| /* memcontrol.c - Memory Controller | 
 |  * | 
 |  * Copyright IBM Corporation, 2007 | 
 |  * Author Balbir Singh <balbir@linux.vnet.ibm.com> | 
 |  * | 
 |  * Copyright 2007 OpenVZ SWsoft Inc | 
 |  * Author: Pavel Emelianov <xemul@openvz.org> | 
 |  * | 
 |  * Memory thresholds | 
 |  * Copyright (C) 2009 Nokia Corporation | 
 |  * Author: Kirill A. Shutemov | 
 |  * | 
 |  * Kernel Memory Controller | 
 |  * Copyright (C) 2012 Parallels Inc. and Google Inc. | 
 |  * Authors: Glauber Costa and Suleiman Souhlal | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2 of the License, or | 
 |  * (at your option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  */ | 
 |  | 
 | #include <linux/res_counter.h> | 
 | #include <linux/memcontrol.h> | 
 | #include <linux/cgroup.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/page-flags.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/bit_spinlock.h> | 
 | #include <linux/rcupdate.h> | 
 | #include <linux/limits.h> | 
 | #include <linux/export.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/rbtree.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/swapops.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/eventfd.h> | 
 | #include <linux/sort.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/mm_inline.h> | 
 | #include <linux/page_cgroup.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/oom.h> | 
 | #include "internal.h" | 
 | #include <net/sock.h> | 
 | #include <net/ip.h> | 
 | #include <net/tcp_memcontrol.h> | 
 |  | 
 | #include <asm/uaccess.h> | 
 |  | 
 | #include <trace/events/vmscan.h> | 
 |  | 
 | struct cgroup_subsys mem_cgroup_subsys __read_mostly; | 
 | EXPORT_SYMBOL(mem_cgroup_subsys); | 
 |  | 
 | #define MEM_CGROUP_RECLAIM_RETRIES	5 | 
 | static struct mem_cgroup *root_mem_cgroup __read_mostly; | 
 |  | 
 | #ifdef CONFIG_MEMCG_SWAP | 
 | /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ | 
 | int do_swap_account __read_mostly; | 
 |  | 
 | /* for remember boot option*/ | 
 | #ifdef CONFIG_MEMCG_SWAP_ENABLED | 
 | static int really_do_swap_account __initdata = 1; | 
 | #else | 
 | static int really_do_swap_account __initdata = 0; | 
 | #endif | 
 |  | 
 | #else | 
 | #define do_swap_account		0 | 
 | #endif | 
 |  | 
 |  | 
 | /* | 
 |  * Statistics for memory cgroup. | 
 |  */ | 
 | enum mem_cgroup_stat_index { | 
 | 	/* | 
 | 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. | 
 | 	 */ | 
 | 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */ | 
 | 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */ | 
 | 	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */ | 
 | 	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */ | 
 | 	MEM_CGROUP_STAT_NSTATS, | 
 | }; | 
 |  | 
 | static const char * const mem_cgroup_stat_names[] = { | 
 | 	"cache", | 
 | 	"rss", | 
 | 	"mapped_file", | 
 | 	"swap", | 
 | }; | 
 |  | 
 | enum mem_cgroup_events_index { | 
 | 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */ | 
 | 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */ | 
 | 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */ | 
 | 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */ | 
 | 	MEM_CGROUP_EVENTS_NSTATS, | 
 | }; | 
 |  | 
 | static const char * const mem_cgroup_events_names[] = { | 
 | 	"pgpgin", | 
 | 	"pgpgout", | 
 | 	"pgfault", | 
 | 	"pgmajfault", | 
 | }; | 
 |  | 
 | static const char * const mem_cgroup_lru_names[] = { | 
 | 	"inactive_anon", | 
 | 	"active_anon", | 
 | 	"inactive_file", | 
 | 	"active_file", | 
 | 	"unevictable", | 
 | }; | 
 |  | 
 | /* | 
 |  * Per memcg event counter is incremented at every pagein/pageout. With THP, | 
 |  * it will be incremated by the number of pages. This counter is used for | 
 |  * for trigger some periodic events. This is straightforward and better | 
 |  * than using jiffies etc. to handle periodic memcg event. | 
 |  */ | 
 | enum mem_cgroup_events_target { | 
 | 	MEM_CGROUP_TARGET_THRESH, | 
 | 	MEM_CGROUP_TARGET_SOFTLIMIT, | 
 | 	MEM_CGROUP_TARGET_NUMAINFO, | 
 | 	MEM_CGROUP_NTARGETS, | 
 | }; | 
 | #define THRESHOLDS_EVENTS_TARGET 128 | 
 | #define SOFTLIMIT_EVENTS_TARGET 1024 | 
 | #define NUMAINFO_EVENTS_TARGET	1024 | 
 |  | 
 | struct mem_cgroup_stat_cpu { | 
 | 	long count[MEM_CGROUP_STAT_NSTATS]; | 
 | 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; | 
 | 	unsigned long nr_page_events; | 
 | 	unsigned long targets[MEM_CGROUP_NTARGETS]; | 
 | }; | 
 |  | 
 | struct mem_cgroup_reclaim_iter { | 
 | 	/* | 
 | 	 * last scanned hierarchy member. Valid only if last_dead_count | 
 | 	 * matches memcg->dead_count of the hierarchy root group. | 
 | 	 */ | 
 | 	struct mem_cgroup *last_visited; | 
 | 	unsigned long last_dead_count; | 
 |  | 
 | 	/* scan generation, increased every round-trip */ | 
 | 	unsigned int generation; | 
 | }; | 
 |  | 
 | /* | 
 |  * per-zone information in memory controller. | 
 |  */ | 
 | struct mem_cgroup_per_zone { | 
 | 	struct lruvec		lruvec; | 
 | 	unsigned long		lru_size[NR_LRU_LISTS]; | 
 |  | 
 | 	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; | 
 |  | 
 | 	struct rb_node		tree_node;	/* RB tree node */ | 
 | 	unsigned long long	usage_in_excess;/* Set to the value by which */ | 
 | 						/* the soft limit is exceeded*/ | 
 | 	bool			on_tree; | 
 | 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */ | 
 | 						/* use container_of	   */ | 
 | }; | 
 |  | 
 | struct mem_cgroup_per_node { | 
 | 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; | 
 | }; | 
 |  | 
 | struct mem_cgroup_lru_info { | 
 | 	struct mem_cgroup_per_node *nodeinfo[0]; | 
 | }; | 
 |  | 
 | /* | 
 |  * Cgroups above their limits are maintained in a RB-Tree, independent of | 
 |  * their hierarchy representation | 
 |  */ | 
 |  | 
 | struct mem_cgroup_tree_per_zone { | 
 | 	struct rb_root rb_root; | 
 | 	spinlock_t lock; | 
 | }; | 
 |  | 
 | struct mem_cgroup_tree_per_node { | 
 | 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; | 
 | }; | 
 |  | 
 | struct mem_cgroup_tree { | 
 | 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; | 
 | }; | 
 |  | 
 | static struct mem_cgroup_tree soft_limit_tree __read_mostly; | 
 |  | 
 | struct mem_cgroup_threshold { | 
 | 	struct eventfd_ctx *eventfd; | 
 | 	u64 threshold; | 
 | }; | 
 |  | 
 | /* For threshold */ | 
 | struct mem_cgroup_threshold_ary { | 
 | 	/* An array index points to threshold just below or equal to usage. */ | 
 | 	int current_threshold; | 
 | 	/* Size of entries[] */ | 
 | 	unsigned int size; | 
 | 	/* Array of thresholds */ | 
 | 	struct mem_cgroup_threshold entries[0]; | 
 | }; | 
 |  | 
 | struct mem_cgroup_thresholds { | 
 | 	/* Primary thresholds array */ | 
 | 	struct mem_cgroup_threshold_ary *primary; | 
 | 	/* | 
 | 	 * Spare threshold array. | 
 | 	 * This is needed to make mem_cgroup_unregister_event() "never fail". | 
 | 	 * It must be able to store at least primary->size - 1 entries. | 
 | 	 */ | 
 | 	struct mem_cgroup_threshold_ary *spare; | 
 | }; | 
 |  | 
 | /* for OOM */ | 
 | struct mem_cgroup_eventfd_list { | 
 | 	struct list_head list; | 
 | 	struct eventfd_ctx *eventfd; | 
 | }; | 
 |  | 
 | static void mem_cgroup_threshold(struct mem_cgroup *memcg); | 
 | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); | 
 |  | 
 | /* | 
 |  * The memory controller data structure. The memory controller controls both | 
 |  * page cache and RSS per cgroup. We would eventually like to provide | 
 |  * statistics based on the statistics developed by Rik Van Riel for clock-pro, | 
 |  * to help the administrator determine what knobs to tune. | 
 |  * | 
 |  * TODO: Add a water mark for the memory controller. Reclaim will begin when | 
 |  * we hit the water mark. May be even add a low water mark, such that | 
 |  * no reclaim occurs from a cgroup at it's low water mark, this is | 
 |  * a feature that will be implemented much later in the future. | 
 |  */ | 
 | struct mem_cgroup { | 
 | 	struct cgroup_subsys_state css; | 
 | 	/* | 
 | 	 * the counter to account for memory usage | 
 | 	 */ | 
 | 	struct res_counter res; | 
 |  | 
 | 	union { | 
 | 		/* | 
 | 		 * the counter to account for mem+swap usage. | 
 | 		 */ | 
 | 		struct res_counter memsw; | 
 |  | 
 | 		/* | 
 | 		 * rcu_freeing is used only when freeing struct mem_cgroup, | 
 | 		 * so put it into a union to avoid wasting more memory. | 
 | 		 * It must be disjoint from the css field.  It could be | 
 | 		 * in a union with the res field, but res plays a much | 
 | 		 * larger part in mem_cgroup life than memsw, and might | 
 | 		 * be of interest, even at time of free, when debugging. | 
 | 		 * So share rcu_head with the less interesting memsw. | 
 | 		 */ | 
 | 		struct rcu_head rcu_freeing; | 
 | 		/* | 
 | 		 * We also need some space for a worker in deferred freeing. | 
 | 		 * By the time we call it, rcu_freeing is no longer in use. | 
 | 		 */ | 
 | 		struct work_struct work_freeing; | 
 | 	}; | 
 |  | 
 | 	/* | 
 | 	 * the counter to account for kernel memory usage. | 
 | 	 */ | 
 | 	struct res_counter kmem; | 
 | 	/* | 
 | 	 * Should the accounting and control be hierarchical, per subtree? | 
 | 	 */ | 
 | 	bool use_hierarchy; | 
 | 	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */ | 
 |  | 
 | 	bool		oom_lock; | 
 | 	atomic_t	under_oom; | 
 |  | 
 | 	atomic_t	refcnt; | 
 |  | 
 | 	int	swappiness; | 
 | 	/* OOM-Killer disable */ | 
 | 	int		oom_kill_disable; | 
 |  | 
 | 	/* set when res.limit == memsw.limit */ | 
 | 	bool		memsw_is_minimum; | 
 |  | 
 | 	/* protect arrays of thresholds */ | 
 | 	struct mutex thresholds_lock; | 
 |  | 
 | 	/* thresholds for memory usage. RCU-protected */ | 
 | 	struct mem_cgroup_thresholds thresholds; | 
 |  | 
 | 	/* thresholds for mem+swap usage. RCU-protected */ | 
 | 	struct mem_cgroup_thresholds memsw_thresholds; | 
 |  | 
 | 	union { | 
 | 		/* For oom notifier event fd */ | 
 | 		struct list_head oom_notify; | 
 | 		/* | 
 | 		 * we can only trigger an oom event if the memcg is alive. | 
 | 		 * so we will reuse this field to hook the memcg in the list | 
 | 		 * of dead memcgs. | 
 | 		 */ | 
 | 		struct list_head dead; | 
 | 	}; | 
 |  | 
 | 	union { | 
 | 		/* | 
 | 		 * Should we move charges of a task when a task is moved into | 
 | 		 * this mem_cgroup ? And what type of charges should we move ? | 
 | 		 */ | 
 | 		unsigned long move_charge_at_immigrate; | 
 |  | 
 | 		/* | 
 | 		 * We are no longer concerned about moving charges after memcg | 
 | 		 * is dead. So we will fill this up with its name, to aid | 
 | 		 * debugging. | 
 | 		 */ | 
 | 		char *memcg_name; | 
 | 	}; | 
 | 	/* | 
 | 	 * set > 0 if pages under this cgroup are moving to other cgroup. | 
 | 	 */ | 
 | 	atomic_t	moving_account; | 
 | 	/* taken only while moving_account > 0 */ | 
 | 	spinlock_t	move_lock; | 
 | 	/* | 
 | 	 * percpu counter. | 
 | 	 */ | 
 | 	struct mem_cgroup_stat_cpu __percpu *stat; | 
 | 	/* | 
 | 	 * used when a cpu is offlined or other synchronizations | 
 | 	 * See mem_cgroup_read_stat(). | 
 | 	 */ | 
 | 	struct mem_cgroup_stat_cpu nocpu_base; | 
 | 	spinlock_t pcp_counter_lock; | 
 |  | 
 | 	atomic_t	dead_count; | 
 | #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET) | 
 | 	struct tcp_memcontrol tcp_mem; | 
 | #endif | 
 | #if defined(CONFIG_MEMCG_KMEM) | 
 | 	/* analogous to slab_common's slab_caches list. per-memcg */ | 
 | 	struct list_head memcg_slab_caches; | 
 | 	/* Not a spinlock, we can take a lot of time walking the list */ | 
 | 	struct mutex slab_caches_mutex; | 
 |         /* Index in the kmem_cache->memcg_params->memcg_caches array */ | 
 | 	int kmemcg_id; | 
 | #endif | 
 |  | 
 | 	int last_scanned_node; | 
 | #if MAX_NUMNODES > 1 | 
 | 	nodemask_t	scan_nodes; | 
 | 	atomic_t	numainfo_events; | 
 | 	atomic_t	numainfo_updating; | 
 | #endif | 
 | 	/* | 
 | 	 * Per cgroup active and inactive list, similar to the | 
 | 	 * per zone LRU lists. | 
 | 	 * | 
 | 	 * WARNING: This has to be the last element of the struct. Don't | 
 | 	 * add new fields after this point. | 
 | 	 */ | 
 | 	struct mem_cgroup_lru_info info; | 
 | }; | 
 |  | 
 | static size_t memcg_size(void) | 
 | { | 
 | 	return sizeof(struct mem_cgroup) + | 
 | 		nr_node_ids * sizeof(struct mem_cgroup_per_node); | 
 | } | 
 |  | 
 | #ifdef CONFIG_MEMCG_DEBUG_ASYNC_DESTROY | 
 | static LIST_HEAD(dangling_memcgs); | 
 | static DEFINE_MUTEX(dangling_memcgs_mutex); | 
 |  | 
 | static inline void memcg_dangling_free(struct mem_cgroup *memcg) | 
 | { | 
 | 	mutex_lock(&dangling_memcgs_mutex); | 
 | 	list_del(&memcg->dead); | 
 | 	mutex_unlock(&dangling_memcgs_mutex); | 
 | 	free_pages((unsigned long)memcg->memcg_name, 0); | 
 | } | 
 |  | 
 | static inline void memcg_dangling_add(struct mem_cgroup *memcg) | 
 | { | 
 | 	/* | 
 | 	 * cgroup.c will do page-sized allocations most of the time, | 
 | 	 * so we'll just follow the pattern. Also, __get_free_pages | 
 | 	 * is a better interface than kmalloc for us here, because | 
 | 	 * we'd like this memory to be always billed to the root cgroup, | 
 | 	 * not to the process removing the memcg. While kmalloc would | 
 | 	 * require us to wrap it into memcg_stop/resume_kmem_account, | 
 | 	 * with __get_free_pages we just don't pass the memcg flag. | 
 | 	 */ | 
 | 	memcg->memcg_name = (char *)__get_free_pages(GFP_KERNEL, 0); | 
 |  | 
 | 	/* | 
 | 	 * we will, in general, just ignore failures. No need to go crazy, | 
 | 	 * being this just a debugging interface. It is nice to copy a memcg | 
 | 	 * name over, but if we (unlikely) can't, just the address will do | 
 | 	 */ | 
 | 	if (!memcg->memcg_name) | 
 | 		goto add_list; | 
 |  | 
 | 	if (cgroup_path(memcg->css.cgroup, memcg->memcg_name, PAGE_SIZE) < 0) { | 
 | 		free_pages((unsigned long)memcg->memcg_name, 0); | 
 | 		memcg->memcg_name = NULL; | 
 | 	} | 
 |  | 
 | add_list: | 
 | 	INIT_LIST_HEAD(&memcg->dead); | 
 | 	mutex_lock(&dangling_memcgs_mutex); | 
 | 	list_add(&memcg->dead, &dangling_memcgs); | 
 | 	mutex_unlock(&dangling_memcgs_mutex); | 
 | } | 
 | #else | 
 | static inline void memcg_dangling_free(struct mem_cgroup *memcg) {} | 
 | static inline void memcg_dangling_add(struct mem_cgroup *memcg) {} | 
 | #endif | 
 |  | 
 | /* internal only representation about the status of kmem accounting. */ | 
 | enum { | 
 | 	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */ | 
 | 	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */ | 
 | 	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */ | 
 | }; | 
 |  | 
 | /* We account when limit is on, but only after call sites are patched */ | 
 | #define KMEM_ACCOUNTED_MASK \ | 
 | 		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED)) | 
 |  | 
 | #ifdef CONFIG_MEMCG_KMEM | 
 | static inline void memcg_kmem_set_active(struct mem_cgroup *memcg) | 
 | { | 
 | 	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); | 
 | } | 
 |  | 
 | static bool memcg_kmem_is_active(struct mem_cgroup *memcg) | 
 | { | 
 | 	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); | 
 | } | 
 |  | 
 | static void memcg_kmem_set_activated(struct mem_cgroup *memcg) | 
 | { | 
 | 	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags); | 
 | } | 
 |  | 
 | static void memcg_kmem_clear_activated(struct mem_cgroup *memcg) | 
 | { | 
 | 	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags); | 
 | } | 
 |  | 
 | static void memcg_kmem_mark_dead(struct mem_cgroup *memcg) | 
 | { | 
 | 	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags)) | 
 | 		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags); | 
 | } | 
 |  | 
 | static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg) | 
 | { | 
 | 	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD, | 
 | 				  &memcg->kmem_account_flags); | 
 | } | 
 | #endif | 
 |  | 
 | /* Stuffs for move charges at task migration. */ | 
 | /* | 
 |  * Types of charges to be moved. "move_charge_at_immitgrate" and | 
 |  * "immigrate_flags" are treated as a left-shifted bitmap of these types. | 
 |  */ | 
 | enum move_type { | 
 | 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */ | 
 | 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */ | 
 | 	NR_MOVE_TYPE, | 
 | }; | 
 |  | 
 | /* "mc" and its members are protected by cgroup_mutex */ | 
 | static struct move_charge_struct { | 
 | 	spinlock_t	  lock; /* for from, to */ | 
 | 	struct mem_cgroup *from; | 
 | 	struct mem_cgroup *to; | 
 | 	unsigned long immigrate_flags; | 
 | 	unsigned long precharge; | 
 | 	unsigned long moved_charge; | 
 | 	unsigned long moved_swap; | 
 | 	struct task_struct *moving_task;	/* a task moving charges */ | 
 | 	wait_queue_head_t waitq;		/* a waitq for other context */ | 
 | } mc = { | 
 | 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock), | 
 | 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), | 
 | }; | 
 |  | 
 | static bool move_anon(void) | 
 | { | 
 | 	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags); | 
 | } | 
 |  | 
 | static bool move_file(void) | 
 | { | 
 | 	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft | 
 |  * limit reclaim to prevent infinite loops, if they ever occur. | 
 |  */ | 
 | #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100 | 
 | #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2 | 
 |  | 
 | enum charge_type { | 
 | 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0, | 
 | 	MEM_CGROUP_CHARGE_TYPE_ANON, | 
 | 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */ | 
 | 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */ | 
 | 	NR_CHARGE_TYPE, | 
 | }; | 
 |  | 
 | /* for encoding cft->private value on file */ | 
 | enum res_type { | 
 | 	_MEM, | 
 | 	_MEMSWAP, | 
 | 	_OOM_TYPE, | 
 | 	_KMEM, | 
 | }; | 
 |  | 
 | #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val)) | 
 | #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff) | 
 | #define MEMFILE_ATTR(val)	((val) & 0xffff) | 
 | /* Used for OOM nofiier */ | 
 | #define OOM_CONTROL		(0) | 
 |  | 
 | /* | 
 |  * Reclaim flags for mem_cgroup_hierarchical_reclaim | 
 |  */ | 
 | #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0 | 
 | #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) | 
 | #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1 | 
 | #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) | 
 |  | 
 | /* | 
 |  * The memcg_create_mutex will be held whenever a new cgroup is created. | 
 |  * As a consequence, any change that needs to protect against new child cgroups | 
 |  * appearing has to hold it as well. | 
 |  */ | 
 | static DEFINE_MUTEX(memcg_create_mutex); | 
 |  | 
 | static void mem_cgroup_get(struct mem_cgroup *memcg); | 
 | static void mem_cgroup_put(struct mem_cgroup *memcg); | 
 |  | 
 | static inline | 
 | struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s) | 
 | { | 
 | 	return container_of(s, struct mem_cgroup, css); | 
 | } | 
 |  | 
 | static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) | 
 | { | 
 | 	return (memcg == root_mem_cgroup); | 
 | } | 
 |  | 
 | /* Writing them here to avoid exposing memcg's inner layout */ | 
 | #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) | 
 |  | 
 | void sock_update_memcg(struct sock *sk) | 
 | { | 
 | 	if (mem_cgroup_sockets_enabled) { | 
 | 		struct mem_cgroup *memcg; | 
 | 		struct cg_proto *cg_proto; | 
 |  | 
 | 		BUG_ON(!sk->sk_prot->proto_cgroup); | 
 |  | 
 | 		/* Socket cloning can throw us here with sk_cgrp already | 
 | 		 * filled. It won't however, necessarily happen from | 
 | 		 * process context. So the test for root memcg given | 
 | 		 * the current task's memcg won't help us in this case. | 
 | 		 * | 
 | 		 * Respecting the original socket's memcg is a better | 
 | 		 * decision in this case. | 
 | 		 */ | 
 | 		if (sk->sk_cgrp) { | 
 | 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); | 
 | 			mem_cgroup_get(sk->sk_cgrp->memcg); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		rcu_read_lock(); | 
 | 		memcg = mem_cgroup_from_task(current); | 
 | 		cg_proto = sk->sk_prot->proto_cgroup(memcg); | 
 | 		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) { | 
 | 			mem_cgroup_get(memcg); | 
 | 			sk->sk_cgrp = cg_proto; | 
 | 		} | 
 | 		rcu_read_unlock(); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(sock_update_memcg); | 
 |  | 
 | void sock_release_memcg(struct sock *sk) | 
 | { | 
 | 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { | 
 | 		struct mem_cgroup *memcg; | 
 | 		WARN_ON(!sk->sk_cgrp->memcg); | 
 | 		memcg = sk->sk_cgrp->memcg; | 
 | 		mem_cgroup_put(memcg); | 
 | 	} | 
 | } | 
 |  | 
 | struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) | 
 | { | 
 | 	if (!memcg || mem_cgroup_is_root(memcg)) | 
 | 		return NULL; | 
 |  | 
 | 	return &memcg->tcp_mem.cg_proto; | 
 | } | 
 | EXPORT_SYMBOL(tcp_proto_cgroup); | 
 |  | 
 | static void disarm_sock_keys(struct mem_cgroup *memcg) | 
 | { | 
 | 	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto)) | 
 | 		return; | 
 | 	static_key_slow_dec(&memcg_socket_limit_enabled); | 
 | } | 
 | #else | 
 | static void disarm_sock_keys(struct mem_cgroup *memcg) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_MEMCG_KMEM | 
 | /* | 
 |  * This will be the memcg's index in each cache's ->memcg_params->memcg_caches. | 
 |  * There are two main reasons for not using the css_id for this: | 
 |  *  1) this works better in sparse environments, where we have a lot of memcgs, | 
 |  *     but only a few kmem-limited. Or also, if we have, for instance, 200 | 
 |  *     memcgs, and none but the 200th is kmem-limited, we'd have to have a | 
 |  *     200 entry array for that. | 
 |  * | 
 |  *  2) In order not to violate the cgroup API, we would like to do all memory | 
 |  *     allocation in ->create(). At that point, we haven't yet allocated the | 
 |  *     css_id. Having a separate index prevents us from messing with the cgroup | 
 |  *     core for this | 
 |  * | 
 |  * The current size of the caches array is stored in | 
 |  * memcg_limited_groups_array_size.  It will double each time we have to | 
 |  * increase it. | 
 |  */ | 
 | static DEFINE_IDA(kmem_limited_groups); | 
 | int memcg_limited_groups_array_size; | 
 |  | 
 | /* | 
 |  * MIN_SIZE is different than 1, because we would like to avoid going through | 
 |  * the alloc/free process all the time. In a small machine, 4 kmem-limited | 
 |  * cgroups is a reasonable guess. In the future, it could be a parameter or | 
 |  * tunable, but that is strictly not necessary. | 
 |  * | 
 |  * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get | 
 |  * this constant directly from cgroup, but it is understandable that this is | 
 |  * better kept as an internal representation in cgroup.c. In any case, the | 
 |  * css_id space is not getting any smaller, and we don't have to necessarily | 
 |  * increase ours as well if it increases. | 
 |  */ | 
 | #define MEMCG_CACHES_MIN_SIZE 4 | 
 | #define MEMCG_CACHES_MAX_SIZE 65535 | 
 |  | 
 | /* | 
 |  * A lot of the calls to the cache allocation functions are expected to be | 
 |  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are | 
 |  * conditional to this static branch, we'll have to allow modules that does | 
 |  * kmem_cache_alloc and the such to see this symbol as well | 
 |  */ | 
 | struct static_key memcg_kmem_enabled_key; | 
 | EXPORT_SYMBOL(memcg_kmem_enabled_key); | 
 |  | 
 | static void disarm_kmem_keys(struct mem_cgroup *memcg) | 
 | { | 
 | 	if (memcg_kmem_is_active(memcg)) { | 
 | 		static_key_slow_dec(&memcg_kmem_enabled_key); | 
 | 		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id); | 
 | 	} | 
 | 	/* | 
 | 	 * This check can't live in kmem destruction function, | 
 | 	 * since the charges will outlive the cgroup | 
 | 	 */ | 
 | 	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0); | 
 | } | 
 | #else | 
 | static void disarm_kmem_keys(struct mem_cgroup *memcg) | 
 | { | 
 | } | 
 | #endif /* CONFIG_MEMCG_KMEM */ | 
 |  | 
 | static void disarm_static_keys(struct mem_cgroup *memcg) | 
 | { | 
 | 	disarm_sock_keys(memcg); | 
 | 	disarm_kmem_keys(memcg); | 
 | } | 
 |  | 
 | static void drain_all_stock_async(struct mem_cgroup *memcg); | 
 |  | 
 | static struct mem_cgroup_per_zone * | 
 | mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid) | 
 | { | 
 | 	VM_BUG_ON((unsigned)nid >= nr_node_ids); | 
 | 	return &memcg->info.nodeinfo[nid]->zoneinfo[zid]; | 
 | } | 
 |  | 
 | struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) | 
 | { | 
 | 	return &memcg->css; | 
 | } | 
 |  | 
 | static struct mem_cgroup_per_zone * | 
 | page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page) | 
 | { | 
 | 	int nid = page_to_nid(page); | 
 | 	int zid = page_zonenum(page); | 
 |  | 
 | 	return mem_cgroup_zoneinfo(memcg, nid, zid); | 
 | } | 
 |  | 
 | static struct mem_cgroup_tree_per_zone * | 
 | soft_limit_tree_node_zone(int nid, int zid) | 
 | { | 
 | 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; | 
 | } | 
 |  | 
 | static struct mem_cgroup_tree_per_zone * | 
 | soft_limit_tree_from_page(struct page *page) | 
 | { | 
 | 	int nid = page_to_nid(page); | 
 | 	int zid = page_zonenum(page); | 
 |  | 
 | 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; | 
 | } | 
 |  | 
 | static void | 
 | __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg, | 
 | 				struct mem_cgroup_per_zone *mz, | 
 | 				struct mem_cgroup_tree_per_zone *mctz, | 
 | 				unsigned long long new_usage_in_excess) | 
 | { | 
 | 	struct rb_node **p = &mctz->rb_root.rb_node; | 
 | 	struct rb_node *parent = NULL; | 
 | 	struct mem_cgroup_per_zone *mz_node; | 
 |  | 
 | 	if (mz->on_tree) | 
 | 		return; | 
 |  | 
 | 	mz->usage_in_excess = new_usage_in_excess; | 
 | 	if (!mz->usage_in_excess) | 
 | 		return; | 
 | 	while (*p) { | 
 | 		parent = *p; | 
 | 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone, | 
 | 					tree_node); | 
 | 		if (mz->usage_in_excess < mz_node->usage_in_excess) | 
 | 			p = &(*p)->rb_left; | 
 | 		/* | 
 | 		 * We can't avoid mem cgroups that are over their soft | 
 | 		 * limit by the same amount | 
 | 		 */ | 
 | 		else if (mz->usage_in_excess >= mz_node->usage_in_excess) | 
 | 			p = &(*p)->rb_right; | 
 | 	} | 
 | 	rb_link_node(&mz->tree_node, parent, p); | 
 | 	rb_insert_color(&mz->tree_node, &mctz->rb_root); | 
 | 	mz->on_tree = true; | 
 | } | 
 |  | 
 | static void | 
 | __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, | 
 | 				struct mem_cgroup_per_zone *mz, | 
 | 				struct mem_cgroup_tree_per_zone *mctz) | 
 | { | 
 | 	if (!mz->on_tree) | 
 | 		return; | 
 | 	rb_erase(&mz->tree_node, &mctz->rb_root); | 
 | 	mz->on_tree = false; | 
 | } | 
 |  | 
 | static void | 
 | mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, | 
 | 				struct mem_cgroup_per_zone *mz, | 
 | 				struct mem_cgroup_tree_per_zone *mctz) | 
 | { | 
 | 	spin_lock(&mctz->lock); | 
 | 	__mem_cgroup_remove_exceeded(memcg, mz, mctz); | 
 | 	spin_unlock(&mctz->lock); | 
 | } | 
 |  | 
 |  | 
 | static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) | 
 | { | 
 | 	unsigned long long excess; | 
 | 	struct mem_cgroup_per_zone *mz; | 
 | 	struct mem_cgroup_tree_per_zone *mctz; | 
 | 	int nid = page_to_nid(page); | 
 | 	int zid = page_zonenum(page); | 
 | 	mctz = soft_limit_tree_from_page(page); | 
 |  | 
 | 	/* | 
 | 	 * Necessary to update all ancestors when hierarchy is used. | 
 | 	 * because their event counter is not touched. | 
 | 	 */ | 
 | 	for (; memcg; memcg = parent_mem_cgroup(memcg)) { | 
 | 		mz = mem_cgroup_zoneinfo(memcg, nid, zid); | 
 | 		excess = res_counter_soft_limit_excess(&memcg->res); | 
 | 		/* | 
 | 		 * We have to update the tree if mz is on RB-tree or | 
 | 		 * mem is over its softlimit. | 
 | 		 */ | 
 | 		if (excess || mz->on_tree) { | 
 | 			spin_lock(&mctz->lock); | 
 | 			/* if on-tree, remove it */ | 
 | 			if (mz->on_tree) | 
 | 				__mem_cgroup_remove_exceeded(memcg, mz, mctz); | 
 | 			/* | 
 | 			 * Insert again. mz->usage_in_excess will be updated. | 
 | 			 * If excess is 0, no tree ops. | 
 | 			 */ | 
 | 			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess); | 
 | 			spin_unlock(&mctz->lock); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) | 
 | { | 
 | 	int node, zone; | 
 | 	struct mem_cgroup_per_zone *mz; | 
 | 	struct mem_cgroup_tree_per_zone *mctz; | 
 |  | 
 | 	for_each_node(node) { | 
 | 		for (zone = 0; zone < MAX_NR_ZONES; zone++) { | 
 | 			mz = mem_cgroup_zoneinfo(memcg, node, zone); | 
 | 			mctz = soft_limit_tree_node_zone(node, zone); | 
 | 			mem_cgroup_remove_exceeded(memcg, mz, mctz); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static struct mem_cgroup_per_zone * | 
 | __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) | 
 | { | 
 | 	struct rb_node *rightmost = NULL; | 
 | 	struct mem_cgroup_per_zone *mz; | 
 |  | 
 | retry: | 
 | 	mz = NULL; | 
 | 	rightmost = rb_last(&mctz->rb_root); | 
 | 	if (!rightmost) | 
 | 		goto done;		/* Nothing to reclaim from */ | 
 |  | 
 | 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); | 
 | 	/* | 
 | 	 * Remove the node now but someone else can add it back, | 
 | 	 * we will to add it back at the end of reclaim to its correct | 
 | 	 * position in the tree. | 
 | 	 */ | 
 | 	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); | 
 | 	if (!res_counter_soft_limit_excess(&mz->memcg->res) || | 
 | 		!css_tryget(&mz->memcg->css)) | 
 | 		goto retry; | 
 | done: | 
 | 	return mz; | 
 | } | 
 |  | 
 | static struct mem_cgroup_per_zone * | 
 | mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) | 
 | { | 
 | 	struct mem_cgroup_per_zone *mz; | 
 |  | 
 | 	spin_lock(&mctz->lock); | 
 | 	mz = __mem_cgroup_largest_soft_limit_node(mctz); | 
 | 	spin_unlock(&mctz->lock); | 
 | 	return mz; | 
 | } | 
 |  | 
 | /* | 
 |  * Implementation Note: reading percpu statistics for memcg. | 
 |  * | 
 |  * Both of vmstat[] and percpu_counter has threshold and do periodic | 
 |  * synchronization to implement "quick" read. There are trade-off between | 
 |  * reading cost and precision of value. Then, we may have a chance to implement | 
 |  * a periodic synchronizion of counter in memcg's counter. | 
 |  * | 
 |  * But this _read() function is used for user interface now. The user accounts | 
 |  * memory usage by memory cgroup and he _always_ requires exact value because | 
 |  * he accounts memory. Even if we provide quick-and-fuzzy read, we always | 
 |  * have to visit all online cpus and make sum. So, for now, unnecessary | 
 |  * synchronization is not implemented. (just implemented for cpu hotplug) | 
 |  * | 
 |  * If there are kernel internal actions which can make use of some not-exact | 
 |  * value, and reading all cpu value can be performance bottleneck in some | 
 |  * common workload, threashold and synchonization as vmstat[] should be | 
 |  * implemented. | 
 |  */ | 
 | static long mem_cgroup_read_stat(struct mem_cgroup *memcg, | 
 | 				 enum mem_cgroup_stat_index idx) | 
 | { | 
 | 	long val = 0; | 
 | 	int cpu; | 
 |  | 
 | 	get_online_cpus(); | 
 | 	for_each_online_cpu(cpu) | 
 | 		val += per_cpu(memcg->stat->count[idx], cpu); | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | 	spin_lock(&memcg->pcp_counter_lock); | 
 | 	val += memcg->nocpu_base.count[idx]; | 
 | 	spin_unlock(&memcg->pcp_counter_lock); | 
 | #endif | 
 | 	put_online_cpus(); | 
 | 	return val; | 
 | } | 
 |  | 
 | static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, | 
 | 					 bool charge) | 
 | { | 
 | 	int val = (charge) ? 1 : -1; | 
 | 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); | 
 | } | 
 |  | 
 | static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, | 
 | 					    enum mem_cgroup_events_index idx) | 
 | { | 
 | 	unsigned long val = 0; | 
 | 	int cpu; | 
 |  | 
 | 	for_each_online_cpu(cpu) | 
 | 		val += per_cpu(memcg->stat->events[idx], cpu); | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | 	spin_lock(&memcg->pcp_counter_lock); | 
 | 	val += memcg->nocpu_base.events[idx]; | 
 | 	spin_unlock(&memcg->pcp_counter_lock); | 
 | #endif | 
 | 	return val; | 
 | } | 
 |  | 
 | static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, | 
 | 					 bool anon, int nr_pages) | 
 | { | 
 | 	preempt_disable(); | 
 |  | 
 | 	/* | 
 | 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is | 
 | 	 * counted as CACHE even if it's on ANON LRU. | 
 | 	 */ | 
 | 	if (anon) | 
 | 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], | 
 | 				nr_pages); | 
 | 	else | 
 | 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], | 
 | 				nr_pages); | 
 |  | 
 | 	/* pagein of a big page is an event. So, ignore page size */ | 
 | 	if (nr_pages > 0) | 
 | 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); | 
 | 	else { | 
 | 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); | 
 | 		nr_pages = -nr_pages; /* for event */ | 
 | 	} | 
 |  | 
 | 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages); | 
 |  | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | unsigned long | 
 | mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) | 
 | { | 
 | 	struct mem_cgroup_per_zone *mz; | 
 |  | 
 | 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); | 
 | 	return mz->lru_size[lru]; | 
 | } | 
 |  | 
 | static unsigned long | 
 | mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid, | 
 | 			unsigned int lru_mask) | 
 | { | 
 | 	struct mem_cgroup_per_zone *mz; | 
 | 	enum lru_list lru; | 
 | 	unsigned long ret = 0; | 
 |  | 
 | 	mz = mem_cgroup_zoneinfo(memcg, nid, zid); | 
 |  | 
 | 	for_each_lru(lru) { | 
 | 		if (BIT(lru) & lru_mask) | 
 | 			ret += mz->lru_size[lru]; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static unsigned long | 
 | mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, | 
 | 			int nid, unsigned int lru_mask) | 
 | { | 
 | 	u64 total = 0; | 
 | 	int zid; | 
 |  | 
 | 	for (zid = 0; zid < MAX_NR_ZONES; zid++) | 
 | 		total += mem_cgroup_zone_nr_lru_pages(memcg, | 
 | 						nid, zid, lru_mask); | 
 |  | 
 | 	return total; | 
 | } | 
 |  | 
 | static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, | 
 | 			unsigned int lru_mask) | 
 | { | 
 | 	int nid; | 
 | 	u64 total = 0; | 
 |  | 
 | 	for_each_node_state(nid, N_MEMORY) | 
 | 		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); | 
 | 	return total; | 
 | } | 
 |  | 
 | static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, | 
 | 				       enum mem_cgroup_events_target target) | 
 | { | 
 | 	unsigned long val, next; | 
 |  | 
 | 	val = __this_cpu_read(memcg->stat->nr_page_events); | 
 | 	next = __this_cpu_read(memcg->stat->targets[target]); | 
 | 	/* from time_after() in jiffies.h */ | 
 | 	if ((long)next - (long)val < 0) { | 
 | 		switch (target) { | 
 | 		case MEM_CGROUP_TARGET_THRESH: | 
 | 			next = val + THRESHOLDS_EVENTS_TARGET; | 
 | 			break; | 
 | 		case MEM_CGROUP_TARGET_SOFTLIMIT: | 
 | 			next = val + SOFTLIMIT_EVENTS_TARGET; | 
 | 			break; | 
 | 		case MEM_CGROUP_TARGET_NUMAINFO: | 
 | 			next = val + NUMAINFO_EVENTS_TARGET; | 
 | 			break; | 
 | 		default: | 
 | 			break; | 
 | 		} | 
 | 		__this_cpu_write(memcg->stat->targets[target], next); | 
 | 		return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Check events in order. | 
 |  * | 
 |  */ | 
 | static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) | 
 | { | 
 | 	preempt_disable(); | 
 | 	/* threshold event is triggered in finer grain than soft limit */ | 
 | 	if (unlikely(mem_cgroup_event_ratelimit(memcg, | 
 | 						MEM_CGROUP_TARGET_THRESH))) { | 
 | 		bool do_softlimit; | 
 | 		bool do_numainfo __maybe_unused; | 
 |  | 
 | 		do_softlimit = mem_cgroup_event_ratelimit(memcg, | 
 | 						MEM_CGROUP_TARGET_SOFTLIMIT); | 
 | #if MAX_NUMNODES > 1 | 
 | 		do_numainfo = mem_cgroup_event_ratelimit(memcg, | 
 | 						MEM_CGROUP_TARGET_NUMAINFO); | 
 | #endif | 
 | 		preempt_enable(); | 
 |  | 
 | 		mem_cgroup_threshold(memcg); | 
 | 		if (unlikely(do_softlimit)) | 
 | 			mem_cgroup_update_tree(memcg, page); | 
 | #if MAX_NUMNODES > 1 | 
 | 		if (unlikely(do_numainfo)) | 
 | 			atomic_inc(&memcg->numainfo_events); | 
 | #endif | 
 | 	} else | 
 | 		preempt_enable(); | 
 | } | 
 |  | 
 | struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) | 
 | { | 
 | 	return mem_cgroup_from_css( | 
 | 		cgroup_subsys_state(cont, mem_cgroup_subsys_id)); | 
 | } | 
 |  | 
 | struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) | 
 | { | 
 | 	/* | 
 | 	 * mm_update_next_owner() may clear mm->owner to NULL | 
 | 	 * if it races with swapoff, page migration, etc. | 
 | 	 * So this can be called with p == NULL. | 
 | 	 */ | 
 | 	if (unlikely(!p)) | 
 | 		return NULL; | 
 |  | 
 | 	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id)); | 
 | } | 
 |  | 
 | struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) | 
 | { | 
 | 	struct mem_cgroup *memcg = NULL; | 
 |  | 
 | 	if (!mm) | 
 | 		return NULL; | 
 | 	/* | 
 | 	 * Because we have no locks, mm->owner's may be being moved to other | 
 | 	 * cgroup. We use css_tryget() here even if this looks | 
 | 	 * pessimistic (rather than adding locks here). | 
 | 	 */ | 
 | 	rcu_read_lock(); | 
 | 	do { | 
 | 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); | 
 | 		if (unlikely(!memcg)) | 
 | 			break; | 
 | 	} while (!css_tryget(&memcg->css)); | 
 | 	rcu_read_unlock(); | 
 | 	return memcg; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns a next (in a pre-order walk) alive memcg (with elevated css | 
 |  * ref. count) or NULL if the whole root's subtree has been visited. | 
 |  * | 
 |  * helper function to be used by mem_cgroup_iter | 
 |  */ | 
 | static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root, | 
 | 		struct mem_cgroup *last_visited) | 
 | { | 
 | 	struct cgroup *prev_cgroup, *next_cgroup; | 
 |  | 
 | 	/* | 
 | 	 * Root is not visited by cgroup iterators so it needs an | 
 | 	 * explicit visit. | 
 | 	 */ | 
 | 	if (!last_visited) | 
 | 		return root; | 
 |  | 
 | 	prev_cgroup = (last_visited == root) ? NULL | 
 | 		: last_visited->css.cgroup; | 
 | skip_node: | 
 | 	next_cgroup = cgroup_next_descendant_pre( | 
 | 			prev_cgroup, root->css.cgroup); | 
 |  | 
 | 	/* | 
 | 	 * Even if we found a group we have to make sure it is | 
 | 	 * alive. css && !memcg means that the groups should be | 
 | 	 * skipped and we should continue the tree walk. | 
 | 	 * last_visited css is safe to use because it is | 
 | 	 * protected by css_get and the tree walk is rcu safe. | 
 | 	 */ | 
 | 	if (next_cgroup) { | 
 | 		struct mem_cgroup *mem = mem_cgroup_from_cont( | 
 | 				next_cgroup); | 
 | 		if (css_tryget(&mem->css)) | 
 | 			return mem; | 
 | 		else { | 
 | 			prev_cgroup = next_cgroup; | 
 | 			goto skip_node; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * mem_cgroup_iter - iterate over memory cgroup hierarchy | 
 |  * @root: hierarchy root | 
 |  * @prev: previously returned memcg, NULL on first invocation | 
 |  * @reclaim: cookie for shared reclaim walks, NULL for full walks | 
 |  * | 
 |  * Returns references to children of the hierarchy below @root, or | 
 |  * @root itself, or %NULL after a full round-trip. | 
 |  * | 
 |  * Caller must pass the return value in @prev on subsequent | 
 |  * invocations for reference counting, or use mem_cgroup_iter_break() | 
 |  * to cancel a hierarchy walk before the round-trip is complete. | 
 |  * | 
 |  * Reclaimers can specify a zone and a priority level in @reclaim to | 
 |  * divide up the memcgs in the hierarchy among all concurrent | 
 |  * reclaimers operating on the same zone and priority. | 
 |  */ | 
 | struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, | 
 | 				   struct mem_cgroup *prev, | 
 | 				   struct mem_cgroup_reclaim_cookie *reclaim) | 
 | { | 
 | 	struct mem_cgroup *memcg = NULL; | 
 | 	struct mem_cgroup *last_visited = NULL; | 
 | 	unsigned long uninitialized_var(dead_count); | 
 |  | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return NULL; | 
 |  | 
 | 	if (!root) | 
 | 		root = root_mem_cgroup; | 
 |  | 
 | 	if (prev && !reclaim) | 
 | 		last_visited = prev; | 
 |  | 
 | 	if (!root->use_hierarchy && root != root_mem_cgroup) { | 
 | 		if (prev) | 
 | 			goto out_css_put; | 
 | 		return root; | 
 | 	} | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	while (!memcg) { | 
 | 		struct mem_cgroup_reclaim_iter *uninitialized_var(iter); | 
 |  | 
 | 		if (reclaim) { | 
 | 			int nid = zone_to_nid(reclaim->zone); | 
 | 			int zid = zone_idx(reclaim->zone); | 
 | 			struct mem_cgroup_per_zone *mz; | 
 |  | 
 | 			mz = mem_cgroup_zoneinfo(root, nid, zid); | 
 | 			iter = &mz->reclaim_iter[reclaim->priority]; | 
 | 			last_visited = iter->last_visited; | 
 | 			if (prev && reclaim->generation != iter->generation) { | 
 | 				iter->last_visited = NULL; | 
 | 				goto out_unlock; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * If the dead_count mismatches, a destruction | 
 | 			 * has happened or is happening concurrently. | 
 | 			 * If the dead_count matches, a destruction | 
 | 			 * might still happen concurrently, but since | 
 | 			 * we checked under RCU, that destruction | 
 | 			 * won't free the object until we release the | 
 | 			 * RCU reader lock.  Thus, the dead_count | 
 | 			 * check verifies the pointer is still valid, | 
 | 			 * css_tryget() verifies the cgroup pointed to | 
 | 			 * is alive. | 
 | 			 */ | 
 | 			dead_count = atomic_read(&root->dead_count); | 
 | 			smp_rmb(); | 
 | 			last_visited = iter->last_visited; | 
 | 			if (last_visited) { | 
 | 				if ((dead_count != iter->last_dead_count) || | 
 | 					!css_tryget(&last_visited->css)) { | 
 | 					last_visited = NULL; | 
 | 				} | 
 | 			} | 
 | 		} | 
 |  | 
 | 		memcg = __mem_cgroup_iter_next(root, last_visited); | 
 |  | 
 | 		if (reclaim) { | 
 | 			if (last_visited) | 
 | 				css_put(&last_visited->css); | 
 |  | 
 | 			iter->last_visited = memcg; | 
 | 			smp_wmb(); | 
 | 			iter->last_dead_count = dead_count; | 
 |  | 
 | 			if (!memcg) | 
 | 				iter->generation++; | 
 | 			else if (!prev && memcg) | 
 | 				reclaim->generation = iter->generation; | 
 | 		} | 
 |  | 
 | 		if (prev && !memcg) | 
 | 			goto out_unlock; | 
 | 	} | 
 | out_unlock: | 
 | 	rcu_read_unlock(); | 
 | out_css_put: | 
 | 	if (prev && prev != root) | 
 | 		css_put(&prev->css); | 
 |  | 
 | 	return memcg; | 
 | } | 
 |  | 
 | /** | 
 |  * mem_cgroup_iter_break - abort a hierarchy walk prematurely | 
 |  * @root: hierarchy root | 
 |  * @prev: last visited hierarchy member as returned by mem_cgroup_iter() | 
 |  */ | 
 | void mem_cgroup_iter_break(struct mem_cgroup *root, | 
 | 			   struct mem_cgroup *prev) | 
 | { | 
 | 	if (!root) | 
 | 		root = root_mem_cgroup; | 
 | 	if (prev && prev != root) | 
 | 		css_put(&prev->css); | 
 | } | 
 |  | 
 | /* | 
 |  * Iteration constructs for visiting all cgroups (under a tree).  If | 
 |  * loops are exited prematurely (break), mem_cgroup_iter_break() must | 
 |  * be used for reference counting. | 
 |  */ | 
 | #define for_each_mem_cgroup_tree(iter, root)		\ | 
 | 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\ | 
 | 	     iter != NULL;				\ | 
 | 	     iter = mem_cgroup_iter(root, iter, NULL)) | 
 |  | 
 | #define for_each_mem_cgroup(iter)			\ | 
 | 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\ | 
 | 	     iter != NULL;				\ | 
 | 	     iter = mem_cgroup_iter(NULL, iter, NULL)) | 
 |  | 
 | void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) | 
 | { | 
 | 	struct mem_cgroup *memcg; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); | 
 | 	if (unlikely(!memcg)) | 
 | 		goto out; | 
 |  | 
 | 	switch (idx) { | 
 | 	case PGFAULT: | 
 | 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); | 
 | 		break; | 
 | 	case PGMAJFAULT: | 
 | 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); | 
 | 		break; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | out: | 
 | 	rcu_read_unlock(); | 
 | } | 
 | EXPORT_SYMBOL(__mem_cgroup_count_vm_event); | 
 |  | 
 | /** | 
 |  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg | 
 |  * @zone: zone of the wanted lruvec | 
 |  * @memcg: memcg of the wanted lruvec | 
 |  * | 
 |  * Returns the lru list vector holding pages for the given @zone and | 
 |  * @mem.  This can be the global zone lruvec, if the memory controller | 
 |  * is disabled. | 
 |  */ | 
 | struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, | 
 | 				      struct mem_cgroup *memcg) | 
 | { | 
 | 	struct mem_cgroup_per_zone *mz; | 
 | 	struct lruvec *lruvec; | 
 |  | 
 | 	if (mem_cgroup_disabled()) { | 
 | 		lruvec = &zone->lruvec; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone)); | 
 | 	lruvec = &mz->lruvec; | 
 | out: | 
 | 	/* | 
 | 	 * Since a node can be onlined after the mem_cgroup was created, | 
 | 	 * we have to be prepared to initialize lruvec->zone here; | 
 | 	 * and if offlined then reonlined, we need to reinitialize it. | 
 | 	 */ | 
 | 	if (unlikely(lruvec->zone != zone)) | 
 | 		lruvec->zone = zone; | 
 | 	return lruvec; | 
 | } | 
 |  | 
 | /* | 
 |  * Following LRU functions are allowed to be used without PCG_LOCK. | 
 |  * Operations are called by routine of global LRU independently from memcg. | 
 |  * What we have to take care of here is validness of pc->mem_cgroup. | 
 |  * | 
 |  * Changes to pc->mem_cgroup happens when | 
 |  * 1. charge | 
 |  * 2. moving account | 
 |  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. | 
 |  * It is added to LRU before charge. | 
 |  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. | 
 |  * When moving account, the page is not on LRU. It's isolated. | 
 |  */ | 
 |  | 
 | /** | 
 |  * mem_cgroup_page_lruvec - return lruvec for adding an lru page | 
 |  * @page: the page | 
 |  * @zone: zone of the page | 
 |  */ | 
 | struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) | 
 | { | 
 | 	struct mem_cgroup_per_zone *mz; | 
 | 	struct mem_cgroup *memcg; | 
 | 	struct page_cgroup *pc; | 
 | 	struct lruvec *lruvec; | 
 |  | 
 | 	if (mem_cgroup_disabled()) { | 
 | 		lruvec = &zone->lruvec; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	pc = lookup_page_cgroup(page); | 
 | 	memcg = pc->mem_cgroup; | 
 |  | 
 | 	/* | 
 | 	 * Surreptitiously switch any uncharged offlist page to root: | 
 | 	 * an uncharged page off lru does nothing to secure | 
 | 	 * its former mem_cgroup from sudden removal. | 
 | 	 * | 
 | 	 * Our caller holds lru_lock, and PageCgroupUsed is updated | 
 | 	 * under page_cgroup lock: between them, they make all uses | 
 | 	 * of pc->mem_cgroup safe. | 
 | 	 */ | 
 | 	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup) | 
 | 		pc->mem_cgroup = memcg = root_mem_cgroup; | 
 |  | 
 | 	mz = page_cgroup_zoneinfo(memcg, page); | 
 | 	lruvec = &mz->lruvec; | 
 | out: | 
 | 	/* | 
 | 	 * Since a node can be onlined after the mem_cgroup was created, | 
 | 	 * we have to be prepared to initialize lruvec->zone here; | 
 | 	 * and if offlined then reonlined, we need to reinitialize it. | 
 | 	 */ | 
 | 	if (unlikely(lruvec->zone != zone)) | 
 | 		lruvec->zone = zone; | 
 | 	return lruvec; | 
 | } | 
 |  | 
 | /** | 
 |  * mem_cgroup_update_lru_size - account for adding or removing an lru page | 
 |  * @lruvec: mem_cgroup per zone lru vector | 
 |  * @lru: index of lru list the page is sitting on | 
 |  * @nr_pages: positive when adding or negative when removing | 
 |  * | 
 |  * This function must be called when a page is added to or removed from an | 
 |  * lru list. | 
 |  */ | 
 | void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, | 
 | 				int nr_pages) | 
 | { | 
 | 	struct mem_cgroup_per_zone *mz; | 
 | 	unsigned long *lru_size; | 
 |  | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return; | 
 |  | 
 | 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); | 
 | 	lru_size = mz->lru_size + lru; | 
 | 	*lru_size += nr_pages; | 
 | 	VM_BUG_ON((long)(*lru_size) < 0); | 
 | } | 
 |  | 
 | /* | 
 |  * Checks whether given mem is same or in the root_mem_cgroup's | 
 |  * hierarchy subtree | 
 |  */ | 
 | bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, | 
 | 				  struct mem_cgroup *memcg) | 
 | { | 
 | 	if (root_memcg == memcg) | 
 | 		return true; | 
 | 	if (!root_memcg->use_hierarchy || !memcg) | 
 | 		return false; | 
 | 	return css_is_ancestor(&memcg->css, &root_memcg->css); | 
 | } | 
 |  | 
 | static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, | 
 | 				       struct mem_cgroup *memcg) | 
 | { | 
 | 	bool ret; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg); | 
 | 	rcu_read_unlock(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg) | 
 | { | 
 | 	int ret; | 
 | 	struct mem_cgroup *curr = NULL; | 
 | 	struct task_struct *p; | 
 |  | 
 | 	p = find_lock_task_mm(task); | 
 | 	if (p) { | 
 | 		curr = try_get_mem_cgroup_from_mm(p->mm); | 
 | 		task_unlock(p); | 
 | 	} else { | 
 | 		/* | 
 | 		 * All threads may have already detached their mm's, but the oom | 
 | 		 * killer still needs to detect if they have already been oom | 
 | 		 * killed to prevent needlessly killing additional tasks. | 
 | 		 */ | 
 | 		task_lock(task); | 
 | 		curr = mem_cgroup_from_task(task); | 
 | 		if (curr) | 
 | 			css_get(&curr->css); | 
 | 		task_unlock(task); | 
 | 	} | 
 | 	if (!curr) | 
 | 		return 0; | 
 | 	/* | 
 | 	 * We should check use_hierarchy of "memcg" not "curr". Because checking | 
 | 	 * use_hierarchy of "curr" here make this function true if hierarchy is | 
 | 	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup* | 
 | 	 * hierarchy(even if use_hierarchy is disabled in "memcg"). | 
 | 	 */ | 
 | 	ret = mem_cgroup_same_or_subtree(memcg, curr); | 
 | 	css_put(&curr->css); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) | 
 | { | 
 | 	unsigned long inactive_ratio; | 
 | 	unsigned long inactive; | 
 | 	unsigned long active; | 
 | 	unsigned long gb; | 
 |  | 
 | 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); | 
 | 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); | 
 |  | 
 | 	gb = (inactive + active) >> (30 - PAGE_SHIFT); | 
 | 	if (gb) | 
 | 		inactive_ratio = int_sqrt(10 * gb); | 
 | 	else | 
 | 		inactive_ratio = 1; | 
 |  | 
 | 	return inactive * inactive_ratio < active; | 
 | } | 
 |  | 
 | #define mem_cgroup_from_res_counter(counter, member)	\ | 
 | 	container_of(counter, struct mem_cgroup, member) | 
 |  | 
 | /** | 
 |  * mem_cgroup_margin - calculate chargeable space of a memory cgroup | 
 |  * @memcg: the memory cgroup | 
 |  * | 
 |  * Returns the maximum amount of memory @mem can be charged with, in | 
 |  * pages. | 
 |  */ | 
 | static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) | 
 | { | 
 | 	unsigned long long margin; | 
 |  | 
 | 	margin = res_counter_margin(&memcg->res); | 
 | 	if (do_swap_account) | 
 | 		margin = min(margin, res_counter_margin(&memcg->memsw)); | 
 | 	return margin >> PAGE_SHIFT; | 
 | } | 
 |  | 
 | int mem_cgroup_swappiness(struct mem_cgroup *memcg) | 
 | { | 
 | 	struct cgroup *cgrp = memcg->css.cgroup; | 
 |  | 
 | 	/* root ? */ | 
 | 	if (cgrp->parent == NULL) | 
 | 		return vm_swappiness; | 
 |  | 
 | 	return memcg->swappiness; | 
 | } | 
 |  | 
 | /* | 
 |  * memcg->moving_account is used for checking possibility that some thread is | 
 |  * calling move_account(). When a thread on CPU-A starts moving pages under | 
 |  * a memcg, other threads should check memcg->moving_account under | 
 |  * rcu_read_lock(), like this: | 
 |  * | 
 |  *         CPU-A                                    CPU-B | 
 |  *                                              rcu_read_lock() | 
 |  *         memcg->moving_account+1              if (memcg->mocing_account) | 
 |  *                                                   take heavy locks. | 
 |  *         synchronize_rcu()                    update something. | 
 |  *                                              rcu_read_unlock() | 
 |  *         start move here. | 
 |  */ | 
 |  | 
 | /* for quick checking without looking up memcg */ | 
 | atomic_t memcg_moving __read_mostly; | 
 |  | 
 | static void mem_cgroup_start_move(struct mem_cgroup *memcg) | 
 | { | 
 | 	atomic_inc(&memcg_moving); | 
 | 	atomic_inc(&memcg->moving_account); | 
 | 	synchronize_rcu(); | 
 | } | 
 |  | 
 | static void mem_cgroup_end_move(struct mem_cgroup *memcg) | 
 | { | 
 | 	/* | 
 | 	 * Now, mem_cgroup_clear_mc() may call this function with NULL. | 
 | 	 * We check NULL in callee rather than caller. | 
 | 	 */ | 
 | 	if (memcg) { | 
 | 		atomic_dec(&memcg_moving); | 
 | 		atomic_dec(&memcg->moving_account); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * 2 routines for checking "mem" is under move_account() or not. | 
 |  * | 
 |  * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This | 
 |  *			  is used for avoiding races in accounting.  If true, | 
 |  *			  pc->mem_cgroup may be overwritten. | 
 |  * | 
 |  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or | 
 |  *			  under hierarchy of moving cgroups. This is for | 
 |  *			  waiting at hith-memory prressure caused by "move". | 
 |  */ | 
 |  | 
 | static bool mem_cgroup_stolen(struct mem_cgroup *memcg) | 
 | { | 
 | 	VM_BUG_ON(!rcu_read_lock_held()); | 
 | 	return atomic_read(&memcg->moving_account) > 0; | 
 | } | 
 |  | 
 | static bool mem_cgroup_under_move(struct mem_cgroup *memcg) | 
 | { | 
 | 	struct mem_cgroup *from; | 
 | 	struct mem_cgroup *to; | 
 | 	bool ret = false; | 
 | 	/* | 
 | 	 * Unlike task_move routines, we access mc.to, mc.from not under | 
 | 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. | 
 | 	 */ | 
 | 	spin_lock(&mc.lock); | 
 | 	from = mc.from; | 
 | 	to = mc.to; | 
 | 	if (!from) | 
 | 		goto unlock; | 
 |  | 
 | 	ret = mem_cgroup_same_or_subtree(memcg, from) | 
 | 		|| mem_cgroup_same_or_subtree(memcg, to); | 
 | unlock: | 
 | 	spin_unlock(&mc.lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) | 
 | { | 
 | 	if (mc.moving_task && current != mc.moving_task) { | 
 | 		if (mem_cgroup_under_move(memcg)) { | 
 | 			DEFINE_WAIT(wait); | 
 | 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); | 
 | 			/* moving charge context might have finished. */ | 
 | 			if (mc.moving_task) | 
 | 				schedule(); | 
 | 			finish_wait(&mc.waitq, &wait); | 
 | 			return true; | 
 | 		} | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Take this lock when | 
 |  * - a code tries to modify page's memcg while it's USED. | 
 |  * - a code tries to modify page state accounting in a memcg. | 
 |  * see mem_cgroup_stolen(), too. | 
 |  */ | 
 | static void move_lock_mem_cgroup(struct mem_cgroup *memcg, | 
 | 				  unsigned long *flags) | 
 | { | 
 | 	spin_lock_irqsave(&memcg->move_lock, *flags); | 
 | } | 
 |  | 
 | static void move_unlock_mem_cgroup(struct mem_cgroup *memcg, | 
 | 				unsigned long *flags) | 
 | { | 
 | 	spin_unlock_irqrestore(&memcg->move_lock, *flags); | 
 | } | 
 |  | 
 | #define K(x) ((x) << (PAGE_SHIFT-10)) | 
 | /** | 
 |  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. | 
 |  * @memcg: The memory cgroup that went over limit | 
 |  * @p: Task that is going to be killed | 
 |  * | 
 |  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is | 
 |  * enabled | 
 |  */ | 
 | void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) | 
 | { | 
 | 	struct cgroup *task_cgrp; | 
 | 	struct cgroup *mem_cgrp; | 
 | 	/* | 
 | 	 * Need a buffer in BSS, can't rely on allocations. The code relies | 
 | 	 * on the assumption that OOM is serialized for memory controller. | 
 | 	 * If this assumption is broken, revisit this code. | 
 | 	 */ | 
 | 	static char memcg_name[PATH_MAX]; | 
 | 	int ret; | 
 | 	struct mem_cgroup *iter; | 
 | 	unsigned int i; | 
 |  | 
 | 	if (!p) | 
 | 		return; | 
 |  | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	mem_cgrp = memcg->css.cgroup; | 
 | 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); | 
 |  | 
 | 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); | 
 | 	if (ret < 0) { | 
 | 		/* | 
 | 		 * Unfortunately, we are unable to convert to a useful name | 
 | 		 * But we'll still print out the usage information | 
 | 		 */ | 
 | 		rcu_read_unlock(); | 
 | 		goto done; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	pr_info("Task in %s killed", memcg_name); | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); | 
 | 	if (ret < 0) { | 
 | 		rcu_read_unlock(); | 
 | 		goto done; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	/* | 
 | 	 * Continues from above, so we don't need an KERN_ level | 
 | 	 */ | 
 | 	pr_cont(" as a result of limit of %s\n", memcg_name); | 
 | done: | 
 |  | 
 | 	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n", | 
 | 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, | 
 | 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, | 
 | 		res_counter_read_u64(&memcg->res, RES_FAILCNT)); | 
 | 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n", | 
 | 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, | 
 | 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, | 
 | 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); | 
 | 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n", | 
 | 		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10, | 
 | 		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10, | 
 | 		res_counter_read_u64(&memcg->kmem, RES_FAILCNT)); | 
 |  | 
 | 	for_each_mem_cgroup_tree(iter, memcg) { | 
 | 		pr_info("Memory cgroup stats"); | 
 |  | 
 | 		rcu_read_lock(); | 
 | 		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX); | 
 | 		if (!ret) | 
 | 			pr_cont(" for %s", memcg_name); | 
 | 		rcu_read_unlock(); | 
 | 		pr_cont(":"); | 
 |  | 
 | 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { | 
 | 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) | 
 | 				continue; | 
 | 			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i], | 
 | 				K(mem_cgroup_read_stat(iter, i))); | 
 | 		} | 
 |  | 
 | 		for (i = 0; i < NR_LRU_LISTS; i++) | 
 | 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], | 
 | 				K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); | 
 |  | 
 | 		pr_cont("\n"); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * This function returns the number of memcg under hierarchy tree. Returns | 
 |  * 1(self count) if no children. | 
 |  */ | 
 | static int mem_cgroup_count_children(struct mem_cgroup *memcg) | 
 | { | 
 | 	int num = 0; | 
 | 	struct mem_cgroup *iter; | 
 |  | 
 | 	for_each_mem_cgroup_tree(iter, memcg) | 
 | 		num++; | 
 | 	return num; | 
 | } | 
 |  | 
 | /* | 
 |  * Return the memory (and swap, if configured) limit for a memcg. | 
 |  */ | 
 | static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) | 
 | { | 
 | 	u64 limit; | 
 |  | 
 | 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT); | 
 |  | 
 | 	/* | 
 | 	 * Do not consider swap space if we cannot swap due to swappiness | 
 | 	 */ | 
 | 	if (mem_cgroup_swappiness(memcg)) { | 
 | 		u64 memsw; | 
 |  | 
 | 		limit += total_swap_pages << PAGE_SHIFT; | 
 | 		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | 
 |  | 
 | 		/* | 
 | 		 * If memsw is finite and limits the amount of swap space | 
 | 		 * available to this memcg, return that limit. | 
 | 		 */ | 
 | 		limit = min(limit, memsw); | 
 | 	} | 
 |  | 
 | 	return limit; | 
 | } | 
 |  | 
 | static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, | 
 | 				     int order) | 
 | { | 
 | 	struct mem_cgroup *iter; | 
 | 	unsigned long chosen_points = 0; | 
 | 	unsigned long totalpages; | 
 | 	unsigned int points = 0; | 
 | 	struct task_struct *chosen = NULL; | 
 |  | 
 | 	/* | 
 | 	 * If current has a pending SIGKILL, then automatically select it.  The | 
 | 	 * goal is to allow it to allocate so that it may quickly exit and free | 
 | 	 * its memory. | 
 | 	 */ | 
 | 	if (fatal_signal_pending(current)) { | 
 | 		set_thread_flag(TIF_MEMDIE); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); | 
 | 	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1; | 
 | 	for_each_mem_cgroup_tree(iter, memcg) { | 
 | 		struct cgroup *cgroup = iter->css.cgroup; | 
 | 		struct cgroup_iter it; | 
 | 		struct task_struct *task; | 
 |  | 
 | 		cgroup_iter_start(cgroup, &it); | 
 | 		while ((task = cgroup_iter_next(cgroup, &it))) { | 
 | 			switch (oom_scan_process_thread(task, totalpages, NULL, | 
 | 							false)) { | 
 | 			case OOM_SCAN_SELECT: | 
 | 				if (chosen) | 
 | 					put_task_struct(chosen); | 
 | 				chosen = task; | 
 | 				chosen_points = ULONG_MAX; | 
 | 				get_task_struct(chosen); | 
 | 				/* fall through */ | 
 | 			case OOM_SCAN_CONTINUE: | 
 | 				continue; | 
 | 			case OOM_SCAN_ABORT: | 
 | 				cgroup_iter_end(cgroup, &it); | 
 | 				mem_cgroup_iter_break(memcg, iter); | 
 | 				if (chosen) | 
 | 					put_task_struct(chosen); | 
 | 				return; | 
 | 			case OOM_SCAN_OK: | 
 | 				break; | 
 | 			}; | 
 | 			points = oom_badness(task, memcg, NULL, totalpages); | 
 | 			if (points > chosen_points) { | 
 | 				if (chosen) | 
 | 					put_task_struct(chosen); | 
 | 				chosen = task; | 
 | 				chosen_points = points; | 
 | 				get_task_struct(chosen); | 
 | 			} | 
 | 		} | 
 | 		cgroup_iter_end(cgroup, &it); | 
 | 	} | 
 |  | 
 | 	if (!chosen) | 
 | 		return; | 
 | 	points = chosen_points * 1000 / totalpages; | 
 | 	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg, | 
 | 			 NULL, "Memory cgroup out of memory"); | 
 | } | 
 |  | 
 | static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg, | 
 | 					gfp_t gfp_mask, | 
 | 					unsigned long flags) | 
 | { | 
 | 	unsigned long total = 0; | 
 | 	bool noswap = false; | 
 | 	int loop; | 
 |  | 
 | 	if (flags & MEM_CGROUP_RECLAIM_NOSWAP) | 
 | 		noswap = true; | 
 | 	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum) | 
 | 		noswap = true; | 
 |  | 
 | 	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) { | 
 | 		if (loop) | 
 | 			drain_all_stock_async(memcg); | 
 | 		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap); | 
 | 		/* | 
 | 		 * Allow limit shrinkers, which are triggered directly | 
 | 		 * by userspace, to catch signals and stop reclaim | 
 | 		 * after minimal progress, regardless of the margin. | 
 | 		 */ | 
 | 		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK)) | 
 | 			break; | 
 | 		if (mem_cgroup_margin(memcg)) | 
 | 			break; | 
 | 		/* | 
 | 		 * If nothing was reclaimed after two attempts, there | 
 | 		 * may be no reclaimable pages in this hierarchy. | 
 | 		 */ | 
 | 		if (loop && !total) | 
 | 			break; | 
 | 	} | 
 | 	return total; | 
 | } | 
 |  | 
 | /** | 
 |  * test_mem_cgroup_node_reclaimable | 
 |  * @memcg: the target memcg | 
 |  * @nid: the node ID to be checked. | 
 |  * @noswap : specify true here if the user wants flle only information. | 
 |  * | 
 |  * This function returns whether the specified memcg contains any | 
 |  * reclaimable pages on a node. Returns true if there are any reclaimable | 
 |  * pages in the node. | 
 |  */ | 
 | static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, | 
 | 		int nid, bool noswap) | 
 | { | 
 | 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) | 
 | 		return true; | 
 | 	if (noswap || !total_swap_pages) | 
 | 		return false; | 
 | 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) | 
 | 		return true; | 
 | 	return false; | 
 |  | 
 | } | 
 | #if MAX_NUMNODES > 1 | 
 |  | 
 | /* | 
 |  * Always updating the nodemask is not very good - even if we have an empty | 
 |  * list or the wrong list here, we can start from some node and traverse all | 
 |  * nodes based on the zonelist. So update the list loosely once per 10 secs. | 
 |  * | 
 |  */ | 
 | static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) | 
 | { | 
 | 	int nid; | 
 | 	/* | 
 | 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET | 
 | 	 * pagein/pageout changes since the last update. | 
 | 	 */ | 
 | 	if (!atomic_read(&memcg->numainfo_events)) | 
 | 		return; | 
 | 	if (atomic_inc_return(&memcg->numainfo_updating) > 1) | 
 | 		return; | 
 |  | 
 | 	/* make a nodemask where this memcg uses memory from */ | 
 | 	memcg->scan_nodes = node_states[N_MEMORY]; | 
 |  | 
 | 	for_each_node_mask(nid, node_states[N_MEMORY]) { | 
 |  | 
 | 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) | 
 | 			node_clear(nid, memcg->scan_nodes); | 
 | 	} | 
 |  | 
 | 	atomic_set(&memcg->numainfo_events, 0); | 
 | 	atomic_set(&memcg->numainfo_updating, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * Selecting a node where we start reclaim from. Because what we need is just | 
 |  * reducing usage counter, start from anywhere is O,K. Considering | 
 |  * memory reclaim from current node, there are pros. and cons. | 
 |  * | 
 |  * Freeing memory from current node means freeing memory from a node which | 
 |  * we'll use or we've used. So, it may make LRU bad. And if several threads | 
 |  * hit limits, it will see a contention on a node. But freeing from remote | 
 |  * node means more costs for memory reclaim because of memory latency. | 
 |  * | 
 |  * Now, we use round-robin. Better algorithm is welcomed. | 
 |  */ | 
 | int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) | 
 | { | 
 | 	int node; | 
 |  | 
 | 	mem_cgroup_may_update_nodemask(memcg); | 
 | 	node = memcg->last_scanned_node; | 
 |  | 
 | 	node = next_node(node, memcg->scan_nodes); | 
 | 	if (node == MAX_NUMNODES) | 
 | 		node = first_node(memcg->scan_nodes); | 
 | 	/* | 
 | 	 * We call this when we hit limit, not when pages are added to LRU. | 
 | 	 * No LRU may hold pages because all pages are UNEVICTABLE or | 
 | 	 * memcg is too small and all pages are not on LRU. In that case, | 
 | 	 * we use curret node. | 
 | 	 */ | 
 | 	if (unlikely(node == MAX_NUMNODES)) | 
 | 		node = numa_node_id(); | 
 |  | 
 | 	memcg->last_scanned_node = node; | 
 | 	return node; | 
 | } | 
 |  | 
 | /* | 
 |  * Check all nodes whether it contains reclaimable pages or not. | 
 |  * For quick scan, we make use of scan_nodes. This will allow us to skip | 
 |  * unused nodes. But scan_nodes is lazily updated and may not cotain | 
 |  * enough new information. We need to do double check. | 
 |  */ | 
 | static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) | 
 | { | 
 | 	int nid; | 
 |  | 
 | 	/* | 
 | 	 * quick check...making use of scan_node. | 
 | 	 * We can skip unused nodes. | 
 | 	 */ | 
 | 	if (!nodes_empty(memcg->scan_nodes)) { | 
 | 		for (nid = first_node(memcg->scan_nodes); | 
 | 		     nid < MAX_NUMNODES; | 
 | 		     nid = next_node(nid, memcg->scan_nodes)) { | 
 |  | 
 | 			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) | 
 | 				return true; | 
 | 		} | 
 | 	} | 
 | 	/* | 
 | 	 * Check rest of nodes. | 
 | 	 */ | 
 | 	for_each_node_state(nid, N_MEMORY) { | 
 | 		if (node_isset(nid, memcg->scan_nodes)) | 
 | 			continue; | 
 | 		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) | 
 | 			return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | #else | 
 | int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) | 
 | { | 
 | 	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap); | 
 | } | 
 | #endif | 
 |  | 
 | static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, | 
 | 				   struct zone *zone, | 
 | 				   gfp_t gfp_mask, | 
 | 				   unsigned long *total_scanned) | 
 | { | 
 | 	struct mem_cgroup *victim = NULL; | 
 | 	int total = 0; | 
 | 	int loop = 0; | 
 | 	unsigned long excess; | 
 | 	unsigned long nr_scanned; | 
 | 	struct mem_cgroup_reclaim_cookie reclaim = { | 
 | 		.zone = zone, | 
 | 		.priority = 0, | 
 | 	}; | 
 |  | 
 | 	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT; | 
 |  | 
 | 	while (1) { | 
 | 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim); | 
 | 		if (!victim) { | 
 | 			loop++; | 
 | 			if (loop >= 2) { | 
 | 				/* | 
 | 				 * If we have not been able to reclaim | 
 | 				 * anything, it might because there are | 
 | 				 * no reclaimable pages under this hierarchy | 
 | 				 */ | 
 | 				if (!total) | 
 | 					break; | 
 | 				/* | 
 | 				 * We want to do more targeted reclaim. | 
 | 				 * excess >> 2 is not to excessive so as to | 
 | 				 * reclaim too much, nor too less that we keep | 
 | 				 * coming back to reclaim from this cgroup | 
 | 				 */ | 
 | 				if (total >= (excess >> 2) || | 
 | 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) | 
 | 					break; | 
 | 			} | 
 | 			continue; | 
 | 		} | 
 | 		if (!mem_cgroup_reclaimable(victim, false)) | 
 | 			continue; | 
 | 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, | 
 | 						     zone, &nr_scanned); | 
 | 		*total_scanned += nr_scanned; | 
 | 		if (!res_counter_soft_limit_excess(&root_memcg->res)) | 
 | 			break; | 
 | 	} | 
 | 	mem_cgroup_iter_break(root_memcg, victim); | 
 | 	return total; | 
 | } | 
 |  | 
 | /* | 
 |  * Check OOM-Killer is already running under our hierarchy. | 
 |  * If someone is running, return false. | 
 |  * Has to be called with memcg_oom_lock | 
 |  */ | 
 | static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg) | 
 | { | 
 | 	struct mem_cgroup *iter, *failed = NULL; | 
 |  | 
 | 	for_each_mem_cgroup_tree(iter, memcg) { | 
 | 		if (iter->oom_lock) { | 
 | 			/* | 
 | 			 * this subtree of our hierarchy is already locked | 
 | 			 * so we cannot give a lock. | 
 | 			 */ | 
 | 			failed = iter; | 
 | 			mem_cgroup_iter_break(memcg, iter); | 
 | 			break; | 
 | 		} else | 
 | 			iter->oom_lock = true; | 
 | 	} | 
 |  | 
 | 	if (!failed) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * OK, we failed to lock the whole subtree so we have to clean up | 
 | 	 * what we set up to the failing subtree | 
 | 	 */ | 
 | 	for_each_mem_cgroup_tree(iter, memcg) { | 
 | 		if (iter == failed) { | 
 | 			mem_cgroup_iter_break(memcg, iter); | 
 | 			break; | 
 | 		} | 
 | 		iter->oom_lock = false; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Has to be called with memcg_oom_lock | 
 |  */ | 
 | static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg) | 
 | { | 
 | 	struct mem_cgroup *iter; | 
 |  | 
 | 	for_each_mem_cgroup_tree(iter, memcg) | 
 | 		iter->oom_lock = false; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) | 
 | { | 
 | 	struct mem_cgroup *iter; | 
 |  | 
 | 	for_each_mem_cgroup_tree(iter, memcg) | 
 | 		atomic_inc(&iter->under_oom); | 
 | } | 
 |  | 
 | static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) | 
 | { | 
 | 	struct mem_cgroup *iter; | 
 |  | 
 | 	/* | 
 | 	 * When a new child is created while the hierarchy is under oom, | 
 | 	 * mem_cgroup_oom_lock() may not be called. We have to use | 
 | 	 * atomic_add_unless() here. | 
 | 	 */ | 
 | 	for_each_mem_cgroup_tree(iter, memcg) | 
 | 		atomic_add_unless(&iter->under_oom, -1, 0); | 
 | } | 
 |  | 
 | static DEFINE_SPINLOCK(memcg_oom_lock); | 
 | static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); | 
 |  | 
 | struct oom_wait_info { | 
 | 	struct mem_cgroup *memcg; | 
 | 	wait_queue_t	wait; | 
 | }; | 
 |  | 
 | static int memcg_oom_wake_function(wait_queue_t *wait, | 
 | 	unsigned mode, int sync, void *arg) | 
 | { | 
 | 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; | 
 | 	struct mem_cgroup *oom_wait_memcg; | 
 | 	struct oom_wait_info *oom_wait_info; | 
 |  | 
 | 	oom_wait_info = container_of(wait, struct oom_wait_info, wait); | 
 | 	oom_wait_memcg = oom_wait_info->memcg; | 
 |  | 
 | 	/* | 
 | 	 * Both of oom_wait_info->memcg and wake_memcg are stable under us. | 
 | 	 * Then we can use css_is_ancestor without taking care of RCU. | 
 | 	 */ | 
 | 	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg) | 
 | 		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg)) | 
 | 		return 0; | 
 | 	return autoremove_wake_function(wait, mode, sync, arg); | 
 | } | 
 |  | 
 | static void memcg_wakeup_oom(struct mem_cgroup *memcg) | 
 | { | 
 | 	/* for filtering, pass "memcg" as argument. */ | 
 | 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); | 
 | } | 
 |  | 
 | static void memcg_oom_recover(struct mem_cgroup *memcg) | 
 | { | 
 | 	if (memcg && atomic_read(&memcg->under_oom)) | 
 | 		memcg_wakeup_oom(memcg); | 
 | } | 
 |  | 
 | /* | 
 |  * try to call OOM killer. returns false if we should exit memory-reclaim loop. | 
 |  */ | 
 | static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, | 
 | 				  int order) | 
 | { | 
 | 	struct oom_wait_info owait; | 
 | 	bool locked, need_to_kill; | 
 |  | 
 | 	owait.memcg = memcg; | 
 | 	owait.wait.flags = 0; | 
 | 	owait.wait.func = memcg_oom_wake_function; | 
 | 	owait.wait.private = current; | 
 | 	INIT_LIST_HEAD(&owait.wait.task_list); | 
 | 	need_to_kill = true; | 
 | 	mem_cgroup_mark_under_oom(memcg); | 
 |  | 
 | 	/* At first, try to OOM lock hierarchy under memcg.*/ | 
 | 	spin_lock(&memcg_oom_lock); | 
 | 	locked = mem_cgroup_oom_lock(memcg); | 
 | 	/* | 
 | 	 * Even if signal_pending(), we can't quit charge() loop without | 
 | 	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL | 
 | 	 * under OOM is always welcomed, use TASK_KILLABLE here. | 
 | 	 */ | 
 | 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); | 
 | 	if (!locked || memcg->oom_kill_disable) | 
 | 		need_to_kill = false; | 
 | 	if (locked) | 
 | 		mem_cgroup_oom_notify(memcg); | 
 | 	spin_unlock(&memcg_oom_lock); | 
 |  | 
 | 	if (need_to_kill) { | 
 | 		finish_wait(&memcg_oom_waitq, &owait.wait); | 
 | 		mem_cgroup_out_of_memory(memcg, mask, order); | 
 | 	} else { | 
 | 		schedule(); | 
 | 		finish_wait(&memcg_oom_waitq, &owait.wait); | 
 | 	} | 
 | 	spin_lock(&memcg_oom_lock); | 
 | 	if (locked) | 
 | 		mem_cgroup_oom_unlock(memcg); | 
 | 	memcg_wakeup_oom(memcg); | 
 | 	spin_unlock(&memcg_oom_lock); | 
 |  | 
 | 	mem_cgroup_unmark_under_oom(memcg); | 
 |  | 
 | 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current)) | 
 | 		return false; | 
 | 	/* Give chance to dying process */ | 
 | 	schedule_timeout_uninterruptible(1); | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Currently used to update mapped file statistics, but the routine can be | 
 |  * generalized to update other statistics as well. | 
 |  * | 
 |  * Notes: Race condition | 
 |  * | 
 |  * We usually use page_cgroup_lock() for accessing page_cgroup member but | 
 |  * it tends to be costly. But considering some conditions, we doesn't need | 
 |  * to do so _always_. | 
 |  * | 
 |  * Considering "charge", lock_page_cgroup() is not required because all | 
 |  * file-stat operations happen after a page is attached to radix-tree. There | 
 |  * are no race with "charge". | 
 |  * | 
 |  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup | 
 |  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even | 
 |  * if there are race with "uncharge". Statistics itself is properly handled | 
 |  * by flags. | 
 |  * | 
 |  * Considering "move", this is an only case we see a race. To make the race | 
 |  * small, we check mm->moving_account and detect there are possibility of race | 
 |  * If there is, we take a lock. | 
 |  */ | 
 |  | 
 | void __mem_cgroup_begin_update_page_stat(struct page *page, | 
 | 				bool *locked, unsigned long *flags) | 
 | { | 
 | 	struct mem_cgroup *memcg; | 
 | 	struct page_cgroup *pc; | 
 |  | 
 | 	pc = lookup_page_cgroup(page); | 
 | again: | 
 | 	memcg = pc->mem_cgroup; | 
 | 	if (unlikely(!memcg || !PageCgroupUsed(pc))) | 
 | 		return; | 
 | 	/* | 
 | 	 * If this memory cgroup is not under account moving, we don't | 
 | 	 * need to take move_lock_mem_cgroup(). Because we already hold | 
 | 	 * rcu_read_lock(), any calls to move_account will be delayed until | 
 | 	 * rcu_read_unlock() if mem_cgroup_stolen() == true. | 
 | 	 */ | 
 | 	if (!mem_cgroup_stolen(memcg)) | 
 | 		return; | 
 |  | 
 | 	move_lock_mem_cgroup(memcg, flags); | 
 | 	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) { | 
 | 		move_unlock_mem_cgroup(memcg, flags); | 
 | 		goto again; | 
 | 	} | 
 | 	*locked = true; | 
 | } | 
 |  | 
 | void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags) | 
 | { | 
 | 	struct page_cgroup *pc = lookup_page_cgroup(page); | 
 |  | 
 | 	/* | 
 | 	 * It's guaranteed that pc->mem_cgroup never changes while | 
 | 	 * lock is held because a routine modifies pc->mem_cgroup | 
 | 	 * should take move_lock_mem_cgroup(). | 
 | 	 */ | 
 | 	move_unlock_mem_cgroup(pc->mem_cgroup, flags); | 
 | } | 
 |  | 
 | void mem_cgroup_update_page_stat(struct page *page, | 
 | 				 enum mem_cgroup_page_stat_item idx, int val) | 
 | { | 
 | 	struct mem_cgroup *memcg; | 
 | 	struct page_cgroup *pc = lookup_page_cgroup(page); | 
 | 	unsigned long uninitialized_var(flags); | 
 |  | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return; | 
 |  | 
 | 	memcg = pc->mem_cgroup; | 
 | 	if (unlikely(!memcg || !PageCgroupUsed(pc))) | 
 | 		return; | 
 |  | 
 | 	switch (idx) { | 
 | 	case MEMCG_NR_FILE_MAPPED: | 
 | 		idx = MEM_CGROUP_STAT_FILE_MAPPED; | 
 | 		break; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	this_cpu_add(memcg->stat->count[idx], val); | 
 | } | 
 |  | 
 | /* | 
 |  * size of first charge trial. "32" comes from vmscan.c's magic value. | 
 |  * TODO: maybe necessary to use big numbers in big irons. | 
 |  */ | 
 | #define CHARGE_BATCH	32U | 
 | struct memcg_stock_pcp { | 
 | 	struct mem_cgroup *cached; /* this never be root cgroup */ | 
 | 	unsigned int nr_pages; | 
 | 	struct work_struct work; | 
 | 	unsigned long flags; | 
 | #define FLUSHING_CACHED_CHARGE	0 | 
 | }; | 
 | static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); | 
 | static DEFINE_MUTEX(percpu_charge_mutex); | 
 |  | 
 | /** | 
 |  * consume_stock: Try to consume stocked charge on this cpu. | 
 |  * @memcg: memcg to consume from. | 
 |  * @nr_pages: how many pages to charge. | 
 |  * | 
 |  * The charges will only happen if @memcg matches the current cpu's memcg | 
 |  * stock, and at least @nr_pages are available in that stock.  Failure to | 
 |  * service an allocation will refill the stock. | 
 |  * | 
 |  * returns true if successful, false otherwise. | 
 |  */ | 
 | static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) | 
 | { | 
 | 	struct memcg_stock_pcp *stock; | 
 | 	bool ret = true; | 
 |  | 
 | 	if (nr_pages > CHARGE_BATCH) | 
 | 		return false; | 
 |  | 
 | 	stock = &get_cpu_var(memcg_stock); | 
 | 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) | 
 | 		stock->nr_pages -= nr_pages; | 
 | 	else /* need to call res_counter_charge */ | 
 | 		ret = false; | 
 | 	put_cpu_var(memcg_stock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns stocks cached in percpu to res_counter and reset cached information. | 
 |  */ | 
 | static void drain_stock(struct memcg_stock_pcp *stock) | 
 | { | 
 | 	struct mem_cgroup *old = stock->cached; | 
 |  | 
 | 	if (stock->nr_pages) { | 
 | 		unsigned long bytes = stock->nr_pages * PAGE_SIZE; | 
 |  | 
 | 		res_counter_uncharge(&old->res, bytes); | 
 | 		if (do_swap_account) | 
 | 			res_counter_uncharge(&old->memsw, bytes); | 
 | 		stock->nr_pages = 0; | 
 | 	} | 
 | 	stock->cached = NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * This must be called under preempt disabled or must be called by | 
 |  * a thread which is pinned to local cpu. | 
 |  */ | 
 | static void drain_local_stock(struct work_struct *dummy) | 
 | { | 
 | 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); | 
 | 	drain_stock(stock); | 
 | 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); | 
 | } | 
 |  | 
 | static void __init memcg_stock_init(void) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		struct memcg_stock_pcp *stock = | 
 | 					&per_cpu(memcg_stock, cpu); | 
 | 		INIT_WORK(&stock->work, drain_local_stock); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Cache charges(val) which is from res_counter, to local per_cpu area. | 
 |  * This will be consumed by consume_stock() function, later. | 
 |  */ | 
 | static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) | 
 | { | 
 | 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); | 
 |  | 
 | 	if (stock->cached != memcg) { /* reset if necessary */ | 
 | 		drain_stock(stock); | 
 | 		stock->cached = memcg; | 
 | 	} | 
 | 	stock->nr_pages += nr_pages; | 
 | 	put_cpu_var(memcg_stock); | 
 | } | 
 |  | 
 | /* | 
 |  * Drains all per-CPU charge caches for given root_memcg resp. subtree | 
 |  * of the hierarchy under it. sync flag says whether we should block | 
 |  * until the work is done. | 
 |  */ | 
 | static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) | 
 | { | 
 | 	int cpu, curcpu; | 
 |  | 
 | 	/* Notify other cpus that system-wide "drain" is running */ | 
 | 	get_online_cpus(); | 
 | 	curcpu = get_cpu(); | 
 | 	for_each_online_cpu(cpu) { | 
 | 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); | 
 | 		struct mem_cgroup *memcg; | 
 |  | 
 | 		memcg = stock->cached; | 
 | 		if (!memcg || !stock->nr_pages) | 
 | 			continue; | 
 | 		if (!mem_cgroup_same_or_subtree(root_memcg, memcg)) | 
 | 			continue; | 
 | 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { | 
 | 			if (cpu == curcpu) | 
 | 				drain_local_stock(&stock->work); | 
 | 			else | 
 | 				schedule_work_on(cpu, &stock->work); | 
 | 		} | 
 | 	} | 
 | 	put_cpu(); | 
 |  | 
 | 	if (!sync) | 
 | 		goto out; | 
 |  | 
 | 	for_each_online_cpu(cpu) { | 
 | 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); | 
 | 		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) | 
 | 			flush_work(&stock->work); | 
 | 	} | 
 | out: | 
 |  	put_online_cpus(); | 
 | } | 
 |  | 
 | /* | 
 |  * Tries to drain stocked charges in other cpus. This function is asynchronous | 
 |  * and just put a work per cpu for draining localy on each cpu. Caller can | 
 |  * expects some charges will be back to res_counter later but cannot wait for | 
 |  * it. | 
 |  */ | 
 | static void drain_all_stock_async(struct mem_cgroup *root_memcg) | 
 | { | 
 | 	/* | 
 | 	 * If someone calls draining, avoid adding more kworker runs. | 
 | 	 */ | 
 | 	if (!mutex_trylock(&percpu_charge_mutex)) | 
 | 		return; | 
 | 	drain_all_stock(root_memcg, false); | 
 | 	mutex_unlock(&percpu_charge_mutex); | 
 | } | 
 |  | 
 | /* This is a synchronous drain interface. */ | 
 | static void drain_all_stock_sync(struct mem_cgroup *root_memcg) | 
 | { | 
 | 	/* called when force_empty is called */ | 
 | 	mutex_lock(&percpu_charge_mutex); | 
 | 	drain_all_stock(root_memcg, true); | 
 | 	mutex_unlock(&percpu_charge_mutex); | 
 | } | 
 |  | 
 | /* | 
 |  * This function drains percpu counter value from DEAD cpu and | 
 |  * move it to local cpu. Note that this function can be preempted. | 
 |  */ | 
 | static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	spin_lock(&memcg->pcp_counter_lock); | 
 | 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { | 
 | 		long x = per_cpu(memcg->stat->count[i], cpu); | 
 |  | 
 | 		per_cpu(memcg->stat->count[i], cpu) = 0; | 
 | 		memcg->nocpu_base.count[i] += x; | 
 | 	} | 
 | 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { | 
 | 		unsigned long x = per_cpu(memcg->stat->events[i], cpu); | 
 |  | 
 | 		per_cpu(memcg->stat->events[i], cpu) = 0; | 
 | 		memcg->nocpu_base.events[i] += x; | 
 | 	} | 
 | 	spin_unlock(&memcg->pcp_counter_lock); | 
 | } | 
 |  | 
 | static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb, | 
 | 					unsigned long action, | 
 | 					void *hcpu) | 
 | { | 
 | 	int cpu = (unsigned long)hcpu; | 
 | 	struct memcg_stock_pcp *stock; | 
 | 	struct mem_cgroup *iter; | 
 |  | 
 | 	if (action == CPU_ONLINE) | 
 | 		return NOTIFY_OK; | 
 |  | 
 | 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) | 
 | 		return NOTIFY_OK; | 
 |  | 
 | 	for_each_mem_cgroup(iter) | 
 | 		mem_cgroup_drain_pcp_counter(iter, cpu); | 
 |  | 
 | 	stock = &per_cpu(memcg_stock, cpu); | 
 | 	drain_stock(stock); | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 |  | 
 | /* See __mem_cgroup_try_charge() for details */ | 
 | enum { | 
 | 	CHARGE_OK,		/* success */ | 
 | 	CHARGE_RETRY,		/* need to retry but retry is not bad */ | 
 | 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */ | 
 | 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */ | 
 | 	CHARGE_OOM_DIE,		/* the current is killed because of OOM */ | 
 | }; | 
 |  | 
 | static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, | 
 | 				unsigned int nr_pages, unsigned int min_pages, | 
 | 				bool oom_check) | 
 | { | 
 | 	unsigned long csize = nr_pages * PAGE_SIZE; | 
 | 	struct mem_cgroup *mem_over_limit; | 
 | 	struct res_counter *fail_res; | 
 | 	unsigned long flags = 0; | 
 | 	int ret; | 
 |  | 
 | 	ret = res_counter_charge(&memcg->res, csize, &fail_res); | 
 |  | 
 | 	if (likely(!ret)) { | 
 | 		if (!do_swap_account) | 
 | 			return CHARGE_OK; | 
 | 		ret = res_counter_charge(&memcg->memsw, csize, &fail_res); | 
 | 		if (likely(!ret)) | 
 | 			return CHARGE_OK; | 
 |  | 
 | 		res_counter_uncharge(&memcg->res, csize); | 
 | 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); | 
 | 		flags |= MEM_CGROUP_RECLAIM_NOSWAP; | 
 | 	} else | 
 | 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); | 
 | 	/* | 
 | 	 * Never reclaim on behalf of optional batching, retry with a | 
 | 	 * single page instead. | 
 | 	 */ | 
 | 	if (nr_pages > min_pages) | 
 | 		return CHARGE_RETRY; | 
 |  | 
 | 	if (!(gfp_mask & __GFP_WAIT)) | 
 | 		return CHARGE_WOULDBLOCK; | 
 |  | 
 | 	if (gfp_mask & __GFP_NORETRY) | 
 | 		return CHARGE_NOMEM; | 
 |  | 
 | 	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags); | 
 | 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages) | 
 | 		return CHARGE_RETRY; | 
 | 	/* | 
 | 	 * Even though the limit is exceeded at this point, reclaim | 
 | 	 * may have been able to free some pages.  Retry the charge | 
 | 	 * before killing the task. | 
 | 	 * | 
 | 	 * Only for regular pages, though: huge pages are rather | 
 | 	 * unlikely to succeed so close to the limit, and we fall back | 
 | 	 * to regular pages anyway in case of failure. | 
 | 	 */ | 
 | 	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret) | 
 | 		return CHARGE_RETRY; | 
 |  | 
 | 	/* | 
 | 	 * At task move, charge accounts can be doubly counted. So, it's | 
 | 	 * better to wait until the end of task_move if something is going on. | 
 | 	 */ | 
 | 	if (mem_cgroup_wait_acct_move(mem_over_limit)) | 
 | 		return CHARGE_RETRY; | 
 |  | 
 | 	/* If we don't need to call oom-killer at el, return immediately */ | 
 | 	if (!oom_check) | 
 | 		return CHARGE_NOMEM; | 
 | 	/* check OOM */ | 
 | 	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize))) | 
 | 		return CHARGE_OOM_DIE; | 
 |  | 
 | 	return CHARGE_RETRY; | 
 | } | 
 |  | 
 | /* | 
 |  * __mem_cgroup_try_charge() does | 
 |  * 1. detect memcg to be charged against from passed *mm and *ptr, | 
 |  * 2. update res_counter | 
 |  * 3. call memory reclaim if necessary. | 
 |  * | 
 |  * In some special case, if the task is fatal, fatal_signal_pending() or | 
 |  * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup | 
 |  * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon | 
 |  * as possible without any hazards. 2: all pages should have a valid | 
 |  * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg | 
 |  * pointer, that is treated as a charge to root_mem_cgroup. | 
 |  * | 
 |  * So __mem_cgroup_try_charge() will return | 
 |  *  0       ...  on success, filling *ptr with a valid memcg pointer. | 
 |  *  -ENOMEM ...  charge failure because of resource limits. | 
 |  *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup. | 
 |  * | 
 |  * Unlike the exported interface, an "oom" parameter is added. if oom==true, | 
 |  * the oom-killer can be invoked. | 
 |  */ | 
 | static int __mem_cgroup_try_charge(struct mm_struct *mm, | 
 | 				   gfp_t gfp_mask, | 
 | 				   unsigned int nr_pages, | 
 | 				   struct mem_cgroup **ptr, | 
 | 				   bool oom) | 
 | { | 
 | 	unsigned int batch = max(CHARGE_BATCH, nr_pages); | 
 | 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; | 
 | 	struct mem_cgroup *memcg = NULL; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage | 
 | 	 * in system level. So, allow to go ahead dying process in addition to | 
 | 	 * MEMDIE process. | 
 | 	 */ | 
 | 	if (unlikely(test_thread_flag(TIF_MEMDIE) | 
 | 		     || fatal_signal_pending(current))) | 
 | 		goto bypass; | 
 |  | 
 | 	/* | 
 | 	 * We always charge the cgroup the mm_struct belongs to. | 
 | 	 * The mm_struct's mem_cgroup changes on task migration if the | 
 | 	 * thread group leader migrates. It's possible that mm is not | 
 | 	 * set, if so charge the root memcg (happens for pagecache usage). | 
 | 	 */ | 
 | 	if (!*ptr && !mm) | 
 | 		*ptr = root_mem_cgroup; | 
 | again: | 
 | 	if (*ptr) { /* css should be a valid one */ | 
 | 		memcg = *ptr; | 
 | 		if (mem_cgroup_is_root(memcg)) | 
 | 			goto done; | 
 | 		if (consume_stock(memcg, nr_pages)) | 
 | 			goto done; | 
 | 		css_get(&memcg->css); | 
 | 	} else { | 
 | 		struct task_struct *p; | 
 |  | 
 | 		rcu_read_lock(); | 
 | 		p = rcu_dereference(mm->owner); | 
 | 		/* | 
 | 		 * Because we don't have task_lock(), "p" can exit. | 
 | 		 * In that case, "memcg" can point to root or p can be NULL with | 
 | 		 * race with swapoff. Then, we have small risk of mis-accouning. | 
 | 		 * But such kind of mis-account by race always happens because | 
 | 		 * we don't have cgroup_mutex(). It's overkill and we allo that | 
 | 		 * small race, here. | 
 | 		 * (*) swapoff at el will charge against mm-struct not against | 
 | 		 * task-struct. So, mm->owner can be NULL. | 
 | 		 */ | 
 | 		memcg = mem_cgroup_from_task(p); | 
 | 		if (!memcg) | 
 | 			memcg = root_mem_cgroup; | 
 | 		if (mem_cgroup_is_root(memcg)) { | 
 | 			rcu_read_unlock(); | 
 | 			goto done; | 
 | 		} | 
 | 		if (consume_stock(memcg, nr_pages)) { | 
 | 			/* | 
 | 			 * It seems dagerous to access memcg without css_get(). | 
 | 			 * But considering how consume_stok works, it's not | 
 | 			 * necessary. If consume_stock success, some charges | 
 | 			 * from this memcg are cached on this cpu. So, we | 
 | 			 * don't need to call css_get()/css_tryget() before | 
 | 			 * calling consume_stock(). | 
 | 			 */ | 
 | 			rcu_read_unlock(); | 
 | 			goto done; | 
 | 		} | 
 | 		/* after here, we may be blocked. we need to get refcnt */ | 
 | 		if (!css_tryget(&memcg->css)) { | 
 | 			rcu_read_unlock(); | 
 | 			goto again; | 
 | 		} | 
 | 		rcu_read_unlock(); | 
 | 	} | 
 |  | 
 | 	do { | 
 | 		bool oom_check; | 
 |  | 
 | 		/* If killed, bypass charge */ | 
 | 		if (fatal_signal_pending(current)) { | 
 | 			css_put(&memcg->css); | 
 | 			goto bypass; | 
 | 		} | 
 |  | 
 | 		oom_check = false; | 
 | 		if (oom && !nr_oom_retries) { | 
 | 			oom_check = true; | 
 | 			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; | 
 | 		} | 
 |  | 
 | 		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages, | 
 | 		    oom_check); | 
 | 		switch (ret) { | 
 | 		case CHARGE_OK: | 
 | 			break; | 
 | 		case CHARGE_RETRY: /* not in OOM situation but retry */ | 
 | 			batch = nr_pages; | 
 | 			css_put(&memcg->css); | 
 | 			memcg = NULL; | 
 | 			goto again; | 
 | 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ | 
 | 			css_put(&memcg->css); | 
 | 			goto nomem; | 
 | 		case CHARGE_NOMEM: /* OOM routine works */ | 
 | 			if (!oom) { | 
 | 				css_put(&memcg->css); | 
 | 				goto nomem; | 
 | 			} | 
 | 			/* If oom, we never return -ENOMEM */ | 
 | 			nr_oom_retries--; | 
 | 			break; | 
 | 		case CHARGE_OOM_DIE: /* Killed by OOM Killer */ | 
 | 			css_put(&memcg->css); | 
 | 			goto bypass; | 
 | 		} | 
 | 	} while (ret != CHARGE_OK); | 
 |  | 
 | 	if (batch > nr_pages) | 
 | 		refill_stock(memcg, batch - nr_pages); | 
 | 	css_put(&memcg->css); | 
 | done: | 
 | 	*ptr = memcg; | 
 | 	return 0; | 
 | nomem: | 
 | 	*ptr = NULL; | 
 | 	return -ENOMEM; | 
 | bypass: | 
 | 	*ptr = root_mem_cgroup; | 
 | 	return -EINTR; | 
 | } | 
 |  | 
 | /* | 
 |  * Somemtimes we have to undo a charge we got by try_charge(). | 
 |  * This function is for that and do uncharge, put css's refcnt. | 
 |  * gotten by try_charge(). | 
 |  */ | 
 | static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg, | 
 | 				       unsigned int nr_pages) | 
 | { | 
 | 	if (!mem_cgroup_is_root(memcg)) { | 
 | 		unsigned long bytes = nr_pages * PAGE_SIZE; | 
 |  | 
 | 		res_counter_uncharge(&memcg->res, bytes); | 
 | 		if (do_swap_account) | 
 | 			res_counter_uncharge(&memcg->memsw, bytes); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Cancel chrages in this cgroup....doesn't propagate to parent cgroup. | 
 |  * This is useful when moving usage to parent cgroup. | 
 |  */ | 
 | static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg, | 
 | 					unsigned int nr_pages) | 
 | { | 
 | 	unsigned long bytes = nr_pages * PAGE_SIZE; | 
 |  | 
 | 	if (mem_cgroup_is_root(memcg)) | 
 | 		return; | 
 |  | 
 | 	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes); | 
 | 	if (do_swap_account) | 
 | 		res_counter_uncharge_until(&memcg->memsw, | 
 | 						memcg->memsw.parent, bytes); | 
 | } | 
 |  | 
 | /* | 
 |  * A helper function to get mem_cgroup from ID. must be called under | 
 |  * rcu_read_lock().  The caller is responsible for calling css_tryget if | 
 |  * the mem_cgroup is used for charging. (dropping refcnt from swap can be | 
 |  * called against removed memcg.) | 
 |  */ | 
 | static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) | 
 | { | 
 | 	struct cgroup_subsys_state *css; | 
 |  | 
 | 	/* ID 0 is unused ID */ | 
 | 	if (!id) | 
 | 		return NULL; | 
 | 	css = css_lookup(&mem_cgroup_subsys, id); | 
 | 	if (!css) | 
 | 		return NULL; | 
 | 	return mem_cgroup_from_css(css); | 
 | } | 
 |  | 
 | struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) | 
 | { | 
 | 	struct mem_cgroup *memcg = NULL; | 
 | 	struct page_cgroup *pc; | 
 | 	unsigned short id; | 
 | 	swp_entry_t ent; | 
 |  | 
 | 	VM_BUG_ON(!PageLocked(page)); | 
 |  | 
 | 	pc = lookup_page_cgroup(page); | 
 | 	lock_page_cgroup(pc); | 
 | 	if (PageCgroupUsed(pc)) { | 
 | 		memcg = pc->mem_cgroup; | 
 | 		if (memcg && !css_tryget(&memcg->css)) | 
 | 			memcg = NULL; | 
 | 	} else if (PageSwapCache(page)) { | 
 | 		ent.val = page_private(page); | 
 | 		id = lookup_swap_cgroup_id(ent); | 
 | 		rcu_read_lock(); | 
 | 		memcg = mem_cgroup_lookup(id); | 
 | 		if (memcg && !css_tryget(&memcg->css)) | 
 | 			memcg = NULL; | 
 | 		rcu_read_unlock(); | 
 | 	} | 
 | 	unlock_page_cgroup(pc); | 
 | 	return memcg; | 
 | } | 
 |  | 
 | static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, | 
 | 				       struct page *page, | 
 | 				       unsigned int nr_pages, | 
 | 				       enum charge_type ctype, | 
 | 				       bool lrucare) | 
 | { | 
 | 	struct page_cgroup *pc = lookup_page_cgroup(page); | 
 | 	struct zone *uninitialized_var(zone); | 
 | 	struct lruvec *lruvec; | 
 | 	bool was_on_lru = false; | 
 | 	bool anon; | 
 |  | 
 | 	lock_page_cgroup(pc); | 
 | 	VM_BUG_ON(PageCgroupUsed(pc)); | 
 | 	/* | 
 | 	 * we don't need page_cgroup_lock about tail pages, becase they are not | 
 | 	 * accessed by any other context at this point. | 
 | 	 */ | 
 |  | 
 | 	/* | 
 | 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page | 
 | 	 * may already be on some other mem_cgroup's LRU.  Take care of it. | 
 | 	 */ | 
 | 	if (lrucare) { | 
 | 		zone = page_zone(page); | 
 | 		spin_lock_irq(&zone->lru_lock); | 
 | 		if (PageLRU(page)) { | 
 | 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); | 
 | 			ClearPageLRU(page); | 
 | 			del_page_from_lru_list(page, lruvec, page_lru(page)); | 
 | 			was_on_lru = true; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	pc->mem_cgroup = memcg; | 
 | 	/* | 
 | 	 * We access a page_cgroup asynchronously without lock_page_cgroup(). | 
 | 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup | 
 | 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible | 
 | 	 * before USED bit, we need memory barrier here. | 
 | 	 * See mem_cgroup_add_lru_list(), etc. | 
 |  	 */ | 
 | 	smp_wmb(); | 
 | 	SetPageCgroupUsed(pc); | 
 |  | 
 | 	if (lrucare) { | 
 | 		if (was_on_lru) { | 
 | 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); | 
 | 			VM_BUG_ON(PageLRU(page)); | 
 | 			SetPageLRU(page); | 
 | 			add_page_to_lru_list(page, lruvec, page_lru(page)); | 
 | 		} | 
 | 		spin_unlock_irq(&zone->lru_lock); | 
 | 	} | 
 |  | 
 | 	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON) | 
 | 		anon = true; | 
 | 	else | 
 | 		anon = false; | 
 |  | 
 | 	mem_cgroup_charge_statistics(memcg, anon, nr_pages); | 
 | 	unlock_page_cgroup(pc); | 
 |  | 
 | 	/* | 
 | 	 * "charge_statistics" updated event counter. Then, check it. | 
 | 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. | 
 | 	 * if they exceeds softlimit. | 
 | 	 */ | 
 | 	memcg_check_events(memcg, page); | 
 | } | 
 |  | 
 | static DEFINE_MUTEX(set_limit_mutex); | 
 |  | 
 | #ifdef CONFIG_MEMCG_KMEM | 
 | static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg) | 
 | { | 
 | 	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) && | 
 | 		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK); | 
 | } | 
 |  | 
 | /* | 
 |  * This is a bit cumbersome, but it is rarely used and avoids a backpointer | 
 |  * in the memcg_cache_params struct. | 
 |  */ | 
 | static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p) | 
 | { | 
 | 	struct kmem_cache *cachep; | 
 |  | 
 | 	VM_BUG_ON(p->is_root_cache); | 
 | 	cachep = p->root_cache; | 
 | 	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)]; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SLABINFO | 
 | static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft, | 
 | 					struct seq_file *m) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); | 
 | 	struct memcg_cache_params *params; | 
 |  | 
 | 	if (!memcg_can_account_kmem(memcg)) | 
 | 		return -EIO; | 
 |  | 
 | 	print_slabinfo_header(m); | 
 |  | 
 | 	mutex_lock(&memcg->slab_caches_mutex); | 
 | 	list_for_each_entry(params, &memcg->memcg_slab_caches, list) | 
 | 		cache_show(memcg_params_to_cache(params), m); | 
 | 	mutex_unlock(&memcg->slab_caches_mutex); | 
 |  | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size) | 
 | { | 
 | 	struct res_counter *fail_res; | 
 | 	struct mem_cgroup *_memcg; | 
 | 	int ret = 0; | 
 | 	bool may_oom; | 
 |  | 
 | 	ret = res_counter_charge(&memcg->kmem, size, &fail_res); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * Conditions under which we can wait for the oom_killer. Those are | 
 | 	 * the same conditions tested by the core page allocator | 
 | 	 */ | 
 | 	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY); | 
 |  | 
 | 	_memcg = memcg; | 
 | 	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT, | 
 | 				      &_memcg, may_oom); | 
 |  | 
 | 	if (ret == -EINTR)  { | 
 | 		/* | 
 | 		 * __mem_cgroup_try_charge() chosed to bypass to root due to | 
 | 		 * OOM kill or fatal signal.  Since our only options are to | 
 | 		 * either fail the allocation or charge it to this cgroup, do | 
 | 		 * it as a temporary condition. But we can't fail. From a | 
 | 		 * kmem/slab perspective, the cache has already been selected, | 
 | 		 * by mem_cgroup_kmem_get_cache(), so it is too late to change | 
 | 		 * our minds. | 
 | 		 * | 
 | 		 * This condition will only trigger if the task entered | 
 | 		 * memcg_charge_kmem in a sane state, but was OOM-killed during | 
 | 		 * __mem_cgroup_try_charge() above. Tasks that were already | 
 | 		 * dying when the allocation triggers should have been already | 
 | 		 * directed to the root cgroup in memcontrol.h | 
 | 		 */ | 
 | 		res_counter_charge_nofail(&memcg->res, size, &fail_res); | 
 | 		if (do_swap_account) | 
 | 			res_counter_charge_nofail(&memcg->memsw, size, | 
 | 						  &fail_res); | 
 | 		ret = 0; | 
 | 	} else if (ret) | 
 | 		res_counter_uncharge(&memcg->kmem, size); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size) | 
 | { | 
 | 	res_counter_uncharge(&memcg->res, size); | 
 | 	if (do_swap_account) | 
 | 		res_counter_uncharge(&memcg->memsw, size); | 
 |  | 
 | 	/* Not down to 0 */ | 
 | 	if (res_counter_uncharge(&memcg->kmem, size)) | 
 | 		return; | 
 |  | 
 | 	if (memcg_kmem_test_and_clear_dead(memcg)) | 
 | 		mem_cgroup_put(memcg); | 
 | } | 
 |  | 
 | void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep) | 
 | { | 
 | 	if (!memcg) | 
 | 		return; | 
 |  | 
 | 	mutex_lock(&memcg->slab_caches_mutex); | 
 | 	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches); | 
 | 	mutex_unlock(&memcg->slab_caches_mutex); | 
 | } | 
 |  | 
 | /* | 
 |  * helper for acessing a memcg's index. It will be used as an index in the | 
 |  * child cache array in kmem_cache, and also to derive its name. This function | 
 |  * will return -1 when this is not a kmem-limited memcg. | 
 |  */ | 
 | int memcg_cache_id(struct mem_cgroup *memcg) | 
 | { | 
 | 	return memcg ? memcg->kmemcg_id : -1; | 
 | } | 
 |  | 
 | /* | 
 |  * This ends up being protected by the set_limit mutex, during normal | 
 |  * operation, because that is its main call site. | 
 |  * | 
 |  * But when we create a new cache, we can call this as well if its parent | 
 |  * is kmem-limited. That will have to hold set_limit_mutex as well. | 
 |  */ | 
 | int memcg_update_cache_sizes(struct mem_cgroup *memcg) | 
 | { | 
 | 	int num, ret; | 
 |  | 
 | 	num = ida_simple_get(&kmem_limited_groups, | 
 | 				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); | 
 | 	if (num < 0) | 
 | 		return num; | 
 | 	/* | 
 | 	 * After this point, kmem_accounted (that we test atomically in | 
 | 	 * the beginning of this conditional), is no longer 0. This | 
 | 	 * guarantees only one process will set the following boolean | 
 | 	 * to true. We don't need test_and_set because we're protected | 
 | 	 * by the set_limit_mutex anyway. | 
 | 	 */ | 
 | 	memcg_kmem_set_activated(memcg); | 
 |  | 
 | 	ret = memcg_update_all_caches(num+1); | 
 | 	if (ret) { | 
 | 		ida_simple_remove(&kmem_limited_groups, num); | 
 | 		memcg_kmem_clear_activated(memcg); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	memcg->kmemcg_id = num; | 
 | 	INIT_LIST_HEAD(&memcg->memcg_slab_caches); | 
 | 	mutex_init(&memcg->slab_caches_mutex); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static size_t memcg_caches_array_size(int num_groups) | 
 | { | 
 | 	ssize_t size; | 
 | 	if (num_groups <= 0) | 
 | 		return 0; | 
 |  | 
 | 	size = 2 * num_groups; | 
 | 	if (size < MEMCG_CACHES_MIN_SIZE) | 
 | 		size = MEMCG_CACHES_MIN_SIZE; | 
 | 	else if (size > MEMCG_CACHES_MAX_SIZE) | 
 | 		size = MEMCG_CACHES_MAX_SIZE; | 
 |  | 
 | 	return size; | 
 | } | 
 |  | 
 | /* | 
 |  * We should update the current array size iff all caches updates succeed. This | 
 |  * can only be done from the slab side. The slab mutex needs to be held when | 
 |  * calling this. | 
 |  */ | 
 | void memcg_update_array_size(int num) | 
 | { | 
 | 	if (num > memcg_limited_groups_array_size) | 
 | 		memcg_limited_groups_array_size = memcg_caches_array_size(num); | 
 | } | 
 |  | 
 | static void kmem_cache_destroy_work_func(struct work_struct *w); | 
 |  | 
 | int memcg_update_cache_size(struct kmem_cache *s, int num_groups) | 
 | { | 
 | 	struct memcg_cache_params *cur_params = s->memcg_params; | 
 |  | 
 | 	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache); | 
 |  | 
 | 	if (num_groups > memcg_limited_groups_array_size) { | 
 | 		int i; | 
 | 		ssize_t size = memcg_caches_array_size(num_groups); | 
 |  | 
 | 		size *= sizeof(void *); | 
 | 		size += sizeof(struct memcg_cache_params); | 
 |  | 
 | 		s->memcg_params = kzalloc(size, GFP_KERNEL); | 
 | 		if (!s->memcg_params) { | 
 | 			s->memcg_params = cur_params; | 
 | 			return -ENOMEM; | 
 | 		} | 
 |  | 
 | 		INIT_WORK(&s->memcg_params->destroy, | 
 | 				kmem_cache_destroy_work_func); | 
 | 		s->memcg_params->is_root_cache = true; | 
 |  | 
 | 		/* | 
 | 		 * There is the chance it will be bigger than | 
 | 		 * memcg_limited_groups_array_size, if we failed an allocation | 
 | 		 * in a cache, in which case all caches updated before it, will | 
 | 		 * have a bigger array. | 
 | 		 * | 
 | 		 * But if that is the case, the data after | 
 | 		 * memcg_limited_groups_array_size is certainly unused | 
 | 		 */ | 
 | 		for (i = 0; i < memcg_limited_groups_array_size; i++) { | 
 | 			if (!cur_params->memcg_caches[i]) | 
 | 				continue; | 
 | 			s->memcg_params->memcg_caches[i] = | 
 | 						cur_params->memcg_caches[i]; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Ideally, we would wait until all caches succeed, and only | 
 | 		 * then free the old one. But this is not worth the extra | 
 | 		 * pointer per-cache we'd have to have for this. | 
 | 		 * | 
 | 		 * It is not a big deal if some caches are left with a size | 
 | 		 * bigger than the others. And all updates will reset this | 
 | 		 * anyway. | 
 | 		 */ | 
 | 		kfree(cur_params); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s, | 
 | 			 struct kmem_cache *root_cache) | 
 | { | 
 | 	size_t size = sizeof(struct memcg_cache_params); | 
 |  | 
 | 	if (!memcg_kmem_enabled()) | 
 | 		return 0; | 
 |  | 
 | 	if (!memcg) | 
 | 		size += memcg_limited_groups_array_size * sizeof(void *); | 
 |  | 
 | 	s->memcg_params = kzalloc(size, GFP_KERNEL); | 
 | 	if (!s->memcg_params) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	INIT_WORK(&s->memcg_params->destroy, | 
 | 			kmem_cache_destroy_work_func); | 
 | 	if (memcg) { | 
 | 		s->memcg_params->memcg = memcg; | 
 | 		s->memcg_params->root_cache = root_cache; | 
 | 	} else | 
 | 		s->memcg_params->is_root_cache = true; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void memcg_release_cache(struct kmem_cache *s) | 
 | { | 
 | 	struct kmem_cache *root; | 
 | 	struct mem_cgroup *memcg; | 
 | 	int id; | 
 |  | 
 | 	/* | 
 | 	 * This happens, for instance, when a root cache goes away before we | 
 | 	 * add any memcg. | 
 | 	 */ | 
 | 	if (!s->memcg_params) | 
 | 		return; | 
 |  | 
 | 	if (s->memcg_params->is_root_cache) | 
 | 		goto out; | 
 |  | 
 | 	memcg = s->memcg_params->memcg; | 
 | 	id  = memcg_cache_id(memcg); | 
 |  | 
 | 	root = s->memcg_params->root_cache; | 
 | 	root->memcg_params->memcg_caches[id] = NULL; | 
 | 	mem_cgroup_put(memcg); | 
 |  | 
 | 	mutex_lock(&memcg->slab_caches_mutex); | 
 | 	list_del(&s->memcg_params->list); | 
 | 	mutex_unlock(&memcg->slab_caches_mutex); | 
 |  | 
 | out: | 
 | 	kfree(s->memcg_params); | 
 | } | 
 |  | 
 | /* | 
 |  * During the creation a new cache, we need to disable our accounting mechanism | 
 |  * altogether. This is true even if we are not creating, but rather just | 
 |  * enqueing new caches to be created. | 
 |  * | 
 |  * This is because that process will trigger allocations; some visible, like | 
 |  * explicit kmallocs to auxiliary data structures, name strings and internal | 
 |  * cache structures; some well concealed, like INIT_WORK() that can allocate | 
 |  * objects during debug. | 
 |  * | 
 |  * If any allocation happens during memcg_kmem_get_cache, we will recurse back | 
 |  * to it. This may not be a bounded recursion: since the first cache creation | 
 |  * failed to complete (waiting on the allocation), we'll just try to create the | 
 |  * cache again, failing at the same point. | 
 |  * | 
 |  * memcg_kmem_get_cache is prepared to abort after seeing a positive count of | 
 |  * memcg_kmem_skip_account. So we enclose anything that might allocate memory | 
 |  * inside the following two functions. | 
 |  */ | 
 | static inline void memcg_stop_kmem_account(void) | 
 | { | 
 | 	VM_BUG_ON(!current->mm); | 
 | 	current->memcg_kmem_skip_account++; | 
 | } | 
 |  | 
 | static inline void memcg_resume_kmem_account(void) | 
 | { | 
 | 	VM_BUG_ON(!current->mm); | 
 | 	current->memcg_kmem_skip_account--; | 
 | } | 
 |  | 
 | static void kmem_cache_destroy_work_func(struct work_struct *w) | 
 | { | 
 | 	struct kmem_cache *cachep; | 
 | 	struct memcg_cache_params *p; | 
 |  | 
 | 	p = container_of(w, struct memcg_cache_params, destroy); | 
 |  | 
 | 	cachep = memcg_params_to_cache(p); | 
 |  | 
 | 	/* | 
 | 	 * If we get down to 0 after shrink, we could delete right away. | 
 | 	 * However, memcg_release_pages() already puts us back in the workqueue | 
 | 	 * in that case. If we proceed deleting, we'll get a dangling | 
 | 	 * reference, and removing the object from the workqueue in that case | 
 | 	 * is unnecessary complication. We are not a fast path. | 
 | 	 * | 
 | 	 * Note that this case is fundamentally different from racing with | 
 | 	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in | 
 | 	 * kmem_cache_shrink, not only we would be reinserting a dead cache | 
 | 	 * into the queue, but doing so from inside the worker racing to | 
 | 	 * destroy it. | 
 | 	 * | 
 | 	 * So if we aren't down to zero, we'll just schedule a worker and try | 
 | 	 * again | 
 | 	 */ | 
 | 	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) { | 
 | 		kmem_cache_shrink(cachep); | 
 | 		if (atomic_read(&cachep->memcg_params->nr_pages) == 0) | 
 | 			return; | 
 | 	} else | 
 | 		kmem_cache_destroy(cachep); | 
 | } | 
 |  | 
 | void mem_cgroup_destroy_cache(struct kmem_cache *cachep) | 
 | { | 
 | 	if (!cachep->memcg_params->dead) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * There are many ways in which we can get here. | 
 | 	 * | 
 | 	 * We can get to a memory-pressure situation while the delayed work is | 
 | 	 * still pending to run. The vmscan shrinkers can then release all | 
 | 	 * cache memory and get us to destruction. If this is the case, we'll | 
 | 	 * be executed twice, which is a bug (the second time will execute over | 
 | 	 * bogus data). In this case, cancelling the work should be fine. | 
 | 	 * | 
 | 	 * But we can also get here from the worker itself, if | 
 | 	 * kmem_cache_shrink is enough to shake all the remaining objects and | 
 | 	 * get the page count to 0. In this case, we'll deadlock if we try to | 
 | 	 * cancel the work (the worker runs with an internal lock held, which | 
 | 	 * is the same lock we would hold for cancel_work_sync().) | 
 | 	 * | 
 | 	 * Since we can't possibly know who got us here, just refrain from | 
 | 	 * running if there is already work pending | 
 | 	 */ | 
 | 	if (work_pending(&cachep->memcg_params->destroy)) | 
 | 		return; | 
 | 	/* | 
 | 	 * We have to defer the actual destroying to a workqueue, because | 
 | 	 * we might currently be in a context that cannot sleep. | 
 | 	 */ | 
 | 	schedule_work(&cachep->memcg_params->destroy); | 
 | } | 
 |  | 
 | /* | 
 |  * This lock protects updaters, not readers. We want readers to be as fast as | 
 |  * they can, and they will either see NULL or a valid cache value. Our model | 
 |  * allow them to see NULL, in which case the root memcg will be selected. | 
 |  * | 
 |  * We need this lock because multiple allocations to the same cache from a non | 
 |  * will span more than one worker. Only one of them can create the cache. | 
 |  */ | 
 | static DEFINE_MUTEX(memcg_cache_mutex); | 
 |  | 
 | /* | 
 |  * Called with memcg_cache_mutex held | 
 |  */ | 
 | static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg, | 
 | 					 struct kmem_cache *s) | 
 | { | 
 | 	struct kmem_cache *new; | 
 | 	static char *tmp_name = NULL; | 
 |  | 
 | 	lockdep_assert_held(&memcg_cache_mutex); | 
 |  | 
 | 	/* | 
 | 	 * kmem_cache_create_memcg duplicates the given name and | 
 | 	 * cgroup_name for this name requires RCU context. | 
 | 	 * This static temporary buffer is used to prevent from | 
 | 	 * pointless shortliving allocation. | 
 | 	 */ | 
 | 	if (!tmp_name) { | 
 | 		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL); | 
 | 		if (!tmp_name) | 
 | 			return NULL; | 
 | 	} | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name, | 
 | 			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup)); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align, | 
 | 				      (s->flags & ~SLAB_PANIC), s->ctor, s); | 
 |  | 
 | 	if (new) | 
 | 		new->allocflags |= __GFP_KMEMCG; | 
 |  | 
 | 	return new; | 
 | } | 
 |  | 
 | static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg, | 
 | 						  struct kmem_cache *cachep) | 
 | { | 
 | 	struct kmem_cache *new_cachep; | 
 | 	int idx; | 
 |  | 
 | 	BUG_ON(!memcg_can_account_kmem(memcg)); | 
 |  | 
 | 	idx = memcg_cache_id(memcg); | 
 |  | 
 | 	mutex_lock(&memcg_cache_mutex); | 
 | 	new_cachep = cachep->memcg_params->memcg_caches[idx]; | 
 | 	if (new_cachep) | 
 | 		goto out; | 
 |  | 
 | 	new_cachep = kmem_cache_dup(memcg, cachep); | 
 | 	if (new_cachep == NULL) { | 
 | 		new_cachep = cachep; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	mem_cgroup_get(memcg); | 
 | 	atomic_set(&new_cachep->memcg_params->nr_pages , 0); | 
 |  | 
 | 	cachep->memcg_params->memcg_caches[idx] = new_cachep; | 
 | 	/* | 
 | 	 * the readers won't lock, make sure everybody sees the updated value, | 
 | 	 * so they won't put stuff in the queue again for no reason | 
 | 	 */ | 
 | 	wmb(); | 
 | out: | 
 | 	mutex_unlock(&memcg_cache_mutex); | 
 | 	return new_cachep; | 
 | } | 
 |  | 
 | void kmem_cache_destroy_memcg_children(struct kmem_cache *s) | 
 | { | 
 | 	struct kmem_cache *c; | 
 | 	int i; | 
 |  | 
 | 	if (!s->memcg_params) | 
 | 		return; | 
 | 	if (!s->memcg_params->is_root_cache) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * If the cache is being destroyed, we trust that there is no one else | 
 | 	 * requesting objects from it. Even if there are, the sanity checks in | 
 | 	 * kmem_cache_destroy should caught this ill-case. | 
 | 	 * | 
 | 	 * Still, we don't want anyone else freeing memcg_caches under our | 
 | 	 * noses, which can happen if a new memcg comes to life. As usual, | 
 | 	 * we'll take the set_limit_mutex to protect ourselves against this. | 
 | 	 */ | 
 | 	mutex_lock(&set_limit_mutex); | 
 | 	for (i = 0; i < memcg_limited_groups_array_size; i++) { | 
 | 		c = s->memcg_params->memcg_caches[i]; | 
 | 		if (!c) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * We will now manually delete the caches, so to avoid races | 
 | 		 * we need to cancel all pending destruction workers and | 
 | 		 * proceed with destruction ourselves. | 
 | 		 * | 
 | 		 * kmem_cache_destroy() will call kmem_cache_shrink internally, | 
 | 		 * and that could spawn the workers again: it is likely that | 
 | 		 * the cache still have active pages until this very moment. | 
 | 		 * This would lead us back to mem_cgroup_destroy_cache. | 
 | 		 * | 
 | 		 * But that will not execute at all if the "dead" flag is not | 
 | 		 * set, so flip it down to guarantee we are in control. | 
 | 		 */ | 
 | 		c->memcg_params->dead = false; | 
 | 		cancel_work_sync(&c->memcg_params->destroy); | 
 | 		kmem_cache_destroy(c); | 
 | 	} | 
 | 	mutex_unlock(&set_limit_mutex); | 
 | } | 
 |  | 
 | struct create_work { | 
 | 	struct mem_cgroup *memcg; | 
 | 	struct kmem_cache *cachep; | 
 | 	struct work_struct work; | 
 | }; | 
 |  | 
 | static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg) | 
 | { | 
 | 	struct kmem_cache *cachep; | 
 | 	struct memcg_cache_params *params; | 
 |  | 
 | 	if (!memcg_kmem_is_active(memcg)) | 
 | 		return; | 
 |  | 
 | 	mutex_lock(&memcg->slab_caches_mutex); | 
 | 	list_for_each_entry(params, &memcg->memcg_slab_caches, list) { | 
 | 		cachep = memcg_params_to_cache(params); | 
 | 		cachep->memcg_params->dead = true; | 
 | 		schedule_work(&cachep->memcg_params->destroy); | 
 | 	} | 
 | 	mutex_unlock(&memcg->slab_caches_mutex); | 
 | } | 
 |  | 
 | static void memcg_create_cache_work_func(struct work_struct *w) | 
 | { | 
 | 	struct create_work *cw; | 
 |  | 
 | 	cw = container_of(w, struct create_work, work); | 
 | 	memcg_create_kmem_cache(cw->memcg, cw->cachep); | 
 | 	/* Drop the reference gotten when we enqueued. */ | 
 | 	css_put(&cw->memcg->css); | 
 | 	kfree(cw); | 
 | } | 
 |  | 
 | /* | 
 |  * Enqueue the creation of a per-memcg kmem_cache. | 
 |  * Called with rcu_read_lock. | 
 |  */ | 
 | static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg, | 
 | 					 struct kmem_cache *cachep) | 
 | { | 
 | 	struct create_work *cw; | 
 |  | 
 | 	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT); | 
 | 	if (cw == NULL) | 
 | 		return; | 
 |  | 
 | 	/* The corresponding put will be done in the workqueue. */ | 
 | 	if (!css_tryget(&memcg->css)) { | 
 | 		kfree(cw); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	cw->memcg = memcg; | 
 | 	cw->cachep = cachep; | 
 |  | 
 | 	INIT_WORK(&cw->work, memcg_create_cache_work_func); | 
 | 	schedule_work(&cw->work); | 
 | } | 
 |  | 
 | static void memcg_create_cache_enqueue(struct mem_cgroup *memcg, | 
 | 				       struct kmem_cache *cachep) | 
 | { | 
 | 	/* | 
 | 	 * We need to stop accounting when we kmalloc, because if the | 
 | 	 * corresponding kmalloc cache is not yet created, the first allocation | 
 | 	 * in __memcg_create_cache_enqueue will recurse. | 
 | 	 * | 
 | 	 * However, it is better to enclose the whole function. Depending on | 
 | 	 * the debugging options enabled, INIT_WORK(), for instance, can | 
 | 	 * trigger an allocation. This too, will make us recurse. Because at | 
 | 	 * this point we can't allow ourselves back into memcg_kmem_get_cache, | 
 | 	 * the safest choice is to do it like this, wrapping the whole function. | 
 | 	 */ | 
 | 	memcg_stop_kmem_account(); | 
 | 	__memcg_create_cache_enqueue(memcg, cachep); | 
 | 	memcg_resume_kmem_account(); | 
 | } | 
 | /* | 
 |  * Return the kmem_cache we're supposed to use for a slab allocation. | 
 |  * We try to use the current memcg's version of the cache. | 
 |  * | 
 |  * If the cache does not exist yet, if we are the first user of it, | 
 |  * we either create it immediately, if possible, or create it asynchronously | 
 |  * in a workqueue. | 
 |  * In the latter case, we will let the current allocation go through with | 
 |  * the original cache. | 
 |  * | 
 |  * Can't be called in interrupt context or from kernel threads. | 
 |  * This function needs to be called with rcu_read_lock() held. | 
 |  */ | 
 | struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, | 
 | 					  gfp_t gfp) | 
 | { | 
 | 	struct mem_cgroup *memcg; | 
 | 	int idx; | 
 |  | 
 | 	VM_BUG_ON(!cachep->memcg_params); | 
 | 	VM_BUG_ON(!cachep->memcg_params->is_root_cache); | 
 |  | 
 | 	if (!current->mm || current->memcg_kmem_skip_account) | 
 | 		return cachep; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner)); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	if (!memcg_can_account_kmem(memcg)) | 
 | 		return cachep; | 
 |  | 
 | 	idx = memcg_cache_id(memcg); | 
 |  | 
 | 	/* | 
 | 	 * barrier to mare sure we're always seeing the up to date value.  The | 
 | 	 * code updating memcg_caches will issue a write barrier to match this. | 
 | 	 */ | 
 | 	read_barrier_depends(); | 
 | 	if (unlikely(cachep->memcg_params->memcg_caches[idx] == NULL)) { | 
 | 		/* | 
 | 		 * If we are in a safe context (can wait, and not in interrupt | 
 | 		 * context), we could be be predictable and return right away. | 
 | 		 * This would guarantee that the allocation being performed | 
 | 		 * already belongs in the new cache. | 
 | 		 * | 
 | 		 * However, there are some clashes that can arrive from locking. | 
 | 		 * For instance, because we acquire the slab_mutex while doing | 
 | 		 * kmem_cache_dup, this means no further allocation could happen | 
 | 		 * with the slab_mutex held. | 
 | 		 * | 
 | 		 * Also, because cache creation issue get_online_cpus(), this | 
 | 		 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex, | 
 | 		 * that ends up reversed during cpu hotplug. (cpuset allocates | 
 | 		 * a bunch of GFP_KERNEL memory during cpuup). Due to all that, | 
 | 		 * better to defer everything. | 
 | 		 */ | 
 | 		memcg_create_cache_enqueue(memcg, cachep); | 
 | 		return cachep; | 
 | 	} | 
 |  | 
 | 	return cachep->memcg_params->memcg_caches[idx]; | 
 | } | 
 | EXPORT_SYMBOL(__memcg_kmem_get_cache); | 
 |  | 
 | /* | 
 |  * We need to verify if the allocation against current->mm->owner's memcg is | 
 |  * possible for the given order. But the page is not allocated yet, so we'll | 
 |  * need a further commit step to do the final arrangements. | 
 |  * | 
 |  * It is possible for the task to switch cgroups in this mean time, so at | 
 |  * commit time, we can't rely on task conversion any longer.  We'll then use | 
 |  * the handle argument to return to the caller which cgroup we should commit | 
 |  * against. We could also return the memcg directly and avoid the pointer | 
 |  * passing, but a boolean return value gives better semantics considering | 
 |  * the compiled-out case as well. | 
 |  * | 
 |  * Returning true means the allocation is possible. | 
 |  */ | 
 | bool | 
 | __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order) | 
 | { | 
 | 	struct mem_cgroup *memcg; | 
 | 	int ret; | 
 |  | 
 | 	*_memcg = NULL; | 
 | 	memcg = try_get_mem_cgroup_from_mm(current->mm); | 
 |  | 
 | 	/* | 
 | 	 * very rare case described in mem_cgroup_from_task. Unfortunately there | 
 | 	 * isn't much we can do without complicating this too much, and it would | 
 | 	 * be gfp-dependent anyway. Just let it go | 
 | 	 */ | 
 | 	if (unlikely(!memcg)) | 
 | 		return true; | 
 |  | 
 | 	if (!memcg_can_account_kmem(memcg)) { | 
 | 		css_put(&memcg->css); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order); | 
 | 	if (!ret) | 
 | 		*_memcg = memcg; | 
 |  | 
 | 	css_put(&memcg->css); | 
 | 	return (ret == 0); | 
 | } | 
 |  | 
 | void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, | 
 | 			      int order) | 
 | { | 
 | 	struct page_cgroup *pc; | 
 |  | 
 | 	VM_BUG_ON(mem_cgroup_is_root(memcg)); | 
 |  | 
 | 	/* The page allocation failed. Revert */ | 
 | 	if (!page) { | 
 | 		memcg_uncharge_kmem(memcg, PAGE_SIZE << order); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	pc = lookup_page_cgroup(page); | 
 | 	lock_page_cgroup(pc); | 
 | 	pc->mem_cgroup = memcg; | 
 | 	SetPageCgroupUsed(pc); | 
 | 	unlock_page_cgroup(pc); | 
 | } | 
 |  | 
 | void __memcg_kmem_uncharge_pages(struct page *page, int order) | 
 | { | 
 | 	struct mem_cgroup *memcg = NULL; | 
 | 	struct page_cgroup *pc; | 
 |  | 
 |  | 
 | 	pc = lookup_page_cgroup(page); | 
 | 	/* | 
 | 	 * Fast unlocked return. Theoretically might have changed, have to | 
 | 	 * check again after locking. | 
 | 	 */ | 
 | 	if (!PageCgroupUsed(pc)) | 
 | 		return; | 
 |  | 
 | 	lock_page_cgroup(pc); | 
 | 	if (PageCgroupUsed(pc)) { | 
 | 		memcg = pc->mem_cgroup; | 
 | 		ClearPageCgroupUsed(pc); | 
 | 	} | 
 | 	unlock_page_cgroup(pc); | 
 |  | 
 | 	/* | 
 | 	 * We trust that only if there is a memcg associated with the page, it | 
 | 	 * is a valid allocation | 
 | 	 */ | 
 | 	if (!memcg) | 
 | 		return; | 
 |  | 
 | 	VM_BUG_ON(mem_cgroup_is_root(memcg)); | 
 | 	memcg_uncharge_kmem(memcg, PAGE_SIZE << order); | 
 | } | 
 | #else | 
 | static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg) | 
 | { | 
 | } | 
 | #endif /* CONFIG_MEMCG_KMEM */ | 
 |  | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 |  | 
 | #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION) | 
 | /* | 
 |  * Because tail pages are not marked as "used", set it. We're under | 
 |  * zone->lru_lock, 'splitting on pmd' and compound_lock. | 
 |  * charge/uncharge will be never happen and move_account() is done under | 
 |  * compound_lock(), so we don't have to take care of races. | 
 |  */ | 
 | void mem_cgroup_split_huge_fixup(struct page *head) | 
 | { | 
 | 	struct page_cgroup *head_pc = lookup_page_cgroup(head); | 
 | 	struct page_cgroup *pc; | 
 | 	int i; | 
 |  | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return; | 
 | 	for (i = 1; i < HPAGE_PMD_NR; i++) { | 
 | 		pc = head_pc + i; | 
 | 		pc->mem_cgroup = head_pc->mem_cgroup; | 
 | 		smp_wmb();/* see __commit_charge() */ | 
 | 		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; | 
 | 	} | 
 | } | 
 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | 
 |  | 
 | /** | 
 |  * mem_cgroup_move_account - move account of the page | 
 |  * @page: the page | 
 |  * @nr_pages: number of regular pages (>1 for huge pages) | 
 |  * @pc:	page_cgroup of the page. | 
 |  * @from: mem_cgroup which the page is moved from. | 
 |  * @to:	mem_cgroup which the page is moved to. @from != @to. | 
 |  * | 
 |  * The caller must confirm following. | 
 |  * - page is not on LRU (isolate_page() is useful.) | 
 |  * - compound_lock is held when nr_pages > 1 | 
 |  * | 
 |  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" | 
 |  * from old cgroup. | 
 |  */ | 
 | static int mem_cgroup_move_account(struct page *page, | 
 | 				   unsigned int nr_pages, | 
 | 				   struct page_cgroup *pc, | 
 | 				   struct mem_cgroup *from, | 
 | 				   struct mem_cgroup *to) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int ret; | 
 | 	bool anon = PageAnon(page); | 
 |  | 
 | 	VM_BUG_ON(from == to); | 
 | 	VM_BUG_ON(PageLRU(page)); | 
 | 	/* | 
 | 	 * The page is isolated from LRU. So, collapse function | 
 | 	 * will not handle this page. But page splitting can happen. | 
 | 	 * Do this check under compound_page_lock(). The caller should | 
 | 	 * hold it. | 
 | 	 */ | 
 | 	ret = -EBUSY; | 
 | 	if (nr_pages > 1 && !PageTransHuge(page)) | 
 | 		goto out; | 
 |  | 
 | 	lock_page_cgroup(pc); | 
 |  | 
 | 	ret = -EINVAL; | 
 | 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) | 
 | 		goto unlock; | 
 |  | 
 | 	move_lock_mem_cgroup(from, &flags); | 
 |  | 
 | 	if (!anon && page_mapped(page)) { | 
 | 		/* Update mapped_file data for mem_cgroup */ | 
 | 		preempt_disable(); | 
 | 		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); | 
 | 		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); | 
 | 		preempt_enable(); | 
 | 	} | 
 | 	mem_cgroup_charge_statistics(from, anon, -nr_pages); | 
 |  | 
 | 	/* caller should have done css_get */ | 
 | 	pc->mem_cgroup = to; | 
 | 	mem_cgroup_charge_statistics(to, anon, nr_pages); | 
 | 	move_unlock_mem_cgroup(from, &flags); | 
 | 	ret = 0; | 
 | unlock: | 
 | 	unlock_page_cgroup(pc); | 
 | 	/* | 
 | 	 * check events | 
 | 	 */ | 
 | 	memcg_check_events(to, page); | 
 | 	memcg_check_events(from, page); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * mem_cgroup_move_parent - moves page to the parent group | 
 |  * @page: the page to move | 
 |  * @pc: page_cgroup of the page | 
 |  * @child: page's cgroup | 
 |  * | 
 |  * move charges to its parent or the root cgroup if the group has no | 
 |  * parent (aka use_hierarchy==0). | 
 |  * Although this might fail (get_page_unless_zero, isolate_lru_page or | 
 |  * mem_cgroup_move_account fails) the failure is always temporary and | 
 |  * it signals a race with a page removal/uncharge or migration. In the | 
 |  * first case the page is on the way out and it will vanish from the LRU | 
 |  * on the next attempt and the call should be retried later. | 
 |  * Isolation from the LRU fails only if page has been isolated from | 
 |  * the LRU since we looked at it and that usually means either global | 
 |  * reclaim or migration going on. The page will either get back to the | 
 |  * LRU or vanish. | 
 |  * Finaly mem_cgroup_move_account fails only if the page got uncharged | 
 |  * (!PageCgroupUsed) or moved to a different group. The page will | 
 |  * disappear in the next attempt. | 
 |  */ | 
 | static int mem_cgroup_move_parent(struct page *page, | 
 | 				  struct page_cgroup *pc, | 
 | 				  struct mem_cgroup *child) | 
 | { | 
 | 	struct mem_cgroup *parent; | 
 | 	unsigned int nr_pages; | 
 | 	unsigned long uninitialized_var(flags); | 
 | 	int ret; | 
 |  | 
 | 	VM_BUG_ON(mem_cgroup_is_root(child)); | 
 |  | 
 | 	ret = -EBUSY; | 
 | 	if (!get_page_unless_zero(page)) | 
 | 		goto out; | 
 | 	if (isolate_lru_page(page)) | 
 | 		goto put; | 
 |  | 
 | 	nr_pages = hpage_nr_pages(page); | 
 |  | 
 | 	parent = parent_mem_cgroup(child); | 
 | 	/* | 
 | 	 * If no parent, move charges to root cgroup. | 
 | 	 */ | 
 | 	if (!parent) | 
 | 		parent = root_mem_cgroup; | 
 |  | 
 | 	if (nr_pages > 1) { | 
 | 		VM_BUG_ON(!PageTransHuge(page)); | 
 | 		flags = compound_lock_irqsave(page); | 
 | 	} | 
 |  | 
 | 	ret = mem_cgroup_move_account(page, nr_pages, | 
 | 				pc, child, parent); | 
 | 	if (!ret) | 
 | 		__mem_cgroup_cancel_local_charge(child, nr_pages); | 
 |  | 
 | 	if (nr_pages > 1) | 
 | 		compound_unlock_irqrestore(page, flags); | 
 | 	putback_lru_page(page); | 
 | put: | 
 | 	put_page(page); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Charge the memory controller for page usage. | 
 |  * Return | 
 |  * 0 if the charge was successful | 
 |  * < 0 if the cgroup is over its limit | 
 |  */ | 
 | static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, | 
 | 				gfp_t gfp_mask, enum charge_type ctype) | 
 | { | 
 | 	struct mem_cgroup *memcg = NULL; | 
 | 	unsigned int nr_pages = 1; | 
 | 	bool oom = true; | 
 | 	int ret; | 
 |  | 
 | 	if (PageTransHuge(page)) { | 
 | 		nr_pages <<= compound_order(page); | 
 | 		VM_BUG_ON(!PageTransHuge(page)); | 
 | 		/* | 
 | 		 * Never OOM-kill a process for a huge page.  The | 
 | 		 * fault handler will fall back to regular pages. | 
 | 		 */ | 
 | 		oom = false; | 
 | 	} | 
 |  | 
 | 	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom); | 
 | 	if (ret == -ENOMEM) | 
 | 		return ret; | 
 | 	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int mem_cgroup_newpage_charge(struct page *page, | 
 | 			      struct mm_struct *mm, gfp_t gfp_mask) | 
 | { | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return 0; | 
 | 	VM_BUG_ON(page_mapped(page)); | 
 | 	VM_BUG_ON(page->mapping && !PageAnon(page)); | 
 | 	VM_BUG_ON(!mm); | 
 | 	return mem_cgroup_charge_common(page, mm, gfp_mask, | 
 | 					MEM_CGROUP_CHARGE_TYPE_ANON); | 
 | } | 
 |  | 
 | /* | 
 |  * While swap-in, try_charge -> commit or cancel, the page is locked. | 
 |  * And when try_charge() successfully returns, one refcnt to memcg without | 
 |  * struct page_cgroup is acquired. This refcnt will be consumed by | 
 |  * "commit()" or removed by "cancel()" | 
 |  */ | 
 | static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm, | 
 | 					  struct page *page, | 
 | 					  gfp_t mask, | 
 | 					  struct mem_cgroup **memcgp) | 
 | { | 
 | 	struct mem_cgroup *memcg; | 
 | 	struct page_cgroup *pc; | 
 | 	int ret; | 
 |  | 
 | 	pc = lookup_page_cgroup(page); | 
 | 	/* | 
 | 	 * Every swap fault against a single page tries to charge the | 
 | 	 * page, bail as early as possible.  shmem_unuse() encounters | 
 | 	 * already charged pages, too.  The USED bit is protected by | 
 | 	 * the page lock, which serializes swap cache removal, which | 
 | 	 * in turn serializes uncharging. | 
 | 	 */ | 
 | 	if (PageCgroupUsed(pc)) | 
 | 		return 0; | 
 | 	if (!do_swap_account) | 
 | 		goto charge_cur_mm; | 
 | 	memcg = try_get_mem_cgroup_from_page(page); | 
 | 	if (!memcg) | 
 | 		goto charge_cur_mm; | 
 | 	*memcgp = memcg; | 
 | 	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true); | 
 | 	css_put(&memcg->css); | 
 | 	if (ret == -EINTR) | 
 | 		ret = 0; | 
 | 	return ret; | 
 | charge_cur_mm: | 
 | 	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true); | 
 | 	if (ret == -EINTR) | 
 | 		ret = 0; | 
 | 	return ret; | 
 | } | 
 |  | 
 | int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page, | 
 | 				 gfp_t gfp_mask, struct mem_cgroup **memcgp) | 
 | { | 
 | 	*memcgp = NULL; | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return 0; | 
 | 	/* | 
 | 	 * A racing thread's fault, or swapoff, may have already | 
 | 	 * updated the pte, and even removed page from swap cache: in | 
 | 	 * those cases unuse_pte()'s pte_same() test will fail; but | 
 | 	 * there's also a KSM case which does need to charge the page. | 
 | 	 */ | 
 | 	if (!PageSwapCache(page)) { | 
 | 		int ret; | 
 |  | 
 | 		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true); | 
 | 		if (ret == -EINTR) | 
 | 			ret = 0; | 
 | 		return ret; | 
 | 	} | 
 | 	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp); | 
 | } | 
 |  | 
 | void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) | 
 | { | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return; | 
 | 	if (!memcg) | 
 | 		return; | 
 | 	__mem_cgroup_cancel_charge(memcg, 1); | 
 | } | 
 |  | 
 | static void | 
 | __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg, | 
 | 					enum charge_type ctype) | 
 | { | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return; | 
 | 	if (!memcg) | 
 | 		return; | 
 |  | 
 | 	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true); | 
 | 	/* | 
 | 	 * Now swap is on-memory. This means this page may be | 
 | 	 * counted both as mem and swap....double count. | 
 | 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable | 
 | 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() | 
 | 	 * may call delete_from_swap_cache() before reach here. | 
 | 	 */ | 
 | 	if (do_swap_account && PageSwapCache(page)) { | 
 | 		swp_entry_t ent = {.val = page_private(page)}; | 
 | 		mem_cgroup_uncharge_swap(ent); | 
 | 	} | 
 | } | 
 |  | 
 | void mem_cgroup_commit_charge_swapin(struct page *page, | 
 | 				     struct mem_cgroup *memcg) | 
 | { | 
 | 	__mem_cgroup_commit_charge_swapin(page, memcg, | 
 | 					  MEM_CGROUP_CHARGE_TYPE_ANON); | 
 | } | 
 |  | 
 | int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, | 
 | 				gfp_t gfp_mask) | 
 | { | 
 | 	struct mem_cgroup *memcg = NULL; | 
 | 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; | 
 | 	int ret; | 
 |  | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return 0; | 
 | 	if (PageCompound(page)) | 
 | 		return 0; | 
 |  | 
 | 	if (!PageSwapCache(page)) | 
 | 		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type); | 
 | 	else { /* page is swapcache/shmem */ | 
 | 		ret = __mem_cgroup_try_charge_swapin(mm, page, | 
 | 						     gfp_mask, &memcg); | 
 | 		if (!ret) | 
 | 			__mem_cgroup_commit_charge_swapin(page, memcg, type); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg, | 
 | 				   unsigned int nr_pages, | 
 | 				   const enum charge_type ctype) | 
 | { | 
 | 	struct memcg_batch_info *batch = NULL; | 
 | 	bool uncharge_memsw = true; | 
 |  | 
 | 	/* If swapout, usage of swap doesn't decrease */ | 
 | 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) | 
 | 		uncharge_memsw = false; | 
 |  | 
 | 	batch = ¤t->memcg_batch; | 
 | 	/* | 
 | 	 * In usual, we do css_get() when we remember memcg pointer. | 
 | 	 * But in this case, we keep res->usage until end of a series of | 
 | 	 * uncharges. Then, it's ok to ignore memcg's refcnt. | 
 | 	 */ | 
 | 	if (!batch->memcg) | 
 | 		batch->memcg = memcg; | 
 | 	/* | 
 | 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate. | 
 | 	 * In those cases, all pages freed continuously can be expected to be in | 
 | 	 * the same cgroup and we have chance to coalesce uncharges. | 
 | 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) | 
 | 	 * because we want to do uncharge as soon as possible. | 
 | 	 */ | 
 |  | 
 | 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) | 
 | 		goto direct_uncharge; | 
 |  | 
 | 	if (nr_pages > 1) | 
 | 		goto direct_uncharge; | 
 |  | 
 | 	/* | 
 | 	 * In typical case, batch->memcg == mem. This means we can | 
 | 	 * merge a series of uncharges to an uncharge of res_counter. | 
 | 	 * If not, we uncharge res_counter ony by one. | 
 | 	 */ | 
 | 	if (batch->memcg != memcg) | 
 | 		goto direct_uncharge; | 
 | 	/* remember freed charge and uncharge it later */ | 
 | 	batch->nr_pages++; | 
 | 	if (uncharge_memsw) | 
 | 		batch->memsw_nr_pages++; | 
 | 	return; | 
 | direct_uncharge: | 
 | 	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE); | 
 | 	if (uncharge_memsw) | 
 | 		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE); | 
 | 	if (unlikely(batch->memcg != memcg)) | 
 | 		memcg_oom_recover(memcg); | 
 | } | 
 |  | 
 | /* | 
 |  * uncharge if !page_mapped(page) | 
 |  */ | 
 | static struct mem_cgroup * | 
 | __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype, | 
 | 			     bool end_migration) | 
 | { | 
 | 	struct mem_cgroup *memcg = NULL; | 
 | 	unsigned int nr_pages = 1; | 
 | 	struct page_cgroup *pc; | 
 | 	bool anon; | 
 |  | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return NULL; | 
 |  | 
 | 	VM_BUG_ON(PageSwapCache(page)); | 
 |  | 
 | 	if (PageTransHuge(page)) { | 
 | 		nr_pages <<= compound_order(page); | 
 | 		VM_BUG_ON(!PageTransHuge(page)); | 
 | 	} | 
 | 	/* | 
 | 	 * Check if our page_cgroup is valid | 
 | 	 */ | 
 | 	pc = lookup_page_cgroup(page); | 
 | 	if (unlikely(!PageCgroupUsed(pc))) | 
 | 		return NULL; | 
 |  | 
 | 	lock_page_cgroup(pc); | 
 |  | 
 | 	memcg = pc->mem_cgroup; | 
 |  | 
 | 	if (!PageCgroupUsed(pc)) | 
 | 		goto unlock_out; | 
 |  | 
 | 	anon = PageAnon(page); | 
 |  | 
 | 	switch (ctype) { | 
 | 	case MEM_CGROUP_CHARGE_TYPE_ANON: | 
 | 		/* | 
 | 		 * Generally PageAnon tells if it's the anon statistics to be | 
 | 		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is | 
 | 		 * used before page reached the stage of being marked PageAnon. | 
 | 		 */ | 
 | 		anon = true; | 
 | 		/* fallthrough */ | 
 | 	case MEM_CGROUP_CHARGE_TYPE_DROP: | 
 | 		/* See mem_cgroup_prepare_migration() */ | 
 | 		if (page_mapped(page)) | 
 | 			goto unlock_out; | 
 | 		/* | 
 | 		 * Pages under migration may not be uncharged.  But | 
 | 		 * end_migration() /must/ be the one uncharging the | 
 | 		 * unused post-migration page and so it has to call | 
 | 		 * here with the migration bit still set.  See the | 
 | 		 * res_counter handling below. | 
 | 		 */ | 
 | 		if (!end_migration && PageCgroupMigration(pc)) | 
 | 			goto unlock_out; | 
 | 		break; | 
 | 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: | 
 | 		if (!PageAnon(page)) {	/* Shared memory */ | 
 | 			if (page->mapping && !page_is_file_cache(page)) | 
 | 				goto unlock_out; | 
 | 		} else if (page_mapped(page)) /* Anon */ | 
 | 				goto unlock_out; | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	mem_cgroup_charge_statistics(memcg, anon, -nr_pages); | 
 |  | 
 | 	ClearPageCgroupUsed(pc); | 
 | 	/* | 
 | 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's | 
 | 	 * freed from LRU. This is safe because uncharged page is expected not | 
 | 	 * to be reused (freed soon). Exception is SwapCache, it's handled by | 
 | 	 * special functions. | 
 | 	 */ | 
 |  | 
 | 	unlock_page_cgroup(pc); | 
 | 	/* | 
 | 	 * even after unlock, we have memcg->res.usage here and this memcg | 
 | 	 * will never be freed. | 
 | 	 */ | 
 | 	memcg_check_events(memcg, page); | 
 | 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { | 
 | 		mem_cgroup_swap_statistics(memcg, true); | 
 | 		mem_cgroup_get(memcg); | 
 | 	} | 
 | 	/* | 
 | 	 * Migration does not charge the res_counter for the | 
 | 	 * replacement page, so leave it alone when phasing out the | 
 | 	 * page that is unused after the migration. | 
 | 	 */ | 
 | 	if (!end_migration && !mem_cgroup_is_root(memcg)) | 
 | 		mem_cgroup_do_uncharge(memcg, nr_pages, ctype); | 
 |  | 
 | 	return memcg; | 
 |  | 
 | unlock_out: | 
 | 	unlock_page_cgroup(pc); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | void mem_cgroup_uncharge_page(struct page *page) | 
 | { | 
 | 	/* early check. */ | 
 | 	if (page_mapped(page)) | 
 | 		return; | 
 | 	VM_BUG_ON(page->mapping && !PageAnon(page)); | 
 | 	if (PageSwapCache(page)) | 
 | 		return; | 
 | 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false); | 
 | } | 
 |  | 
 | void mem_cgroup_uncharge_cache_page(struct page *page) | 
 | { | 
 | 	VM_BUG_ON(page_mapped(page)); | 
 | 	VM_BUG_ON(page->mapping); | 
 | 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false); | 
 | } | 
 |  | 
 | /* | 
 |  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. | 
 |  * In that cases, pages are freed continuously and we can expect pages | 
 |  * are in the same memcg. All these calls itself limits the number of | 
 |  * pages freed at once, then uncharge_start/end() is called properly. | 
 |  * This may be called prural(2) times in a context, | 
 |  */ | 
 |  | 
 | void mem_cgroup_uncharge_start(void) | 
 | { | 
 | 	current->memcg_batch.do_batch++; | 
 | 	/* We can do nest. */ | 
 | 	if (current->memcg_batch.do_batch == 1) { | 
 | 		current->memcg_batch.memcg = NULL; | 
 | 		current->memcg_batch.nr_pages = 0; | 
 | 		current->memcg_batch.memsw_nr_pages = 0; | 
 | 	} | 
 | } | 
 |  | 
 | void mem_cgroup_uncharge_end(void) | 
 | { | 
 | 	struct memcg_batch_info *batch = ¤t->memcg_batch; | 
 |  | 
 | 	if (!batch->do_batch) | 
 | 		return; | 
 |  | 
 | 	batch->do_batch--; | 
 | 	if (batch->do_batch) /* If stacked, do nothing. */ | 
 | 		return; | 
 |  | 
 | 	if (!batch->memcg) | 
 | 		return; | 
 | 	/* | 
 | 	 * This "batch->memcg" is valid without any css_get/put etc... | 
 | 	 * bacause we hide charges behind us. | 
 | 	 */ | 
 | 	if (batch->nr_pages) | 
 | 		res_counter_uncharge(&batch->memcg->res, | 
 | 				     batch->nr_pages * PAGE_SIZE); | 
 | 	if (batch->memsw_nr_pages) | 
 | 		res_counter_uncharge(&batch->memcg->memsw, | 
 | 				     batch->memsw_nr_pages * PAGE_SIZE); | 
 | 	memcg_oom_recover(batch->memcg); | 
 | 	/* forget this pointer (for sanity check) */ | 
 | 	batch->memcg = NULL; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SWAP | 
 | /* | 
 |  * called after __delete_from_swap_cache() and drop "page" account. | 
 |  * memcg information is recorded to swap_cgroup of "ent" | 
 |  */ | 
 | void | 
 | mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) | 
 | { | 
 | 	struct mem_cgroup *memcg; | 
 | 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; | 
 |  | 
 | 	if (!swapout) /* this was a swap cache but the swap is unused ! */ | 
 | 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP; | 
 |  | 
 | 	memcg = __mem_cgroup_uncharge_common(page, ctype, false); | 
 |  | 
 | 	/* | 
 | 	 * record memcg information,  if swapout && memcg != NULL, | 
 | 	 * mem_cgroup_get() was called in uncharge(). | 
 | 	 */ | 
 | 	if (do_swap_account && swapout && memcg) | 
 | 		swap_cgroup_record(ent, css_id(&memcg->css)); | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_MEMCG_SWAP | 
 | /* | 
 |  * called from swap_entry_free(). remove record in swap_cgroup and | 
 |  * uncharge "memsw" account. | 
 |  */ | 
 | void mem_cgroup_uncharge_swap(swp_entry_t ent) | 
 | { | 
 | 	struct mem_cgroup *memcg; | 
 | 	unsigned short id; | 
 |  | 
 | 	if (!do_swap_account) | 
 | 		return; | 
 |  | 
 | 	id = swap_cgroup_record(ent, 0); | 
 | 	rcu_read_lock(); | 
 | 	memcg = mem_cgroup_lookup(id); | 
 | 	if (memcg) { | 
 | 		/* | 
 | 		 * We uncharge this because swap is freed. | 
 | 		 * This memcg can be obsolete one. We avoid calling css_tryget | 
 | 		 */ | 
 | 		if (!mem_cgroup_is_root(memcg)) | 
 | 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE); | 
 | 		mem_cgroup_swap_statistics(memcg, false); | 
 | 		mem_cgroup_put(memcg); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | /** | 
 |  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. | 
 |  * @entry: swap entry to be moved | 
 |  * @from:  mem_cgroup which the entry is moved from | 
 |  * @to:  mem_cgroup which the entry is moved to | 
 |  * | 
 |  * It succeeds only when the swap_cgroup's record for this entry is the same | 
 |  * as the mem_cgroup's id of @from. | 
 |  * | 
 |  * Returns 0 on success, -EINVAL on failure. | 
 |  * | 
 |  * The caller must have charged to @to, IOW, called res_counter_charge() about | 
 |  * both res and memsw, and called css_get(). | 
 |  */ | 
 | static int mem_cgroup_move_swap_account(swp_entry_t entry, | 
 | 				struct mem_cgroup *from, struct mem_cgroup *to) | 
 | { | 
 | 	unsigned short old_id, new_id; | 
 |  | 
 | 	old_id = css_id(&from->css); | 
 | 	new_id = css_id(&to->css); | 
 |  | 
 | 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { | 
 | 		mem_cgroup_swap_statistics(from, false); | 
 | 		mem_cgroup_swap_statistics(to, true); | 
 | 		/* | 
 | 		 * This function is only called from task migration context now. | 
 | 		 * It postpones res_counter and refcount handling till the end | 
 | 		 * of task migration(mem_cgroup_clear_mc()) for performance | 
 | 		 * improvement. But we cannot postpone mem_cgroup_get(to) | 
 | 		 * because if the process that has been moved to @to does | 
 | 		 * swap-in, the refcount of @to might be decreased to 0. | 
 | 		 */ | 
 | 		mem_cgroup_get(to); | 
 | 		return 0; | 
 | 	} | 
 | 	return -EINVAL; | 
 | } | 
 | #else | 
 | static inline int mem_cgroup_move_swap_account(swp_entry_t entry, | 
 | 				struct mem_cgroup *from, struct mem_cgroup *to) | 
 | { | 
 | 	return -EINVAL; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old | 
 |  * page belongs to. | 
 |  */ | 
 | void mem_cgroup_prepare_migration(struct page *page, struct page *newpage, | 
 | 				  struct mem_cgroup **memcgp) | 
 | { | 
 | 	struct mem_cgroup *memcg = NULL; | 
 | 	unsigned int nr_pages = 1; | 
 | 	struct page_cgroup *pc; | 
 | 	enum charge_type ctype; | 
 |  | 
 | 	*memcgp = NULL; | 
 |  | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return; | 
 |  | 
 | 	if (PageTransHuge(page)) | 
 | 		nr_pages <<= compound_order(page); | 
 |  | 
 | 	pc = lookup_page_cgroup(page); | 
 | 	lock_page_cgroup(pc); | 
 | 	if (PageCgroupUsed(pc)) { | 
 | 		memcg = pc->mem_cgroup; | 
 | 		css_get(&memcg->css); | 
 | 		/* | 
 | 		 * At migrating an anonymous page, its mapcount goes down | 
 | 		 * to 0 and uncharge() will be called. But, even if it's fully | 
 | 		 * unmapped, migration may fail and this page has to be | 
 | 		 * charged again. We set MIGRATION flag here and delay uncharge | 
 | 		 * until end_migration() is called | 
 | 		 * | 
 | 		 * Corner Case Thinking | 
 | 		 * A) | 
 | 		 * When the old page was mapped as Anon and it's unmap-and-freed | 
 | 		 * while migration was ongoing. | 
 | 		 * If unmap finds the old page, uncharge() of it will be delayed | 
 | 		 * until end_migration(). If unmap finds a new page, it's | 
 | 		 * uncharged when it make mapcount to be 1->0. If unmap code | 
 | 		 * finds swap_migration_entry, the new page will not be mapped | 
 | 		 * and end_migration() will find it(mapcount==0). | 
 | 		 * | 
 | 		 * B) | 
 | 		 * When the old page was mapped but migraion fails, the kernel | 
 | 		 * remaps it. A charge for it is kept by MIGRATION flag even | 
 | 		 * if mapcount goes down to 0. We can do remap successfully | 
 | 		 * without charging it again. | 
 | 		 * | 
 | 		 * C) | 
 | 		 * The "old" page is under lock_page() until the end of | 
 | 		 * migration, so, the old page itself will not be swapped-out. | 
 | 		 * If the new page is swapped out before end_migraton, our | 
 | 		 * hook to usual swap-out path will catch the event. | 
 | 		 */ | 
 | 		if (PageAnon(page)) | 
 | 			SetPageCgroupMigration(pc); | 
 | 	} | 
 | 	unlock_page_cgroup(pc); | 
 | 	/* | 
 | 	 * If the page is not charged at this point, | 
 | 	 * we return here. | 
 | 	 */ | 
 | 	if (!memcg) | 
 | 		return; | 
 |  | 
 | 	*memcgp = memcg; | 
 | 	/* | 
 | 	 * We charge new page before it's used/mapped. So, even if unlock_page() | 
 | 	 * is called before end_migration, we can catch all events on this new | 
 | 	 * page. In the case new page is migrated but not remapped, new page's | 
 | 	 * mapcount will be finally 0 and we call uncharge in end_migration(). | 
 | 	 */ | 
 | 	if (PageAnon(page)) | 
 | 		ctype = MEM_CGROUP_CHARGE_TYPE_ANON; | 
 | 	else | 
 | 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; | 
 | 	/* | 
 | 	 * The page is committed to the memcg, but it's not actually | 
 | 	 * charged to the res_counter since we plan on replacing the | 
 | 	 * old one and only one page is going to be left afterwards. | 
 | 	 */ | 
 | 	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false); | 
 | } | 
 |  | 
 | /* remove redundant charge if migration failed*/ | 
 | void mem_cgroup_end_migration(struct mem_cgroup *memcg, | 
 | 	struct page *oldpage, struct page *newpage, bool migration_ok) | 
 | { | 
 | 	struct page *used, *unused; | 
 | 	struct page_cgroup *pc; | 
 | 	bool anon; | 
 |  | 
 | 	if (!memcg) | 
 | 		return; | 
 |  | 
 | 	if (!migration_ok) { | 
 | 		used = oldpage; | 
 | 		unused = newpage; | 
 | 	} else { | 
 | 		used = newpage; | 
 | 		unused = oldpage; | 
 | 	} | 
 | 	anon = PageAnon(used); | 
 | 	__mem_cgroup_uncharge_common(unused, | 
 | 				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON | 
 | 				     : MEM_CGROUP_CHARGE_TYPE_CACHE, | 
 | 				     true); | 
 | 	css_put(&memcg->css); | 
 | 	/* | 
 | 	 * We disallowed uncharge of pages under migration because mapcount | 
 | 	 * of the page goes down to zero, temporarly. | 
 | 	 * Clear the flag and check the page should be charged. | 
 | 	 */ | 
 | 	pc = lookup_page_cgroup(oldpage); | 
 | 	lock_page_cgroup(pc); | 
 | 	ClearPageCgroupMigration(pc); | 
 | 	unlock_page_cgroup(pc); | 
 |  | 
 | 	/* | 
 | 	 * If a page is a file cache, radix-tree replacement is very atomic | 
 | 	 * and we can skip this check. When it was an Anon page, its mapcount | 
 | 	 * goes down to 0. But because we added MIGRATION flage, it's not | 
 | 	 * uncharged yet. There are several case but page->mapcount check | 
 | 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough | 
 | 	 * check. (see prepare_charge() also) | 
 | 	 */ | 
 | 	if (anon) | 
 | 		mem_cgroup_uncharge_page(used); | 
 | } | 
 |  | 
 | /* | 
 |  * At replace page cache, newpage is not under any memcg but it's on | 
 |  * LRU. So, this function doesn't touch res_counter but handles LRU | 
 |  * in correct way. Both pages are locked so we cannot race with uncharge. | 
 |  */ | 
 | void mem_cgroup_replace_page_cache(struct page *oldpage, | 
 | 				  struct page *newpage) | 
 | { | 
 | 	struct mem_cgroup *memcg = NULL; | 
 | 	struct page_cgroup *pc; | 
 | 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; | 
 |  | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return; | 
 |  | 
 | 	pc = lookup_page_cgroup(oldpage); | 
 | 	/* fix accounting on old pages */ | 
 | 	lock_page_cgroup(pc); | 
 | 	if (PageCgroupUsed(pc)) { | 
 | 		memcg = pc->mem_cgroup; | 
 | 		mem_cgroup_charge_statistics(memcg, false, -1); | 
 | 		ClearPageCgroupUsed(pc); | 
 | 	} | 
 | 	unlock_page_cgroup(pc); | 
 |  | 
 | 	/* | 
 | 	 * When called from shmem_replace_page(), in some cases the | 
 | 	 * oldpage has already been charged, and in some cases not. | 
 | 	 */ | 
 | 	if (!memcg) | 
 | 		return; | 
 | 	/* | 
 | 	 * Even if newpage->mapping was NULL before starting replacement, | 
 | 	 * the newpage may be on LRU(or pagevec for LRU) already. We lock | 
 | 	 * LRU while we overwrite pc->mem_cgroup. | 
 | 	 */ | 
 | 	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true); | 
 | } | 
 |  | 
 | #ifdef CONFIG_DEBUG_VM | 
 | static struct page_cgroup *lookup_page_cgroup_used(struct page *page) | 
 | { | 
 | 	struct page_cgroup *pc; | 
 |  | 
 | 	pc = lookup_page_cgroup(page); | 
 | 	/* | 
 | 	 * Can be NULL while feeding pages into the page allocator for | 
 | 	 * the first time, i.e. during boot or memory hotplug; | 
 | 	 * or when mem_cgroup_disabled(). | 
 | 	 */ | 
 | 	if (likely(pc) && PageCgroupUsed(pc)) | 
 | 		return pc; | 
 | 	return NULL; | 
 | } | 
 |  | 
 | bool mem_cgroup_bad_page_check(struct page *page) | 
 | { | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return false; | 
 |  | 
 | 	return lookup_page_cgroup_used(page) != NULL; | 
 | } | 
 |  | 
 | void mem_cgroup_print_bad_page(struct page *page) | 
 | { | 
 | 	struct page_cgroup *pc; | 
 |  | 
 | 	pc = lookup_page_cgroup_used(page); | 
 | 	if (pc) { | 
 | 		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n", | 
 | 			 pc, pc->flags, pc->mem_cgroup); | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, | 
 | 				unsigned long long val) | 
 | { | 
 | 	int retry_count; | 
 | 	u64 memswlimit, memlimit; | 
 | 	int ret = 0; | 
 | 	int children = mem_cgroup_count_children(memcg); | 
 | 	u64 curusage, oldusage; | 
 | 	int enlarge; | 
 |  | 
 | 	/* | 
 | 	 * For keeping hierarchical_reclaim simple, how long we should retry | 
 | 	 * is depends on callers. We set our retry-count to be function | 
 | 	 * of # of children which we should visit in this loop. | 
 | 	 */ | 
 | 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; | 
 |  | 
 | 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); | 
 |  | 
 | 	enlarge = 0; | 
 | 	while (retry_count) { | 
 | 		if (signal_pending(current)) { | 
 | 			ret = -EINTR; | 
 | 			break; | 
 | 		} | 
 | 		/* | 
 | 		 * Rather than hide all in some function, I do this in | 
 | 		 * open coded manner. You see what this really does. | 
 | 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. | 
 | 		 */ | 
 | 		mutex_lock(&set_limit_mutex); | 
 | 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | 
 | 		if (memswlimit < val) { | 
 | 			ret = -EINVAL; | 
 | 			mutex_unlock(&set_limit_mutex); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); | 
 | 		if (memlimit < val) | 
 | 			enlarge = 1; | 
 |  | 
 | 		ret = res_counter_set_limit(&memcg->res, val); | 
 | 		if (!ret) { | 
 | 			if (memswlimit == val) | 
 | 				memcg->memsw_is_minimum = true; | 
 | 			else | 
 | 				memcg->memsw_is_minimum = false; | 
 | 		} | 
 | 		mutex_unlock(&set_limit_mutex); | 
 |  | 
 | 		if (!ret) | 
 | 			break; | 
 |  | 
 | 		mem_cgroup_reclaim(memcg, GFP_KERNEL, | 
 | 				   MEM_CGROUP_RECLAIM_SHRINK); | 
 | 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE); | 
 | 		/* Usage is reduced ? */ | 
 |   		if (curusage >= oldusage) | 
 | 			retry_count--; | 
 | 		else | 
 | 			oldusage = curusage; | 
 | 	} | 
 | 	if (!ret && enlarge) | 
 | 		memcg_oom_recover(memcg); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, | 
 | 					unsigned long long val) | 
 | { | 
 | 	int retry_count; | 
 | 	u64 memlimit, memswlimit, oldusage, curusage; | 
 | 	int children = mem_cgroup_count_children(memcg); | 
 | 	int ret = -EBUSY; | 
 | 	int enlarge = 0; | 
 |  | 
 | 	/* see mem_cgroup_resize_res_limit */ | 
 |  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; | 
 | 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); | 
 | 	while (retry_count) { | 
 | 		if (signal_pending(current)) { | 
 | 			ret = -EINTR; | 
 | 			break; | 
 | 		} | 
 | 		/* | 
 | 		 * Rather than hide all in some function, I do this in | 
 | 		 * open coded manner. You see what this really does. | 
 | 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. | 
 | 		 */ | 
 | 		mutex_lock(&set_limit_mutex); | 
 | 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); | 
 | 		if (memlimit > val) { | 
 | 			ret = -EINVAL; | 
 | 			mutex_unlock(&set_limit_mutex); | 
 | 			break; | 
 | 		} | 
 | 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | 
 | 		if (memswlimit < val) | 
 | 			enlarge = 1; | 
 | 		ret = res_counter_set_limit(&memcg->memsw, val); | 
 | 		if (!ret) { | 
 | 			if (memlimit == val) | 
 | 				memcg->memsw_is_minimum = true; | 
 | 			else | 
 | 				memcg->memsw_is_minimum = false; | 
 | 		} | 
 | 		mutex_unlock(&set_limit_mutex); | 
 |  | 
 | 		if (!ret) | 
 | 			break; | 
 |  | 
 | 		mem_cgroup_reclaim(memcg, GFP_KERNEL, | 
 | 				   MEM_CGROUP_RECLAIM_NOSWAP | | 
 | 				   MEM_CGROUP_RECLAIM_SHRINK); | 
 | 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); | 
 | 		/* Usage is reduced ? */ | 
 | 		if (curusage >= oldusage) | 
 | 			retry_count--; | 
 | 		else | 
 | 			oldusage = curusage; | 
 | 	} | 
 | 	if (!ret && enlarge) | 
 | 		memcg_oom_recover(memcg); | 
 | 	return ret; | 
 | } | 
 |  | 
 | unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, | 
 | 					    gfp_t gfp_mask, | 
 | 					    unsigned long *total_scanned) | 
 | { | 
 | 	unsigned long nr_reclaimed = 0; | 
 | 	struct mem_cgroup_per_zone *mz, *next_mz = NULL; | 
 | 	unsigned long reclaimed; | 
 | 	int loop = 0; | 
 | 	struct mem_cgroup_tree_per_zone *mctz; | 
 | 	unsigned long long excess; | 
 | 	unsigned long nr_scanned; | 
 |  | 
 | 	if (order > 0) | 
 | 		return 0; | 
 |  | 
 | 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); | 
 | 	/* | 
 | 	 * This loop can run a while, specially if mem_cgroup's continuously | 
 | 	 * keep exceeding their soft limit and putting the system under | 
 | 	 * pressure | 
 | 	 */ | 
 | 	do { | 
 | 		if (next_mz) | 
 | 			mz = next_mz; | 
 | 		else | 
 | 			mz = mem_cgroup_largest_soft_limit_node(mctz); | 
 | 		if (!mz) | 
 | 			break; | 
 |  | 
 | 		nr_scanned = 0; | 
 | 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, | 
 | 						    gfp_mask, &nr_scanned); | 
 | 		nr_reclaimed += reclaimed; | 
 | 		*total_scanned += nr_scanned; | 
 | 		spin_lock(&mctz->lock); | 
 |  | 
 | 		/* | 
 | 		 * If we failed to reclaim anything from this memory cgroup | 
 | 		 * it is time to move on to the next cgroup | 
 | 		 */ | 
 | 		next_mz = NULL; | 
 | 		if (!reclaimed) { | 
 | 			do { | 
 | 				/* | 
 | 				 * Loop until we find yet another one. | 
 | 				 * | 
 | 				 * By the time we get the soft_limit lock | 
 | 				 * again, someone might have aded the | 
 | 				 * group back on the RB tree. Iterate to | 
 | 				 * make sure we get a different mem. | 
 | 				 * mem_cgroup_largest_soft_limit_node returns | 
 | 				 * NULL if no other cgroup is present on | 
 | 				 * the tree | 
 | 				 */ | 
 | 				next_mz = | 
 | 				__mem_cgroup_largest_soft_limit_node(mctz); | 
 | 				if (next_mz == mz) | 
 | 					css_put(&next_mz->memcg->css); | 
 | 				else /* next_mz == NULL or other memcg */ | 
 | 					break; | 
 | 			} while (1); | 
 | 		} | 
 | 		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); | 
 | 		excess = res_counter_soft_limit_excess(&mz->memcg->res); | 
 | 		/* | 
 | 		 * One school of thought says that we should not add | 
 | 		 * back the node to the tree if reclaim returns 0. | 
 | 		 * But our reclaim could return 0, simply because due | 
 | 		 * to priority we are exposing a smaller subset of | 
 | 		 * memory to reclaim from. Consider this as a longer | 
 | 		 * term TODO. | 
 | 		 */ | 
 | 		/* If excess == 0, no tree ops */ | 
 | 		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess); | 
 | 		spin_unlock(&mctz->lock); | 
 | 		css_put(&mz->memcg->css); | 
 | 		loop++; | 
 | 		/* | 
 | 		 * Could not reclaim anything and there are no more | 
 | 		 * mem cgroups to try or we seem to be looping without | 
 | 		 * reclaiming anything. | 
 | 		 */ | 
 | 		if (!nr_reclaimed && | 
 | 			(next_mz == NULL || | 
 | 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) | 
 | 			break; | 
 | 	} while (!nr_reclaimed); | 
 | 	if (next_mz) | 
 | 		css_put(&next_mz->memcg->css); | 
 | 	return nr_reclaimed; | 
 | } | 
 |  | 
 | /** | 
 |  * mem_cgroup_force_empty_list - clears LRU of a group | 
 |  * @memcg: group to clear | 
 |  * @node: NUMA node | 
 |  * @zid: zone id | 
 |  * @lru: lru to to clear | 
 |  * | 
 |  * Traverse a specified page_cgroup list and try to drop them all.  This doesn't | 
 |  * reclaim the pages page themselves - pages are moved to the parent (or root) | 
 |  * group. | 
 |  */ | 
 | static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg, | 
 | 				int node, int zid, enum lru_list lru) | 
 | { | 
 | 	struct lruvec *lruvec; | 
 | 	unsigned long flags; | 
 | 	struct list_head *list; | 
 | 	struct page *busy; | 
 | 	struct zone *zone; | 
 |  | 
 | 	zone = &NODE_DATA(node)->node_zones[zid]; | 
 | 	lruvec = mem_cgroup_zone_lruvec(zone, memcg); | 
 | 	list = &lruvec->lists[lru]; | 
 |  | 
 | 	busy = NULL; | 
 | 	do { | 
 | 		struct page_cgroup *pc; | 
 | 		struct page *page; | 
 |  | 
 | 		spin_lock_irqsave(&zone->lru_lock, flags); | 
 | 		if (list_empty(list)) { | 
 | 			spin_unlock_irqrestore(&zone->lru_lock, flags); | 
 | 			break; | 
 | 		} | 
 | 		page = list_entry(list->prev, struct page, lru); | 
 | 		if (busy == page) { | 
 | 			list_move(&page->lru, list); | 
 | 			busy = NULL; | 
 | 			spin_unlock_irqrestore(&zone->lru_lock, flags); | 
 | 			continue; | 
 | 		} | 
 | 		spin_unlock_irqrestore(&zone->lru_lock, flags); | 
 |  | 
 | 		pc = lookup_page_cgroup(page); | 
 |  | 
 | 		if (mem_cgroup_move_parent(page, pc, memcg)) { | 
 | 			/* found lock contention or "pc" is obsolete. */ | 
 | 			busy = page; | 
 | 			cond_resched(); | 
 | 		} else | 
 | 			busy = NULL; | 
 | 	} while (!list_empty(list)); | 
 | } | 
 |  | 
 | /* | 
 |  * make mem_cgroup's charge to be 0 if there is no task by moving | 
 |  * all the charges and pages to the parent. | 
 |  * This enables deleting this mem_cgroup. | 
 |  * | 
 |  * Caller is responsible for holding css reference on the memcg. | 
 |  */ | 
 | static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg) | 
 | { | 
 | 	int node, zid; | 
 | 	u64 usage; | 
 |  | 
 | 	do { | 
 | 		/* This is for making all *used* pages to be on LRU. */ | 
 | 		lru_add_drain_all(); | 
 | 		drain_all_stock_sync(memcg); | 
 | 		mem_cgroup_start_move(memcg); | 
 | 		for_each_node_state(node, N_MEMORY) { | 
 | 			for (zid = 0; zid < MAX_NR_ZONES; zid++) { | 
 | 				enum lru_list lru; | 
 | 				for_each_lru(lru) { | 
 | 					mem_cgroup_force_empty_list(memcg, | 
 | 							node, zid, lru); | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 		mem_cgroup_end_move(memcg); | 
 | 		memcg_oom_recover(memcg); | 
 | 		cond_resched(); | 
 |  | 
 | 		/* | 
 | 		 * Kernel memory may not necessarily be trackable to a specific | 
 | 		 * process. So they are not migrated, and therefore we can't | 
 | 		 * expect their value to drop to 0 here. | 
 | 		 * Having res filled up with kmem only is enough. | 
 | 		 * | 
 | 		 * This is a safety check because mem_cgroup_force_empty_list | 
 | 		 * could have raced with mem_cgroup_replace_page_cache callers | 
 | 		 * so the lru seemed empty but the page could have been added | 
 | 		 * right after the check. RES_USAGE should be safe as we always | 
 | 		 * charge before adding to the LRU. | 
 | 		 */ | 
 | 		usage = res_counter_read_u64(&memcg->res, RES_USAGE) - | 
 | 			res_counter_read_u64(&memcg->kmem, RES_USAGE); | 
 | 	} while (usage > 0); | 
 | } | 
 |  | 
 | /* | 
 |  * This mainly exists for tests during the setting of set of use_hierarchy. | 
 |  * Since this is the very setting we are changing, the current hierarchy value | 
 |  * is meaningless | 
 |  */ | 
 | static inline bool __memcg_has_children(struct mem_cgroup *memcg) | 
 | { | 
 | 	struct cgroup *pos; | 
 |  | 
 | 	/* bounce at first found */ | 
 | 	cgroup_for_each_child(pos, memcg->css.cgroup) | 
 | 		return true; | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed | 
 |  * to be already dead (as in mem_cgroup_force_empty, for instance).  This is | 
 |  * from mem_cgroup_count_children(), in the sense that we don't really care how | 
 |  * many children we have; we only need to know if we have any.  It also counts | 
 |  * any memcg without hierarchy as infertile. | 
 |  */ | 
 | static inline bool memcg_has_children(struct mem_cgroup *memcg) | 
 | { | 
 | 	return memcg->use_hierarchy && __memcg_has_children(memcg); | 
 | } | 
 |  | 
 | /* | 
 |  * Reclaims as many pages from the given memcg as possible and moves | 
 |  * the rest to the parent. | 
 |  * | 
 |  * Caller is responsible for holding css reference for memcg. | 
 |  */ | 
 | static int mem_cgroup_force_empty(struct mem_cgroup *memcg) | 
 | { | 
 | 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | 
 | 	struct cgroup *cgrp = memcg->css.cgroup; | 
 |  | 
 | 	/* returns EBUSY if there is a task or if we come here twice. */ | 
 | 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) | 
 | 		return -EBUSY; | 
 |  | 
 | 	/* we call try-to-free pages for make this cgroup empty */ | 
 | 	lru_add_drain_all(); | 
 | 	/* try to free all pages in this cgroup */ | 
 | 	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) { | 
 | 		int progress; | 
 |  | 
 | 		if (signal_pending(current)) | 
 | 			return -EINTR; | 
 |  | 
 | 		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, | 
 | 						false); | 
 | 		if (!progress) { | 
 | 			nr_retries--; | 
 | 			/* maybe some writeback is necessary */ | 
 | 			congestion_wait(BLK_RW_ASYNC, HZ/10); | 
 | 		} | 
 |  | 
 | 	} | 
 | 	lru_add_drain(); | 
 | 	mem_cgroup_reparent_charges(memcg); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); | 
 | 	int ret; | 
 |  | 
 | 	if (mem_cgroup_is_root(memcg)) | 
 | 		return -EINVAL; | 
 | 	css_get(&memcg->css); | 
 | 	ret = mem_cgroup_force_empty(memcg); | 
 | 	css_put(&memcg->css); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 |  | 
 | static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) | 
 | { | 
 | 	return mem_cgroup_from_cont(cont)->use_hierarchy; | 
 | } | 
 |  | 
 | static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, | 
 | 					u64 val) | 
 | { | 
 | 	int retval = 0; | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); | 
 | 	struct cgroup *parent = cont->parent; | 
 | 	struct mem_cgroup *parent_memcg = NULL; | 
 |  | 
 | 	if (parent) | 
 | 		parent_memcg = mem_cgroup_from_cont(parent); | 
 |  | 
 | 	mutex_lock(&memcg_create_mutex); | 
 |  | 
 | 	if (memcg->use_hierarchy == val) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * If parent's use_hierarchy is set, we can't make any modifications | 
 | 	 * in the child subtrees. If it is unset, then the change can | 
 | 	 * occur, provided the current cgroup has no children. | 
 | 	 * | 
 | 	 * For the root cgroup, parent_mem is NULL, we allow value to be | 
 | 	 * set if there are no children. | 
 | 	 */ | 
 | 	if ((!parent_memcg || !parent_memcg->use_hierarchy) && | 
 | 				(val == 1 || val == 0)) { | 
 | 		if (!__memcg_has_children(memcg)) | 
 | 			memcg->use_hierarchy = val; | 
 | 		else | 
 | 			retval = -EBUSY; | 
 | 	} else | 
 | 		retval = -EINVAL; | 
 |  | 
 | out: | 
 | 	mutex_unlock(&memcg_create_mutex); | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 |  | 
 | static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg, | 
 | 					       enum mem_cgroup_stat_index idx) | 
 | { | 
 | 	struct mem_cgroup *iter; | 
 | 	long val = 0; | 
 |  | 
 | 	/* Per-cpu values can be negative, use a signed accumulator */ | 
 | 	for_each_mem_cgroup_tree(iter, memcg) | 
 | 		val += mem_cgroup_read_stat(iter, idx); | 
 |  | 
 | 	if (val < 0) /* race ? */ | 
 | 		val = 0; | 
 | 	return val; | 
 | } | 
 |  | 
 | static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) | 
 | { | 
 | 	u64 val; | 
 |  | 
 | 	if (!mem_cgroup_is_root(memcg)) { | 
 | 		if (!swap) | 
 | 			return res_counter_read_u64(&memcg->res, RES_USAGE); | 
 | 		else | 
 | 			return res_counter_read_u64(&memcg->memsw, RES_USAGE); | 
 | 	} | 
 |  | 
 | 	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE); | 
 | 	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS); | 
 |  | 
 | 	if (swap) | 
 | 		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP); | 
 |  | 
 | 	return val << PAGE_SHIFT; | 
 | } | 
 |  | 
 | static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft, | 
 | 			       struct file *file, char __user *buf, | 
 | 			       size_t nbytes, loff_t *ppos) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); | 
 | 	char str[64]; | 
 | 	u64 val; | 
 | 	int name, len; | 
 | 	enum res_type type; | 
 |  | 
 | 	type = MEMFILE_TYPE(cft->private); | 
 | 	name = MEMFILE_ATTR(cft->private); | 
 |  | 
 | 	switch (type) { | 
 | 	case _MEM: | 
 | 		if (name == RES_USAGE) | 
 | 			val = mem_cgroup_usage(memcg, false); | 
 | 		else | 
 | 			val = res_counter_read_u64(&memcg->res, name); | 
 | 		break; | 
 | 	case _MEMSWAP: | 
 | 		if (name == RES_USAGE) | 
 | 			val = mem_cgroup_usage(memcg, true); | 
 | 		else | 
 | 			val = res_counter_read_u64(&memcg->memsw, name); | 
 | 		break; | 
 | 	case _KMEM: | 
 | 		val = res_counter_read_u64(&memcg->kmem, name); | 
 | 		break; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val); | 
 | 	return simple_read_from_buffer(buf, nbytes, ppos, str, len); | 
 | } | 
 |  | 
 | #ifdef CONFIG_MEMCG_DEBUG_ASYNC_DESTROY | 
 | static void | 
 | mem_cgroup_dangling_swap(struct mem_cgroup *memcg, struct seq_file *m) | 
 | { | 
 | #ifdef CONFIG_MEMCG_SWAP | 
 | 	u64 kmem; | 
 | 	u64 memsw; | 
 |  | 
 | 	/* | 
 | 	 * kmem will also propagate here, so we are only interested in the | 
 | 	 * difference.  See comment in mem_cgroup_reparent_charges for details. | 
 | 	 * | 
 | 	 * We could save this value for later consumption by kmem reports, but | 
 | 	 * there is not a lot of problem if the figures differ slightly. | 
 | 	 */ | 
 | 	kmem = res_counter_read_u64(&memcg->kmem, RES_USAGE); | 
 | 	memsw = res_counter_read_u64(&memcg->memsw, RES_USAGE) - kmem; | 
 | 	seq_printf(m, "\t%llu swap bytes\n", memsw); | 
 | #endif | 
 | } | 
 |  | 
 |  | 
 | static void | 
 | mem_cgroup_dangling_tcp(struct mem_cgroup *memcg, struct seq_file *m) | 
 | { | 
 | #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) | 
 | 	struct tcp_memcontrol *tcp = &memcg->tcp_mem; | 
 | 	s64 tcp_socks; | 
 | 	u64 tcp_bytes; | 
 |  | 
 | 	tcp_socks = percpu_counter_sum_positive(&tcp->tcp_sockets_allocated); | 
 | 	tcp_bytes = res_counter_read_u64(&tcp->tcp_memory_allocated, RES_USAGE); | 
 | 	seq_printf(m, "\t%llu tcp bytes", tcp_bytes); | 
 | 	/* | 
 | 	 * if tcp_bytes == 0, tcp_socks != 0 is a bug. One more reason to print | 
 | 	 * it! | 
 | 	 */ | 
 | 	if (tcp_bytes || tcp_socks) | 
 | 		seq_printf(m, ", in %lld sockets", tcp_socks); | 
 | 	seq_printf(m, "\n"); | 
 |  | 
 | #endif | 
 | } | 
 |  | 
 | static void | 
 | mem_cgroup_dangling_kmem(struct mem_cgroup *memcg, struct seq_file *m) | 
 | { | 
 | #ifdef CONFIG_MEMCG_KMEM | 
 | 	u64 kmem; | 
 | 	struct memcg_cache_params *params; | 
 |  | 
 | 	kmem = res_counter_read_u64(&memcg->kmem, RES_USAGE); | 
 | 	seq_printf(m, "\t%llu kmem bytes", kmem); | 
 |  | 
 | 	/* list below may not be initialized, so not even try */ | 
 | 	if (!kmem) | 
 | 		return; | 
 |  | 
 | 	seq_printf(m, " in caches"); | 
 | 	mutex_lock(&memcg->slab_caches_mutex); | 
 | 	list_for_each_entry(params, &memcg->memcg_slab_caches, list) { | 
 | 			struct kmem_cache *s = memcg_params_to_cache(params); | 
 |  | 
 | 		seq_printf(m, " %s", s->name); | 
 | 	} | 
 | 	mutex_unlock(&memcg->slab_caches_mutex); | 
 | 	seq_printf(m, "\n"); | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * After a memcg is destroyed, it may still be kept around in memory. | 
 |  * Currently, the two main reasons for it are swap entries, and kernel memory. | 
 |  * Because they will be freed assynchronously, they will pin the memcg structure | 
 |  * and its resources until the last reference goes away. | 
 |  * | 
 |  * This root-only file will show information about which users | 
 |  */ | 
 | static int mem_cgroup_dangling_read(struct cgroup *cont, struct cftype *cft, | 
 | 					struct seq_file *m) | 
 | { | 
 | 	struct mem_cgroup *memcg; | 
 |  | 
 | 	mutex_lock(&dangling_memcgs_mutex); | 
 |  | 
 | 	list_for_each_entry(memcg, &dangling_memcgs, dead) { | 
 | 		if (memcg->memcg_name) | 
 | 			seq_printf(m, "%s:\n", memcg->memcg_name); | 
 | 		else | 
 | 			seq_printf(m, "%p (name lost):\n", memcg); | 
 |  | 
 | 		mem_cgroup_dangling_swap(memcg, m); | 
 | 		mem_cgroup_dangling_tcp(memcg, m); | 
 | 		mem_cgroup_dangling_kmem(memcg, m); | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&dangling_memcgs_mutex); | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static int memcg_update_kmem_limit(struct cgroup *cont, u64 val) | 
 | { | 
 | 	int ret = -EINVAL; | 
 | #ifdef CONFIG_MEMCG_KMEM | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); | 
 | 	/* | 
 | 	 * For simplicity, we won't allow this to be disabled.  It also can't | 
 | 	 * be changed if the cgroup has children already, or if tasks had | 
 | 	 * already joined. | 
 | 	 * | 
 | 	 * If tasks join before we set the limit, a person looking at | 
 | 	 * kmem.usage_in_bytes will have no way to determine when it took | 
 | 	 * place, which makes the value quite meaningless. | 
 | 	 * | 
 | 	 * After it first became limited, changes in the value of the limit are | 
 | 	 * of course permitted. | 
 | 	 */ | 
 | 	mutex_lock(&memcg_create_mutex); | 
 | 	mutex_lock(&set_limit_mutex); | 
 | 	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) { | 
 | 		if (cgroup_task_count(cont) || memcg_has_children(memcg)) { | 
 | 			ret = -EBUSY; | 
 | 			goto out; | 
 | 		} | 
 | 		ret = res_counter_set_limit(&memcg->kmem, val); | 
 | 		VM_BUG_ON(ret); | 
 |  | 
 | 		ret = memcg_update_cache_sizes(memcg); | 
 | 		if (ret) { | 
 | 			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX); | 
 | 			goto out; | 
 | 		} | 
 | 		static_key_slow_inc(&memcg_kmem_enabled_key); | 
 | 		/* | 
 | 		 * setting the active bit after the inc will guarantee no one | 
 | 		 * starts accounting before all call sites are patched | 
 | 		 */ | 
 | 		memcg_kmem_set_active(memcg); | 
 |  | 
 | 		/* | 
 | 		 * kmem charges can outlive the cgroup. In the case of slab | 
 | 		 * pages, for instance, a page contain objects from various | 
 | 		 * processes, so it is unfeasible to migrate them away. We | 
 | 		 * need to reference count the memcg because of that. | 
 | 		 */ | 
 | 		mem_cgroup_get(memcg); | 
 | 	} else | 
 | 		ret = res_counter_set_limit(&memcg->kmem, val); | 
 | out: | 
 | 	mutex_unlock(&set_limit_mutex); | 
 | 	mutex_unlock(&memcg_create_mutex); | 
 | #endif | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef CONFIG_MEMCG_KMEM | 
 | static int memcg_propagate_kmem(struct mem_cgroup *memcg) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct mem_cgroup *parent = parent_mem_cgroup(memcg); | 
 | 	if (!parent) | 
 | 		goto out; | 
 |  | 
 | 	memcg->kmem_account_flags = parent->kmem_account_flags; | 
 | 	/* | 
 | 	 * When that happen, we need to disable the static branch only on those | 
 | 	 * memcgs that enabled it. To achieve this, we would be forced to | 
 | 	 * complicate the code by keeping track of which memcgs were the ones | 
 | 	 * that actually enabled limits, and which ones got it from its | 
 | 	 * parents. | 
 | 	 * | 
 | 	 * It is a lot simpler just to do static_key_slow_inc() on every child | 
 | 	 * that is accounted. | 
 | 	 */ | 
 | 	if (!memcg_kmem_is_active(memcg)) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * destroy(), called if we fail, will issue static_key_slow_inc() and | 
 | 	 * mem_cgroup_put() if kmem is enabled. We have to either call them | 
 | 	 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find | 
 | 	 * this more consistent, since it always leads to the same destroy path | 
 | 	 */ | 
 | 	mem_cgroup_get(memcg); | 
 | 	static_key_slow_inc(&memcg_kmem_enabled_key); | 
 |  | 
 | 	mutex_lock(&set_limit_mutex); | 
 | 	ret = memcg_update_cache_sizes(memcg); | 
 | 	mutex_unlock(&set_limit_mutex); | 
 | out: | 
 | 	return ret; | 
 | } | 
 | #endif /* CONFIG_MEMCG_KMEM */ | 
 |  | 
 | /* | 
 |  * The user of this function is... | 
 |  * RES_LIMIT. | 
 |  */ | 
 | static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, | 
 | 			    const char *buffer) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); | 
 | 	enum res_type type; | 
 | 	int name; | 
 | 	unsigned long long val; | 
 | 	int ret; | 
 |  | 
 | 	type = MEMFILE_TYPE(cft->private); | 
 | 	name = MEMFILE_ATTR(cft->private); | 
 |  | 
 | 	switch (name) { | 
 | 	case RES_LIMIT: | 
 | 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ | 
 | 			ret = -EINVAL; | 
 | 			break; | 
 | 		} | 
 | 		/* This function does all necessary parse...reuse it */ | 
 | 		ret = res_counter_memparse_write_strategy(buffer, &val); | 
 | 		if (ret) | 
 | 			break; | 
 | 		if (type == _MEM) | 
 | 			ret = mem_cgroup_resize_limit(memcg, val); | 
 | 		else if (type == _MEMSWAP) | 
 | 			ret = mem_cgroup_resize_memsw_limit(memcg, val); | 
 | 		else if (type == _KMEM) | 
 | 			ret = memcg_update_kmem_limit(cont, val); | 
 | 		else | 
 | 			return -EINVAL; | 
 | 		break; | 
 | 	case RES_SOFT_LIMIT: | 
 | 		ret = res_counter_memparse_write_strategy(buffer, &val); | 
 | 		if (ret) | 
 | 			break; | 
 | 		/* | 
 | 		 * For memsw, soft limits are hard to implement in terms | 
 | 		 * of semantics, for now, we support soft limits for | 
 | 		 * control without swap | 
 | 		 */ | 
 | 		if (type == _MEM) | 
 | 			ret = res_counter_set_soft_limit(&memcg->res, val); | 
 | 		else | 
 | 			ret = -EINVAL; | 
 | 		break; | 
 | 	default: | 
 | 		ret = -EINVAL; /* should be BUG() ? */ | 
 | 		break; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, | 
 | 		unsigned long long *mem_limit, unsigned long long *memsw_limit) | 
 | { | 
 | 	struct cgroup *cgroup; | 
 | 	unsigned long long min_limit, min_memsw_limit, tmp; | 
 |  | 
 | 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); | 
 | 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | 
 | 	cgroup = memcg->css.cgroup; | 
 | 	if (!memcg->use_hierarchy) | 
 | 		goto out; | 
 |  | 
 | 	while (cgroup->parent) { | 
 | 		cgroup = cgroup->parent; | 
 | 		memcg = mem_cgroup_from_cont(cgroup); | 
 | 		if (!memcg->use_hierarchy) | 
 | 			break; | 
 | 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); | 
 | 		min_limit = min(min_limit, tmp); | 
 | 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | 
 | 		min_memsw_limit = min(min_memsw_limit, tmp); | 
 | 	} | 
 | out: | 
 | 	*mem_limit = min_limit; | 
 | 	*memsw_limit = min_memsw_limit; | 
 | } | 
 |  | 
 | static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); | 
 | 	int name; | 
 | 	enum res_type type; | 
 |  | 
 | 	type = MEMFILE_TYPE(event); | 
 | 	name = MEMFILE_ATTR(event); | 
 |  | 
 | 	switch (name) { | 
 | 	case RES_MAX_USAGE: | 
 | 		if (type == _MEM) | 
 | 			res_counter_reset_max(&memcg->res); | 
 | 		else if (type == _MEMSWAP) | 
 | 			res_counter_reset_max(&memcg->memsw); | 
 | 		else if (type == _KMEM) | 
 | 			res_counter_reset_max(&memcg->kmem); | 
 | 		else | 
 | 			return -EINVAL; | 
 | 		break; | 
 | 	case RES_FAILCNT: | 
 | 		if (type == _MEM) | 
 | 			res_counter_reset_failcnt(&memcg->res); | 
 | 		else if (type == _MEMSWAP) | 
 | 			res_counter_reset_failcnt(&memcg->memsw); | 
 | 		else if (type == _KMEM) | 
 | 			res_counter_reset_failcnt(&memcg->kmem); | 
 | 		else | 
 | 			return -EINVAL; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp, | 
 | 					struct cftype *cft) | 
 | { | 
 | 	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate; | 
 | } | 
 |  | 
 | #ifdef CONFIG_MMU | 
 | static int mem_cgroup_move_charge_write(struct cgroup *cgrp, | 
 | 					struct cftype *cft, u64 val) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | 
 |  | 
 | 	if (val >= (1 << NR_MOVE_TYPE)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * No kind of locking is needed in here, because ->can_attach() will | 
 | 	 * check this value once in the beginning of the process, and then carry | 
 | 	 * on with stale data. This means that changes to this value will only | 
 | 	 * affect task migrations starting after the change. | 
 | 	 */ | 
 | 	memcg->move_charge_at_immigrate = val; | 
 | 	return 0; | 
 | } | 
 | #else | 
 | static int mem_cgroup_move_charge_write(struct cgroup *cgrp, | 
 | 					struct cftype *cft, u64 val) | 
 | { | 
 | 	return -ENOSYS; | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft, | 
 | 				      struct seq_file *m) | 
 | { | 
 | 	int nid; | 
 | 	unsigned long total_nr, file_nr, anon_nr, unevictable_nr; | 
 | 	unsigned long node_nr; | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); | 
 |  | 
 | 	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL); | 
 | 	seq_printf(m, "total=%lu", total_nr); | 
 | 	for_each_node_state(nid, N_MEMORY) { | 
 | 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL); | 
 | 		seq_printf(m, " N%d=%lu", nid, node_nr); | 
 | 	} | 
 | 	seq_putc(m, '\n'); | 
 |  | 
 | 	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE); | 
 | 	seq_printf(m, "file=%lu", file_nr); | 
 | 	for_each_node_state(nid, N_MEMORY) { | 
 | 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, | 
 | 				LRU_ALL_FILE); | 
 | 		seq_printf(m, " N%d=%lu", nid, node_nr); | 
 | 	} | 
 | 	seq_putc(m, '\n'); | 
 |  | 
 | 	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON); | 
 | 	seq_printf(m, "anon=%lu", anon_nr); | 
 | 	for_each_node_state(nid, N_MEMORY) { | 
 | 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, | 
 | 				LRU_ALL_ANON); | 
 | 		seq_printf(m, " N%d=%lu", nid, node_nr); | 
 | 	} | 
 | 	seq_putc(m, '\n'); | 
 |  | 
 | 	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE)); | 
 | 	seq_printf(m, "unevictable=%lu", unevictable_nr); | 
 | 	for_each_node_state(nid, N_MEMORY) { | 
 | 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, | 
 | 				BIT(LRU_UNEVICTABLE)); | 
 | 		seq_printf(m, " N%d=%lu", nid, node_nr); | 
 | 	} | 
 | 	seq_putc(m, '\n'); | 
 | 	return 0; | 
 | } | 
 | #endif /* CONFIG_NUMA */ | 
 |  | 
 | static inline void mem_cgroup_lru_names_not_uptodate(void) | 
 | { | 
 | 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); | 
 | } | 
 |  | 
 | static int memcg_stat_show(struct cgroup *cont, struct cftype *cft, | 
 | 				 struct seq_file *m) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); | 
 | 	struct mem_cgroup *mi; | 
 | 	unsigned int i; | 
 |  | 
 | 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { | 
 | 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) | 
 | 			continue; | 
 | 		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], | 
 | 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) | 
 | 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], | 
 | 			   mem_cgroup_read_events(memcg, i)); | 
 |  | 
 | 	for (i = 0; i < NR_LRU_LISTS; i++) | 
 | 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], | 
 | 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); | 
 |  | 
 | 	/* Hierarchical information */ | 
 | 	{ | 
 | 		unsigned long long limit, memsw_limit; | 
 | 		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit); | 
 | 		seq_printf(m, "hierarchical_memory_limit %llu\n", limit); | 
 | 		if (do_swap_account) | 
 | 			seq_printf(m, "hierarchical_memsw_limit %llu\n", | 
 | 				   memsw_limit); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { | 
 | 		long long val = 0; | 
 |  | 
 | 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) | 
 | 			continue; | 
 | 		for_each_mem_cgroup_tree(mi, memcg) | 
 | 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; | 
 | 		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { | 
 | 		unsigned long long val = 0; | 
 |  | 
 | 		for_each_mem_cgroup_tree(mi, memcg) | 
 | 			val += mem_cgroup_read_events(mi, i); | 
 | 		seq_printf(m, "total_%s %llu\n", | 
 | 			   mem_cgroup_events_names[i], val); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < NR_LRU_LISTS; i++) { | 
 | 		unsigned long long val = 0; | 
 |  | 
 | 		for_each_mem_cgroup_tree(mi, memcg) | 
 | 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; | 
 | 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_DEBUG_VM | 
 | 	{ | 
 | 		int nid, zid; | 
 | 		struct mem_cgroup_per_zone *mz; | 
 | 		struct zone_reclaim_stat *rstat; | 
 | 		unsigned long recent_rotated[2] = {0, 0}; | 
 | 		unsigned long recent_scanned[2] = {0, 0}; | 
 |  | 
 | 		for_each_online_node(nid) | 
 | 			for (zid = 0; zid < MAX_NR_ZONES; zid++) { | 
 | 				mz = mem_cgroup_zoneinfo(memcg, nid, zid); | 
 | 				rstat = &mz->lruvec.reclaim_stat; | 
 |  | 
 | 				recent_rotated[0] += rstat->recent_rotated[0]; | 
 | 				recent_rotated[1] += rstat->recent_rotated[1]; | 
 | 				recent_scanned[0] += rstat->recent_scanned[0]; | 
 | 				recent_scanned[1] += rstat->recent_scanned[1]; | 
 | 			} | 
 | 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); | 
 | 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); | 
 | 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); | 
 | 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | 
 |  | 
 | 	return mem_cgroup_swappiness(memcg); | 
 | } | 
 |  | 
 | static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, | 
 | 				       u64 val) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | 
 | 	struct mem_cgroup *parent; | 
 |  | 
 | 	if (val > 100) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (cgrp->parent == NULL) | 
 | 		return -EINVAL; | 
 |  | 
 | 	parent = mem_cgroup_from_cont(cgrp->parent); | 
 |  | 
 | 	mutex_lock(&memcg_create_mutex); | 
 |  | 
 | 	/* If under hierarchy, only empty-root can set this value */ | 
 | 	if ((parent->use_hierarchy) || memcg_has_children(memcg)) { | 
 | 		mutex_unlock(&memcg_create_mutex); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	memcg->swappiness = val; | 
 |  | 
 | 	mutex_unlock(&memcg_create_mutex); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) | 
 | { | 
 | 	struct mem_cgroup_threshold_ary *t; | 
 | 	u64 usage; | 
 | 	int i; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	if (!swap) | 
 | 		t = rcu_dereference(memcg->thresholds.primary); | 
 | 	else | 
 | 		t = rcu_dereference(memcg->memsw_thresholds.primary); | 
 |  | 
 | 	if (!t) | 
 | 		goto unlock; | 
 |  | 
 | 	usage = mem_cgroup_usage(memcg, swap); | 
 |  | 
 | 	/* | 
 | 	 * current_threshold points to threshold just below or equal to usage. | 
 | 	 * If it's not true, a threshold was crossed after last | 
 | 	 * call of __mem_cgroup_threshold(). | 
 | 	 */ | 
 | 	i = t->current_threshold; | 
 |  | 
 | 	/* | 
 | 	 * Iterate backward over array of thresholds starting from | 
 | 	 * current_threshold and check if a threshold is crossed. | 
 | 	 * If none of thresholds below usage is crossed, we read | 
 | 	 * only one element of the array here. | 
 | 	 */ | 
 | 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) | 
 | 		eventfd_signal(t->entries[i].eventfd, 1); | 
 |  | 
 | 	/* i = current_threshold + 1 */ | 
 | 	i++; | 
 |  | 
 | 	/* | 
 | 	 * Iterate forward over array of thresholds starting from | 
 | 	 * current_threshold+1 and check if a threshold is crossed. | 
 | 	 * If none of thresholds above usage is crossed, we read | 
 | 	 * only one element of the array here. | 
 | 	 */ | 
 | 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) | 
 | 		eventfd_signal(t->entries[i].eventfd, 1); | 
 |  | 
 | 	/* Update current_threshold */ | 
 | 	t->current_threshold = i - 1; | 
 | unlock: | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | static void mem_cgroup_threshold(struct mem_cgroup *memcg) | 
 | { | 
 | 	while (memcg) { | 
 | 		__mem_cgroup_threshold(memcg, false); | 
 | 		if (do_swap_account) | 
 | 			__mem_cgroup_threshold(memcg, true); | 
 |  | 
 | 		memcg = parent_mem_cgroup(memcg); | 
 | 	} | 
 | } | 
 |  | 
 | static int compare_thresholds(const void *a, const void *b) | 
 | { | 
 | 	const struct mem_cgroup_threshold *_a = a; | 
 | 	const struct mem_cgroup_threshold *_b = b; | 
 |  | 
 | 	return _a->threshold - _b->threshold; | 
 | } | 
 |  | 
 | static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) | 
 | { | 
 | 	struct mem_cgroup_eventfd_list *ev; | 
 |  | 
 | 	list_for_each_entry(ev, &memcg->oom_notify, list) | 
 | 		eventfd_signal(ev->eventfd, 1); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) | 
 | { | 
 | 	struct mem_cgroup *iter; | 
 |  | 
 | 	for_each_mem_cgroup_tree(iter, memcg) | 
 | 		mem_cgroup_oom_notify_cb(iter); | 
 | } | 
 |  | 
 | static int mem_cgroup_usage_register_event(struct cgroup *cgrp, | 
 | 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | 
 | 	struct mem_cgroup_thresholds *thresholds; | 
 | 	struct mem_cgroup_threshold_ary *new; | 
 | 	enum res_type type = MEMFILE_TYPE(cft->private); | 
 | 	u64 threshold, usage; | 
 | 	int i, size, ret; | 
 |  | 
 | 	ret = res_counter_memparse_write_strategy(args, &threshold); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	mutex_lock(&memcg->thresholds_lock); | 
 |  | 
 | 	if (type == _MEM) | 
 | 		thresholds = &memcg->thresholds; | 
 | 	else if (type == _MEMSWAP) | 
 | 		thresholds = &memcg->memsw_thresholds; | 
 | 	else | 
 | 		BUG(); | 
 |  | 
 | 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP); | 
 |  | 
 | 	/* Check if a threshold crossed before adding a new one */ | 
 | 	if (thresholds->primary) | 
 | 		__mem_cgroup_threshold(memcg, type == _MEMSWAP); | 
 |  | 
 | 	size = thresholds->primary ? thresholds->primary->size + 1 : 1; | 
 |  | 
 | 	/* Allocate memory for new array of thresholds */ | 
 | 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), | 
 | 			GFP_KERNEL); | 
 | 	if (!new) { | 
 | 		ret = -ENOMEM; | 
 | 		goto unlock; | 
 | 	} | 
 | 	new->size = size; | 
 |  | 
 | 	/* Copy thresholds (if any) to new array */ | 
 | 	if (thresholds->primary) { | 
 | 		memcpy(new->entries, thresholds->primary->entries, (size - 1) * | 
 | 				sizeof(struct mem_cgroup_threshold)); | 
 | 	} | 
 |  | 
 | 	/* Add new threshold */ | 
 | 	new->entries[size - 1].eventfd = eventfd; | 
 | 	new->entries[size - 1].threshold = threshold; | 
 |  | 
 | 	/* Sort thresholds. Registering of new threshold isn't time-critical */ | 
 | 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold), | 
 | 			compare_thresholds, NULL); | 
 |  | 
 | 	/* Find current threshold */ | 
 | 	new->current_threshold = -1; | 
 | 	for (i = 0; i < size; i++) { | 
 | 		if (new->entries[i].threshold <= usage) { | 
 | 			/* | 
 | 			 * new->current_threshold will not be used until | 
 | 			 * rcu_assign_pointer(), so it's safe to increment | 
 | 			 * it here. | 
 | 			 */ | 
 | 			++new->current_threshold; | 
 | 		} else | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	/* Free old spare buffer and save old primary buffer as spare */ | 
 | 	kfree(thresholds->spare); | 
 | 	thresholds->spare = thresholds->primary; | 
 |  | 
 | 	rcu_assign_pointer(thresholds->primary, new); | 
 |  | 
 | 	/* To be sure that nobody uses thresholds */ | 
 | 	synchronize_rcu(); | 
 |  | 
 | unlock: | 
 | 	mutex_unlock(&memcg->thresholds_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp, | 
 | 	struct cftype *cft, struct eventfd_ctx *eventfd) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | 
 | 	struct mem_cgroup_thresholds *thresholds; | 
 | 	struct mem_cgroup_threshold_ary *new; | 
 | 	enum res_type type = MEMFILE_TYPE(cft->private); | 
 | 	u64 usage; | 
 | 	int i, j, size; | 
 |  | 
 | 	mutex_lock(&memcg->thresholds_lock); | 
 | 	if (type == _MEM) | 
 | 		thresholds = &memcg->thresholds; | 
 | 	else if (type == _MEMSWAP) | 
 | 		thresholds = &memcg->memsw_thresholds; | 
 | 	else | 
 | 		BUG(); | 
 |  | 
 | 	if (!thresholds->primary) | 
 | 		goto unlock; | 
 |  | 
 | 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP); | 
 |  | 
 | 	/* Check if a threshold crossed before removing */ | 
 | 	__mem_cgroup_threshold(memcg, type == _MEMSWAP); | 
 |  | 
 | 	/* Calculate new number of threshold */ | 
 | 	size = 0; | 
 | 	for (i = 0; i < thresholds->primary->size; i++) { | 
 | 		if (thresholds->primary->entries[i].eventfd != eventfd) | 
 | 			size++; | 
 | 	} | 
 |  | 
 | 	new = thresholds->spare; | 
 |  | 
 | 	/* Set thresholds array to NULL if we don't have thresholds */ | 
 | 	if (!size) { | 
 | 		kfree(new); | 
 | 		new = NULL; | 
 | 		goto swap_buffers; | 
 | 	} | 
 |  | 
 | 	new->size = size; | 
 |  | 
 | 	/* Copy thresholds and find current threshold */ | 
 | 	new->current_threshold = -1; | 
 | 	for (i = 0, j = 0; i < thresholds->primary->size; i++) { | 
 | 		if (thresholds->primary->entries[i].eventfd == eventfd) | 
 | 			continue; | 
 |  | 
 | 		new->entries[j] = thresholds->primary->entries[i]; | 
 | 		if (new->entries[j].threshold <= usage) { | 
 | 			/* | 
 | 			 * new->current_threshold will not be used | 
 | 			 * until rcu_assign_pointer(), so it's safe to increment | 
 | 			 * it here. | 
 | 			 */ | 
 | 			++new->current_threshold; | 
 | 		} | 
 | 		j++; | 
 | 	} | 
 |  | 
 | swap_buffers: | 
 | 	/* Swap primary and spare array */ | 
 | 	thresholds->spare = thresholds->primary; | 
 | 	/* If all events are unregistered, free the spare array */ | 
 | 	if (!new) { | 
 | 		kfree(thresholds->spare); | 
 | 		thresholds->spare = NULL; | 
 | 	} | 
 |  | 
 | 	rcu_assign_pointer(thresholds->primary, new); | 
 |  | 
 | 	/* To be sure that nobody uses thresholds */ | 
 | 	synchronize_rcu(); | 
 | unlock: | 
 | 	mutex_unlock(&memcg->thresholds_lock); | 
 | } | 
 |  | 
 | static int mem_cgroup_oom_register_event(struct cgroup *cgrp, | 
 | 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | 
 | 	struct mem_cgroup_eventfd_list *event; | 
 | 	enum res_type type = MEMFILE_TYPE(cft->private); | 
 |  | 
 | 	BUG_ON(type != _OOM_TYPE); | 
 | 	event = kmalloc(sizeof(*event),	GFP_KERNEL); | 
 | 	if (!event) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	spin_lock(&memcg_oom_lock); | 
 |  | 
 | 	event->eventfd = eventfd; | 
 | 	list_add(&event->list, &memcg->oom_notify); | 
 |  | 
 | 	/* already in OOM ? */ | 
 | 	if (atomic_read(&memcg->under_oom)) | 
 | 		eventfd_signal(eventfd, 1); | 
 | 	spin_unlock(&memcg_oom_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp, | 
 | 	struct cftype *cft, struct eventfd_ctx *eventfd) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | 
 | 	struct mem_cgroup_eventfd_list *ev, *tmp; | 
 | 	enum res_type type = MEMFILE_TYPE(cft->private); | 
 |  | 
 | 	BUG_ON(type != _OOM_TYPE); | 
 |  | 
 | 	spin_lock(&memcg_oom_lock); | 
 |  | 
 | 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { | 
 | 		if (ev->eventfd == eventfd) { | 
 | 			list_del(&ev->list); | 
 | 			kfree(ev); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_unlock(&memcg_oom_lock); | 
 | } | 
 |  | 
 | static int mem_cgroup_oom_control_read(struct cgroup *cgrp, | 
 | 	struct cftype *cft,  struct cgroup_map_cb *cb) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | 
 |  | 
 | 	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable); | 
 |  | 
 | 	if (atomic_read(&memcg->under_oom)) | 
 | 		cb->fill(cb, "under_oom", 1); | 
 | 	else | 
 | 		cb->fill(cb, "under_oom", 0); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int mem_cgroup_oom_control_write(struct cgroup *cgrp, | 
 | 	struct cftype *cft, u64 val) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | 
 | 	struct mem_cgroup *parent; | 
 |  | 
 | 	/* cannot set to root cgroup and only 0 and 1 are allowed */ | 
 | 	if (!cgrp->parent || !((val == 0) || (val == 1))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	parent = mem_cgroup_from_cont(cgrp->parent); | 
 |  | 
 | 	mutex_lock(&memcg_create_mutex); | 
 | 	/* oom-kill-disable is a flag for subhierarchy. */ | 
 | 	if ((parent->use_hierarchy) || memcg_has_children(memcg)) { | 
 | 		mutex_unlock(&memcg_create_mutex); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	memcg->oom_kill_disable = val; | 
 | 	if (!val) | 
 | 		memcg_oom_recover(memcg); | 
 | 	mutex_unlock(&memcg_create_mutex); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_MEMCG_KMEM | 
 | static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	memcg->kmemcg_id = -1; | 
 | 	ret = memcg_propagate_kmem(memcg); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	return mem_cgroup_sockets_init(memcg, ss); | 
 | } | 
 |  | 
 | static void kmem_cgroup_destroy(struct mem_cgroup *memcg) | 
 | { | 
 | 	mem_cgroup_sockets_destroy(memcg); | 
 |  | 
 | 	memcg_kmem_mark_dead(memcg); | 
 |  | 
 | 	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Charges already down to 0, undo mem_cgroup_get() done in the charge | 
 | 	 * path here, being careful not to race with memcg_uncharge_kmem: it is | 
 | 	 * possible that the charges went down to 0 between mark_dead and the | 
 | 	 * res_counter read, so in that case, we don't need the put | 
 | 	 */ | 
 | 	if (memcg_kmem_test_and_clear_dead(memcg)) | 
 | 		mem_cgroup_put(memcg); | 
 | } | 
 | #else | 
 | static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void kmem_cgroup_destroy(struct mem_cgroup *memcg) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | static struct cftype mem_cgroup_files[] = { | 
 | 	{ | 
 | 		.name = "usage_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE), | 
 | 		.read = mem_cgroup_read, | 
 | 		.register_event = mem_cgroup_usage_register_event, | 
 | 		.unregister_event = mem_cgroup_usage_unregister_event, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "max_usage_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), | 
 | 		.trigger = mem_cgroup_reset, | 
 | 		.read = mem_cgroup_read, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "limit_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), | 
 | 		.write_string = mem_cgroup_write, | 
 | 		.read = mem_cgroup_read, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "soft_limit_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), | 
 | 		.write_string = mem_cgroup_write, | 
 | 		.read = mem_cgroup_read, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "failcnt", | 
 | 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), | 
 | 		.trigger = mem_cgroup_reset, | 
 | 		.read = mem_cgroup_read, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "stat", | 
 | 		.read_seq_string = memcg_stat_show, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "force_empty", | 
 | 		.trigger = mem_cgroup_force_empty_write, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "use_hierarchy", | 
 | 		.write_u64 = mem_cgroup_hierarchy_write, | 
 | 		.read_u64 = mem_cgroup_hierarchy_read, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "swappiness", | 
 | 		.read_u64 = mem_cgroup_swappiness_read, | 
 | 		.write_u64 = mem_cgroup_swappiness_write, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "move_charge_at_immigrate", | 
 | 		.read_u64 = mem_cgroup_move_charge_read, | 
 | 		.write_u64 = mem_cgroup_move_charge_write, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "oom_control", | 
 | 		.read_map = mem_cgroup_oom_control_read, | 
 | 		.write_u64 = mem_cgroup_oom_control_write, | 
 | 		.register_event = mem_cgroup_oom_register_event, | 
 | 		.unregister_event = mem_cgroup_oom_unregister_event, | 
 | 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), | 
 | 	}, | 
 | #ifdef CONFIG_NUMA | 
 | 	{ | 
 | 		.name = "numa_stat", | 
 | 		.read_seq_string = memcg_numa_stat_show, | 
 | 	}, | 
 | #endif | 
 | #ifdef CONFIG_MEMCG_KMEM | 
 | 	{ | 
 | 		.name = "kmem.limit_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), | 
 | 		.write_string = mem_cgroup_write, | 
 | 		.read = mem_cgroup_read, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "kmem.usage_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), | 
 | 		.read = mem_cgroup_read, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "kmem.failcnt", | 
 | 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), | 
 | 		.trigger = mem_cgroup_reset, | 
 | 		.read = mem_cgroup_read, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "kmem.max_usage_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), | 
 | 		.trigger = mem_cgroup_reset, | 
 | 		.read = mem_cgroup_read, | 
 | 	}, | 
 | #ifdef CONFIG_SLABINFO | 
 | 	{ | 
 | 		.name = "kmem.slabinfo", | 
 | 		.read_seq_string = mem_cgroup_slabinfo_read, | 
 | 	}, | 
 | #endif | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_MEMCG_DEBUG_ASYNC_DESTROY | 
 | 	{ | 
 | 		.name = "dangling_memcgs", | 
 | 		.read_seq_string = mem_cgroup_dangling_read, | 
 | 		.flags = CFTYPE_ONLY_ON_ROOT, | 
 | 	}, | 
 | #endif | 
 | 	{ },	/* terminate */ | 
 | }; | 
 |  | 
 | #ifdef CONFIG_MEMCG_SWAP | 
 | static struct cftype memsw_cgroup_files[] = { | 
 | 	{ | 
 | 		.name = "memsw.usage_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), | 
 | 		.read = mem_cgroup_read, | 
 | 		.register_event = mem_cgroup_usage_register_event, | 
 | 		.unregister_event = mem_cgroup_usage_unregister_event, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "memsw.max_usage_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), | 
 | 		.trigger = mem_cgroup_reset, | 
 | 		.read = mem_cgroup_read, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "memsw.limit_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), | 
 | 		.write_string = mem_cgroup_write, | 
 | 		.read = mem_cgroup_read, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "memsw.failcnt", | 
 | 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), | 
 | 		.trigger = mem_cgroup_reset, | 
 | 		.read = mem_cgroup_read, | 
 | 	}, | 
 | 	{ },	/* terminate */ | 
 | }; | 
 | #endif | 
 | static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) | 
 | { | 
 | 	struct mem_cgroup_per_node *pn; | 
 | 	struct mem_cgroup_per_zone *mz; | 
 | 	int zone, tmp = node; | 
 | 	/* | 
 | 	 * This routine is called against possible nodes. | 
 | 	 * But it's BUG to call kmalloc() against offline node. | 
 | 	 * | 
 | 	 * TODO: this routine can waste much memory for nodes which will | 
 | 	 *       never be onlined. It's better to use memory hotplug callback | 
 | 	 *       function. | 
 | 	 */ | 
 | 	if (!node_state(node, N_NORMAL_MEMORY)) | 
 | 		tmp = -1; | 
 | 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); | 
 | 	if (!pn) | 
 | 		return 1; | 
 |  | 
 | 	for (zone = 0; zone < MAX_NR_ZONES; zone++) { | 
 | 		mz = &pn->zoneinfo[zone]; | 
 | 		lruvec_init(&mz->lruvec); | 
 | 		mz->usage_in_excess = 0; | 
 | 		mz->on_tree = false; | 
 | 		mz->memcg = memcg; | 
 | 	} | 
 | 	memcg->info.nodeinfo[node] = pn; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) | 
 | { | 
 | 	kfree(memcg->info.nodeinfo[node]); | 
 | } | 
 |  | 
 | static struct mem_cgroup *mem_cgroup_alloc(void) | 
 | { | 
 | 	struct mem_cgroup *memcg; | 
 | 	size_t size = memcg_size(); | 
 |  | 
 | 	/* Can be very big if nr_node_ids is very big */ | 
 | 	if (size < PAGE_SIZE) | 
 | 		memcg = kzalloc(size, GFP_KERNEL); | 
 | 	else | 
 | 		memcg = vzalloc(size); | 
 |  | 
 | 	if (!memcg) | 
 | 		return NULL; | 
 |  | 
 | 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); | 
 | 	if (!memcg->stat) | 
 | 		goto out_free; | 
 | 	spin_lock_init(&memcg->pcp_counter_lock); | 
 | 	return memcg; | 
 |  | 
 | out_free: | 
 | 	if (size < PAGE_SIZE) | 
 | 		kfree(memcg); | 
 | 	else | 
 | 		vfree(memcg); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * At destroying mem_cgroup, references from swap_cgroup can remain. | 
 |  * (scanning all at force_empty is too costly...) | 
 |  * | 
 |  * Instead of clearing all references at force_empty, we remember | 
 |  * the number of reference from swap_cgroup and free mem_cgroup when | 
 |  * it goes down to 0. | 
 |  * | 
 |  * Removal of cgroup itself succeeds regardless of refs from swap. | 
 |  */ | 
 |  | 
 | static void __mem_cgroup_free(struct mem_cgroup *memcg) | 
 | { | 
 | 	int node; | 
 | 	size_t size = memcg_size(); | 
 |  | 
 | 	mem_cgroup_remove_from_trees(memcg); | 
 | 	free_css_id(&mem_cgroup_subsys, &memcg->css); | 
 |  | 
 | 	for_each_node(node) | 
 | 		free_mem_cgroup_per_zone_info(memcg, node); | 
 |  | 
 | 	free_percpu(memcg->stat); | 
 |  | 
 | 	/* | 
 | 	 * We need to make sure that (at least for now), the jump label | 
 | 	 * destruction code runs outside of the cgroup lock. This is because | 
 | 	 * get_online_cpus(), which is called from the static_branch update, | 
 | 	 * can't be called inside the cgroup_lock. cpusets are the ones | 
 | 	 * enforcing this dependency, so if they ever change, we might as well. | 
 | 	 * | 
 | 	 * schedule_work() will guarantee this happens. Be careful if you need | 
 | 	 * to move this code around, and make sure it is outside | 
 | 	 * the cgroup_lock. | 
 | 	 */ | 
 | 	disarm_static_keys(memcg); | 
 | 	if (size < PAGE_SIZE) | 
 | 		kfree(memcg); | 
 | 	else | 
 | 		vfree(memcg); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU, | 
 |  * but in process context.  The work_freeing structure is overlaid | 
 |  * on the rcu_freeing structure, which itself is overlaid on memsw. | 
 |  */ | 
 | static void free_work(struct work_struct *work) | 
 | { | 
 | 	struct mem_cgroup *memcg; | 
 |  | 
 | 	memcg = container_of(work, struct mem_cgroup, work_freeing); | 
 |  | 
 | 	memcg_dangling_free(memcg); | 
 | 	__mem_cgroup_free(memcg); | 
 | } | 
 |  | 
 | static void free_rcu(struct rcu_head *rcu_head) | 
 | { | 
 | 	struct mem_cgroup *memcg; | 
 |  | 
 | 	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing); | 
 | 	INIT_WORK(&memcg->work_freeing, free_work); | 
 | 	schedule_work(&memcg->work_freeing); | 
 | } | 
 |  | 
 | static void mem_cgroup_get(struct mem_cgroup *memcg) | 
 | { | 
 | 	atomic_inc(&memcg->refcnt); | 
 | } | 
 |  | 
 | static void __mem_cgroup_put(struct mem_cgroup *memcg, int count) | 
 | { | 
 | 	if (atomic_sub_and_test(count, &memcg->refcnt)) { | 
 | 		struct mem_cgroup *parent = parent_mem_cgroup(memcg); | 
 | 		call_rcu(&memcg->rcu_freeing, free_rcu); | 
 | 		if (parent) | 
 | 			mem_cgroup_put(parent); | 
 | 	} | 
 | } | 
 |  | 
 | static void mem_cgroup_put(struct mem_cgroup *memcg) | 
 | { | 
 | 	__mem_cgroup_put(memcg, 1); | 
 | } | 
 |  | 
 | /* | 
 |  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. | 
 |  */ | 
 | struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) | 
 | { | 
 | 	if (!memcg->res.parent) | 
 | 		return NULL; | 
 | 	return mem_cgroup_from_res_counter(memcg->res.parent, res); | 
 | } | 
 | EXPORT_SYMBOL(parent_mem_cgroup); | 
 |  | 
 | static void __init mem_cgroup_soft_limit_tree_init(void) | 
 | { | 
 | 	struct mem_cgroup_tree_per_node *rtpn; | 
 | 	struct mem_cgroup_tree_per_zone *rtpz; | 
 | 	int tmp, node, zone; | 
 |  | 
 | 	for_each_node(node) { | 
 | 		tmp = node; | 
 | 		if (!node_state(node, N_NORMAL_MEMORY)) | 
 | 			tmp = -1; | 
 | 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); | 
 | 		BUG_ON(!rtpn); | 
 |  | 
 | 		soft_limit_tree.rb_tree_per_node[node] = rtpn; | 
 |  | 
 | 		for (zone = 0; zone < MAX_NR_ZONES; zone++) { | 
 | 			rtpz = &rtpn->rb_tree_per_zone[zone]; | 
 | 			rtpz->rb_root = RB_ROOT; | 
 | 			spin_lock_init(&rtpz->lock); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static struct cgroup_subsys_state * __ref | 
 | mem_cgroup_css_alloc(struct cgroup *cont) | 
 | { | 
 | 	struct mem_cgroup *memcg; | 
 | 	long error = -ENOMEM; | 
 | 	int node; | 
 |  | 
 | 	memcg = mem_cgroup_alloc(); | 
 | 	if (!memcg) | 
 | 		return ERR_PTR(error); | 
 |  | 
 | 	for_each_node(node) | 
 | 		if (alloc_mem_cgroup_per_zone_info(memcg, node)) | 
 | 			goto free_out; | 
 |  | 
 | 	/* root ? */ | 
 | 	if (cont->parent == NULL) { | 
 | 		root_mem_cgroup = memcg; | 
 | 		res_counter_init(&memcg->res, NULL); | 
 | 		res_counter_init(&memcg->memsw, NULL); | 
 | 		res_counter_init(&memcg->kmem, NULL); | 
 | 	} | 
 |  | 
 | 	memcg->last_scanned_node = MAX_NUMNODES; | 
 | 	INIT_LIST_HEAD(&memcg->oom_notify); | 
 | 	atomic_set(&memcg->refcnt, 1); | 
 | 	memcg->move_charge_at_immigrate = 0; | 
 | 	mutex_init(&memcg->thresholds_lock); | 
 | 	spin_lock_init(&memcg->move_lock); | 
 |  | 
 | 	return &memcg->css; | 
 |  | 
 | free_out: | 
 | 	__mem_cgroup_free(memcg); | 
 | 	return ERR_PTR(error); | 
 | } | 
 |  | 
 | static int | 
 | mem_cgroup_css_online(struct cgroup *cont) | 
 | { | 
 | 	struct mem_cgroup *memcg, *parent; | 
 | 	int error = 0; | 
 |  | 
 | 	if (!cont->parent) | 
 | 		return 0; | 
 |  | 
 | 	mutex_lock(&memcg_create_mutex); | 
 | 	memcg = mem_cgroup_from_cont(cont); | 
 | 	parent = mem_cgroup_from_cont(cont->parent); | 
 |  | 
 | 	memcg->use_hierarchy = parent->use_hierarchy; | 
 | 	memcg->oom_kill_disable = parent->oom_kill_disable; | 
 | 	memcg->swappiness = mem_cgroup_swappiness(parent); | 
 |  | 
 | 	if (parent->use_hierarchy) { | 
 | 		res_counter_init(&memcg->res, &parent->res); | 
 | 		res_counter_init(&memcg->memsw, &parent->memsw); | 
 | 		res_counter_init(&memcg->kmem, &parent->kmem); | 
 |  | 
 | 		/* | 
 | 		 * We increment refcnt of the parent to ensure that we can | 
 | 		 * safely access it on res_counter_charge/uncharge. | 
 | 		 * This refcnt will be decremented when freeing this | 
 | 		 * mem_cgroup(see mem_cgroup_put). | 
 | 		 */ | 
 | 		mem_cgroup_get(parent); | 
 | 	} else { | 
 | 		res_counter_init(&memcg->res, NULL); | 
 | 		res_counter_init(&memcg->memsw, NULL); | 
 | 		res_counter_init(&memcg->kmem, NULL); | 
 | 		/* | 
 | 		 * Deeper hierachy with use_hierarchy == false doesn't make | 
 | 		 * much sense so let cgroup subsystem know about this | 
 | 		 * unfortunate state in our controller. | 
 | 		 */ | 
 | 		if (parent != root_mem_cgroup) | 
 | 			mem_cgroup_subsys.broken_hierarchy = true; | 
 | 	} | 
 |  | 
 | 	error = memcg_init_kmem(memcg, &mem_cgroup_subsys); | 
 | 	mutex_unlock(&memcg_create_mutex); | 
 | 	if (error) { | 
 | 		/* | 
 | 		 * We call put now because our (and parent's) refcnts | 
 | 		 * are already in place. mem_cgroup_put() will internally | 
 | 		 * call __mem_cgroup_free, so return directly | 
 | 		 */ | 
 | 		mem_cgroup_put(memcg); | 
 | 		if (parent->use_hierarchy) | 
 | 			mem_cgroup_put(parent); | 
 | 	} | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Announce all parents that a group from their hierarchy is gone. | 
 |  */ | 
 | static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg) | 
 | { | 
 | 	struct mem_cgroup *parent = memcg; | 
 |  | 
 | 	while ((parent = parent_mem_cgroup(parent))) | 
 | 		atomic_inc(&parent->dead_count); | 
 |  | 
 | 	/* | 
 | 	 * if the root memcg is not hierarchical we have to check it | 
 | 	 * explicitely. | 
 | 	 */ | 
 | 	if (!root_mem_cgroup->use_hierarchy) | 
 | 		atomic_inc(&root_mem_cgroup->dead_count); | 
 | } | 
 |  | 
 | static void mem_cgroup_css_offline(struct cgroup *cont) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); | 
 |  | 
 | 	mem_cgroup_invalidate_reclaim_iterators(memcg); | 
 | 	mem_cgroup_reparent_charges(memcg); | 
 | 	mem_cgroup_destroy_all_caches(memcg); | 
 | } | 
 |  | 
 | static void mem_cgroup_css_free(struct cgroup *cont) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); | 
 |  | 
 | 	kmem_cgroup_destroy(memcg); | 
 |  | 
 | 	memcg_dangling_add(memcg); | 
 | 	mem_cgroup_put(memcg); | 
 | } | 
 |  | 
 | #ifdef CONFIG_MMU | 
 | /* Handlers for move charge at task migration. */ | 
 | #define PRECHARGE_COUNT_AT_ONCE	256 | 
 | static int mem_cgroup_do_precharge(unsigned long count) | 
 | { | 
 | 	int ret = 0; | 
 | 	int batch_count = PRECHARGE_COUNT_AT_ONCE; | 
 | 	struct mem_cgroup *memcg = mc.to; | 
 |  | 
 | 	if (mem_cgroup_is_root(memcg)) { | 
 | 		mc.precharge += count; | 
 | 		/* we don't need css_get for root */ | 
 | 		return ret; | 
 | 	} | 
 | 	/* try to charge at once */ | 
 | 	if (count > 1) { | 
 | 		struct res_counter *dummy; | 
 | 		/* | 
 | 		 * "memcg" cannot be under rmdir() because we've already checked | 
 | 		 * by cgroup_lock_live_cgroup() that it is not removed and we | 
 | 		 * are still under the same cgroup_mutex. So we can postpone | 
 | 		 * css_get(). | 
 | 		 */ | 
 | 		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy)) | 
 | 			goto one_by_one; | 
 | 		if (do_swap_account && res_counter_charge(&memcg->memsw, | 
 | 						PAGE_SIZE * count, &dummy)) { | 
 | 			res_counter_uncharge(&memcg->res, PAGE_SIZE * count); | 
 | 			goto one_by_one; | 
 | 		} | 
 | 		mc.precharge += count; | 
 | 		return ret; | 
 | 	} | 
 | one_by_one: | 
 | 	/* fall back to one by one charge */ | 
 | 	while (count--) { | 
 | 		if (signal_pending(current)) { | 
 | 			ret = -EINTR; | 
 | 			break; | 
 | 		} | 
 | 		if (!batch_count--) { | 
 | 			batch_count = PRECHARGE_COUNT_AT_ONCE; | 
 | 			cond_resched(); | 
 | 		} | 
 | 		ret = __mem_cgroup_try_charge(NULL, | 
 | 					GFP_KERNEL, 1, &memcg, false); | 
 | 		if (ret) | 
 | 			/* mem_cgroup_clear_mc() will do uncharge later */ | 
 | 			return ret; | 
 | 		mc.precharge++; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * get_mctgt_type - get target type of moving charge | 
 |  * @vma: the vma the pte to be checked belongs | 
 |  * @addr: the address corresponding to the pte to be checked | 
 |  * @ptent: the pte to be checked | 
 |  * @target: the pointer the target page or swap ent will be stored(can be NULL) | 
 |  * | 
 |  * Returns | 
 |  *   0(MC_TARGET_NONE): if the pte is not a target for move charge. | 
 |  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for | 
 |  *     move charge. if @target is not NULL, the page is stored in target->page | 
 |  *     with extra refcnt got(Callers should handle it). | 
 |  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a | 
 |  *     target for charge migration. if @target is not NULL, the entry is stored | 
 |  *     in target->ent. | 
 |  * | 
 |  * Called with pte lock held. | 
 |  */ | 
 | union mc_target { | 
 | 	struct page	*page; | 
 | 	swp_entry_t	ent; | 
 | }; | 
 |  | 
 | enum mc_target_type { | 
 | 	MC_TARGET_NONE = 0, | 
 | 	MC_TARGET_PAGE, | 
 | 	MC_TARGET_SWAP, | 
 | }; | 
 |  | 
 | static struct page *mc_handle_present_pte(struct vm_area_struct *vma, | 
 | 						unsigned long addr, pte_t ptent) | 
 | { | 
 | 	struct page *page = vm_normal_page(vma, addr, ptent); | 
 |  | 
 | 	if (!page || !page_mapped(page)) | 
 | 		return NULL; | 
 | 	if (PageAnon(page)) { | 
 | 		/* we don't move shared anon */ | 
 | 		if (!move_anon()) | 
 | 			return NULL; | 
 | 	} else if (!move_file()) | 
 | 		/* we ignore mapcount for file pages */ | 
 | 		return NULL; | 
 | 	if (!get_page_unless_zero(page)) | 
 | 		return NULL; | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SWAP | 
 | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, | 
 | 			unsigned long addr, pte_t ptent, swp_entry_t *entry) | 
 | { | 
 | 	struct page *page = NULL; | 
 | 	swp_entry_t ent = pte_to_swp_entry(ptent); | 
 |  | 
 | 	if (!move_anon() || non_swap_entry(ent)) | 
 | 		return NULL; | 
 | 	/* | 
 | 	 * Because lookup_swap_cache() updates some statistics counter, | 
 | 	 * we call find_get_page() with swapper_space directly. | 
 | 	 */ | 
 | 	page = find_get_page(swap_address_space(ent), ent.val); | 
 | 	if (do_swap_account) | 
 | 		entry->val = ent.val; | 
 |  | 
 | 	return page; | 
 | } | 
 | #else | 
 | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, | 
 | 			unsigned long addr, pte_t ptent, swp_entry_t *entry) | 
 | { | 
 | 	return NULL; | 
 | } | 
 | #endif | 
 |  | 
 | static struct page *mc_handle_file_pte(struct vm_area_struct *vma, | 
 | 			unsigned long addr, pte_t ptent, swp_entry_t *entry) | 
 | { | 
 | 	struct page *page = NULL; | 
 | 	struct address_space *mapping; | 
 | 	pgoff_t pgoff; | 
 |  | 
 | 	if (!vma->vm_file) /* anonymous vma */ | 
 | 		return NULL; | 
 | 	if (!move_file()) | 
 | 		return NULL; | 
 |  | 
 | 	mapping = vma->vm_file->f_mapping; | 
 | 	if (pte_none(ptent)) | 
 | 		pgoff = linear_page_index(vma, addr); | 
 | 	else /* pte_file(ptent) is true */ | 
 | 		pgoff = pte_to_pgoff(ptent); | 
 |  | 
 | 	/* page is moved even if it's not RSS of this task(page-faulted). */ | 
 | 	page = find_get_page(mapping, pgoff); | 
 |  | 
 | #ifdef CONFIG_SWAP | 
 | 	/* shmem/tmpfs may report page out on swap: account for that too. */ | 
 | 	if (radix_tree_exceptional_entry(page)) { | 
 | 		swp_entry_t swap = radix_to_swp_entry(page); | 
 | 		if (do_swap_account) | 
 | 			*entry = swap; | 
 | 		page = find_get_page(swap_address_space(swap), swap.val); | 
 | 	} | 
 | #endif | 
 | 	return page; | 
 | } | 
 |  | 
 | static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, | 
 | 		unsigned long addr, pte_t ptent, union mc_target *target) | 
 | { | 
 | 	struct page *page = NULL; | 
 | 	struct page_cgroup *pc; | 
 | 	enum mc_target_type ret = MC_TARGET_NONE; | 
 | 	swp_entry_t ent = { .val = 0 }; | 
 |  | 
 | 	if (pte_present(ptent)) | 
 | 		page = mc_handle_present_pte(vma, addr, ptent); | 
 | 	else if (is_swap_pte(ptent)) | 
 | 		page = mc_handle_swap_pte(vma, addr, ptent, &ent); | 
 | 	else if (pte_none(ptent) || pte_file(ptent)) | 
 | 		page = mc_handle_file_pte(vma, addr, ptent, &ent); | 
 |  | 
 | 	if (!page && !ent.val) | 
 | 		return ret; | 
 | 	if (page) { | 
 | 		pc = lookup_page_cgroup(page); | 
 | 		/* | 
 | 		 * Do only loose check w/o page_cgroup lock. | 
 | 		 * mem_cgroup_move_account() checks the pc is valid or not under | 
 | 		 * the lock. | 
 | 		 */ | 
 | 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { | 
 | 			ret = MC_TARGET_PAGE; | 
 | 			if (target) | 
 | 				target->page = page; | 
 | 		} | 
 | 		if (!ret || !target) | 
 | 			put_page(page); | 
 | 	} | 
 | 	/* There is a swap entry and a page doesn't exist or isn't charged */ | 
 | 	if (ent.val && !ret && | 
 | 			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) { | 
 | 		ret = MC_TARGET_SWAP; | 
 | 		if (target) | 
 | 			target->ent = ent; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 | /* | 
 |  * We don't consider swapping or file mapped pages because THP does not | 
 |  * support them for now. | 
 |  * Caller should make sure that pmd_trans_huge(pmd) is true. | 
 |  */ | 
 | static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, | 
 | 		unsigned long addr, pmd_t pmd, union mc_target *target) | 
 | { | 
 | 	struct page *page = NULL; | 
 | 	struct page_cgroup *pc; | 
 | 	enum mc_target_type ret = MC_TARGET_NONE; | 
 |  | 
 | 	page = pmd_page(pmd); | 
 | 	VM_BUG_ON(!page || !PageHead(page)); | 
 | 	if (!move_anon()) | 
 | 		return ret; | 
 | 	pc = lookup_page_cgroup(page); | 
 | 	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { | 
 | 		ret = MC_TARGET_PAGE; | 
 | 		if (target) { | 
 | 			get_page(page); | 
 | 			target->page = page; | 
 | 		} | 
 | 	} | 
 | 	return ret; | 
 | } | 
 | #else | 
 | static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, | 
 | 		unsigned long addr, pmd_t pmd, union mc_target *target) | 
 | { | 
 | 	return MC_TARGET_NONE; | 
 | } | 
 | #endif | 
 |  | 
 | static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, | 
 | 					unsigned long addr, unsigned long end, | 
 | 					struct mm_walk *walk) | 
 | { | 
 | 	struct vm_area_struct *vma = walk->private; | 
 | 	pte_t *pte; | 
 | 	spinlock_t *ptl; | 
 |  | 
 | 	if (pmd_trans_huge_lock(pmd, vma) == 1) { | 
 | 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) | 
 | 			mc.precharge += HPAGE_PMD_NR; | 
 | 		spin_unlock(&vma->vm_mm->page_table_lock); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (pmd_trans_unstable(pmd)) | 
 | 		return 0; | 
 | 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); | 
 | 	for (; addr != end; pte++, addr += PAGE_SIZE) | 
 | 		if (get_mctgt_type(vma, addr, *pte, NULL)) | 
 | 			mc.precharge++;	/* increment precharge temporarily */ | 
 | 	pte_unmap_unlock(pte - 1, ptl); | 
 | 	cond_resched(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) | 
 | { | 
 | 	unsigned long precharge; | 
 | 	struct vm_area_struct *vma; | 
 |  | 
 | 	down_read(&mm->mmap_sem); | 
 | 	for (vma = mm->mmap; vma; vma = vma->vm_next) { | 
 | 		struct mm_walk mem_cgroup_count_precharge_walk = { | 
 | 			.pmd_entry = mem_cgroup_count_precharge_pte_range, | 
 | 			.mm = mm, | 
 | 			.private = vma, | 
 | 		}; | 
 | 		if (is_vm_hugetlb_page(vma)) | 
 | 			continue; | 
 | 		walk_page_range(vma->vm_start, vma->vm_end, | 
 | 					&mem_cgroup_count_precharge_walk); | 
 | 	} | 
 | 	up_read(&mm->mmap_sem); | 
 |  | 
 | 	precharge = mc.precharge; | 
 | 	mc.precharge = 0; | 
 |  | 
 | 	return precharge; | 
 | } | 
 |  | 
 | static int mem_cgroup_precharge_mc(struct mm_struct *mm) | 
 | { | 
 | 	unsigned long precharge = mem_cgroup_count_precharge(mm); | 
 |  | 
 | 	VM_BUG_ON(mc.moving_task); | 
 | 	mc.moving_task = current; | 
 | 	return mem_cgroup_do_precharge(precharge); | 
 | } | 
 |  | 
 | /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ | 
 | static void __mem_cgroup_clear_mc(void) | 
 | { | 
 | 	struct mem_cgroup *from = mc.from; | 
 | 	struct mem_cgroup *to = mc.to; | 
 |  | 
 | 	/* we must uncharge all the leftover precharges from mc.to */ | 
 | 	if (mc.precharge) { | 
 | 		__mem_cgroup_cancel_charge(mc.to, mc.precharge); | 
 | 		mc.precharge = 0; | 
 | 	} | 
 | 	/* | 
 | 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so | 
 | 	 * we must uncharge here. | 
 | 	 */ | 
 | 	if (mc.moved_charge) { | 
 | 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge); | 
 | 		mc.moved_charge = 0; | 
 | 	} | 
 | 	/* we must fixup refcnts and charges */ | 
 | 	if (mc.moved_swap) { | 
 | 		/* uncharge swap account from the old cgroup */ | 
 | 		if (!mem_cgroup_is_root(mc.from)) | 
 | 			res_counter_uncharge(&mc.from->memsw, | 
 | 						PAGE_SIZE * mc.moved_swap); | 
 | 		__mem_cgroup_put(mc.from, mc.moved_swap); | 
 |  | 
 | 		if (!mem_cgroup_is_root(mc.to)) { | 
 | 			/* | 
 | 			 * we charged both to->res and to->memsw, so we should | 
 | 			 * uncharge to->res. | 
 | 			 */ | 
 | 			res_counter_uncharge(&mc.to->res, | 
 | 						PAGE_SIZE * mc.moved_swap); | 
 | 		} | 
 | 		/* we've already done mem_cgroup_get(mc.to) */ | 
 | 		mc.moved_swap = 0; | 
 | 	} | 
 | 	memcg_oom_recover(from); | 
 | 	memcg_oom_recover(to); | 
 | 	wake_up_all(&mc.waitq); | 
 | } | 
 |  | 
 | static void mem_cgroup_clear_mc(void) | 
 | { | 
 | 	struct mem_cgroup *from = mc.from; | 
 |  | 
 | 	/* | 
 | 	 * we must clear moving_task before waking up waiters at the end of | 
 | 	 * task migration. | 
 | 	 */ | 
 | 	mc.moving_task = NULL; | 
 | 	__mem_cgroup_clear_mc(); | 
 | 	spin_lock(&mc.lock); | 
 | 	mc.from = NULL; | 
 | 	mc.to = NULL; | 
 | 	spin_unlock(&mc.lock); | 
 | 	mem_cgroup_end_move(from); | 
 | } | 
 |  | 
 | static int mem_cgroup_can_attach(struct cgroup *cgroup, | 
 | 				 struct cgroup_taskset *tset) | 
 | { | 
 | 	struct task_struct *p = cgroup_taskset_first(tset); | 
 | 	int ret = 0; | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup); | 
 | 	unsigned long move_charge_at_immigrate; | 
 |  | 
 | 	/* | 
 | 	 * We are now commited to this value whatever it is. Changes in this | 
 | 	 * tunable will only affect upcoming migrations, not the current one. | 
 | 	 * So we need to save it, and keep it going. | 
 | 	 */ | 
 | 	move_charge_at_immigrate  = memcg->move_charge_at_immigrate; | 
 | 	if (move_charge_at_immigrate) { | 
 | 		struct mm_struct *mm; | 
 | 		struct mem_cgroup *from = mem_cgroup_from_task(p); | 
 |  | 
 | 		VM_BUG_ON(from == memcg); | 
 |  | 
 | 		mm = get_task_mm(p); | 
 | 		if (!mm) | 
 | 			return 0; | 
 | 		/* We move charges only when we move a owner of the mm */ | 
 | 		if (mm->owner == p) { | 
 | 			VM_BUG_ON(mc.from); | 
 | 			VM_BUG_ON(mc.to); | 
 | 			VM_BUG_ON(mc.precharge); | 
 | 			VM_BUG_ON(mc.moved_charge); | 
 | 			VM_BUG_ON(mc.moved_swap); | 
 | 			mem_cgroup_start_move(from); | 
 | 			spin_lock(&mc.lock); | 
 | 			mc.from = from; | 
 | 			mc.to = memcg; | 
 | 			mc.immigrate_flags = move_charge_at_immigrate; | 
 | 			spin_unlock(&mc.lock); | 
 | 			/* We set mc.moving_task later */ | 
 |  | 
 | 			ret = mem_cgroup_precharge_mc(mm); | 
 | 			if (ret) | 
 | 				mem_cgroup_clear_mc(); | 
 | 		} | 
 | 		mmput(mm); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void mem_cgroup_cancel_attach(struct cgroup *cgroup, | 
 | 				     struct cgroup_taskset *tset) | 
 | { | 
 | 	mem_cgroup_clear_mc(); | 
 | } | 
 |  | 
 | static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, | 
 | 				unsigned long addr, unsigned long end, | 
 | 				struct mm_walk *walk) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct vm_area_struct *vma = walk->private; | 
 | 	pte_t *pte; | 
 | 	spinlock_t *ptl; | 
 | 	enum mc_target_type target_type; | 
 | 	union mc_target target; | 
 | 	struct page *page; | 
 | 	struct page_cgroup *pc; | 
 |  | 
 | 	/* | 
 | 	 * We don't take compound_lock() here but no race with splitting thp | 
 | 	 * happens because: | 
 | 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not | 
 | 	 *    under splitting, which means there's no concurrent thp split, | 
 | 	 *  - if another thread runs into split_huge_page() just after we | 
 | 	 *    entered this if-block, the thread must wait for page table lock | 
 | 	 *    to be unlocked in __split_huge_page_splitting(), where the main | 
 | 	 *    part of thp split is not executed yet. | 
 | 	 */ | 
 | 	if (pmd_trans_huge_lock(pmd, vma) == 1) { | 
 | 		if (mc.precharge < HPAGE_PMD_NR) { | 
 | 			spin_unlock(&vma->vm_mm->page_table_lock); | 
 | 			return 0; | 
 | 		} | 
 | 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); | 
 | 		if (target_type == MC_TARGET_PAGE) { | 
 | 			page = target.page; | 
 | 			if (!isolate_lru_page(page)) { | 
 | 				pc = lookup_page_cgroup(page); | 
 | 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR, | 
 | 							pc, mc.from, mc.to)) { | 
 | 					mc.precharge -= HPAGE_PMD_NR; | 
 | 					mc.moved_charge += HPAGE_PMD_NR; | 
 | 				} | 
 | 				putback_lru_page(page); | 
 | 			} | 
 | 			put_page(page); | 
 | 		} | 
 | 		spin_unlock(&vma->vm_mm->page_table_lock); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (pmd_trans_unstable(pmd)) | 
 | 		return 0; | 
 | retry: | 
 | 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); | 
 | 	for (; addr != end; addr += PAGE_SIZE) { | 
 | 		pte_t ptent = *(pte++); | 
 | 		swp_entry_t ent; | 
 |  | 
 | 		if (!mc.precharge) | 
 | 			break; | 
 |  | 
 | 		switch (get_mctgt_type(vma, addr, ptent, &target)) { | 
 | 		case MC_TARGET_PAGE: | 
 | 			page = target.page; | 
 | 			if (isolate_lru_page(page)) | 
 | 				goto put; | 
 | 			pc = lookup_page_cgroup(page); | 
 | 			if (!mem_cgroup_move_account(page, 1, pc, | 
 | 						     mc.from, mc.to)) { | 
 | 				mc.precharge--; | 
 | 				/* we uncharge from mc.from later. */ | 
 | 				mc.moved_charge++; | 
 | 			} | 
 | 			putback_lru_page(page); | 
 | put:			/* get_mctgt_type() gets the page */ | 
 | 			put_page(page); | 
 | 			break; | 
 | 		case MC_TARGET_SWAP: | 
 | 			ent = target.ent; | 
 | 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { | 
 | 				mc.precharge--; | 
 | 				/* we fixup refcnts and charges later. */ | 
 | 				mc.moved_swap++; | 
 | 			} | 
 | 			break; | 
 | 		default: | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	pte_unmap_unlock(pte - 1, ptl); | 
 | 	cond_resched(); | 
 |  | 
 | 	if (addr != end) { | 
 | 		/* | 
 | 		 * We have consumed all precharges we got in can_attach(). | 
 | 		 * We try charge one by one, but don't do any additional | 
 | 		 * charges to mc.to if we have failed in charge once in attach() | 
 | 		 * phase. | 
 | 		 */ | 
 | 		ret = mem_cgroup_do_precharge(1); | 
 | 		if (!ret) | 
 | 			goto retry; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void mem_cgroup_move_charge(struct mm_struct *mm) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 |  | 
 | 	lru_add_drain_all(); | 
 | retry: | 
 | 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) { | 
 | 		/* | 
 | 		 * Someone who are holding the mmap_sem might be waiting in | 
 | 		 * waitq. So we cancel all extra charges, wake up all waiters, | 
 | 		 * and retry. Because we cancel precharges, we might not be able | 
 | 		 * to move enough charges, but moving charge is a best-effort | 
 | 		 * feature anyway, so it wouldn't be a big problem. | 
 | 		 */ | 
 | 		__mem_cgroup_clear_mc(); | 
 | 		cond_resched(); | 
 | 		goto retry; | 
 | 	} | 
 | 	for (vma = mm->mmap; vma; vma = vma->vm_next) { | 
 | 		int ret; | 
 | 		struct mm_walk mem_cgroup_move_charge_walk = { | 
 | 			.pmd_entry = mem_cgroup_move_charge_pte_range, | 
 | 			.mm = mm, | 
 | 			.private = vma, | 
 | 		}; | 
 | 		if (is_vm_hugetlb_page(vma)) | 
 | 			continue; | 
 | 		ret = walk_page_range(vma->vm_start, vma->vm_end, | 
 | 						&mem_cgroup_move_charge_walk); | 
 | 		if (ret) | 
 | 			/* | 
 | 			 * means we have consumed all precharges and failed in | 
 | 			 * doing additional charge. Just abandon here. | 
 | 			 */ | 
 | 			break; | 
 | 	} | 
 | 	up_read(&mm->mmap_sem); | 
 | } | 
 |  | 
 | static void mem_cgroup_move_task(struct cgroup *cont, | 
 | 				 struct cgroup_taskset *tset) | 
 | { | 
 | 	struct task_struct *p = cgroup_taskset_first(tset); | 
 | 	struct mm_struct *mm = get_task_mm(p); | 
 |  | 
 | 	if (mm) { | 
 | 		if (mc.to) | 
 | 			mem_cgroup_move_charge(mm); | 
 | 		mmput(mm); | 
 | 	} | 
 | 	if (mc.to) | 
 | 		mem_cgroup_clear_mc(); | 
 | } | 
 | #else	/* !CONFIG_MMU */ | 
 | static int mem_cgroup_can_attach(struct cgroup *cgroup, | 
 | 				 struct cgroup_taskset *tset) | 
 | { | 
 | 	return 0; | 
 | } | 
 | static void mem_cgroup_cancel_attach(struct cgroup *cgroup, | 
 | 				     struct cgroup_taskset *tset) | 
 | { | 
 | } | 
 | static void mem_cgroup_move_task(struct cgroup *cont, | 
 | 				 struct cgroup_taskset *tset) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | struct cgroup_subsys mem_cgroup_subsys = { | 
 | 	.name = "memory", | 
 | 	.subsys_id = mem_cgroup_subsys_id, | 
 | 	.css_alloc = mem_cgroup_css_alloc, | 
 | 	.css_online = mem_cgroup_css_online, | 
 | 	.css_offline = mem_cgroup_css_offline, | 
 | 	.css_free = mem_cgroup_css_free, | 
 | 	.can_attach = mem_cgroup_can_attach, | 
 | 	.cancel_attach = mem_cgroup_cancel_attach, | 
 | 	.attach = mem_cgroup_move_task, | 
 | 	.base_cftypes = mem_cgroup_files, | 
 | 	.early_init = 0, | 
 | 	.use_id = 1, | 
 | }; | 
 |  | 
 | #ifdef CONFIG_MEMCG_SWAP | 
 | static int __init enable_swap_account(char *s) | 
 | { | 
 | 	/* consider enabled if no parameter or 1 is given */ | 
 | 	if (!strcmp(s, "1")) | 
 | 		really_do_swap_account = 1; | 
 | 	else if (!strcmp(s, "0")) | 
 | 		really_do_swap_account = 0; | 
 | 	return 1; | 
 | } | 
 | __setup("swapaccount=", enable_swap_account); | 
 |  | 
 | static void __init memsw_file_init(void) | 
 | { | 
 | 	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files)); | 
 | } | 
 |  | 
 | static void __init enable_swap_cgroup(void) | 
 | { | 
 | 	if (!mem_cgroup_disabled() && really_do_swap_account) { | 
 | 		do_swap_account = 1; | 
 | 		memsw_file_init(); | 
 | 	} | 
 | } | 
 |  | 
 | #else | 
 | static void __init enable_swap_cgroup(void) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * subsys_initcall() for memory controller. | 
 |  * | 
 |  * Some parts like hotcpu_notifier() have to be initialized from this context | 
 |  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically | 
 |  * everything that doesn't depend on a specific mem_cgroup structure should | 
 |  * be initialized from here. | 
 |  */ | 
 | static int __init mem_cgroup_init(void) | 
 | { | 
 | 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0); | 
 | 	enable_swap_cgroup(); | 
 | 	mem_cgroup_soft_limit_tree_init(); | 
 | 	memcg_stock_init(); | 
 | 	return 0; | 
 | } | 
 | subsys_initcall(mem_cgroup_init); |