry_safe(src, tmp, compound_pagelist, lru) { | 
|  | list_del(&src->lru); | 
|  | node_stat_sub_folio(src, NR_ISOLATED_ANON + | 
|  | folio_is_file_lru(src)); | 
|  | folio_unlock(src); | 
|  | free_swap_cache(src); | 
|  | folio_putback_lru(src); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __collapse_huge_page_copy_failed(pte_t *pte, | 
|  | pmd_t *pmd, | 
|  | pmd_t orig_pmd, | 
|  | struct vm_area_struct *vma, | 
|  | struct list_head *compound_pagelist) | 
|  | { | 
|  | spinlock_t *pmd_ptl; | 
|  |  | 
|  | /* | 
|  | * Re-establish the PMD to point to the original page table | 
|  | * entry. Restoring PMD needs to be done prior to releasing | 
|  | * pages. Since pages are still isolated and locked here, | 
|  | * acquiring anon_vma_lock_write is unnecessary. | 
|  | */ | 
|  | pmd_ptl = pmd_lock(vma->vm_mm, pmd); | 
|  | pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd)); | 
|  | spin_unlock(pmd_ptl); | 
|  | /* | 
|  | * Release both raw and compound pages isolated | 
|  | * in __collapse_huge_page_isolate. | 
|  | */ | 
|  | release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __collapse_huge_page_copy - attempts to copy memory contents from raw | 
|  | * pages to a hugepage. Cleans up the raw pages if copying succeeds; | 
|  | * otherwise restores the original page table and releases isolated raw pages. | 
|  | * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC. | 
|  | * | 
|  | * @pte: starting of the PTEs to copy from | 
|  | * @folio: the new hugepage to copy contents to | 
|  | * @pmd: pointer to the new hugepage's PMD | 
|  | * @orig_pmd: the original raw pages' PMD | 
|  | * @vma: the original raw pages' virtual memory area | 
|  | * @address: starting address to copy | 
|  | * @ptl: lock on raw pages' PTEs | 
|  | * @compound_pagelist: list that stores compound pages | 
|  | */ | 
|  | static int __collapse_huge_page_copy(pte_t *pte, struct folio *folio, | 
|  | pmd_t *pmd, pmd_t orig_pmd, struct vm_area_struct *vma, | 
|  | unsigned long address, spinlock_t *ptl, | 
|  | struct list_head *compound_pagelist) | 
|  | { | 
|  | unsigned int i; | 
|  | int result = SCAN_SUCCEED; | 
|  |  | 
|  | /* | 
|  | * Copying pages' contents is subject to memory poison at any iteration. | 
|  | */ | 
|  | for (i = 0; i < HPAGE_PMD_NR; i++) { | 
|  | pte_t pteval = ptep_get(pte + i); | 
|  | struct page *page = folio_page(folio, i); | 
|  | unsigned long src_addr = address + i * PAGE_SIZE; | 
|  | struct page *src_page; | 
|  |  | 
|  | if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { | 
|  | clear_user_highpage(page, src_addr); | 
|  | continue; | 
|  | } | 
|  | src_page = pte_page(pteval); | 
|  | if (copy_mc_user_highpage(page, src_page, src_addr, vma) > 0) { | 
|  | result = SCAN_COPY_MC; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (likely(result == SCAN_SUCCEED)) | 
|  | __collapse_huge_page_copy_succeeded(pte, vma, address, ptl, | 
|  | compound_pagelist); | 
|  | else | 
|  | __collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma, | 
|  | compound_pagelist); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static void khugepaged_alloc_sleep(void) | 
|  | { | 
|  | DEFINE_WAIT(wait); | 
|  |  | 
|  | add_wait_queue(&khugepaged_wait, &wait); | 
|  | __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); | 
|  | schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); | 
|  | remove_wait_queue(&khugepaged_wait, &wait); | 
|  | } | 
|  |  | 
|  | struct collapse_control khugepaged_collapse_control = { | 
|  | .is_khugepaged = true, | 
|  | }; | 
|  |  | 
|  | static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * If node_reclaim_mode is disabled, then no extra effort is made to | 
|  | * allocate memory locally. | 
|  | */ | 
|  | if (!node_reclaim_enabled()) | 
|  | return false; | 
|  |  | 
|  | /* If there is a count for this node already, it must be acceptable */ | 
|  | if (cc->node_load[nid]) | 
|  | return false; | 
|  |  | 
|  | for (i = 0; i < MAX_NUMNODES; i++) { | 
|  | if (!cc->node_load[i]) | 
|  | continue; | 
|  | if (node_distance(nid, i) > node_reclaim_distance) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #define khugepaged_defrag()					\ | 
|  | (transparent_hugepage_flags &				\ | 
|  | (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)) | 
|  |  | 
|  | /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ | 
|  | static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) | 
|  | { | 
|  | return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | static int hpage_collapse_find_target_node(struct collapse_control *cc) | 
|  | { | 
|  | int nid, target_node = 0, max_value = 0; | 
|  |  | 
|  | /* find first node with max normal pages hit */ | 
|  | for (nid = 0; nid < MAX_NUMNODES; nid++) | 
|  | if (cc->node_load[nid] > max_value) { | 
|  | max_value = cc->node_load[nid]; | 
|  | target_node = nid; | 
|  | } | 
|  |  | 
|  | for_each_online_node(nid) { | 
|  | if (max_value == cc->node_load[nid]) | 
|  | node_set(nid, cc->alloc_nmask); | 
|  | } | 
|  |  | 
|  | return target_node; | 
|  | } | 
|  | #else | 
|  | static int hpage_collapse_find_target_node(struct collapse_control *cc) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * If mmap_lock temporarily dropped, revalidate vma | 
|  | * before taking mmap_lock. | 
|  | * Returns enum scan_result value. | 
|  | */ | 
|  |  | 
|  | static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, | 
|  | bool expect_anon, | 
|  | struct vm_area_struct **vmap, | 
|  | struct collapse_control *cc) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | enum tva_type type = cc->is_khugepaged ? TVA_KHUGEPAGED : | 
|  | TVA_FORCED_COLLAPSE; | 
|  |  | 
|  | if (unlikely(hpage_collapse_test_exit_or_disable(mm))) | 
|  | return SCAN_ANY_PROCESS; | 
|  |  | 
|  | *vmap = vma = find_vma(mm, address); | 
|  | if (!vma) | 
|  | return SCAN_VMA_NULL; | 
|  |  | 
|  | if (!thp_vma_suitable_order(vma, address, PMD_ORDER)) | 
|  | return SCAN_ADDRESS_RANGE; | 
|  | if (!thp_vma_allowable_order(vma, vma->vm_flags, type, PMD_ORDER)) | 
|  | return SCAN_VMA_CHECK; | 
|  | /* | 
|  | * Anon VMA expected, the address may be unmapped then | 
|  | * remapped to file after khugepaged reaquired the mmap_lock. | 
|  | * | 
|  | * thp_vma_allowable_order may return true for qualified file | 
|  | * vmas. | 
|  | */ | 
|  | if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap))) | 
|  | return SCAN_PAGE_ANON; | 
|  | return SCAN_SUCCEED; | 
|  | } | 
|  |  | 
|  | static inline int check_pmd_state(pmd_t *pmd) | 
|  | { | 
|  | pmd_t pmde = pmdp_get_lockless(pmd); | 
|  |  | 
|  | if (pmd_none(pmde)) | 
|  | return SCAN_PMD_NONE; | 
|  |  | 
|  | /* | 
|  | * The folio may be under migration when khugepaged is trying to | 
|  | * collapse it. Migration success or failure will eventually end | 
|  | * up with a present PMD mapping a folio again. | 
|  | */ | 
|  | if (is_pmd_migration_entry(pmde)) | 
|  | return SCAN_PMD_MAPPED; | 
|  | if (!pmd_present(pmde)) | 
|  | return SCAN_PMD_NULL; | 
|  | if (pmd_trans_huge(pmde)) | 
|  | return SCAN_PMD_MAPPED; | 
|  | if (pmd_bad(pmde)) | 
|  | return SCAN_PMD_NULL; | 
|  | return SCAN_SUCCEED; | 
|  | } | 
|  |  | 
|  | static int find_pmd_or_thp_or_none(struct mm_struct *mm, | 
|  | unsigned long address, | 
|  | pmd_t **pmd) | 
|  | { | 
|  | *pmd = mm_find_pmd(mm, address); | 
|  | if (!*pmd) | 
|  | return SCAN_PMD_NULL; | 
|  |  | 
|  | return check_pmd_state(*pmd); | 
|  | } | 
|  |  | 
|  | static int check_pmd_still_valid(struct mm_struct *mm, | 
|  | unsigned long address, | 
|  | pmd_t *pmd) | 
|  | { | 
|  | pmd_t *new_pmd; | 
|  | int result = find_pmd_or_thp_or_none(mm, address, &new_pmd); | 
|  |  | 
|  | if (result != SCAN_SUCCEED) | 
|  | return result; | 
|  | if (new_pmd != pmd) | 
|  | return SCAN_FAIL; | 
|  | return SCAN_SUCCEED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Bring missing pages in from swap, to complete THP collapse. | 
|  | * Only done if hpage_collapse_scan_pmd believes it is worthwhile. | 
|  | * | 
|  | * Called and returns without pte mapped or spinlocks held. | 
|  | * Returns result: if not SCAN_SUCCEED, mmap_lock has been released. | 
|  | */ | 
|  | static int __collapse_huge_page_swapin(struct mm_struct *mm, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned long start_addr, pmd_t *pmd, | 
|  | int referenced) | 
|  | { | 
|  | int swapped_in = 0; | 
|  | vm_fault_t ret = 0; | 
|  | unsigned long addr, end = start_addr + (HPAGE_PMD_NR * PAGE_SIZE); | 
|  | int result; | 
|  | pte_t *pte = NULL; | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | for (addr = start_addr; addr < end; addr += PAGE_SIZE) { | 
|  | struct vm_fault vmf = { | 
|  | .vma = vma, | 
|  | .address = addr, | 
|  | .pgoff = linear_page_index(vma, addr), | 
|  | .flags = FAULT_FLAG_ALLOW_RETRY, | 
|  | .pmd = pmd, | 
|  | }; | 
|  |  | 
|  | if (!pte++) { | 
|  | /* | 
|  | * Here the ptl is only used to check pte_same() in | 
|  | * do_swap_page(), so readonly version is enough. | 
|  | */ | 
|  | pte = pte_offset_map_ro_nolock(mm, pmd, addr, &ptl); | 
|  | if (!pte) { | 
|  | mmap_read_unlock(mm); | 
|  | result = SCAN_PMD_NULL; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | vmf.orig_pte = ptep_get_lockless(pte); | 
|  | if (!is_swap_pte(vmf.orig_pte)) | 
|  | continue; | 
|  |  | 
|  | vmf.pte = pte; | 
|  | vmf.ptl = ptl; | 
|  | ret = do_swap_page(&vmf); | 
|  | /* Which unmaps pte (after perhaps re-checking the entry) */ | 
|  | pte = NULL; | 
|  |  | 
|  | /* | 
|  | * do_swap_page returns VM_FAULT_RETRY with released mmap_lock. | 
|  | * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because | 
|  | * we do not retry here and swap entry will remain in pagetable | 
|  | * resulting in later failure. | 
|  | */ | 
|  | if (ret & VM_FAULT_RETRY) { | 
|  | /* Likely, but not guaranteed, that page lock failed */ | 
|  | result = SCAN_PAGE_LOCK; | 
|  | goto out; | 
|  | } | 
|  | if (ret & VM_FAULT_ERROR) { | 
|  | mmap_read_unlock(mm); | 
|  | result = SCAN_FAIL; | 
|  | goto out; | 
|  | } | 
|  | swapped_in++; | 
|  | } | 
|  |  | 
|  | if (pte) | 
|  | pte_unmap(pte); | 
|  |  | 
|  | /* Drain LRU cache to remove extra pin on the swapped in pages */ | 
|  | if (swapped_in) | 
|  | lru_add_drain(); | 
|  |  | 
|  | result = SCAN_SUCCEED; | 
|  | out: | 
|  | trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static int alloc_charge_folio(struct folio **foliop, struct mm_struct *mm, | 
|  | struct collapse_control *cc) | 
|  | { | 
|  | gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() : | 
|  | GFP_TRANSHUGE); | 
|  | int node = hpage_collapse_find_target_node(cc); | 
|  | struct folio *folio; | 
|  |  | 
|  | folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, &cc->alloc_nmask); | 
|  | if (!folio) { | 
|  | *foliop = NULL; | 
|  | count_vm_event(THP_COLLAPSE_ALLOC_FAILED); | 
|  | return SCAN_ALLOC_HUGE_PAGE_FAIL; | 
|  | } | 
|  |  | 
|  | count_vm_event(THP_COLLAPSE_ALLOC); | 
|  | if (unlikely(mem_cgroup_charge(folio, mm, gfp))) { | 
|  | folio_put(folio); | 
|  | *foliop = NULL; | 
|  | return SCAN_CGROUP_CHARGE_FAIL; | 
|  | } | 
|  |  | 
|  | count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1); | 
|  |  | 
|  | *foliop = folio; | 
|  | return SCAN_SUCCEED; | 
|  | } | 
|  |  | 
|  | static int collapse_huge_page(struct mm_struct *mm, unsigned long address, | 
|  | int referenced, int unmapped, | 
|  | struct collapse_control *cc) | 
|  | { | 
|  | LIST_HEAD(compound_pagelist); | 
|  | pmd_t *pmd, _pmd; | 
|  | pte_t *pte; | 
|  | pgtable_t pgtable; | 
|  | struct folio *folio; | 
|  | spinlock_t *pmd_ptl, *pte_ptl; | 
|  | int result = SCAN_FAIL; | 
|  | struct vm_area_struct *vma; | 
|  | struct mmu_notifier_range range; | 
|  |  | 
|  | VM_BUG_ON(address & ~HPAGE_PMD_MASK); | 
|  |  | 
|  | /* | 
|  | * Before allocating the hugepage, release the mmap_lock read lock. | 
|  | * The allocation can take potentially a long time if it involves | 
|  | * sync compaction, and we do not need to hold the mmap_lock during | 
|  | * that. We will recheck the vma after taking it again in write mode. | 
|  | */ | 
|  | mmap_read_unlock(mm); | 
|  |  | 
|  | result = alloc_charge_folio(&folio, mm, cc); | 
|  | if (result != SCAN_SUCCEED) | 
|  | goto out_nolock; | 
|  |  | 
|  | mmap_read_lock(mm); | 
|  | result = hugepage_vma_revalidate(mm, address, true, &vma, cc); | 
|  | if (result != SCAN_SUCCEED) { | 
|  | mmap_read_unlock(mm); | 
|  | goto out_nolock; | 
|  | } | 
|  |  | 
|  | result = find_pmd_or_thp_or_none(mm, address, &pmd); | 
|  | if (result != SCAN_SUCCEED) { | 
|  | mmap_read_unlock(mm); | 
|  | goto out_nolock; | 
|  | } | 
|  |  | 
|  | if (unmapped) { | 
|  | /* | 
|  | * __collapse_huge_page_swapin will return with mmap_lock | 
|  | * released when it fails. So we jump out_nolock directly in | 
|  | * that case.  Continuing to collapse causes inconsistency. | 
|  | */ | 
|  | result = __collapse_huge_page_swapin(mm, vma, address, pmd, | 
|  | referenced); | 
|  | if (result != SCAN_SUCCEED) | 
|  | goto out_nolock; | 
|  | } | 
|  |  | 
|  | mmap_read_unlock(mm); | 
|  | /* | 
|  | * Prevent all access to pagetables with the exception of | 
|  | * gup_fast later handled by the ptep_clear_flush and the VM | 
|  | * handled by the anon_vma lock + PG_lock. | 
|  | * | 
|  | * UFFDIO_MOVE is prevented to race as well thanks to the | 
|  | * mmap_lock. | 
|  | */ | 
|  | mmap_write_lock(mm); | 
|  | result = hugepage_vma_revalidate(mm, address, true, &vma, cc); | 
|  | if (result != SCAN_SUCCEED) | 
|  | goto out_up_write; | 
|  | /* check if the pmd is still valid */ | 
|  | vma_start_write(vma); | 
|  | result = check_pmd_still_valid(mm, address, pmd); | 
|  | if (result != SCAN_SUCCEED) | 
|  | goto out_up_write; | 
|  |  | 
|  | anon_vma_lock_write(vma->anon_vma); | 
|  |  | 
|  | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address, | 
|  | address + HPAGE_PMD_SIZE); | 
|  | mmu_notifier_invalidate_range_start(&range); | 
|  |  | 
|  | pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ | 
|  | /* | 
|  | * This removes any huge TLB entry from the CPU so we won't allow | 
|  | * huge and small TLB entries for the same virtual address to | 
|  | * avoid the risk of CPU bugs in that area. | 
|  | * | 
|  | * Parallel GUP-fast is fine since GUP-fast will back off when | 
|  | * it detects PMD is changed. | 
|  | */ | 
|  | _pmd = pmdp_collapse_flush(vma, address, pmd); | 
|  | spin_unlock(pmd_ptl); | 
|  | mmu_notifier_invalidate_range_end(&range); | 
|  | tlb_remove_table_sync_one(); | 
|  |  | 
|  | pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl); | 
|  | if (pte) { | 
|  | result = __collapse_huge_page_isolate(vma, address, pte, cc, | 
|  | &compound_pagelist); | 
|  | spin_unlock(pte_ptl); | 
|  | } else { | 
|  | result = SCAN_PMD_NULL; | 
|  | } | 
|  |  | 
|  | if (unlikely(result != SCAN_SUCCEED)) { | 
|  | if (pte) | 
|  | pte_unmap(pte); | 
|  | spin_lock(pmd_ptl); | 
|  | BUG_ON(!pmd_none(*pmd)); | 
|  | /* | 
|  | * We can only use set_pmd_at when establishing | 
|  | * hugepmds and never for establishing regular pmds that | 
|  | * points to regular pagetables. Use pmd_populate for that | 
|  | */ | 
|  | pmd_populate(mm, pmd, pmd_pgtable(_pmd)); | 
|  | spin_unlock(pmd_ptl); | 
|  | anon_vma_unlock_write(vma->anon_vma); | 
|  | goto out_up_write; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * All pages are isolated and locked so anon_vma rmap | 
|  | * can't run anymore. | 
|  | */ | 
|  | anon_vma_unlock_write(vma->anon_vma); | 
|  |  | 
|  | result = __collapse_huge_page_copy(pte, folio, pmd, _pmd, | 
|  | vma, address, pte_ptl, | 
|  | &compound_pagelist); | 
|  | pte_unmap(pte); | 
|  | if (unlikely(result != SCAN_SUCCEED)) | 
|  | goto out_up_write; | 
|  |  | 
|  | /* | 
|  | * The smp_wmb() inside __folio_mark_uptodate() ensures the | 
|  | * copy_huge_page writes become visible before the set_pmd_at() | 
|  | * write. | 
|  | */ | 
|  | __folio_mark_uptodate(folio); | 
|  | pgtable = pmd_pgtable(_pmd); | 
|  |  | 
|  | _pmd = folio_mk_pmd(folio, vma->vm_page_prot); | 
|  | _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); | 
|  |  | 
|  | spin_lock(pmd_ptl); | 
|  | BUG_ON(!pmd_none(*pmd)); | 
|  | folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE); | 
|  | folio_add_lru_vma(folio, vma); | 
|  | pgtable_trans_huge_deposit(mm, pmd, pgtable); | 
|  | set_pmd_at(mm, address, pmd, _pmd); | 
|  | update_mmu_cache_pmd(vma, address, pmd); | 
|  | deferred_split_folio(folio, false); | 
|  | spin_unlock(pmd_ptl); | 
|  |  | 
|  | folio = NULL; | 
|  |  | 
|  | result = SCAN_SUCCEED; | 
|  | out_up_write: | 
|  | mmap_write_unlock(mm); | 
|  | out_nolock: | 
|  | if (folio) | 
|  | folio_put(folio); | 
|  | trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static int hpage_collapse_scan_pmd(struct mm_struct *mm, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned long start_addr, bool *mmap_locked, | 
|  | struct collapse_control *cc) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | pte_t *pte, *_pte; | 
|  | int result = SCAN_FAIL, referenced = 0; | 
|  | int none_or_zero = 0, shared = 0; | 
|  | struct page *page = NULL; | 
|  | struct folio *folio = NULL; | 
|  | unsigned long addr; | 
|  | spinlock_t *ptl; | 
|  | int node = NUMA_NO_NODE, unmapped = 0; | 
|  |  | 
|  | VM_BUG_ON(start_addr & ~HPAGE_PMD_MASK); | 
|  |  | 
|  | result = find_pmd_or_thp_or_none(mm, start_addr, &pmd); | 
|  | if (result != SCAN_SUCCEED) | 
|  | goto out; | 
|  |  | 
|  | memset(cc->node_load, 0, sizeof(cc->node_load)); | 
|  | nodes_clear(cc->alloc_nmask); | 
|  | pte = pte_offset_map_lock(mm, pmd, start_addr, &ptl); | 
|  | if (!pte) { | 
|  | result = SCAN_PMD_NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | for (addr = start_addr, _pte = pte; _pte < pte + HPAGE_PMD_NR; | 
|  | _pte++, addr += PAGE_SIZE) { | 
|  | pte_t pteval = ptep_get(_pte); | 
|  | if (is_swap_pte(pteval)) { | 
|  | ++unmapped; | 
|  | if (!cc->is_khugepaged || | 
|  | unmapped <= khugepaged_max_ptes_swap) { | 
|  | /* | 
|  | * Always be strict with uffd-wp | 
|  | * enabled swap entries.  Please see | 
|  | * comment below for pte_uffd_wp(). | 
|  | */ | 
|  | if (pte_swp_uffd_wp_any(pteval)) { | 
|  | result = SCAN_PTE_UFFD_WP; | 
|  | goto out_unmap; | 
|  | } | 
|  | continue; | 
|  | } else { | 
|  | result = SCAN_EXCEED_SWAP_PTE; | 
|  | count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); | 
|  | goto out_unmap; | 
|  | } | 
|  | } | 
|  | if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { | 
|  | ++none_or_zero; | 
|  | if (!userfaultfd_armed(vma) && | 
|  | (!cc->is_khugepaged || | 
|  | none_or_zero <= khugepaged_max_ptes_none)) { | 
|  | continue; | 
|  | } else { | 
|  | result = SCAN_EXCEED_NONE_PTE; | 
|  | count_vm_event(THP_SCAN_EXCEED_NONE_PTE); | 
|  | goto out_unmap; | 
|  | } | 
|  | } | 
|  | if (pte_uffd_wp(pteval)) { | 
|  | /* | 
|  | * Don't collapse the page if any of the small | 
|  | * PTEs are armed with uffd write protection. | 
|  | * Here we can also mark the new huge pmd as | 
|  | * write protected if any of the small ones is | 
|  | * marked but that could bring unknown | 
|  | * userfault messages that falls outside of | 
|  | * the registered range.  So, just be simple. | 
|  | */ | 
|  | result = SCAN_PTE_UFFD_WP; | 
|  | goto out_unmap; | 
|  | } | 
|  |  | 
|  | page = vm_normal_page(vma, addr, pteval); | 
|  | if (unlikely(!page) || unlikely(is_zone_device_page(page))) { | 
|  | result = SCAN_PAGE_NULL; | 
|  | goto out_unmap; | 
|  | } | 
|  | folio = page_folio(page); | 
|  |  | 
|  | if (!folio_test_anon(folio)) { | 
|  | result = SCAN_PAGE_ANON; | 
|  | goto out_unmap; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We treat a single page as shared if any part of the THP | 
|  | * is shared. | 
|  | */ | 
|  | if (folio_maybe_mapped_shared(folio)) { | 
|  | ++shared; | 
|  | if (cc->is_khugepaged && | 
|  | shared > khugepaged_max_ptes_shared) { | 
|  | result = SCAN_EXCEED_SHARED_PTE; | 
|  | count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); | 
|  | goto out_unmap; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Record which node the original page is from and save this | 
|  | * information to cc->node_load[]. | 
|  | * Khugepaged will allocate hugepage from the node has the max | 
|  | * hit record. | 
|  | */ | 
|  | node = folio_nid(folio); | 
|  | if (hpage_collapse_scan_abort(node, cc)) { | 
|  | result = SCAN_SCAN_ABORT; | 
|  | goto out_unmap; | 
|  | } | 
|  | cc->node_load[node]++; | 
|  | if (!folio_test_lru(folio)) { | 
|  | result = SCAN_PAGE_LRU; | 
|  | goto out_unmap; | 
|  | } | 
|  | if (folio_test_locked(folio)) { | 
|  | result = SCAN_PAGE_LOCK; | 
|  | goto out_unmap; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if the page has any GUP (or other external) pins. | 
|  | * | 
|  | * Here the check may be racy: | 
|  | * it may see folio_mapcount() > folio_ref_count(). | 
|  | * But such case is ephemeral we could always retry collapse | 
|  | * later.  However it may report false positive if the page | 
|  | * has excessive GUP pins (i.e. 512).  Anyway the same check | 
|  | * will be done again later the risk seems low. | 
|  | */ | 
|  | if (folio_expected_ref_count(folio) != folio_ref_count(folio)) { | 
|  | result = SCAN_PAGE_COUNT; | 
|  | goto out_unmap; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If collapse was initiated by khugepaged, check that there is | 
|  | * enough young pte to justify collapsing the page | 
|  | */ | 
|  | if (cc->is_khugepaged && | 
|  | (pte_young(pteval) || folio_test_young(folio) || | 
|  | folio_test_referenced(folio) || | 
|  | mmu_notifier_test_young(vma->vm_mm, addr))) | 
|  | referenced++; | 
|  | } | 
|  | if (cc->is_khugepaged && | 
|  | (!referenced || | 
|  | (unmapped && referenced < HPAGE_PMD_NR / 2))) { | 
|  | result = SCAN_LACK_REFERENCED_PAGE; | 
|  | } else { | 
|  | result = SCAN_SUCCEED; | 
|  | } | 
|  | out_unmap: | 
|  | pte_unmap_unlock(pte, ptl); | 
|  | if (result == SCAN_SUCCEED) { | 
|  | result = collapse_huge_page(mm, start_addr, referenced, | 
|  | unmapped, cc); | 
|  | /* collapse_huge_page will return with the mmap_lock released */ | 
|  | *mmap_locked = false; | 
|  | } | 
|  | out: | 
|  | trace_mm_khugepaged_scan_pmd(mm, folio, referenced, | 
|  | none_or_zero, result, unmapped); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static void collect_mm_slot(struct mm_slot *slot) | 
|  | { | 
|  | struct mm_struct *mm = slot->mm; | 
|  |  | 
|  | lockdep_assert_held(&khugepaged_mm_lock); | 
|  |  | 
|  | if (hpage_collapse_test_exit(mm)) { | 
|  | /* free mm_slot */ | 
|  | hash_del(&slot->hash); | 
|  | list_del(&slot->mm_node); | 
|  |  | 
|  | /* | 
|  | * Not strictly needed because the mm exited already. | 
|  | * | 
|  | * mm_flags_clear(MMF_VM_HUGEPAGE, mm); | 
|  | */ | 
|  |  | 
|  | /* khugepaged_mm_lock actually not necessary for the below */ | 
|  | mm_slot_free(mm_slot_cache, slot); | 
|  | mmdrop(mm); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* folio must be locked, and mmap_lock must be held */ | 
|  | static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr, | 
|  | pmd_t *pmdp, struct folio *folio, struct page *page) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct vm_fault vmf = { | 
|  | .vma = vma, | 
|  | .address = addr, | 
|  | .flags = 0, | 
|  | }; | 
|  | pgd_t *pgdp; | 
|  | p4d_t *p4dp; | 
|  | pud_t *pudp; | 
|  |  | 
|  | mmap_assert_locked(vma->vm_mm); | 
|  |  | 
|  | if (!pmdp) { | 
|  | pgdp = pgd_offset(mm, addr); | 
|  | p4dp = p4d_alloc(mm, pgdp, addr); | 
|  | if (!p4dp) | 
|  | return SCAN_FAIL; | 
|  | pudp = pud_alloc(mm, p4dp, addr); | 
|  | if (!pudp) | 
|  | return SCAN_FAIL; | 
|  | pmdp = pmd_alloc(mm, pudp, addr); | 
|  | if (!pmdp) | 
|  | return SCAN_FAIL; | 
|  | } | 
|  |  | 
|  | vmf.pmd = pmdp; | 
|  | if (do_set_pmd(&vmf, folio, page)) | 
|  | return SCAN_FAIL; | 
|  |  | 
|  | folio_get(folio); | 
|  | return SCAN_SUCCEED; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at | 
|  | * address haddr. | 
|  | * | 
|  | * @mm: process address space where collapse happens | 
|  | * @addr: THP collapse address | 
|  | * @install_pmd: If a huge PMD should be installed | 
|  | * | 
|  | * This function checks whether all the PTEs in the PMD are pointing to the | 
|  | * right THP. If so, retract the page table so the THP can refault in with | 
|  | * as pmd-mapped. Possibly install a huge PMD mapping the THP. | 
|  | */ | 
|  | int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr, | 
|  | bool install_pmd) | 
|  | { | 
|  | int nr_mapped_ptes = 0, result = SCAN_FAIL; | 
|  | unsigned int nr_batch_ptes; | 
|  | struct mmu_notifier_range range; | 
|  | bool notified = false; | 
|  | unsigned long haddr = addr & HPAGE_PMD_MASK; | 
|  | unsigned long end = haddr + HPAGE_PMD_SIZE; | 
|  | struct vm_area_struct *vma = vma_lookup(mm, haddr); | 
|  | struct folio *folio; | 
|  | pte_t *start_pte, *pte; | 
|  | pmd_t *pmd, pgt_pmd; | 
|  | spinlock_t *pml = NULL, *ptl; | 
|  | int i; | 
|  |  | 
|  | mmap_assert_locked(mm); | 
|  |  | 
|  | /* First check VMA found, in case page tables are being torn down */ | 
|  | if (!vma || !vma->vm_file || | 
|  | !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE)) | 
|  | return SCAN_VMA_CHECK; | 
|  |  | 
|  | /* Fast check before locking page if already PMD-mapped */ | 
|  | result = find_pmd_or_thp_or_none(mm, haddr, &pmd); | 
|  | if (result == SCAN_PMD_MAPPED) | 
|  | return result; | 
|  |  | 
|  | /* | 
|  | * If we are here, we've succeeded in replacing all the native pages | 
|  | * in the page cache with a single hugepage. If a mm were to fault-in | 
|  | * this memory (mapped by a suitably aligned VMA), we'd get the hugepage | 
|  | * and map it by a PMD, regardless of sysfs THP settings. As such, let's | 
|  | * analogously elide sysfs THP settings here and force collapse. | 
|  | */ | 
|  | if (!thp_vma_allowable_order(vma, vma->vm_flags, TVA_FORCED_COLLAPSE, PMD_ORDER)) | 
|  | return SCAN_VMA_CHECK; | 
|  |  | 
|  | /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */ | 
|  | if (userfaultfd_wp(vma)) | 
|  | return SCAN_PTE_UFFD_WP; | 
|  |  | 
|  | folio = filemap_lock_folio(vma->vm_file->f_mapping, | 
|  | linear_page_index(vma, haddr)); | 
|  | if (IS_ERR(folio)) | 
|  | return SCAN_PAGE_NULL; | 
|  |  | 
|  | if (folio_order(folio) != HPAGE_PMD_ORDER) { | 
|  | result = SCAN_PAGE_COMPOUND; | 
|  | goto drop_folio; | 
|  | } | 
|  |  | 
|  | result = find_pmd_or_thp_or_none(mm, haddr, &pmd); | 
|  | switch (result) { | 
|  | case SCAN_SUCCEED: | 
|  | break; | 
|  | case SCAN_PMD_NULL: | 
|  | case SCAN_PMD_NONE: | 
|  | /* | 
|  | * All pte entries have been removed and pmd cleared. | 
|  | * Skip all the pte checks and just update the pmd mapping. | 
|  | */ | 
|  | goto maybe_install_pmd; | 
|  | default: | 
|  | goto drop_folio; | 
|  | } | 
|  |  | 
|  | result = SCAN_FAIL; | 
|  | start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); | 
|  | if (!start_pte)		/* mmap_lock + page lock should prevent this */ | 
|  | goto drop_folio; | 
|  |  | 
|  | /* step 1: check all mapped PTEs are to the right huge page */ | 
|  | for (i = 0, addr = haddr, pte = start_pte; | 
|  | i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { | 
|  | struct page *page; | 
|  | pte_t ptent = ptep_get(pte); | 
|  |  | 
|  | /* empty pte, skip */ | 
|  | if (pte_none(ptent)) | 
|  | continue; | 
|  |  | 
|  | /* page swapped out, abort */ | 
|  | if (!pte_present(ptent)) { | 
|  | result = SCAN_PTE_NON_PRESENT; | 
|  | goto abort; | 
|  | } | 
|  |  | 
|  | page = vm_normal_page(vma, addr, ptent); | 
|  | if (WARN_ON_ONCE(page && is_zone_device_page(page))) | 
|  | page = NULL; | 
|  | /* | 
|  | * Note that uprobe, debugger, or MAP_PRIVATE may change the | 
|  | * page table, but the new page will not be a subpage of hpage. | 
|  | */ | 
|  | if (folio_page(folio, i) != page) | 
|  | goto abort; | 
|  | } | 
|  |  | 
|  | pte_unmap_unlock(start_pte, ptl); | 
|  | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, | 
|  | haddr, haddr + HPAGE_PMD_SIZE); | 
|  | mmu_notifier_invalidate_range_start(&range); | 
|  | notified = true; | 
|  |  | 
|  | /* | 
|  | * pmd_lock covers a wider range than ptl, and (if split from mm's | 
|  | * page_table_lock) ptl nests inside pml. The less time we hold pml, | 
|  | * the better; but userfaultfd's mfill_atomic_pte() on a private VMA | 
|  | * inserts a valid as-if-COWed PTE without even looking up page cache. | 
|  | * So page lock of folio does not protect from it, so we must not drop | 
|  | * ptl before pgt_pmd is removed, so uffd private needs pml taken now. | 
|  | */ | 
|  | if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED)) | 
|  | pml = pmd_lock(mm, pmd); | 
|  |  | 
|  | start_pte = pte_offset_map_rw_nolock(mm, pmd, haddr, &pgt_pmd, &ptl); | 
|  | if (!start_pte)		/* mmap_lock + page lock should prevent this */ | 
|  | goto abort; | 
|  | if (!pml) | 
|  | spin_lock(ptl); | 
|  | else if (ptl != pml) | 
|  | spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); | 
|  |  | 
|  | if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd)))) | 
|  | goto abort; | 
|  |  | 
|  | /* step 2: clear page table and adjust rmap */ | 
|  | for (i = 0, addr = haddr, pte = start_pte; i < HPAGE_PMD_NR; | 
|  | i += nr_batch_ptes, addr += nr_batch_ptes * PAGE_SIZE, | 
|  | pte += nr_batch_ptes) { | 
|  | unsigned int max_nr_batch_ptes = (end - addr) >> PAGE_SHIFT; | 
|  | struct page *page; | 
|  | pte_t ptent = ptep_get(pte); | 
|  |  | 
|  | nr_batch_ptes = 1; | 
|  |  | 
|  | if (pte_none(ptent)) | 
|  | continue; | 
|  | /* | 
|  | * We dropped ptl after the first scan, to do the mmu_notifier: | 
|  | * page lock stops more PTEs of the folio being faulted in, but | 
|  | * does not stop write faults COWing anon copies from existing | 
|  | * PTEs; and does not stop those being swapped out or migrated. | 
|  | */ | 
|  | if (!pte_present(ptent)) { | 
|  | result = SCAN_PTE_NON_PRESENT; | 
|  | goto abort; | 
|  | } | 
|  | page = vm_normal_page(vma, addr, ptent); | 
|  |  | 
|  | if (folio_page(folio, i) != page) | 
|  | goto abort; | 
|  |  | 
|  | nr_batch_ptes = folio_pte_batch(folio, pte, ptent, max_nr_batch_ptes); | 
|  |  | 
|  | /* | 
|  | * Must clear entry, or a racing truncate may re-remove it. | 
|  | * TLB flush can be left until pmdp_collapse_flush() does it. | 
|  | * PTE dirty? Shmem page is already dirty; file is read-only. | 
|  | */ | 
|  | clear_ptes(mm, addr, pte, nr_batch_ptes); | 
|  | folio_remove_rmap_ptes(folio, page, nr_batch_ptes, vma); | 
|  | nr_mapped_ptes += nr_batch_ptes; | 
|  | } | 
|  |  | 
|  | if (!pml) | 
|  | spin_unlock(ptl); | 
|  |  | 
|  | /* step 3: set proper refcount and mm_counters. */ | 
|  | if (nr_mapped_ptes) { | 
|  | folio_ref_sub(folio, nr_mapped_ptes); | 
|  | add_mm_counter(mm, mm_counter_file(folio), -nr_mapped_ptes); | 
|  | } | 
|  |  | 
|  | /* step 4: remove empty page table */ | 
|  | if (!pml) { | 
|  | pml = pmd_lock(mm, pmd); | 
|  | if (ptl != pml) { | 
|  | spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); | 
|  | if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd)))) { | 
|  | flush_tlb_mm(mm); | 
|  | goto unlock; | 
|  | } | 
|  | } | 
|  | } | 
|  | pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd); | 
|  | pmdp_get_lockless_sync(); | 
|  | pte_unmap_unlock(start_pte, ptl); | 
|  | if (ptl != pml) | 
|  | spin_unlock(pml); | 
|  |  | 
|  | mmu_notifier_invalidate_range_end(&range); | 
|  |  | 
|  | mm_dec_nr_ptes(mm); | 
|  | page_table_check_pte_clear_range(mm, haddr, pgt_pmd); | 
|  | pte_free_defer(mm, pmd_pgtable(pgt_pmd)); | 
|  |  | 
|  | maybe_install_pmd: | 
|  | /* step 5: install pmd entry */ | 
|  | result = install_pmd | 
|  | ? set_huge_pmd(vma, haddr, pmd, folio, &folio->page) | 
|  | : SCAN_SUCCEED; | 
|  | goto drop_folio; | 
|  | abort: | 
|  | if (nr_mapped_ptes) { | 
|  | flush_tlb_mm(mm); | 
|  | folio_ref_sub(folio, nr_mapped_ptes); | 
|  | add_mm_counter(mm, mm_counter_file(folio), -nr_mapped_ptes); | 
|  | } | 
|  | unlock: | 
|  | if (start_pte) | 
|  | pte_unmap_unlock(start_pte, ptl); | 
|  | if (pml && pml != ptl) | 
|  | spin_unlock(pml); | 
|  | if (notified) | 
|  | mmu_notifier_invalidate_range_end(&range); | 
|  | drop_folio: | 
|  | folio_unlock(folio); | 
|  | folio_put(folio); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | i_mmap_lock_read(mapping); | 
|  | vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { | 
|  | struct mmu_notifier_range range; | 
|  | struct mm_struct *mm; | 
|  | unsigned long addr; | 
|  | pmd_t *pmd, pgt_pmd; | 
|  | spinlock_t *pml; | 
|  | spinlock_t *ptl; | 
|  | bool success = false; | 
|  |  | 
|  | /* | 
|  | * Check vma->anon_vma to exclude MAP_PRIVATE mappings that | 
|  | * got written to. These VMAs are likely not worth removing | 
|  | * page tables from, as PMD-mapping is likely to be split later. | 
|  | */ | 
|  | if (READ_ONCE(vma->anon_vma)) | 
|  | continue; | 
|  |  | 
|  | addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); | 
|  | if (addr & ~HPAGE_PMD_MASK || | 
|  | vma->vm_end < addr + HPAGE_PMD_SIZE) | 
|  | continue; | 
|  |  | 
|  | mm = vma->vm_mm; | 
|  | if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED) | 
|  | continue; | 
|  |  | 
|  | if (hpage_collapse_test_exit(mm)) | 
|  | continue; | 
|  | /* | 
|  | * When a vma is registered with uffd-wp, we cannot recycle | 
|  | * the page table because there may be pte markers installed. | 
|  | * Other vmas can still have the same file mapped hugely, but | 
|  | * skip this one: it will always be mapped in small page size | 
|  | * for uffd-wp registered ranges. | 
|  | */ | 
|  | if (userfaultfd_wp(vma)) | 
|  | continue; | 
|  |  | 
|  | /* PTEs were notified when unmapped; but now for the PMD? */ | 
|  | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, | 
|  | addr, addr + HPAGE_PMD_SIZE); | 
|  | mmu_notifier_invalidate_range_start(&range); | 
|  |  | 
|  | pml = pmd_lock(mm, pmd); | 
|  | /* | 
|  | * The lock of new_folio is still held, we will be blocked in | 
|  | * the page fault path, which prevents the pte entries from | 
|  | * being set again. So even though the old empty PTE page may be | 
|  | * concurrently freed and a new PTE page is filled into the pmd | 
|  | * entry, it is still empty and can be removed. | 
|  | * | 
|  | * So here we only need to recheck if the state of pmd entry | 
|  | * still meets our requirements, rather than checking pmd_same() | 
|  | * like elsewhere. | 
|  | */ | 
|  | if (check_pmd_state(pmd) != SCAN_SUCCEED) | 
|  | goto drop_pml; | 
|  | ptl = pte_lockptr(mm, pmd); | 
|  | if (ptl != pml) | 
|  | spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); | 
|  |  | 
|  | /* | 
|  | * Huge page lock is still held, so normally the page table | 
|  | * must remain empty; and we have already skipped anon_vma | 
|  | * and userfaultfd_wp() vmas.  But since the mmap_lock is not | 
|  | * held, it is still possible for a racing userfaultfd_ioctl() | 
|  | * to have inserted ptes or markers.  Now that we hold ptlock, | 
|  | * repeating the anon_vma check protects from one category, | 
|  | * and repeating the userfaultfd_wp() check from another. | 
|  | */ | 
|  | if (likely(!vma->anon_vma && !userfaultfd_wp(vma))) { | 
|  | pgt_pmd = pmdp_collapse_flush(vma, addr, pmd); | 
|  | pmdp_get_lockless_sync(); | 
|  | success = true; | 
|  | } | 
|  |  | 
|  | if (ptl != pml) | 
|  | spin_unlock(ptl); | 
|  | drop_pml: | 
|  | spin_unlock(pml); | 
|  |  | 
|  | mmu_notifier_invalidate_range_end(&range); | 
|  |  | 
|  | if (success) { | 
|  | mm_dec_nr_ptes(mm); | 
|  | page_table_check_pte_clear_range(mm, addr, pgt_pmd); | 
|  | pte_free_defer(mm, pmd_pgtable(pgt_pmd)); | 
|  | } | 
|  | } | 
|  | i_mmap_unlock_read(mapping); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. | 
|  | * | 
|  | * @mm: process address space where collapse happens | 
|  | * @addr: virtual collapse start address | 
|  | * @file: file that collapse on | 
|  | * @start: collapse start address | 
|  | * @cc: collapse context and scratchpad | 
|  | * | 
|  | * Basic scheme is simple, details are more complex: | 
|  | *  - allocate and lock a new huge page; | 
|  | *  - scan page cache, locking old pages | 
|  | *    + swap/gup in pages if necessary; | 
|  | *  - copy data to new page | 
|  | *  - handle shmem holes | 
|  | *    + re-validate that holes weren't filled by someone else | 
|  | *    + check for userfaultfd | 
|  | *  - finalize updates to the page cache; | 
|  | *  - if replacing succeeds: | 
|  | *    + unlock huge page; | 
|  | *    + free old pages; | 
|  | *  - if replacing failed; | 
|  | *    + unlock old pages | 
|  | *    + unlock and free huge page; | 
|  | */ | 
|  | static int collapse_file(struct mm_struct *mm, unsigned long addr, | 
|  | struct file *file, pgoff_t start, | 
|  | struct collapse_control *cc) | 
|  | { | 
|  | struct address_space *mapping = file->f_mapping; | 
|  | struct page *dst; | 
|  | struct folio *folio, *tmp, *new_folio; | 
|  | pgoff_t index = 0, end = start + HPAGE_PMD_NR; | 
|  | LIST_HEAD(pagelist); | 
|  | XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); | 
|  | int nr_none = 0, result = SCAN_SUCCEED; | 
|  | bool is_shmem = shmem_file(file); | 
|  |  | 
|  | VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); | 
|  | VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); | 
|  |  | 
|  | result = alloc_charge_folio(&new_folio, mm, cc); | 
|  | if (result != SCAN_SUCCEED) | 
|  | goto out; | 
|  |  | 
|  | mapping_set_update(&xas, mapping); | 
|  |  | 
|  | __folio_set_locked(new_folio); | 
|  | if (is_shmem) | 
|  | __folio_set_swapbacked(new_folio); | 
|  | new_folio->index = start; | 
|  | new_folio->mapping = mapping; | 
|  |  | 
|  | /* | 
|  | * Ensure we have slots for all the pages in the range.  This is | 
|  | * almost certainly a no-op because most of the pages must be present | 
|  | */ | 
|  | do { | 
|  | xas_lock_irq(&xas); | 
|  | xas_create_range(&xas); | 
|  | if (!xas_error(&xas)) | 
|  | break; | 
|  | xas_unlock_irq(&xas); | 
|  | if (!xas_nomem(&xas, GFP_KERNEL)) { | 
|  | result = SCAN_FAIL; | 
|  | goto rollback; | 
|  | } | 
|  | } while (1); | 
|  |  | 
|  | for (index = start; index < end;) { | 
|  | xas_set(&xas, index); | 
|  | folio = xas_load(&xas); | 
|  |  | 
|  | VM_BUG_ON(index != xas.xa_index); | 
|  | if (is_shmem) { | 
|  | if (!folio) { | 
|  | /* | 
|  | * Stop if extent has been truncated or | 
|  | * hole-punched, and is now completely | 
|  | * empty. | 
|  | */ | 
|  | if (index == start) { | 
|  | if (!xas_next_entry(&xas, end - 1)) { | 
|  | result = SCAN_TRUNCATED; | 
|  | goto xa_locked; | 
|  | } | 
|  | } | 
|  | nr_none++; | 
|  | index++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (xa_is_value(folio) || !folio_test_uptodate(folio)) { | 
|  | xas_unlock_irq(&xas); | 
|  | /* swap in or instantiate fallocated page */ | 
|  | if (shmem_get_folio(mapping->host, index, 0, | 
|  | &folio, SGP_NOALLOC)) { | 
|  | result = SCAN_FAIL; | 
|  | goto xa_unlocked; | 
|  | } | 
|  | /* drain lru cache to help folio_isolate_lru() */ | 
|  | lru_add_drain(); | 
|  | } else if (folio_trylock(folio)) { | 
|  | folio_get(folio); | 
|  | xas_unlock_irq(&xas); | 
|  | } else { | 
|  | result = SCAN_PAGE_LOCK; | 
|  | goto xa_locked; | 
|  | } | 
|  | } else {	/* !is_shmem */ | 
|  | if (!folio || xa_is_value(folio)) { | 
|  | xas_unlock_irq(&xas); | 
|  | page_cache_sync_readahead(mapping, &file->f_ra, | 
|  | file, index, | 
|  | end - index); | 
|  | /* drain lru cache to help folio_isolate_lru() */ | 
|  | lru_add_drain(); | 
|  | folio = filemap_lock_folio(mapping, index); | 
|  | if (IS_ERR(folio)) { | 
|  | result = SCAN_FAIL; | 
|  | goto xa_unlocked; | 
|  | } | 
|  | } else if (folio_test_dirty(folio)) { | 
|  | /* | 
|  | * khugepaged only works on read-only fd, | 
|  | * so this page is dirty because it hasn't | 
|  | * been flushed since first write. There | 
|  | * won't be new dirty pages. | 
|  | * | 
|  | * Trigger async flush here and hope the | 
|  | * writeback is done when khugepaged | 
|  | * revisits this page. | 
|  | * | 
|  | * This is a one-off situation. We are not | 
|  | * forcing writeback in loop. | 
|  | */ | 
|  | xas_unlock_irq(&xas); | 
|  | filemap_flush(mapping); | 
|  | result = SCAN_FAIL; | 
|  | goto xa_unlocked; | 
|  | } else if (folio_test_writeback(folio)) { | 
|  | xas_unlock_irq(&xas); | 
|  | result = SCAN_FAIL; | 
|  | goto xa_unlocked; | 
|  | } else if (folio_trylock(folio)) { | 
|  | folio_get(folio); | 
|  | xas_unlock_irq(&xas); | 
|  | } else { | 
|  | result = SCAN_PAGE_LOCK; | 
|  | goto xa_locked; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The folio must be locked, so we can drop the i_pages lock | 
|  | * without racing with truncate. | 
|  | */ | 
|  | VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); | 
|  |  | 
|  | /* make sure the folio is up to date */ | 
|  | if (unlikely(!folio_test_uptodate(folio))) { | 
|  | result = SCAN_FAIL; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If file was truncated then extended, or hole-punched, before | 
|  | * we locked the first folio, then a THP might be there already. | 
|  | * This will be discovered on the first iteration. | 
|  | */ | 
|  | if (folio_order(folio) == HPAGE_PMD_ORDER && | 
|  | folio->index == start) { | 
|  | /* Maybe PMD-mapped */ | 
|  | result = SCAN_PTE_MAPPED_HUGEPAGE; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | if (folio_mapping(folio) != mapping) { | 
|  | result = SCAN_TRUNCATED; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | if (!is_shmem && (folio_test_dirty(folio) || | 
|  | folio_test_writeback(folio))) { | 
|  | /* | 
|  | * khugepaged only works on read-only fd, so this | 
|  | * folio is dirty because it hasn't been flushed | 
|  | * since first write. | 
|  | */ | 
|  | result = SCAN_FAIL; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | if (!folio_isolate_lru(folio)) { | 
|  | result = SCAN_DEL_PAGE_LRU; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | if (!filemap_release_folio(folio, GFP_KERNEL)) { | 
|  | result = SCAN_PAGE_HAS_PRIVATE; | 
|  | folio_putback_lru(folio); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | if (folio_mapped(folio)) | 
|  | try_to_unmap(folio, | 
|  | TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH); | 
|  |  | 
|  | xas_lock_irq(&xas); | 
|  |  | 
|  | VM_BUG_ON_FOLIO(folio != xa_load(xas.xa, index), folio); | 
|  |  | 
|  | /* | 
|  | * We control 2 + nr_pages references to the folio: | 
|  | *  - we hold a pin on it; | 
|  | *  - nr_pages reference from page cache; | 
|  | *  - one from lru_isolate_folio; | 
|  | * If those are the only references, then any new usage | 
|  | * of the folio will have to fetch it from the page | 
|  | * cache. That requires locking the folio to handle | 
|  | * truncate, so any new usage will be blocked until we | 
|  | * unlock folio after collapse/during rollback. | 
|  | */ | 
|  | if (folio_ref_count(folio) != 2 + folio_nr_pages(folio)) { | 
|  | result = SCAN_PAGE_COUNT; | 
|  | xas_unlock_irq(&xas); | 
|  | folio_putback_lru(folio); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Accumulate the folios that are being collapsed. | 
|  | */ | 
|  | list_add_tail(&folio->lru, &pagelist); | 
|  | index += folio_nr_pages(folio); | 
|  | continue; | 
|  | out_unlock: | 
|  | folio_unlock(folio); | 
|  | folio_put(folio); | 
|  | goto xa_unlocked; | 
|  | } | 
|  |  | 
|  | if (!is_shmem) { | 
|  | filemap_nr_thps_inc(mapping); | 
|  | /* | 
|  | * Paired with the fence in do_dentry_open() -> get_write_access() | 
|  | * to ensure i_writecount is up to date and the update to nr_thps | 
|  | * is visible. Ensures the page cache will be truncated if the | 
|  | * file is opened writable. | 
|  | */ | 
|  | smp_mb(); | 
|  | if (inode_is_open_for_write(mapping->host)) { | 
|  | result = SCAN_FAIL; | 
|  | filemap_nr_thps_dec(mapping); | 
|  | } | 
|  | } | 
|  |  | 
|  | xa_locked: | 
|  | xas_unlock_irq(&xas); | 
|  | xa_unlocked: | 
|  |  | 
|  | /* | 
|  | * If collapse is successful, flush must be done now before copying. | 
|  | * If collapse is unsuccessful, does flush actually need to be done? | 
|  | * Do it anyway, to clear the state. | 
|  | */ | 
|  | try_to_unmap_flush(); | 
|  |  | 
|  | if (result == SCAN_SUCCEED && nr_none && | 
|  | !shmem_charge(mapping->host, nr_none)) | 
|  | result = SCAN_FAIL; | 
|  | if (result != SCAN_SUCCEED) { | 
|  | nr_none = 0; | 
|  | goto rollback; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The old folios are locked, so they won't change anymore. | 
|  | */ | 
|  | index = start; | 
|  | dst = folio_page(new_folio, 0); | 
|  | list_for_each_entry(folio, &pagelist, lru) { | 
|  | int i, nr_pages = folio_nr_pages(folio); | 
|  |  | 
|  | while (index < folio->index) { | 
|  | clear_highpage(dst); | 
|  | index++; | 
|  | dst++; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | if (copy_mc_highpage(dst, folio_page(folio, i)) > 0) { | 
|  | result = SCAN_COPY_MC; | 
|  | goto rollback; | 
|  | } | 
|  | index++; | 
|  | dst++; | 
|  | } | 
|  | } | 
|  | while (index < end) { | 
|  | clear_highpage(dst); | 
|  | index++; | 
|  | dst++; | 
|  | } | 
|  |  | 
|  | if (nr_none) { | 
|  | struct vm_area_struct *vma; | 
|  | int nr_none_check = 0; | 
|  |  | 
|  | i_mmap_lock_read(mapping); | 
|  | xas_lock_irq(&xas); | 
|  |  | 
|  | xas_set(&xas, start); | 
|  | for (index = start; index < end; index++) { | 
|  | if (!xas_next(&xas)) { | 
|  | xas_store(&xas, XA_RETRY_ENTRY); | 
|  | if (xas_error(&xas)) { | 
|  | result = SCAN_STORE_FAILED; | 
|  | goto immap_locked; | 
|  | } | 
|  | nr_none_check++; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (nr_none != nr_none_check) { | 
|  | result = SCAN_PAGE_FILLED; | 
|  | goto immap_locked; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If userspace observed a missing page in a VMA with | 
|  | * a MODE_MISSING userfaultfd, then it might expect a | 
|  | * UFFD_EVENT_PAGEFAULT for that page. If so, we need to | 
|  | * roll back to avoid suppressing such an event. Since | 
|  | * wp/minor userfaultfds don't give userspace any | 
|  | * guarantees that the kernel doesn't fill a missing | 
|  | * page with a zero page, so they don't matter here. | 
|  | * | 
|  | * Any userfaultfds registered after this point will | 
|  | * not be able to observe any missing pages due to the | 
|  | * previously inserted retry entries. | 
|  | */ | 
|  | vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) { | 
|  | if (userfaultfd_missing(vma)) { | 
|  | result = SCAN_EXCEED_NONE_PTE; | 
|  | goto immap_locked; | 
|  | } | 
|  | } | 
|  |  | 
|  | immap_locked: | 
|  | i_mmap_unlock_read(mapping); | 
|  | if (result != SCAN_SUCCEED) { | 
|  | xas_set(&xas, start); | 
|  | for (index = start; index < end; index++) { | 
|  | if (xas_next(&xas) == XA_RETRY_ENTRY) | 
|  | xas_store(&xas, NULL); | 
|  | } | 
|  |  | 
|  | xas_unlock_irq(&xas); | 
|  | goto rollback; | 
|  | } | 
|  | } else { | 
|  | xas_lock_irq(&xas); | 
|  | } | 
|  |  | 
|  | if (is_shmem) | 
|  | __lruvec_stat_mod_folio(new_folio, NR_SHMEM_THPS, HPAGE_PMD_NR); | 
|  | else | 
|  | __lruvec_stat_mod_folio(new_folio, NR_FILE_THPS, HPAGE_PMD_NR); | 
|  |  | 
|  | if (nr_none) { | 
|  | __lruvec_stat_mod_folio(new_folio, NR_FILE_PAGES, nr_none); | 
|  | /* nr_none is always 0 for non-shmem. */ | 
|  | __lruvec_stat_mod_folio(new_folio, NR_SHMEM, nr_none); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mark new_folio as uptodate before inserting it into the | 
|  | * page cache so that it isn't mistaken for an fallocated but | 
|  | * unwritten page. | 
|  | */ | 
|  | folio_mark_uptodate(new_folio); | 
|  | folio_ref_add(new_folio, HPAGE_PMD_NR - 1); | 
|  |  | 
|  | if (is_shmem) | 
|  | folio_mark_dirty(new_folio); | 
|  | folio_add_lru(new_folio); | 
|  |  | 
|  | /* Join all the small entries into a single multi-index entry. */ | 
|  | xas_set_order(&xas, start, HPAGE_PMD_ORDER); | 
|  | xas_store(&xas, new_folio); | 
|  | WARN_ON_ONCE(xas_error(&xas)); | 
|  | xas_unlock_irq(&xas); | 
|  |  | 
|  | /* | 
|  | * Remove pte page tables, so we can re-fault the page as huge. | 
|  | * If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp(). | 
|  | */ | 
|  | retract_page_tables(mapping, start); | 
|  | if (cc && !cc->is_khugepaged) | 
|  | result = SCAN_PTE_MAPPED_HUGEPAGE; | 
|  | folio_unlock(new_folio); | 
|  |  | 
|  | /* | 
|  | * The collapse has succeeded, so free the old folios. | 
|  | */ | 
|  | list_for_each_entry_safe(folio, tmp, &pagelist, lru) { | 
|  | list_del(&folio->lru); | 
|  | folio->mapping = NULL; | 
|  | folio_clear_active(folio); | 
|  | folio_clear_unevictable(folio); | 
|  | folio_unlock(folio); | 
|  | folio_put_refs(folio, 2 + folio_nr_pages(folio)); | 
|  | } | 
|  |  | 
|  | goto out; | 
|  |  | 
|  | rollback: | 
|  | /* Something went wrong: roll back page cache changes */ | 
|  | if (nr_none) { | 
|  | xas_lock_irq(&xas); | 
|  | mapping->nrpages -= nr_none; | 
|  | xas_unlock_irq(&xas); | 
|  | shmem_uncharge(mapping->host, nr_none); | 
|  | } | 
|  |  | 
|  | list_for_each_entry_safe(folio, tmp, &pagelist, lru) { | 
|  | list_del(&folio->lru); | 
|  | folio_unlock(folio); | 
|  | folio_putback_lru(folio); | 
|  | folio_put(folio); | 
|  | } | 
|  | /* | 
|  | * Undo the updates of filemap_nr_thps_inc for non-SHMEM | 
|  | * file only. This undo is not needed unless failure is | 
|  | * due to SCAN_COPY_MC. | 
|  | */ | 
|  | if (!is_shmem && result == SCAN_COPY_MC) { | 
|  | filemap_nr_thps_dec(mapping); | 
|  | /* | 
|  | * Paired with the fence in do_dentry_open() -> get_write_access() | 
|  | * to ensure the update to nr_thps is visible. | 
|  | */ | 
|  | smp_mb(); | 
|  | } | 
|  |  | 
|  | new_folio->mapping = NULL; | 
|  |  | 
|  | folio_unlock(new_folio); | 
|  | folio_put(new_folio); | 
|  | out: | 
|  | VM_BUG_ON(!list_empty(&pagelist)); | 
|  | trace_mm_khugepaged_collapse_file(mm, new_folio, index, addr, is_shmem, file, HPAGE_PMD_NR, result); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, | 
|  | struct file *file, pgoff_t start, | 
|  | struct collapse_control *cc) | 
|  | { | 
|  | struct folio *folio = NULL; | 
|  | struct address_space *mapping = file->f_mapping; | 
|  | XA_STATE(xas, &mapping->i_pages, start); | 
|  | int present, swap; | 
|  | int node = NUMA_NO_NODE; | 
|  | int result = SCAN_SUCCEED; | 
|  |  | 
|  | present = 0; | 
|  | swap = 0; | 
|  | memset(cc->node_load, 0, sizeof(cc->node_load)); | 
|  | nodes_clear(cc->alloc_nmask); | 
|  | rcu_read_lock(); | 
|  | xas_for_each(&xas, folio, start + HPAGE_PMD_NR - 1) { | 
|  | if (xas_retry(&xas, folio)) | 
|  | continue; | 
|  |  | 
|  | if (xa_is_value(folio)) { | 
|  | swap += 1 << xas_get_order(&xas); | 
|  | if (cc->is_khugepaged && | 
|  | swap > khugepaged_max_ptes_swap) { | 
|  | result = SCAN_EXCEED_SWAP_PTE; | 
|  | count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); | 
|  | break; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!folio_try_get(folio)) { | 
|  | xas_reset(&xas); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (unlikely(folio != xas_reload(&xas))) { | 
|  | folio_put(folio); | 
|  | xas_reset(&xas); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (folio_order(folio) == HPAGE_PMD_ORDER && | 
|  | folio->index == start) { | 
|  | /* Maybe PMD-mapped */ | 
|  | result = SCAN_PTE_MAPPED_HUGEPAGE; | 
|  | /* | 
|  | * For SCAN_PTE_MAPPED_HUGEPAGE, further processing | 
|  | * by the caller won't touch the page cache, and so | 
|  | * it's safe to skip LRU and refcount checks before | 
|  | * returning. | 
|  | */ | 
|  | folio_put(folio); | 
|  | break; | 
|  | } | 
|  |  | 
|  | node = folio_nid(folio); | 
|  | if (hpage_collapse_scan_abort(node, cc)) { | 
|  | result = SCAN_SCAN_ABORT; | 
|  | folio_put(folio); | 
|  | break; | 
|  | } | 
|  | cc->node_load[node]++; | 
|  |  | 
|  | if (!folio_test_lru(folio)) { | 
|  | result = SCAN_PAGE_LRU; | 
|  | folio_put(folio); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (folio_expected_ref_count(folio) + 1 != folio_ref_count(folio)) { | 
|  | result = SCAN_PAGE_COUNT; | 
|  | folio_put(folio); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We probably should check if the folio is referenced | 
|  | * here, but nobody would transfer pte_young() to | 
|  | * folio_test_referenced() for us.  And rmap walk here | 
|  | * is just too costly... | 
|  | */ | 
|  |  | 
|  | present += folio_nr_pages(folio); | 
|  | folio_put(folio); | 
|  |  | 
|  | if (need_resched()) { | 
|  | xas_pause(&xas); | 
|  | cond_resched_rcu(); | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (result == SCAN_SUCCEED) { | 
|  | if (cc->is_khugepaged && | 
|  | present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { | 
|  | result = SCAN_EXCEED_NONE_PTE; | 
|  | count_vm_event(THP_SCAN_EXCEED_NONE_PTE); | 
|  | } else { | 
|  | result = collapse_file(mm, addr, file, start, cc); | 
|  | } | 
|  | } | 
|  |  | 
|  | trace_mm_khugepaged_scan_file(mm, folio, file, present, swap, result); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result, | 
|  | struct collapse_control *cc) | 
|  | __releases(&khugepaged_mm_lock) | 
|  | __acquires(&khugepaged_mm_lock) | 
|  | { | 
|  | struct vma_iterator vmi; | 
|  | struct mm_slot *slot; | 
|  | struct mm_struct *mm; | 
|  | struct vm_area_struct *vma; | 
|  | int progress = 0; | 
|  |  | 
|  | VM_BUG_ON(!pages); | 
|  | lockdep_assert_held(&khugepaged_mm_lock); | 
|  | *result = SCAN_FAIL; | 
|  |  | 
|  | if (khugepaged_scan.mm_slot) { | 
|  | slot = khugepaged_scan.mm_slot; | 
|  | } else { | 
|  | slot = list_first_entry(&khugepaged_scan.mm_head, | 
|  | struct mm_slot, mm_node); | 
|  | khugepaged_scan.address = 0; | 
|  | khugepaged_scan.mm_slot = slot; | 
|  | } | 
|  | spin_unlock(&khugepaged_mm_lock); | 
|  |  | 
|  | mm = slot->mm; | 
|  | /* | 
|  | * Don't wait for semaphore (to avoid long wait times).  Just move to | 
|  | * the next mm on the list. | 
|  | */ | 
|  | vma = NULL; | 
|  | if (unlikely(!mmap_read_trylock(mm))) | 
|  | goto breakouterloop_mmap_lock; | 
|  |  | 
|  | progress++; | 
|  | if (unlikely(hpage_collapse_test_exit_or_disable(mm))) | 
|  | goto breakouterloop; | 
|  |  | 
|  | vma_iter_init(&vmi, mm, khugepaged_scan.address); | 
|  | for_each_vma(vmi, vma) { | 
|  | unsigned long hstart, hend; | 
|  |  | 
|  | cond_resched(); | 
|  | if (unlikely(hpage_collapse_test_exit_or_disable(mm))) { | 
|  | progress++; | 
|  | break; | 
|  | } | 
|  | if (!thp_vma_allowable_order(vma, vma->vm_flags, TVA_KHUGEPAGED, PMD_ORDER)) { | 
|  | skip: | 
|  | progress++; | 
|  | continue; | 
|  | } | 
|  | hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE); | 
|  | hend = round_down(vma->vm_end, HPAGE_PMD_SIZE); | 
|  | if (khugepaged_scan.address > hend) | 
|  | goto skip; | 
|  | if (khugepaged_scan.address < hstart) | 
|  | khugepaged_scan.address = hstart; | 
|  | VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); | 
|  |  | 
|  | while (khugepaged_scan.address < hend) { | 
|  | bool mmap_locked = true; | 
|  |  | 
|  | cond_resched(); | 
|  | if (unlikely(hpage_collapse_test_exit_or_disable(mm))) | 
|  | goto breakouterloop; | 
|  |  | 
|  | VM_BUG_ON(khugepaged_scan.address < hstart || | 
|  | khugepaged_scan.address + HPAGE_PMD_SIZE > | 
|  | hend); | 
|  | if (!vma_is_anonymous(vma)) { | 
|  | struct file *file = get_file(vma->vm_file); | 
|  | pgoff_t pgoff = linear_page_index(vma, | 
|  | khugepaged_scan.address); | 
|  |  | 
|  | mmap_read_unlock(mm); | 
|  | mmap_locked = false; | 
|  | *result = hpage_collapse_scan_file(mm, | 
|  | khugepaged_scan.address, file, pgoff, cc); | 
|  | fput(file); | 
|  | if (*result == SCAN_PTE_MAPPED_HUGEPAGE) { | 
|  | mmap_read_lock(mm); | 
|  | if (hpage_collapse_test_exit_or_disable(mm)) | 
|  | goto breakouterloop; | 
|  | *result = collapse_pte_mapped_thp(mm, | 
|  | khugepaged_scan.address, false); | 
|  | if (*result == SCAN_PMD_MAPPED) | 
|  | *result = SCAN_SUCCEED; | 
|  | mmap_read_unlock(mm); | 
|  | } | 
|  | } else { | 
|  | *result = hpage_collapse_scan_pmd(mm, vma, | 
|  | khugepaged_scan.address, &mmap_locked, cc); | 
|  | } | 
|  |  | 
|  | if (*result == SCAN_SUCCEED) | 
|  | ++khugepaged_pages_collapsed; | 
|  |  | 
|  | /* move to next address */ | 
|  | khugepaged_scan.address += HPAGE_PMD_SIZE; | 
|  | progress += HPAGE_PMD_NR; | 
|  | if (!mmap_locked) | 
|  | /* | 
|  | * We released mmap_lock so break loop.  Note | 
|  | * that we drop mmap_lock before all hugepage | 
|  | * allocations, so if allocation fails, we are | 
|  | * guaranteed to break here and report the | 
|  | * correct result back to caller. | 
|  | */ | 
|  | goto breakouterloop_mmap_lock; | 
|  | if (progress >= pages) | 
|  | goto breakouterloop; | 
|  | } | 
|  | } | 
|  | breakouterloop: | 
|  | mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ | 
|  | breakouterloop_mmap_lock: | 
|  |  | 
|  | spin_lock(&khugepaged_mm_lock); | 
|  | VM_BUG_ON(khugepaged_scan.mm_slot != slot); | 
|  | /* | 
|  | * Release the current mm_slot if this mm is about to die, or | 
|  | * if we scanned all vmas of this mm. | 
|  | */ | 
|  | if (hpage_collapse_test_exit(mm) || !vma) { | 
|  | /* | 
|  | * Make sure that if mm_users is reaching zero while | 
|  | * khugepaged runs here, khugepaged_exit will find | 
|  | * mm_slot not pointing to the exiting mm. | 
|  | */ | 
|  | if (!list_is_last(&slot->mm_node, &khugepaged_scan.mm_head)) { | 
|  | khugepaged_scan.mm_slot = list_next_entry(slot, mm_node); | 
|  | khugepaged_scan.address = 0; | 
|  | } else { | 
|  | khugepaged_scan.mm_slot = NULL; | 
|  | khugepaged_full_scans++; | 
|  | } | 
|  |  | 
|  | collect_mm_slot(slot); | 
|  | } | 
|  |  | 
|  | return progress; | 
|  | } | 
|  |  | 
|  | static int khugepaged_has_work(void) | 
|  | { | 
|  | return !list_empty(&khugepaged_scan.mm_head) && hugepage_pmd_enabled(); | 
|  | } | 
|  |  | 
|  | static int khugepaged_wait_event(void) | 
|  | { | 
|  | return !list_empty(&khugepaged_scan.mm_head) || | 
|  | kthread_should_stop(); | 
|  | } | 
|  |  | 
|  | static void khugepaged_do_scan(struct collapse_control *cc) | 
|  | { | 
|  | unsigned int progress = 0, pass_through_head = 0; | 
|  | unsigned int pages = READ_ONCE(khugepaged_pages_to_scan); | 
|  | bool wait = true; | 
|  | int result = SCAN_SUCCEED; | 
|  |  | 
|  | lru_add_drain_all(); | 
|  |  | 
|  | while (true) { | 
|  | cond_resched(); | 
|  |  | 
|  | if (unlikely(kthread_should_stop())) | 
|  | break; | 
|  |  | 
|  | spin_lock(&khugepaged_mm_lock); | 
|  | if (!khugepaged_scan.mm_slot) | 
|  | pass_through_head++; | 
|  | if (khugepaged_has_work() && | 
|  | pass_through_head < 2) | 
|  | progress += khugepaged_scan_mm_slot(pages - progress, | 
|  | &result, cc); | 
|  | else | 
|  | progress = pages; | 
|  | spin_unlock(&khugepaged_mm_lock); | 
|  |  | 
|  | if (progress >= pages) | 
|  | break; | 
|  |  | 
|  | if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) { | 
|  | /* | 
|  | * If fail to allocate the first time, try to sleep for | 
|  | * a while.  When hit again, cancel the scan. | 
|  | */ | 
|  | if (!wait) | 
|  | break; | 
|  | wait = false; | 
|  | khugepaged_alloc_sleep(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool khugepaged_should_wakeup(void) | 
|  | { | 
|  | return kthread_should_stop() || | 
|  | time_after_eq(jiffies, khugepaged_sleep_expire); | 
|  | } | 
|  |  | 
|  | static void khugepaged_wait_work(void) | 
|  | { | 
|  | if (khugepaged_has_work()) { | 
|  | const unsigned long scan_sleep_jiffies = | 
|  | msecs_to_jiffies(khugepaged_scan_sleep_millisecs); | 
|  |  | 
|  | if (!scan_sleep_jiffies) | 
|  | return; | 
|  |  | 
|  | khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; | 
|  | wait_event_freezable_timeout(khugepaged_wait, | 
|  | khugepaged_should_wakeup(), | 
|  | scan_sleep_jiffies); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (hugepage_pmd_enabled()) | 
|  | wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); | 
|  | } | 
|  |  | 
|  | static int khugepaged(void *none) | 
|  | { | 
|  | struct mm_slot *slot; | 
|  |  | 
|  | set_freezable(); | 
|  | set_user_nice(current, MAX_NICE); | 
|  |  | 
|  | while (!kthread_should_stop()) { | 
|  | khugepaged_do_scan(&khugepaged_collapse_control); | 
|  | khugepaged_wait_work(); | 
|  | } | 
|  |  | 
|  | spin_lock(&khugepaged_mm_lock); | 
|  | slot = khugepaged_scan.mm_slot; | 
|  | khugepaged_scan.mm_slot = NULL; | 
|  | if (slot) | 
|  | collect_mm_slot(slot); | 
|  | spin_unlock(&khugepaged_mm_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void set_recommended_min_free_kbytes(void) | 
|  | { | 
|  | struct zone *zone; | 
|  | int nr_zones = 0; | 
|  | unsigned long recommended_min; | 
|  |  | 
|  | if (!hugepage_pmd_enabled()) { | 
|  | calculate_min_free_kbytes(); | 
|  | goto update_wmarks; | 
|  | } | 
|  |  | 
|  | for_each_populated_zone(zone) { | 
|  | /* | 
|  | * We don't need to worry about fragmentation of | 
|  | * ZONE_MOVABLE since it only has movable pages. | 
|  | */ | 
|  | if (zone_idx(zone) > gfp_zone(GFP_USER)) | 
|  | continue; | 
|  |  | 
|  | nr_zones++; | 
|  | } | 
|  |  | 
|  | /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ | 
|  | recommended_min = pageblock_nr_pages * nr_zones * 2; | 
|  |  | 
|  | /* | 
|  | * Make sure that on average at least two pageblocks are almost free | 
|  | * of another type, one for a migratetype to fall back to and a | 
|  | * second to avoid subsequent fallbacks of other types There are 3 | 
|  | * MIGRATE_TYPES we care about. | 
|  | */ | 
|  | recommended_min += pageblock_nr_pages * nr_zones * | 
|  | MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; | 
|  |  | 
|  | /* don't ever allow to reserve more than 5% of the lowmem */ | 
|  | recommended_min = min(recommended_min, | 
|  | (unsigned long) nr_free_buffer_pages() / 20); | 
|  | recommended_min <<= (PAGE_SHIFT-10); | 
|  |  | 
|  | if (recommended_min > min_free_kbytes) { | 
|  | if (user_min_free_kbytes >= 0) | 
|  | pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", | 
|  | min_free_kbytes, recommended_min); | 
|  |  | 
|  | min_free_kbytes = recommended_min; | 
|  | } | 
|  |  | 
|  | update_wmarks: | 
|  | setup_per_zone_wmarks(); | 
|  | } | 
|  |  | 
|  | int start_stop_khugepaged(void) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | mutex_lock(&khugepaged_mutex); | 
|  | if (hugepage_pmd_enabled()) { | 
|  | if (!khugepaged_thread) | 
|  | khugepaged_thread = kthread_run(khugepaged, NULL, | 
|  | "khugepaged"); | 
|  | if (IS_ERR(khugepaged_thread)) { | 
|  | pr_err("khugepaged: kthread_run(khugepaged) failed\n"); | 
|  | err = PTR_ERR(khugepaged_thread); | 
|  | khugepaged_thread = NULL; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | if (!list_empty(&khugepaged_scan.mm_head)) | 
|  | wake_up_interruptible(&khugepaged_wait); | 
|  | } else if (khugepaged_thread) { | 
|  | kthread_stop(khugepaged_thread); | 
|  | khugepaged_thread = NULL; | 
|  | } | 
|  | set_recommended_min_free_kbytes(); | 
|  | fail: | 
|  | mutex_unlock(&khugepaged_mutex); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | void khugepaged_min_free_kbytes_update(void) | 
|  | { | 
|  | mutex_lock(&khugepaged_mutex); | 
|  | if (hugepage_pmd_enabled() && khugepaged_thread) | 
|  | set_recommended_min_free_kbytes(); | 
|  | mutex_unlock(&khugepaged_mutex); | 
|  | } | 
|  |  | 
|  | bool current_is_khugepaged(void) | 
|  | { | 
|  | return kthread_func(current) == khugepaged; | 
|  | } | 
|  |  | 
|  | static int madvise_collapse_errno(enum scan_result r) | 
|  | { | 
|  | /* | 
|  | * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide | 
|  | * actionable feedback to caller, so they may take an appropriate | 
|  | * fallback measure depending on the nature of the failure. | 
|  | */ | 
|  | switch (r) { | 
|  | case SCAN_ALLOC_HUGE_PAGE_FAIL: | 
|  | return -ENOMEM; | 
|  | case SCAN_CGROUP_CHARGE_FAIL: | 
|  | case SCAN_EXCEED_NONE_PTE: | 
|  | return -EBUSY; | 
|  | /* Resource temporary unavailable - trying again might succeed */ | 
|  | case SCAN_PAGE_COUNT: | 
|  | case SCAN_PAGE_LOCK: | 
|  | case SCAN_PAGE_LRU: | 
|  | case SCAN_DEL_PAGE_LRU: | 
|  | case SCAN_PAGE_FILLED: | 
|  | return -EAGAIN; | 
|  | /* | 
|  | * Other: Trying again likely not to succeed / error intrinsic to | 
|  | * specified memory range. khugepaged likely won't be able to collapse | 
|  | * either. | 
|  | */ | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | int madvise_collapse(struct vm_area_struct *vma, unsigned long start, | 
|  | unsigned long end, bool *lock_dropped) | 
|  | { | 
|  | struct collapse_control *cc; | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | unsigned long hstart, hend, addr; | 
|  | int thps = 0, last_fail = SCAN_FAIL; | 
|  | bool mmap_locked = true; | 
|  |  | 
|  | BUG_ON(vma->vm_start > start); | 
|  | BUG_ON(vma->vm_end < end); | 
|  |  | 
|  | if (!thp_vma_allowable_order(vma, vma->vm_flags, TVA_FORCED_COLLAPSE, PMD_ORDER)) | 
|  | return -EINVAL; | 
|  |  | 
|  | cc = kmalloc(sizeof(*cc), GFP_KERNEL); | 
|  | if (!cc) | 
|  | return -ENOMEM; | 
|  | cc->is_khugepaged = false; | 
|  |  | 
|  | mmgrab(mm); | 
|  | lru_add_drain_all(); | 
|  |  | 
|  | hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; | 
|  | hend = end & HPAGE_PMD_MASK; | 
|  |  | 
|  | for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) { | 
|  | int result = SCAN_FAIL; | 
|  |  | 
|  | if (!mmap_locked) { | 
|  | cond_resched(); | 
|  | mmap_read_lock(mm); | 
|  | mmap_locked = true; | 
|  | result = hugepage_vma_revalidate(mm, addr, false, &vma, | 
|  | cc); | 
|  | if (result  != SCAN_SUCCEED) { | 
|  | last_fail = result; | 
|  | goto out_nolock; | 
|  | } | 
|  |  | 
|  | hend = min(hend, vma->vm_end & HPAGE_PMD_MASK); | 
|  | } | 
|  | mmap_assert_locked(mm); | 
|  | memset(cc->node_load, 0, sizeof(cc->node_load)); | 
|  | nodes_clear(cc->alloc_nmask); | 
|  | if (!vma_is_anonymous(vma)) { | 
|  | struct file *file = get_file(vma->vm_file); | 
|  | pgoff_t pgoff = linear_page_index(vma, addr); | 
|  |  | 
|  | mmap_read_unlock(mm); | 
|  | mmap_locked = false; | 
|  | result = hpage_collapse_scan_file(mm, addr, file, pgoff, | 
|  | cc); | 
|  | fput(file); | 
|  | } else { | 
|  | result = hpage_collapse_scan_pmd(mm, vma, addr, | 
|  | &mmap_locked, cc); | 
|  | } | 
|  | if (!mmap_locked) | 
|  | *lock_dropped = true; | 
|  |  | 
|  | handle_result: | 
|  | switch (result) { | 
|  | case SCAN_SUCCEED: | 
|  | case SCAN_PMD_MAPPED: | 
|  | ++thps; | 
|  | break; | 
|  | case SCAN_PTE_MAPPED_HUGEPAGE: | 
|  | BUG_ON(mmap_locked); | 
|  | mmap_read_lock(mm); | 
|  | result = collapse_pte_mapped_thp(mm, addr, true); | 
|  | mmap_read_unlock(mm); | 
|  | goto handle_result; | 
|  | /* Whitelisted set of results where continuing OK */ | 
|  | case SCAN_PMD_NULL: | 
|  | case SCAN_PTE_NON_PRESENT: | 
|  | case SCAN_PTE_UFFD_WP: | 
|  | case SCAN_LACK_REFERENCED_PAGE: | 
|  | case SCAN_PAGE_NULL: | 
|  | case SCAN_PAGE_COUNT: | 
|  | case SCAN_PAGE_LOCK: | 
|  | case SCAN_PAGE_COMPOUND: | 
|  | case SCAN_PAGE_LRU: | 
|  | case SCAN_DEL_PAGE_LRU: | 
|  | last_fail = result; | 
|  | break; | 
|  | default: | 
|  | last_fail = result; | 
|  | /* Other error, exit */ | 
|  | goto out_maybelock; | 
|  | } | 
|  | } | 
|  |  | 
|  | out_maybelock: | 
|  | /* Caller expects us to hold mmap_lock on return */ | 
|  | if (!mmap_locked) | 
|  | mmap_read_lock(mm); | 
|  | out_nolock: | 
|  | mmap_assert_locked(mm); | 
|  | mmdrop(mm); | 
|  | kfree(cc); | 
|  |  | 
|  | return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0 | 
|  | : madvise_collapse_errno(last_fail); | 
|  | } |