|  | /* | 
|  | * Copyright (C) 2007 Oracle.  All rights reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public | 
|  | * License v2 as published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public | 
|  | * License along with this program; if not, write to the | 
|  | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 
|  | * Boston, MA 021110-1307, USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/fs.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/mpage.h> | 
|  | #include <linux/aio.h> | 
|  | #include <linux/falloc.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/statfs.h> | 
|  | #include <linux/compat.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/btrfs.h> | 
|  | #include "ctree.h" | 
|  | #include "disk-io.h" | 
|  | #include "transaction.h" | 
|  | #include "btrfs_inode.h" | 
|  | #include "print-tree.h" | 
|  | #include "tree-log.h" | 
|  | #include "locking.h" | 
|  | #include "volumes.h" | 
|  |  | 
|  | static struct kmem_cache *btrfs_inode_defrag_cachep; | 
|  | /* | 
|  | * when auto defrag is enabled we | 
|  | * queue up these defrag structs to remember which | 
|  | * inodes need defragging passes | 
|  | */ | 
|  | struct inode_defrag { | 
|  | struct rb_node rb_node; | 
|  | /* objectid */ | 
|  | u64 ino; | 
|  | /* | 
|  | * transid where the defrag was added, we search for | 
|  | * extents newer than this | 
|  | */ | 
|  | u64 transid; | 
|  |  | 
|  | /* root objectid */ | 
|  | u64 root; | 
|  |  | 
|  | /* last offset we were able to defrag */ | 
|  | u64 last_offset; | 
|  |  | 
|  | /* if we've wrapped around back to zero once already */ | 
|  | int cycled; | 
|  | }; | 
|  |  | 
|  | static int __compare_inode_defrag(struct inode_defrag *defrag1, | 
|  | struct inode_defrag *defrag2) | 
|  | { | 
|  | if (defrag1->root > defrag2->root) | 
|  | return 1; | 
|  | else if (defrag1->root < defrag2->root) | 
|  | return -1; | 
|  | else if (defrag1->ino > defrag2->ino) | 
|  | return 1; | 
|  | else if (defrag1->ino < defrag2->ino) | 
|  | return -1; | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* pop a record for an inode into the defrag tree.  The lock | 
|  | * must be held already | 
|  | * | 
|  | * If you're inserting a record for an older transid than an | 
|  | * existing record, the transid already in the tree is lowered | 
|  | * | 
|  | * If an existing record is found the defrag item you | 
|  | * pass in is freed | 
|  | */ | 
|  | static int __btrfs_add_inode_defrag(struct inode *inode, | 
|  | struct inode_defrag *defrag) | 
|  | { | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | struct inode_defrag *entry; | 
|  | struct rb_node **p; | 
|  | struct rb_node *parent = NULL; | 
|  | int ret; | 
|  |  | 
|  | p = &root->fs_info->defrag_inodes.rb_node; | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | entry = rb_entry(parent, struct inode_defrag, rb_node); | 
|  |  | 
|  | ret = __compare_inode_defrag(defrag, entry); | 
|  | if (ret < 0) | 
|  | p = &parent->rb_left; | 
|  | else if (ret > 0) | 
|  | p = &parent->rb_right; | 
|  | else { | 
|  | /* if we're reinserting an entry for | 
|  | * an old defrag run, make sure to | 
|  | * lower the transid of our existing record | 
|  | */ | 
|  | if (defrag->transid < entry->transid) | 
|  | entry->transid = defrag->transid; | 
|  | if (defrag->last_offset > entry->last_offset) | 
|  | entry->last_offset = defrag->last_offset; | 
|  | return -EEXIST; | 
|  | } | 
|  | } | 
|  | set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); | 
|  | rb_link_node(&defrag->rb_node, parent, p); | 
|  | rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int __need_auto_defrag(struct btrfs_root *root) | 
|  | { | 
|  | if (!btrfs_test_opt(root, AUTO_DEFRAG)) | 
|  | return 0; | 
|  |  | 
|  | if (btrfs_fs_closing(root->fs_info)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * insert a defrag record for this inode if auto defrag is | 
|  | * enabled | 
|  | */ | 
|  | int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, | 
|  | struct inode *inode) | 
|  | { | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | struct inode_defrag *defrag; | 
|  | u64 transid; | 
|  | int ret; | 
|  |  | 
|  | if (!__need_auto_defrag(root)) | 
|  | return 0; | 
|  |  | 
|  | if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) | 
|  | return 0; | 
|  |  | 
|  | if (trans) | 
|  | transid = trans->transid; | 
|  | else | 
|  | transid = BTRFS_I(inode)->root->last_trans; | 
|  |  | 
|  | defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); | 
|  | if (!defrag) | 
|  | return -ENOMEM; | 
|  |  | 
|  | defrag->ino = btrfs_ino(inode); | 
|  | defrag->transid = transid; | 
|  | defrag->root = root->root_key.objectid; | 
|  |  | 
|  | spin_lock(&root->fs_info->defrag_inodes_lock); | 
|  | if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) { | 
|  | /* | 
|  | * If we set IN_DEFRAG flag and evict the inode from memory, | 
|  | * and then re-read this inode, this new inode doesn't have | 
|  | * IN_DEFRAG flag. At the case, we may find the existed defrag. | 
|  | */ | 
|  | ret = __btrfs_add_inode_defrag(inode, defrag); | 
|  | if (ret) | 
|  | kmem_cache_free(btrfs_inode_defrag_cachep, defrag); | 
|  | } else { | 
|  | kmem_cache_free(btrfs_inode_defrag_cachep, defrag); | 
|  | } | 
|  | spin_unlock(&root->fs_info->defrag_inodes_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Requeue the defrag object. If there is a defrag object that points to | 
|  | * the same inode in the tree, we will merge them together (by | 
|  | * __btrfs_add_inode_defrag()) and free the one that we want to requeue. | 
|  | */ | 
|  | static void btrfs_requeue_inode_defrag(struct inode *inode, | 
|  | struct inode_defrag *defrag) | 
|  | { | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | int ret; | 
|  |  | 
|  | if (!__need_auto_defrag(root)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Here we don't check the IN_DEFRAG flag, because we need merge | 
|  | * them together. | 
|  | */ | 
|  | spin_lock(&root->fs_info->defrag_inodes_lock); | 
|  | ret = __btrfs_add_inode_defrag(inode, defrag); | 
|  | spin_unlock(&root->fs_info->defrag_inodes_lock); | 
|  | if (ret) | 
|  | goto out; | 
|  | return; | 
|  | out: | 
|  | kmem_cache_free(btrfs_inode_defrag_cachep, defrag); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * pick the defragable inode that we want, if it doesn't exist, we will get | 
|  | * the next one. | 
|  | */ | 
|  | static struct inode_defrag * | 
|  | btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) | 
|  | { | 
|  | struct inode_defrag *entry = NULL; | 
|  | struct inode_defrag tmp; | 
|  | struct rb_node *p; | 
|  | struct rb_node *parent = NULL; | 
|  | int ret; | 
|  |  | 
|  | tmp.ino = ino; | 
|  | tmp.root = root; | 
|  |  | 
|  | spin_lock(&fs_info->defrag_inodes_lock); | 
|  | p = fs_info->defrag_inodes.rb_node; | 
|  | while (p) { | 
|  | parent = p; | 
|  | entry = rb_entry(parent, struct inode_defrag, rb_node); | 
|  |  | 
|  | ret = __compare_inode_defrag(&tmp, entry); | 
|  | if (ret < 0) | 
|  | p = parent->rb_left; | 
|  | else if (ret > 0) | 
|  | p = parent->rb_right; | 
|  | else | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (parent && __compare_inode_defrag(&tmp, entry) > 0) { | 
|  | parent = rb_next(parent); | 
|  | if (parent) | 
|  | entry = rb_entry(parent, struct inode_defrag, rb_node); | 
|  | else | 
|  | entry = NULL; | 
|  | } | 
|  | out: | 
|  | if (entry) | 
|  | rb_erase(parent, &fs_info->defrag_inodes); | 
|  | spin_unlock(&fs_info->defrag_inodes_lock); | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct inode_defrag *defrag; | 
|  | struct rb_node *node; | 
|  |  | 
|  | spin_lock(&fs_info->defrag_inodes_lock); | 
|  | node = rb_first(&fs_info->defrag_inodes); | 
|  | while (node) { | 
|  | rb_erase(node, &fs_info->defrag_inodes); | 
|  | defrag = rb_entry(node, struct inode_defrag, rb_node); | 
|  | kmem_cache_free(btrfs_inode_defrag_cachep, defrag); | 
|  |  | 
|  | if (need_resched()) { | 
|  | spin_unlock(&fs_info->defrag_inodes_lock); | 
|  | cond_resched(); | 
|  | spin_lock(&fs_info->defrag_inodes_lock); | 
|  | } | 
|  |  | 
|  | node = rb_first(&fs_info->defrag_inodes); | 
|  | } | 
|  | spin_unlock(&fs_info->defrag_inodes_lock); | 
|  | } | 
|  |  | 
|  | #define BTRFS_DEFRAG_BATCH	1024 | 
|  |  | 
|  | static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, | 
|  | struct inode_defrag *defrag) | 
|  | { | 
|  | struct btrfs_root *inode_root; | 
|  | struct inode *inode; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_ioctl_defrag_range_args range; | 
|  | int num_defrag; | 
|  | int index; | 
|  | int ret; | 
|  |  | 
|  | /* get the inode */ | 
|  | key.objectid = defrag->root; | 
|  | btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); | 
|  | key.offset = (u64)-1; | 
|  |  | 
|  | index = srcu_read_lock(&fs_info->subvol_srcu); | 
|  |  | 
|  | inode_root = btrfs_read_fs_root_no_name(fs_info, &key); | 
|  | if (IS_ERR(inode_root)) { | 
|  | ret = PTR_ERR(inode_root); | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | key.objectid = defrag->ino; | 
|  | btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); | 
|  | key.offset = 0; | 
|  | inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL); | 
|  | if (IS_ERR(inode)) { | 
|  | ret = PTR_ERR(inode); | 
|  | goto cleanup; | 
|  | } | 
|  | srcu_read_unlock(&fs_info->subvol_srcu, index); | 
|  |  | 
|  | /* do a chunk of defrag */ | 
|  | clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); | 
|  | memset(&range, 0, sizeof(range)); | 
|  | range.len = (u64)-1; | 
|  | range.start = defrag->last_offset; | 
|  |  | 
|  | sb_start_write(fs_info->sb); | 
|  | num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, | 
|  | BTRFS_DEFRAG_BATCH); | 
|  | sb_end_write(fs_info->sb); | 
|  | /* | 
|  | * if we filled the whole defrag batch, there | 
|  | * must be more work to do.  Queue this defrag | 
|  | * again | 
|  | */ | 
|  | if (num_defrag == BTRFS_DEFRAG_BATCH) { | 
|  | defrag->last_offset = range.start; | 
|  | btrfs_requeue_inode_defrag(inode, defrag); | 
|  | } else if (defrag->last_offset && !defrag->cycled) { | 
|  | /* | 
|  | * we didn't fill our defrag batch, but | 
|  | * we didn't start at zero.  Make sure we loop | 
|  | * around to the start of the file. | 
|  | */ | 
|  | defrag->last_offset = 0; | 
|  | defrag->cycled = 1; | 
|  | btrfs_requeue_inode_defrag(inode, defrag); | 
|  | } else { | 
|  | kmem_cache_free(btrfs_inode_defrag_cachep, defrag); | 
|  | } | 
|  |  | 
|  | iput(inode); | 
|  | return 0; | 
|  | cleanup: | 
|  | srcu_read_unlock(&fs_info->subvol_srcu, index); | 
|  | kmem_cache_free(btrfs_inode_defrag_cachep, defrag); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * run through the list of inodes in the FS that need | 
|  | * defragging | 
|  | */ | 
|  | int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct inode_defrag *defrag; | 
|  | u64 first_ino = 0; | 
|  | u64 root_objectid = 0; | 
|  |  | 
|  | atomic_inc(&fs_info->defrag_running); | 
|  | while (1) { | 
|  | /* Pause the auto defragger. */ | 
|  | if (test_bit(BTRFS_FS_STATE_REMOUNTING, | 
|  | &fs_info->fs_state)) | 
|  | break; | 
|  |  | 
|  | if (!__need_auto_defrag(fs_info->tree_root)) | 
|  | break; | 
|  |  | 
|  | /* find an inode to defrag */ | 
|  | defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, | 
|  | first_ino); | 
|  | if (!defrag) { | 
|  | if (root_objectid || first_ino) { | 
|  | root_objectid = 0; | 
|  | first_ino = 0; | 
|  | continue; | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | first_ino = defrag->ino + 1; | 
|  | root_objectid = defrag->root; | 
|  |  | 
|  | __btrfs_run_defrag_inode(fs_info, defrag); | 
|  | } | 
|  | atomic_dec(&fs_info->defrag_running); | 
|  |  | 
|  | /* | 
|  | * during unmount, we use the transaction_wait queue to | 
|  | * wait for the defragger to stop | 
|  | */ | 
|  | wake_up(&fs_info->transaction_wait); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* simple helper to fault in pages and copy.  This should go away | 
|  | * and be replaced with calls into generic code. | 
|  | */ | 
|  | static noinline int btrfs_copy_from_user(loff_t pos, int num_pages, | 
|  | size_t write_bytes, | 
|  | struct page **prepared_pages, | 
|  | struct iov_iter *i) | 
|  | { | 
|  | size_t copied = 0; | 
|  | size_t total_copied = 0; | 
|  | int pg = 0; | 
|  | int offset = pos & (PAGE_CACHE_SIZE - 1); | 
|  |  | 
|  | while (write_bytes > 0) { | 
|  | size_t count = min_t(size_t, | 
|  | PAGE_CACHE_SIZE - offset, write_bytes); | 
|  | struct page *page = prepared_pages[pg]; | 
|  | /* | 
|  | * Copy data from userspace to the current page | 
|  | * | 
|  | * Disable pagefault to avoid recursive lock since | 
|  | * the pages are already locked | 
|  | */ | 
|  | pagefault_disable(); | 
|  | copied = iov_iter_copy_from_user_atomic(page, i, offset, count); | 
|  | pagefault_enable(); | 
|  |  | 
|  | /* Flush processor's dcache for this page */ | 
|  | flush_dcache_page(page); | 
|  |  | 
|  | /* | 
|  | * if we get a partial write, we can end up with | 
|  | * partially up to date pages.  These add | 
|  | * a lot of complexity, so make sure they don't | 
|  | * happen by forcing this copy to be retried. | 
|  | * | 
|  | * The rest of the btrfs_file_write code will fall | 
|  | * back to page at a time copies after we return 0. | 
|  | */ | 
|  | if (!PageUptodate(page) && copied < count) | 
|  | copied = 0; | 
|  |  | 
|  | iov_iter_advance(i, copied); | 
|  | write_bytes -= copied; | 
|  | total_copied += copied; | 
|  |  | 
|  | /* Return to btrfs_file_aio_write to fault page */ | 
|  | if (unlikely(copied == 0)) | 
|  | break; | 
|  |  | 
|  | if (unlikely(copied < PAGE_CACHE_SIZE - offset)) { | 
|  | offset += copied; | 
|  | } else { | 
|  | pg++; | 
|  | offset = 0; | 
|  | } | 
|  | } | 
|  | return total_copied; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * unlocks pages after btrfs_file_write is done with them | 
|  | */ | 
|  | static void btrfs_drop_pages(struct page **pages, size_t num_pages) | 
|  | { | 
|  | size_t i; | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | /* page checked is some magic around finding pages that | 
|  | * have been modified without going through btrfs_set_page_dirty | 
|  | * clear it here | 
|  | */ | 
|  | ClearPageChecked(pages[i]); | 
|  | unlock_page(pages[i]); | 
|  | mark_page_accessed(pages[i]); | 
|  | page_cache_release(pages[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * after copy_from_user, pages need to be dirtied and we need to make | 
|  | * sure holes are created between the current EOF and the start of | 
|  | * any next extents (if required). | 
|  | * | 
|  | * this also makes the decision about creating an inline extent vs | 
|  | * doing real data extents, marking pages dirty and delalloc as required. | 
|  | */ | 
|  | int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode, | 
|  | struct page **pages, size_t num_pages, | 
|  | loff_t pos, size_t write_bytes, | 
|  | struct extent_state **cached) | 
|  | { | 
|  | int err = 0; | 
|  | int i; | 
|  | u64 num_bytes; | 
|  | u64 start_pos; | 
|  | u64 end_of_last_block; | 
|  | u64 end_pos = pos + write_bytes; | 
|  | loff_t isize = i_size_read(inode); | 
|  |  | 
|  | start_pos = pos & ~((u64)root->sectorsize - 1); | 
|  | num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize); | 
|  |  | 
|  | end_of_last_block = start_pos + num_bytes - 1; | 
|  | err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, | 
|  | cached); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | struct page *p = pages[i]; | 
|  | SetPageUptodate(p); | 
|  | ClearPageChecked(p); | 
|  | set_page_dirty(p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * we've only changed i_size in ram, and we haven't updated | 
|  | * the disk i_size.  There is no need to log the inode | 
|  | * at this time. | 
|  | */ | 
|  | if (end_pos > isize) | 
|  | i_size_write(inode, end_pos); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this drops all the extents in the cache that intersect the range | 
|  | * [start, end].  Existing extents are split as required. | 
|  | */ | 
|  | void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end, | 
|  | int skip_pinned) | 
|  | { | 
|  | struct extent_map *em; | 
|  | struct extent_map *split = NULL; | 
|  | struct extent_map *split2 = NULL; | 
|  | struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; | 
|  | u64 len = end - start + 1; | 
|  | u64 gen; | 
|  | int ret; | 
|  | int testend = 1; | 
|  | unsigned long flags; | 
|  | int compressed = 0; | 
|  | bool modified; | 
|  |  | 
|  | WARN_ON(end < start); | 
|  | if (end == (u64)-1) { | 
|  | len = (u64)-1; | 
|  | testend = 0; | 
|  | } | 
|  | while (1) { | 
|  | int no_splits = 0; | 
|  |  | 
|  | modified = false; | 
|  | if (!split) | 
|  | split = alloc_extent_map(); | 
|  | if (!split2) | 
|  | split2 = alloc_extent_map(); | 
|  | if (!split || !split2) | 
|  | no_splits = 1; | 
|  |  | 
|  | write_lock(&em_tree->lock); | 
|  | em = lookup_extent_mapping(em_tree, start, len); | 
|  | if (!em) { | 
|  | write_unlock(&em_tree->lock); | 
|  | break; | 
|  | } | 
|  | flags = em->flags; | 
|  | gen = em->generation; | 
|  | if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { | 
|  | if (testend && em->start + em->len >= start + len) { | 
|  | free_extent_map(em); | 
|  | write_unlock(&em_tree->lock); | 
|  | break; | 
|  | } | 
|  | start = em->start + em->len; | 
|  | if (testend) | 
|  | len = start + len - (em->start + em->len); | 
|  | free_extent_map(em); | 
|  | write_unlock(&em_tree->lock); | 
|  | continue; | 
|  | } | 
|  | compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); | 
|  | clear_bit(EXTENT_FLAG_PINNED, &em->flags); | 
|  | clear_bit(EXTENT_FLAG_LOGGING, &flags); | 
|  | modified = !list_empty(&em->list); | 
|  | remove_extent_mapping(em_tree, em); | 
|  | if (no_splits) | 
|  | goto next; | 
|  |  | 
|  | if (em->start < start) { | 
|  | split->start = em->start; | 
|  | split->len = start - em->start; | 
|  |  | 
|  | if (em->block_start < EXTENT_MAP_LAST_BYTE) { | 
|  | split->orig_start = em->orig_start; | 
|  | split->block_start = em->block_start; | 
|  |  | 
|  | if (compressed) | 
|  | split->block_len = em->block_len; | 
|  | else | 
|  | split->block_len = split->len; | 
|  | split->orig_block_len = max(split->block_len, | 
|  | em->orig_block_len); | 
|  | split->ram_bytes = em->ram_bytes; | 
|  | } else { | 
|  | split->orig_start = split->start; | 
|  | split->block_len = 0; | 
|  | split->block_start = em->block_start; | 
|  | split->orig_block_len = 0; | 
|  | split->ram_bytes = split->len; | 
|  | } | 
|  |  | 
|  | split->generation = gen; | 
|  | split->bdev = em->bdev; | 
|  | split->flags = flags; | 
|  | split->compress_type = em->compress_type; | 
|  | ret = add_extent_mapping(em_tree, split, modified); | 
|  | BUG_ON(ret); /* Logic error */ | 
|  | free_extent_map(split); | 
|  | split = split2; | 
|  | split2 = NULL; | 
|  | } | 
|  | if (testend && em->start + em->len > start + len) { | 
|  | u64 diff = start + len - em->start; | 
|  |  | 
|  | split->start = start + len; | 
|  | split->len = em->start + em->len - (start + len); | 
|  | split->bdev = em->bdev; | 
|  | split->flags = flags; | 
|  | split->compress_type = em->compress_type; | 
|  | split->generation = gen; | 
|  |  | 
|  | if (em->block_start < EXTENT_MAP_LAST_BYTE) { | 
|  | split->orig_block_len = max(em->block_len, | 
|  | em->orig_block_len); | 
|  |  | 
|  | split->ram_bytes = em->ram_bytes; | 
|  | if (compressed) { | 
|  | split->block_len = em->block_len; | 
|  | split->block_start = em->block_start; | 
|  | split->orig_start = em->orig_start; | 
|  | } else { | 
|  | split->block_len = split->len; | 
|  | split->block_start = em->block_start | 
|  | + diff; | 
|  | split->orig_start = em->orig_start; | 
|  | } | 
|  | } else { | 
|  | split->ram_bytes = split->len; | 
|  | split->orig_start = split->start; | 
|  | split->block_len = 0; | 
|  | split->block_start = em->block_start; | 
|  | split->orig_block_len = 0; | 
|  | } | 
|  |  | 
|  | ret = add_extent_mapping(em_tree, split, modified); | 
|  | BUG_ON(ret); /* Logic error */ | 
|  | free_extent_map(split); | 
|  | split = NULL; | 
|  | } | 
|  | next: | 
|  | write_unlock(&em_tree->lock); | 
|  |  | 
|  | /* once for us */ | 
|  | free_extent_map(em); | 
|  | /* once for the tree*/ | 
|  | free_extent_map(em); | 
|  | } | 
|  | if (split) | 
|  | free_extent_map(split); | 
|  | if (split2) | 
|  | free_extent_map(split2); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this is very complex, but the basic idea is to drop all extents | 
|  | * in the range start - end.  hint_block is filled in with a block number | 
|  | * that would be a good hint to the block allocator for this file. | 
|  | * | 
|  | * If an extent intersects the range but is not entirely inside the range | 
|  | * it is either truncated or split.  Anything entirely inside the range | 
|  | * is deleted from the tree. | 
|  | */ | 
|  | int __btrfs_drop_extents(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, struct inode *inode, | 
|  | struct btrfs_path *path, u64 start, u64 end, | 
|  | u64 *drop_end, int drop_cache, | 
|  | int replace_extent, | 
|  | u32 extent_item_size, | 
|  | int *key_inserted) | 
|  | { | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_file_extent_item *fi; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key new_key; | 
|  | u64 ino = btrfs_ino(inode); | 
|  | u64 search_start = start; | 
|  | u64 disk_bytenr = 0; | 
|  | u64 num_bytes = 0; | 
|  | u64 extent_offset = 0; | 
|  | u64 extent_end = 0; | 
|  | int del_nr = 0; | 
|  | int del_slot = 0; | 
|  | int extent_type; | 
|  | int recow; | 
|  | int ret; | 
|  | int modify_tree = -1; | 
|  | int update_refs = (root->ref_cows || root == root->fs_info->tree_root); | 
|  | int found = 0; | 
|  | int leafs_visited = 0; | 
|  |  | 
|  | if (drop_cache) | 
|  | btrfs_drop_extent_cache(inode, start, end - 1, 0); | 
|  |  | 
|  | if (start >= BTRFS_I(inode)->disk_i_size) | 
|  | modify_tree = 0; | 
|  |  | 
|  | while (1) { | 
|  | recow = 0; | 
|  | ret = btrfs_lookup_file_extent(trans, root, path, ino, | 
|  | search_start, modify_tree); | 
|  | if (ret < 0) | 
|  | break; | 
|  | if (ret > 0 && path->slots[0] > 0 && search_start == start) { | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); | 
|  | if (key.objectid == ino && | 
|  | key.type == BTRFS_EXTENT_DATA_KEY) | 
|  | path->slots[0]--; | 
|  | } | 
|  | ret = 0; | 
|  | leafs_visited++; | 
|  | next_slot: | 
|  | leaf = path->nodes[0]; | 
|  | if (path->slots[0] >= btrfs_header_nritems(leaf)) { | 
|  | BUG_ON(del_nr > 0); | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret < 0) | 
|  | break; | 
|  | if (ret > 0) { | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | leafs_visited++; | 
|  | leaf = path->nodes[0]; | 
|  | recow = 1; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | if (key.objectid > ino || | 
|  | key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) | 
|  | break; | 
|  |  | 
|  | fi = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  | extent_type = btrfs_file_extent_type(leaf, fi); | 
|  |  | 
|  | if (extent_type == BTRFS_FILE_EXTENT_REG || | 
|  | extent_type == BTRFS_FILE_EXTENT_PREALLOC) { | 
|  | disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); | 
|  | num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); | 
|  | extent_offset = btrfs_file_extent_offset(leaf, fi); | 
|  | extent_end = key.offset + | 
|  | btrfs_file_extent_num_bytes(leaf, fi); | 
|  | } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { | 
|  | extent_end = key.offset + | 
|  | btrfs_file_extent_inline_len(leaf, | 
|  | path->slots[0], fi); | 
|  | } else { | 
|  | WARN_ON(1); | 
|  | extent_end = search_start; | 
|  | } | 
|  |  | 
|  | if (extent_end <= search_start) { | 
|  | path->slots[0]++; | 
|  | goto next_slot; | 
|  | } | 
|  |  | 
|  | found = 1; | 
|  | search_start = max(key.offset, start); | 
|  | if (recow || !modify_tree) { | 
|  | modify_tree = -1; | 
|  | btrfs_release_path(path); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *     | - range to drop - | | 
|  | *  | -------- extent -------- | | 
|  | */ | 
|  | if (start > key.offset && end < extent_end) { | 
|  | BUG_ON(del_nr > 0); | 
|  | BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE); | 
|  |  | 
|  | memcpy(&new_key, &key, sizeof(new_key)); | 
|  | new_key.offset = start; | 
|  | ret = btrfs_duplicate_item(trans, root, path, | 
|  | &new_key); | 
|  | if (ret == -EAGAIN) { | 
|  | btrfs_release_path(path); | 
|  | continue; | 
|  | } | 
|  | if (ret < 0) | 
|  | break; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | fi = btrfs_item_ptr(leaf, path->slots[0] - 1, | 
|  | struct btrfs_file_extent_item); | 
|  | btrfs_set_file_extent_num_bytes(leaf, fi, | 
|  | start - key.offset); | 
|  |  | 
|  | fi = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  |  | 
|  | extent_offset += start - key.offset; | 
|  | btrfs_set_file_extent_offset(leaf, fi, extent_offset); | 
|  | btrfs_set_file_extent_num_bytes(leaf, fi, | 
|  | extent_end - start); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  |  | 
|  | if (update_refs && disk_bytenr > 0) { | 
|  | ret = btrfs_inc_extent_ref(trans, root, | 
|  | disk_bytenr, num_bytes, 0, | 
|  | root->root_key.objectid, | 
|  | new_key.objectid, | 
|  | start - extent_offset, 0); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  | } | 
|  | key.offset = start; | 
|  | } | 
|  | /* | 
|  | *  | ---- range to drop ----- | | 
|  | *      | -------- extent -------- | | 
|  | */ | 
|  | if (start <= key.offset && end < extent_end) { | 
|  | BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE); | 
|  |  | 
|  | memcpy(&new_key, &key, sizeof(new_key)); | 
|  | new_key.offset = end; | 
|  | btrfs_set_item_key_safe(root, path, &new_key); | 
|  |  | 
|  | extent_offset += end - key.offset; | 
|  | btrfs_set_file_extent_offset(leaf, fi, extent_offset); | 
|  | btrfs_set_file_extent_num_bytes(leaf, fi, | 
|  | extent_end - end); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | if (update_refs && disk_bytenr > 0) | 
|  | inode_sub_bytes(inode, end - key.offset); | 
|  | break; | 
|  | } | 
|  |  | 
|  | search_start = extent_end; | 
|  | /* | 
|  | *       | ---- range to drop ----- | | 
|  | *  | -------- extent -------- | | 
|  | */ | 
|  | if (start > key.offset && end >= extent_end) { | 
|  | BUG_ON(del_nr > 0); | 
|  | BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE); | 
|  |  | 
|  | btrfs_set_file_extent_num_bytes(leaf, fi, | 
|  | start - key.offset); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | if (update_refs && disk_bytenr > 0) | 
|  | inode_sub_bytes(inode, extent_end - start); | 
|  | if (end == extent_end) | 
|  | break; | 
|  |  | 
|  | path->slots[0]++; | 
|  | goto next_slot; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  | ---- range to drop ----- | | 
|  | *    | ------ extent ------ | | 
|  | */ | 
|  | if (start <= key.offset && end >= extent_end) { | 
|  | if (del_nr == 0) { | 
|  | del_slot = path->slots[0]; | 
|  | del_nr = 1; | 
|  | } else { | 
|  | BUG_ON(del_slot + del_nr != path->slots[0]); | 
|  | del_nr++; | 
|  | } | 
|  |  | 
|  | if (update_refs && | 
|  | extent_type == BTRFS_FILE_EXTENT_INLINE) { | 
|  | inode_sub_bytes(inode, | 
|  | extent_end - key.offset); | 
|  | extent_end = ALIGN(extent_end, | 
|  | root->sectorsize); | 
|  | } else if (update_refs && disk_bytenr > 0) { | 
|  | ret = btrfs_free_extent(trans, root, | 
|  | disk_bytenr, num_bytes, 0, | 
|  | root->root_key.objectid, | 
|  | key.objectid, key.offset - | 
|  | extent_offset, 0); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  | inode_sub_bytes(inode, | 
|  | extent_end - key.offset); | 
|  | } | 
|  |  | 
|  | if (end == extent_end) | 
|  | break; | 
|  |  | 
|  | if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { | 
|  | path->slots[0]++; | 
|  | goto next_slot; | 
|  | } | 
|  |  | 
|  | ret = btrfs_del_items(trans, root, path, del_slot, | 
|  | del_nr); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, root, ret); | 
|  | break; | 
|  | } | 
|  |  | 
|  | del_nr = 0; | 
|  | del_slot = 0; | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | BUG_ON(1); | 
|  | } | 
|  |  | 
|  | if (!ret && del_nr > 0) { | 
|  | /* | 
|  | * Set path->slots[0] to first slot, so that after the delete | 
|  | * if items are move off from our leaf to its immediate left or | 
|  | * right neighbor leafs, we end up with a correct and adjusted | 
|  | * path->slots[0] for our insertion. | 
|  | */ | 
|  | path->slots[0] = del_slot; | 
|  | ret = btrfs_del_items(trans, root, path, del_slot, del_nr); | 
|  | if (ret) | 
|  | btrfs_abort_transaction(trans, root, ret); | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | /* | 
|  | * leaf eb has flag EXTENT_BUFFER_STALE if it was deleted (that | 
|  | * is, its contents got pushed to its neighbors), in which case | 
|  | * it means path->locks[0] == 0 | 
|  | */ | 
|  | if (!ret && replace_extent && leafs_visited == 1 && | 
|  | path->locks[0] && | 
|  | btrfs_leaf_free_space(root, leaf) >= | 
|  | sizeof(struct btrfs_item) + extent_item_size) { | 
|  |  | 
|  | key.objectid = ino; | 
|  | key.type = BTRFS_EXTENT_DATA_KEY; | 
|  | key.offset = start; | 
|  | setup_items_for_insert(root, path, &key, | 
|  | &extent_item_size, | 
|  | extent_item_size, | 
|  | sizeof(struct btrfs_item) + | 
|  | extent_item_size, 1); | 
|  | *key_inserted = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!replace_extent || !(*key_inserted)) | 
|  | btrfs_release_path(path); | 
|  | if (drop_end) | 
|  | *drop_end = found ? min(end, extent_end) : end; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_drop_extents(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, struct inode *inode, u64 start, | 
|  | u64 end, int drop_cache) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | int ret; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  | ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL, | 
|  | drop_cache, 0, 0, NULL); | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int extent_mergeable(struct extent_buffer *leaf, int slot, | 
|  | u64 objectid, u64 bytenr, u64 orig_offset, | 
|  | u64 *start, u64 *end) | 
|  | { | 
|  | struct btrfs_file_extent_item *fi; | 
|  | struct btrfs_key key; | 
|  | u64 extent_end; | 
|  |  | 
|  | if (slot < 0 || slot >= btrfs_header_nritems(leaf)) | 
|  | return 0; | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, slot); | 
|  | if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) | 
|  | return 0; | 
|  |  | 
|  | fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); | 
|  | if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || | 
|  | btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || | 
|  | btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || | 
|  | btrfs_file_extent_compression(leaf, fi) || | 
|  | btrfs_file_extent_encryption(leaf, fi) || | 
|  | btrfs_file_extent_other_encoding(leaf, fi)) | 
|  | return 0; | 
|  |  | 
|  | extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); | 
|  | if ((*start && *start != key.offset) || (*end && *end != extent_end)) | 
|  | return 0; | 
|  |  | 
|  | *start = key.offset; | 
|  | *end = extent_end; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mark extent in the range start - end as written. | 
|  | * | 
|  | * This changes extent type from 'pre-allocated' to 'regular'. If only | 
|  | * part of extent is marked as written, the extent will be split into | 
|  | * two or three. | 
|  | */ | 
|  | int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, | 
|  | struct inode *inode, u64 start, u64 end) | 
|  | { | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_file_extent_item *fi; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key new_key; | 
|  | u64 bytenr; | 
|  | u64 num_bytes; | 
|  | u64 extent_end; | 
|  | u64 orig_offset; | 
|  | u64 other_start; | 
|  | u64 other_end; | 
|  | u64 split; | 
|  | int del_nr = 0; | 
|  | int del_slot = 0; | 
|  | int recow; | 
|  | int ret; | 
|  | u64 ino = btrfs_ino(inode); | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  | again: | 
|  | recow = 0; | 
|  | split = start; | 
|  | key.objectid = ino; | 
|  | key.type = BTRFS_EXTENT_DATA_KEY; | 
|  | key.offset = split; | 
|  |  | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret > 0 && path->slots[0] > 0) | 
|  | path->slots[0]--; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY); | 
|  | fi = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  | BUG_ON(btrfs_file_extent_type(leaf, fi) != | 
|  | BTRFS_FILE_EXTENT_PREALLOC); | 
|  | extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); | 
|  | BUG_ON(key.offset > start || extent_end < end); | 
|  |  | 
|  | bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); | 
|  | num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); | 
|  | orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); | 
|  | memcpy(&new_key, &key, sizeof(new_key)); | 
|  |  | 
|  | if (start == key.offset && end < extent_end) { | 
|  | other_start = 0; | 
|  | other_end = start; | 
|  | if (extent_mergeable(leaf, path->slots[0] - 1, | 
|  | ino, bytenr, orig_offset, | 
|  | &other_start, &other_end)) { | 
|  | new_key.offset = end; | 
|  | btrfs_set_item_key_safe(root, path, &new_key); | 
|  | fi = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  | btrfs_set_file_extent_generation(leaf, fi, | 
|  | trans->transid); | 
|  | btrfs_set_file_extent_num_bytes(leaf, fi, | 
|  | extent_end - end); | 
|  | btrfs_set_file_extent_offset(leaf, fi, | 
|  | end - orig_offset); | 
|  | fi = btrfs_item_ptr(leaf, path->slots[0] - 1, | 
|  | struct btrfs_file_extent_item); | 
|  | btrfs_set_file_extent_generation(leaf, fi, | 
|  | trans->transid); | 
|  | btrfs_set_file_extent_num_bytes(leaf, fi, | 
|  | end - other_start); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (start > key.offset && end == extent_end) { | 
|  | other_start = end; | 
|  | other_end = 0; | 
|  | if (extent_mergeable(leaf, path->slots[0] + 1, | 
|  | ino, bytenr, orig_offset, | 
|  | &other_start, &other_end)) { | 
|  | fi = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  | btrfs_set_file_extent_num_bytes(leaf, fi, | 
|  | start - key.offset); | 
|  | btrfs_set_file_extent_generation(leaf, fi, | 
|  | trans->transid); | 
|  | path->slots[0]++; | 
|  | new_key.offset = start; | 
|  | btrfs_set_item_key_safe(root, path, &new_key); | 
|  |  | 
|  | fi = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  | btrfs_set_file_extent_generation(leaf, fi, | 
|  | trans->transid); | 
|  | btrfs_set_file_extent_num_bytes(leaf, fi, | 
|  | other_end - start); | 
|  | btrfs_set_file_extent_offset(leaf, fi, | 
|  | start - orig_offset); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | while (start > key.offset || end < extent_end) { | 
|  | if (key.offset == start) | 
|  | split = end; | 
|  |  | 
|  | new_key.offset = split; | 
|  | ret = btrfs_duplicate_item(trans, root, path, &new_key); | 
|  | if (ret == -EAGAIN) { | 
|  | btrfs_release_path(path); | 
|  | goto again; | 
|  | } | 
|  | if (ret < 0) { | 
|  | btrfs_abort_transaction(trans, root, ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | fi = btrfs_item_ptr(leaf, path->slots[0] - 1, | 
|  | struct btrfs_file_extent_item); | 
|  | btrfs_set_file_extent_generation(leaf, fi, trans->transid); | 
|  | btrfs_set_file_extent_num_bytes(leaf, fi, | 
|  | split - key.offset); | 
|  |  | 
|  | fi = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  |  | 
|  | btrfs_set_file_extent_generation(leaf, fi, trans->transid); | 
|  | btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); | 
|  | btrfs_set_file_extent_num_bytes(leaf, fi, | 
|  | extent_end - split); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  |  | 
|  | ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0, | 
|  | root->root_key.objectid, | 
|  | ino, orig_offset, 0); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  |  | 
|  | if (split == start) { | 
|  | key.offset = start; | 
|  | } else { | 
|  | BUG_ON(start != key.offset); | 
|  | path->slots[0]--; | 
|  | extent_end = end; | 
|  | } | 
|  | recow = 1; | 
|  | } | 
|  |  | 
|  | other_start = end; | 
|  | other_end = 0; | 
|  | if (extent_mergeable(leaf, path->slots[0] + 1, | 
|  | ino, bytenr, orig_offset, | 
|  | &other_start, &other_end)) { | 
|  | if (recow) { | 
|  | btrfs_release_path(path); | 
|  | goto again; | 
|  | } | 
|  | extent_end = other_end; | 
|  | del_slot = path->slots[0] + 1; | 
|  | del_nr++; | 
|  | ret = btrfs_free_extent(trans, root, bytenr, num_bytes, | 
|  | 0, root->root_key.objectid, | 
|  | ino, orig_offset, 0); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  | } | 
|  | other_start = 0; | 
|  | other_end = start; | 
|  | if (extent_mergeable(leaf, path->slots[0] - 1, | 
|  | ino, bytenr, orig_offset, | 
|  | &other_start, &other_end)) { | 
|  | if (recow) { | 
|  | btrfs_release_path(path); | 
|  | goto again; | 
|  | } | 
|  | key.offset = other_start; | 
|  | del_slot = path->slots[0]; | 
|  | del_nr++; | 
|  | ret = btrfs_free_extent(trans, root, bytenr, num_bytes, | 
|  | 0, root->root_key.objectid, | 
|  | ino, orig_offset, 0); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  | } | 
|  | if (del_nr == 0) { | 
|  | fi = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  | btrfs_set_file_extent_type(leaf, fi, | 
|  | BTRFS_FILE_EXTENT_REG); | 
|  | btrfs_set_file_extent_generation(leaf, fi, trans->transid); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | } else { | 
|  | fi = btrfs_item_ptr(leaf, del_slot - 1, | 
|  | struct btrfs_file_extent_item); | 
|  | btrfs_set_file_extent_type(leaf, fi, | 
|  | BTRFS_FILE_EXTENT_REG); | 
|  | btrfs_set_file_extent_generation(leaf, fi, trans->transid); | 
|  | btrfs_set_file_extent_num_bytes(leaf, fi, | 
|  | extent_end - key.offset); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  |  | 
|  | ret = btrfs_del_items(trans, root, path, del_slot, del_nr); | 
|  | if (ret < 0) { | 
|  | btrfs_abort_transaction(trans, root, ret); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * on error we return an unlocked page and the error value | 
|  | * on success we return a locked page and 0 | 
|  | */ | 
|  | static int prepare_uptodate_page(struct page *page, u64 pos, | 
|  | bool force_uptodate) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) && | 
|  | !PageUptodate(page)) { | 
|  | ret = btrfs_readpage(NULL, page); | 
|  | if (ret) | 
|  | return ret; | 
|  | lock_page(page); | 
|  | if (!PageUptodate(page)) { | 
|  | unlock_page(page); | 
|  | return -EIO; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this just gets pages into the page cache and locks them down. | 
|  | */ | 
|  | static noinline int prepare_pages(struct inode *inode, struct page **pages, | 
|  | size_t num_pages, loff_t pos, | 
|  | size_t write_bytes, bool force_uptodate) | 
|  | { | 
|  | int i; | 
|  | unsigned long index = pos >> PAGE_CACHE_SHIFT; | 
|  | gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); | 
|  | int err = 0; | 
|  | int faili; | 
|  |  | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | pages[i] = find_or_create_page(inode->i_mapping, index + i, | 
|  | mask | __GFP_WRITE); | 
|  | if (!pages[i]) { | 
|  | faili = i - 1; | 
|  | err = -ENOMEM; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | if (i == 0) | 
|  | err = prepare_uptodate_page(pages[i], pos, | 
|  | force_uptodate); | 
|  | if (i == num_pages - 1) | 
|  | err = prepare_uptodate_page(pages[i], | 
|  | pos + write_bytes, false); | 
|  | if (err) { | 
|  | page_cache_release(pages[i]); | 
|  | faili = i - 1; | 
|  | goto fail; | 
|  | } | 
|  | wait_on_page_writeback(pages[i]); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | fail: | 
|  | while (faili >= 0) { | 
|  | unlock_page(pages[faili]); | 
|  | page_cache_release(pages[faili]); | 
|  | faili--; | 
|  | } | 
|  | return err; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function locks the extent and properly waits for data=ordered extents | 
|  | * to finish before allowing the pages to be modified if need. | 
|  | * | 
|  | * The return value: | 
|  | * 1 - the extent is locked | 
|  | * 0 - the extent is not locked, and everything is OK | 
|  | * -EAGAIN - need re-prepare the pages | 
|  | * the other < 0 number - Something wrong happens | 
|  | */ | 
|  | static noinline int | 
|  | lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages, | 
|  | size_t num_pages, loff_t pos, | 
|  | u64 *lockstart, u64 *lockend, | 
|  | struct extent_state **cached_state) | 
|  | { | 
|  | u64 start_pos; | 
|  | u64 last_pos; | 
|  | int i; | 
|  | int ret = 0; | 
|  |  | 
|  | start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1); | 
|  | last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1; | 
|  |  | 
|  | if (start_pos < inode->i_size) { | 
|  | struct btrfs_ordered_extent *ordered; | 
|  | lock_extent_bits(&BTRFS_I(inode)->io_tree, | 
|  | start_pos, last_pos, 0, cached_state); | 
|  | ordered = btrfs_lookup_first_ordered_extent(inode, last_pos); | 
|  | if (ordered && | 
|  | ordered->file_offset + ordered->len > start_pos && | 
|  | ordered->file_offset <= last_pos) { | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | unlock_extent_cached(&BTRFS_I(inode)->io_tree, | 
|  | start_pos, last_pos, | 
|  | cached_state, GFP_NOFS); | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | unlock_page(pages[i]); | 
|  | page_cache_release(pages[i]); | 
|  | } | 
|  | ret = btrfs_wait_ordered_range(inode, start_pos, | 
|  | last_pos - start_pos + 1); | 
|  | if (ret) | 
|  | return ret; | 
|  | else | 
|  | return -EAGAIN; | 
|  | } | 
|  | if (ordered) | 
|  | btrfs_put_ordered_extent(ordered); | 
|  |  | 
|  | clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, | 
|  | last_pos, EXTENT_DIRTY | EXTENT_DELALLOC | | 
|  | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, | 
|  | 0, 0, cached_state, GFP_NOFS); | 
|  | *lockstart = start_pos; | 
|  | *lockend = last_pos; | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | if (clear_page_dirty_for_io(pages[i])) | 
|  | account_page_redirty(pages[i]); | 
|  | set_page_extent_mapped(pages[i]); | 
|  | WARN_ON(!PageLocked(pages[i])); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int check_can_nocow(struct inode *inode, loff_t pos, | 
|  | size_t *write_bytes) | 
|  | { | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | struct btrfs_ordered_extent *ordered; | 
|  | u64 lockstart, lockend; | 
|  | u64 num_bytes; | 
|  | int ret; | 
|  |  | 
|  | lockstart = round_down(pos, root->sectorsize); | 
|  | lockend = lockstart + round_up(*write_bytes, root->sectorsize) - 1; | 
|  |  | 
|  | while (1) { | 
|  | lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); | 
|  | ordered = btrfs_lookup_ordered_range(inode, lockstart, | 
|  | lockend - lockstart + 1); | 
|  | if (!ordered) { | 
|  | break; | 
|  | } | 
|  | unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); | 
|  | btrfs_start_ordered_extent(inode, ordered, 1); | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | } | 
|  |  | 
|  | num_bytes = lockend - lockstart + 1; | 
|  | ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL); | 
|  | if (ret <= 0) { | 
|  | ret = 0; | 
|  | } else { | 
|  | clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, | 
|  | EXTENT_DIRTY | EXTENT_DELALLOC | | 
|  | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, | 
|  | NULL, GFP_NOFS); | 
|  | *write_bytes = min_t(size_t, *write_bytes, num_bytes); | 
|  | } | 
|  |  | 
|  | unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline ssize_t __btrfs_buffered_write(struct file *file, | 
|  | struct iov_iter *i, | 
|  | loff_t pos) | 
|  | { | 
|  | struct inode *inode = file_inode(file); | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | struct page **pages = NULL; | 
|  | struct extent_state *cached_state = NULL; | 
|  | u64 release_bytes = 0; | 
|  | u64 lockstart; | 
|  | u64 lockend; | 
|  | unsigned long first_index; | 
|  | size_t num_written = 0; | 
|  | int nrptrs; | 
|  | int ret = 0; | 
|  | bool only_release_metadata = false; | 
|  | bool force_page_uptodate = false; | 
|  | bool need_unlock; | 
|  |  | 
|  | nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) / | 
|  | PAGE_CACHE_SIZE, PAGE_CACHE_SIZE / | 
|  | (sizeof(struct page *))); | 
|  | nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); | 
|  | nrptrs = max(nrptrs, 8); | 
|  | pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL); | 
|  | if (!pages) | 
|  | return -ENOMEM; | 
|  |  | 
|  | first_index = pos >> PAGE_CACHE_SHIFT; | 
|  |  | 
|  | while (iov_iter_count(i) > 0) { | 
|  | size_t offset = pos & (PAGE_CACHE_SIZE - 1); | 
|  | size_t write_bytes = min(iov_iter_count(i), | 
|  | nrptrs * (size_t)PAGE_CACHE_SIZE - | 
|  | offset); | 
|  | size_t num_pages = (write_bytes + offset + | 
|  | PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; | 
|  | size_t reserve_bytes; | 
|  | size_t dirty_pages; | 
|  | size_t copied; | 
|  |  | 
|  | WARN_ON(num_pages > nrptrs); | 
|  |  | 
|  | /* | 
|  | * Fault pages before locking them in prepare_pages | 
|  | * to avoid recursive lock | 
|  | */ | 
|  | if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { | 
|  | ret = -EFAULT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | reserve_bytes = num_pages << PAGE_CACHE_SHIFT; | 
|  | ret = btrfs_check_data_free_space(inode, reserve_bytes); | 
|  | if (ret == -ENOSPC && | 
|  | (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | | 
|  | BTRFS_INODE_PREALLOC))) { | 
|  | ret = check_can_nocow(inode, pos, &write_bytes); | 
|  | if (ret > 0) { | 
|  | only_release_metadata = true; | 
|  | /* | 
|  | * our prealloc extent may be smaller than | 
|  | * write_bytes, so scale down. | 
|  | */ | 
|  | num_pages = (write_bytes + offset + | 
|  | PAGE_CACHE_SIZE - 1) >> | 
|  | PAGE_CACHE_SHIFT; | 
|  | reserve_bytes = num_pages << PAGE_CACHE_SHIFT; | 
|  | ret = 0; | 
|  | } else { | 
|  | ret = -ENOSPC; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes); | 
|  | if (ret) { | 
|  | if (!only_release_metadata) | 
|  | btrfs_free_reserved_data_space(inode, | 
|  | reserve_bytes); | 
|  | break; | 
|  | } | 
|  |  | 
|  | release_bytes = reserve_bytes; | 
|  | need_unlock = false; | 
|  | again: | 
|  | /* | 
|  | * This is going to setup the pages array with the number of | 
|  | * pages we want, so we don't really need to worry about the | 
|  | * contents of pages from loop to loop | 
|  | */ | 
|  | ret = prepare_pages(inode, pages, num_pages, | 
|  | pos, write_bytes, | 
|  | force_page_uptodate); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages, | 
|  | pos, &lockstart, &lockend, | 
|  | &cached_state); | 
|  | if (ret < 0) { | 
|  | if (ret == -EAGAIN) | 
|  | goto again; | 
|  | break; | 
|  | } else if (ret > 0) { | 
|  | need_unlock = true; | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | copied = btrfs_copy_from_user(pos, num_pages, | 
|  | write_bytes, pages, i); | 
|  |  | 
|  | /* | 
|  | * if we have trouble faulting in the pages, fall | 
|  | * back to one page at a time | 
|  | */ | 
|  | if (copied < write_bytes) | 
|  | nrptrs = 1; | 
|  |  | 
|  | if (copied == 0) { | 
|  | force_page_uptodate = true; | 
|  | dirty_pages = 0; | 
|  | } else { | 
|  | force_page_uptodate = false; | 
|  | dirty_pages = (copied + offset + | 
|  | PAGE_CACHE_SIZE - 1) >> | 
|  | PAGE_CACHE_SHIFT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we had a short copy we need to release the excess delaloc | 
|  | * bytes we reserved.  We need to increment outstanding_extents | 
|  | * because btrfs_delalloc_release_space will decrement it, but | 
|  | * we still have an outstanding extent for the chunk we actually | 
|  | * managed to copy. | 
|  | */ | 
|  | if (num_pages > dirty_pages) { | 
|  | release_bytes = (num_pages - dirty_pages) << | 
|  | PAGE_CACHE_SHIFT; | 
|  | if (copied > 0) { | 
|  | spin_lock(&BTRFS_I(inode)->lock); | 
|  | BTRFS_I(inode)->outstanding_extents++; | 
|  | spin_unlock(&BTRFS_I(inode)->lock); | 
|  | } | 
|  | if (only_release_metadata) | 
|  | btrfs_delalloc_release_metadata(inode, | 
|  | release_bytes); | 
|  | else | 
|  | btrfs_delalloc_release_space(inode, | 
|  | release_bytes); | 
|  | } | 
|  |  | 
|  | release_bytes = dirty_pages << PAGE_CACHE_SHIFT; | 
|  |  | 
|  | if (copied > 0) | 
|  | ret = btrfs_dirty_pages(root, inode, pages, | 
|  | dirty_pages, pos, copied, | 
|  | NULL); | 
|  | if (need_unlock) | 
|  | unlock_extent_cached(&BTRFS_I(inode)->io_tree, | 
|  | lockstart, lockend, &cached_state, | 
|  | GFP_NOFS); | 
|  | if (ret) { | 
|  | btrfs_drop_pages(pages, num_pages); | 
|  | break; | 
|  | } | 
|  |  | 
|  | release_bytes = 0; | 
|  | if (only_release_metadata && copied > 0) { | 
|  | u64 lockstart = round_down(pos, root->sectorsize); | 
|  | u64 lockend = lockstart + | 
|  | (dirty_pages << PAGE_CACHE_SHIFT) - 1; | 
|  |  | 
|  | set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, | 
|  | lockend, EXTENT_NORESERVE, NULL, | 
|  | NULL, GFP_NOFS); | 
|  | only_release_metadata = false; | 
|  | } | 
|  |  | 
|  | btrfs_drop_pages(pages, num_pages); | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | balance_dirty_pages_ratelimited(inode->i_mapping); | 
|  | if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1) | 
|  | btrfs_btree_balance_dirty(root); | 
|  |  | 
|  | pos += copied; | 
|  | num_written += copied; | 
|  | } | 
|  |  | 
|  | kfree(pages); | 
|  |  | 
|  | if (release_bytes) { | 
|  | if (only_release_metadata) | 
|  | btrfs_delalloc_release_metadata(inode, release_bytes); | 
|  | else | 
|  | btrfs_delalloc_release_space(inode, release_bytes); | 
|  | } | 
|  |  | 
|  | return num_written ? num_written : ret; | 
|  | } | 
|  |  | 
|  | static ssize_t __btrfs_direct_write(struct kiocb *iocb, | 
|  | const struct iovec *iov, | 
|  | unsigned long nr_segs, loff_t pos, | 
|  | loff_t *ppos, size_t count, size_t ocount) | 
|  | { | 
|  | struct file *file = iocb->ki_filp; | 
|  | struct iov_iter i; | 
|  | ssize_t written; | 
|  | ssize_t written_buffered; | 
|  | loff_t endbyte; | 
|  | int err; | 
|  |  | 
|  | written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos, | 
|  | count, ocount); | 
|  |  | 
|  | if (written < 0 || written == count) | 
|  | return written; | 
|  |  | 
|  | pos += written; | 
|  | count -= written; | 
|  | iov_iter_init(&i, iov, nr_segs, count, written); | 
|  | written_buffered = __btrfs_buffered_write(file, &i, pos); | 
|  | if (written_buffered < 0) { | 
|  | err = written_buffered; | 
|  | goto out; | 
|  | } | 
|  | endbyte = pos + written_buffered - 1; | 
|  | err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte); | 
|  | if (err) | 
|  | goto out; | 
|  | written += written_buffered; | 
|  | *ppos = pos + written_buffered; | 
|  | invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT, | 
|  | endbyte >> PAGE_CACHE_SHIFT); | 
|  | out: | 
|  | return written ? written : err; | 
|  | } | 
|  |  | 
|  | static void update_time_for_write(struct inode *inode) | 
|  | { | 
|  | struct timespec now; | 
|  |  | 
|  | if (IS_NOCMTIME(inode)) | 
|  | return; | 
|  |  | 
|  | now = current_fs_time(inode->i_sb); | 
|  | if (!timespec_equal(&inode->i_mtime, &now)) | 
|  | inode->i_mtime = now; | 
|  |  | 
|  | if (!timespec_equal(&inode->i_ctime, &now)) | 
|  | inode->i_ctime = now; | 
|  |  | 
|  | if (IS_I_VERSION(inode)) | 
|  | inode_inc_iversion(inode); | 
|  | } | 
|  |  | 
|  | static ssize_t btrfs_file_aio_write(struct kiocb *iocb, | 
|  | const struct iovec *iov, | 
|  | unsigned long nr_segs, loff_t pos) | 
|  | { | 
|  | struct file *file = iocb->ki_filp; | 
|  | struct inode *inode = file_inode(file); | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | loff_t *ppos = &iocb->ki_pos; | 
|  | u64 start_pos; | 
|  | ssize_t num_written = 0; | 
|  | ssize_t err = 0; | 
|  | size_t count, ocount; | 
|  | bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host); | 
|  |  | 
|  | mutex_lock(&inode->i_mutex); | 
|  |  | 
|  | err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); | 
|  | if (err) { | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | goto out; | 
|  | } | 
|  | count = ocount; | 
|  |  | 
|  | current->backing_dev_info = inode->i_mapping->backing_dev_info; | 
|  | err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); | 
|  | if (err) { | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (count == 0) { | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | err = file_remove_suid(file); | 
|  | if (err) { | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If BTRFS flips readonly due to some impossible error | 
|  | * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), | 
|  | * although we have opened a file as writable, we have | 
|  | * to stop this write operation to ensure FS consistency. | 
|  | */ | 
|  | if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | err = -EROFS; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We reserve space for updating the inode when we reserve space for the | 
|  | * extent we are going to write, so we will enospc out there.  We don't | 
|  | * need to start yet another transaction to update the inode as we will | 
|  | * update the inode when we finish writing whatever data we write. | 
|  | */ | 
|  | update_time_for_write(inode); | 
|  |  | 
|  | start_pos = round_down(pos, root->sectorsize); | 
|  | if (start_pos > i_size_read(inode)) { | 
|  | err = btrfs_cont_expand(inode, i_size_read(inode), start_pos); | 
|  | if (err) { | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (sync) | 
|  | atomic_inc(&BTRFS_I(inode)->sync_writers); | 
|  |  | 
|  | if (unlikely(file->f_flags & O_DIRECT)) { | 
|  | num_written = __btrfs_direct_write(iocb, iov, nr_segs, | 
|  | pos, ppos, count, ocount); | 
|  | } else { | 
|  | struct iov_iter i; | 
|  |  | 
|  | iov_iter_init(&i, iov, nr_segs, count, num_written); | 
|  |  | 
|  | num_written = __btrfs_buffered_write(file, &i, pos); | 
|  | if (num_written > 0) | 
|  | *ppos = pos + num_written; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&inode->i_mutex); | 
|  |  | 
|  | /* | 
|  | * we want to make sure fsync finds this change | 
|  | * but we haven't joined a transaction running right now. | 
|  | * | 
|  | * Later on, someone is sure to update the inode and get the | 
|  | * real transid recorded. | 
|  | * | 
|  | * We set last_trans now to the fs_info generation + 1, | 
|  | * this will either be one more than the running transaction | 
|  | * or the generation used for the next transaction if there isn't | 
|  | * one running right now. | 
|  | * | 
|  | * We also have to set last_sub_trans to the current log transid, | 
|  | * otherwise subsequent syncs to a file that's been synced in this | 
|  | * transaction will appear to have already occured. | 
|  | */ | 
|  | BTRFS_I(inode)->last_trans = root->fs_info->generation + 1; | 
|  | BTRFS_I(inode)->last_sub_trans = root->log_transid; | 
|  | if (num_written > 0) { | 
|  | err = generic_write_sync(file, pos, num_written); | 
|  | if (err < 0 && num_written > 0) | 
|  | num_written = err; | 
|  | } | 
|  |  | 
|  | if (sync) | 
|  | atomic_dec(&BTRFS_I(inode)->sync_writers); | 
|  | out: | 
|  | current->backing_dev_info = NULL; | 
|  | return num_written ? num_written : err; | 
|  | } | 
|  |  | 
|  | int btrfs_release_file(struct inode *inode, struct file *filp) | 
|  | { | 
|  | /* | 
|  | * ordered_data_close is set by settattr when we are about to truncate | 
|  | * a file from a non-zero size to a zero size.  This tries to | 
|  | * flush down new bytes that may have been written if the | 
|  | * application were using truncate to replace a file in place. | 
|  | */ | 
|  | if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, | 
|  | &BTRFS_I(inode)->runtime_flags)) { | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  |  | 
|  | /* | 
|  | * We need to block on a committing transaction to keep us from | 
|  | * throwing a ordered operation on to the list and causing | 
|  | * something like sync to deadlock trying to flush out this | 
|  | * inode. | 
|  | */ | 
|  | trans = btrfs_start_transaction(root, 0); | 
|  | if (IS_ERR(trans)) | 
|  | return PTR_ERR(trans); | 
|  | btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode); | 
|  | btrfs_end_transaction(trans, root); | 
|  | if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) | 
|  | filemap_flush(inode->i_mapping); | 
|  | } | 
|  | if (filp->private_data) | 
|  | btrfs_ioctl_trans_end(filp); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fsync call for both files and directories.  This logs the inode into | 
|  | * the tree log instead of forcing full commits whenever possible. | 
|  | * | 
|  | * It needs to call filemap_fdatawait so that all ordered extent updates are | 
|  | * in the metadata btree are up to date for copying to the log. | 
|  | * | 
|  | * It drops the inode mutex before doing the tree log commit.  This is an | 
|  | * important optimization for directories because holding the mutex prevents | 
|  | * new operations on the dir while we write to disk. | 
|  | */ | 
|  | int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) | 
|  | { | 
|  | struct dentry *dentry = file->f_path.dentry; | 
|  | struct inode *inode = dentry->d_inode; | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | int ret = 0; | 
|  | struct btrfs_trans_handle *trans; | 
|  | bool full_sync = 0; | 
|  |  | 
|  | trace_btrfs_sync_file(file, datasync); | 
|  |  | 
|  | /* | 
|  | * We write the dirty pages in the range and wait until they complete | 
|  | * out of the ->i_mutex. If so, we can flush the dirty pages by | 
|  | * multi-task, and make the performance up.  See | 
|  | * btrfs_wait_ordered_range for an explanation of the ASYNC check. | 
|  | */ | 
|  | atomic_inc(&BTRFS_I(inode)->sync_writers); | 
|  | ret = filemap_fdatawrite_range(inode->i_mapping, start, end); | 
|  | if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, | 
|  | &BTRFS_I(inode)->runtime_flags)) | 
|  | ret = filemap_fdatawrite_range(inode->i_mapping, start, end); | 
|  | atomic_dec(&BTRFS_I(inode)->sync_writers); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | mutex_lock(&inode->i_mutex); | 
|  |  | 
|  | /* | 
|  | * We flush the dirty pages again to avoid some dirty pages in the | 
|  | * range being left. | 
|  | */ | 
|  | atomic_inc(&root->log_batch); | 
|  | full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, | 
|  | &BTRFS_I(inode)->runtime_flags); | 
|  | if (full_sync) { | 
|  | ret = btrfs_wait_ordered_range(inode, start, end - start + 1); | 
|  | if (ret) { | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | atomic_inc(&root->log_batch); | 
|  |  | 
|  | /* | 
|  | * check the transaction that last modified this inode | 
|  | * and see if its already been committed | 
|  | */ | 
|  | if (!BTRFS_I(inode)->last_trans) { | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * if the last transaction that changed this file was before | 
|  | * the current transaction, we can bail out now without any | 
|  | * syncing | 
|  | */ | 
|  | smp_mb(); | 
|  | if (btrfs_inode_in_log(inode, root->fs_info->generation) || | 
|  | BTRFS_I(inode)->last_trans <= | 
|  | root->fs_info->last_trans_committed) { | 
|  | BTRFS_I(inode)->last_trans = 0; | 
|  |  | 
|  | /* | 
|  | * We'v had everything committed since the last time we were | 
|  | * modified so clear this flag in case it was set for whatever | 
|  | * reason, it's no longer relevant. | 
|  | */ | 
|  | clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, | 
|  | &BTRFS_I(inode)->runtime_flags); | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ok we haven't committed the transaction yet, lets do a commit | 
|  | */ | 
|  | if (file->private_data) | 
|  | btrfs_ioctl_trans_end(file); | 
|  |  | 
|  | /* | 
|  | * We use start here because we will need to wait on the IO to complete | 
|  | * in btrfs_sync_log, which could require joining a transaction (for | 
|  | * example checking cross references in the nocow path).  If we use join | 
|  | * here we could get into a situation where we're waiting on IO to | 
|  | * happen that is blocked on a transaction trying to commit.  With start | 
|  | * we inc the extwriter counter, so we wait for all extwriters to exit | 
|  | * before we start blocking join'ers.  This comment is to keep somebody | 
|  | * from thinking they are super smart and changing this to | 
|  | * btrfs_join_transaction *cough*Josef*cough*. | 
|  | */ | 
|  | trans = btrfs_start_transaction(root, 0); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | goto out; | 
|  | } | 
|  | trans->sync = true; | 
|  |  | 
|  | ret = btrfs_log_dentry_safe(trans, root, dentry); | 
|  | if (ret < 0) { | 
|  | /* Fallthrough and commit/free transaction. */ | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | /* we've logged all the items and now have a consistent | 
|  | * version of the file in the log.  It is possible that | 
|  | * someone will come in and modify the file, but that's | 
|  | * fine because the log is consistent on disk, and we | 
|  | * have references to all of the file's extents | 
|  | * | 
|  | * It is possible that someone will come in and log the | 
|  | * file again, but that will end up using the synchronization | 
|  | * inside btrfs_sync_log to keep things safe. | 
|  | */ | 
|  | mutex_unlock(&inode->i_mutex); | 
|  |  | 
|  | if (ret != BTRFS_NO_LOG_SYNC) { | 
|  | if (!ret) { | 
|  | ret = btrfs_sync_log(trans, root); | 
|  | if (!ret) { | 
|  | ret = btrfs_end_transaction(trans, root); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | if (!full_sync) { | 
|  | ret = btrfs_wait_ordered_range(inode, start, | 
|  | end - start + 1); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  | ret = btrfs_commit_transaction(trans, root); | 
|  | } else { | 
|  | ret = btrfs_end_transaction(trans, root); | 
|  | } | 
|  | out: | 
|  | return ret > 0 ? -EIO : ret; | 
|  | } | 
|  |  | 
|  | static const struct vm_operations_struct btrfs_file_vm_ops = { | 
|  | .fault		= filemap_fault, | 
|  | .page_mkwrite	= btrfs_page_mkwrite, | 
|  | .remap_pages	= generic_file_remap_pages, | 
|  | }; | 
|  |  | 
|  | static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma) | 
|  | { | 
|  | struct address_space *mapping = filp->f_mapping; | 
|  |  | 
|  | if (!mapping->a_ops->readpage) | 
|  | return -ENOEXEC; | 
|  |  | 
|  | file_accessed(filp); | 
|  | vma->vm_ops = &btrfs_file_vm_ops; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf, | 
|  | int slot, u64 start, u64 end) | 
|  | { | 
|  | struct btrfs_file_extent_item *fi; | 
|  | struct btrfs_key key; | 
|  |  | 
|  | if (slot < 0 || slot >= btrfs_header_nritems(leaf)) | 
|  | return 0; | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, slot); | 
|  | if (key.objectid != btrfs_ino(inode) || | 
|  | key.type != BTRFS_EXTENT_DATA_KEY) | 
|  | return 0; | 
|  |  | 
|  | fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); | 
|  |  | 
|  | if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) | 
|  | return 0; | 
|  |  | 
|  | if (btrfs_file_extent_disk_bytenr(leaf, fi)) | 
|  | return 0; | 
|  |  | 
|  | if (key.offset == end) | 
|  | return 1; | 
|  | if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode, | 
|  | struct btrfs_path *path, u64 offset, u64 end) | 
|  | { | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_file_extent_item *fi; | 
|  | struct extent_map *hole_em; | 
|  | struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; | 
|  | struct btrfs_key key; | 
|  | int ret; | 
|  |  | 
|  | if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) | 
|  | goto out; | 
|  |  | 
|  | key.objectid = btrfs_ino(inode); | 
|  | key.type = BTRFS_EXTENT_DATA_KEY; | 
|  | key.offset = offset; | 
|  |  | 
|  | ret = btrfs_search_slot(trans, root, &key, path, 0, 1); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | BUG_ON(!ret); | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) { | 
|  | u64 num_bytes; | 
|  |  | 
|  | path->slots[0]--; | 
|  | fi = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  | num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + | 
|  | end - offset; | 
|  | btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); | 
|  | btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); | 
|  | btrfs_set_file_extent_offset(leaf, fi, 0); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) { | 
|  | u64 num_bytes; | 
|  |  | 
|  | path->slots[0]++; | 
|  | key.offset = offset; | 
|  | btrfs_set_item_key_safe(root, path, &key); | 
|  | fi = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  | num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - | 
|  | offset; | 
|  | btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); | 
|  | btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); | 
|  | btrfs_set_file_extent_offset(leaf, fi, 0); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | goto out; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, | 
|  | 0, 0, end - offset, 0, end - offset, | 
|  | 0, 0, 0); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | out: | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | hole_em = alloc_extent_map(); | 
|  | if (!hole_em) { | 
|  | btrfs_drop_extent_cache(inode, offset, end - 1, 0); | 
|  | set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, | 
|  | &BTRFS_I(inode)->runtime_flags); | 
|  | } else { | 
|  | hole_em->start = offset; | 
|  | hole_em->len = end - offset; | 
|  | hole_em->ram_bytes = hole_em->len; | 
|  | hole_em->orig_start = offset; | 
|  |  | 
|  | hole_em->block_start = EXTENT_MAP_HOLE; | 
|  | hole_em->block_len = 0; | 
|  | hole_em->orig_block_len = 0; | 
|  | hole_em->bdev = root->fs_info->fs_devices->latest_bdev; | 
|  | hole_em->compress_type = BTRFS_COMPRESS_NONE; | 
|  | hole_em->generation = trans->transid; | 
|  |  | 
|  | do { | 
|  | btrfs_drop_extent_cache(inode, offset, end - 1, 0); | 
|  | write_lock(&em_tree->lock); | 
|  | ret = add_extent_mapping(em_tree, hole_em, 1); | 
|  | write_unlock(&em_tree->lock); | 
|  | } while (ret == -EEXIST); | 
|  | free_extent_map(hole_em); | 
|  | if (ret) | 
|  | set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, | 
|  | &BTRFS_I(inode)->runtime_flags); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) | 
|  | { | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | struct extent_state *cached_state = NULL; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_block_rsv *rsv; | 
|  | struct btrfs_trans_handle *trans; | 
|  | u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize); | 
|  | u64 lockend = round_down(offset + len, | 
|  | BTRFS_I(inode)->root->sectorsize) - 1; | 
|  | u64 cur_offset = lockstart; | 
|  | u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); | 
|  | u64 drop_end; | 
|  | int ret = 0; | 
|  | int err = 0; | 
|  | int rsv_count; | 
|  | bool same_page = ((offset >> PAGE_CACHE_SHIFT) == | 
|  | ((offset + len - 1) >> PAGE_CACHE_SHIFT)); | 
|  | bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES); | 
|  |  | 
|  | ret = btrfs_wait_ordered_range(inode, offset, len); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | mutex_lock(&inode->i_mutex); | 
|  | /* | 
|  | * We needn't truncate any page which is beyond the end of the file | 
|  | * because we are sure there is no data there. | 
|  | */ | 
|  | /* | 
|  | * Only do this if we are in the same page and we aren't doing the | 
|  | * entire page. | 
|  | */ | 
|  | if (same_page && len < PAGE_CACHE_SIZE) { | 
|  | if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) | 
|  | ret = btrfs_truncate_page(inode, offset, len, 0); | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* zero back part of the first page */ | 
|  | if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) { | 
|  | ret = btrfs_truncate_page(inode, offset, 0, 0); | 
|  | if (ret) { | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* zero the front end of the last page */ | 
|  | if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) { | 
|  | ret = btrfs_truncate_page(inode, offset + len, 0, 1); | 
|  | if (ret) { | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (lockend < lockstart) { | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | while (1) { | 
|  | struct btrfs_ordered_extent *ordered; | 
|  |  | 
|  | truncate_pagecache_range(inode, lockstart, lockend); | 
|  |  | 
|  | lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, | 
|  | 0, &cached_state); | 
|  | ordered = btrfs_lookup_first_ordered_extent(inode, lockend); | 
|  |  | 
|  | /* | 
|  | * We need to make sure we have no ordered extents in this range | 
|  | * and nobody raced in and read a page in this range, if we did | 
|  | * we need to try again. | 
|  | */ | 
|  | if ((!ordered || | 
|  | (ordered->file_offset + ordered->len <= lockstart || | 
|  | ordered->file_offset > lockend)) && | 
|  | !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart, | 
|  | lockend, EXTENT_UPTODATE, 0, | 
|  | cached_state)) { | 
|  | if (ordered) | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | break; | 
|  | } | 
|  | if (ordered) | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, | 
|  | lockend, &cached_state, GFP_NOFS); | 
|  | ret = btrfs_wait_ordered_range(inode, lockstart, | 
|  | lockend - lockstart + 1); | 
|  | if (ret) { | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); | 
|  | if (!rsv) { | 
|  | ret = -ENOMEM; | 
|  | goto out_free; | 
|  | } | 
|  | rsv->size = btrfs_calc_trunc_metadata_size(root, 1); | 
|  | rsv->failfast = 1; | 
|  |  | 
|  | /* | 
|  | * 1 - update the inode | 
|  | * 1 - removing the extents in the range | 
|  | * 1 - adding the hole extent if no_holes isn't set | 
|  | */ | 
|  | rsv_count = no_holes ? 2 : 3; | 
|  | trans = btrfs_start_transaction(root, rsv_count); | 
|  | if (IS_ERR(trans)) { | 
|  | err = PTR_ERR(trans); | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, | 
|  | min_size); | 
|  | BUG_ON(ret); | 
|  | trans->block_rsv = rsv; | 
|  |  | 
|  | while (cur_offset < lockend) { | 
|  | ret = __btrfs_drop_extents(trans, root, inode, path, | 
|  | cur_offset, lockend + 1, | 
|  | &drop_end, 1, 0, 0, NULL); | 
|  | if (ret != -ENOSPC) | 
|  | break; | 
|  |  | 
|  | trans->block_rsv = &root->fs_info->trans_block_rsv; | 
|  |  | 
|  | ret = fill_holes(trans, inode, path, cur_offset, drop_end); | 
|  | if (ret) { | 
|  | err = ret; | 
|  | break; | 
|  | } | 
|  |  | 
|  | cur_offset = drop_end; | 
|  |  | 
|  | ret = btrfs_update_inode(trans, root, inode); | 
|  | if (ret) { | 
|  | err = ret; | 
|  | break; | 
|  | } | 
|  |  | 
|  | btrfs_end_transaction(trans, root); | 
|  | btrfs_btree_balance_dirty(root); | 
|  |  | 
|  | trans = btrfs_start_transaction(root, rsv_count); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | trans = NULL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, | 
|  | rsv, min_size); | 
|  | BUG_ON(ret);	/* shouldn't happen */ | 
|  | trans->block_rsv = rsv; | 
|  | } | 
|  |  | 
|  | if (ret) { | 
|  | err = ret; | 
|  | goto out_trans; | 
|  | } | 
|  |  | 
|  | trans->block_rsv = &root->fs_info->trans_block_rsv; | 
|  | ret = fill_holes(trans, inode, path, cur_offset, drop_end); | 
|  | if (ret) { | 
|  | err = ret; | 
|  | goto out_trans; | 
|  | } | 
|  |  | 
|  | out_trans: | 
|  | if (!trans) | 
|  | goto out_free; | 
|  |  | 
|  | inode_inc_iversion(inode); | 
|  | inode->i_mtime = inode->i_ctime = CURRENT_TIME; | 
|  |  | 
|  | trans->block_rsv = &root->fs_info->trans_block_rsv; | 
|  | ret = btrfs_update_inode(trans, root, inode); | 
|  | btrfs_end_transaction(trans, root); | 
|  | btrfs_btree_balance_dirty(root); | 
|  | out_free: | 
|  | btrfs_free_path(path); | 
|  | btrfs_free_block_rsv(root, rsv); | 
|  | out: | 
|  | unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, | 
|  | &cached_state, GFP_NOFS); | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | if (ret && !err) | 
|  | err = ret; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static long btrfs_fallocate(struct file *file, int mode, | 
|  | loff_t offset, loff_t len) | 
|  | { | 
|  | struct inode *inode = file_inode(file); | 
|  | struct extent_state *cached_state = NULL; | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | u64 cur_offset; | 
|  | u64 last_byte; | 
|  | u64 alloc_start; | 
|  | u64 alloc_end; | 
|  | u64 alloc_hint = 0; | 
|  | u64 locked_end; | 
|  | struct extent_map *em; | 
|  | int blocksize = BTRFS_I(inode)->root->sectorsize; | 
|  | int ret; | 
|  |  | 
|  | alloc_start = round_down(offset, blocksize); | 
|  | alloc_end = round_up(offset + len, blocksize); | 
|  |  | 
|  | /* Make sure we aren't being give some crap mode */ | 
|  | if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if (mode & FALLOC_FL_PUNCH_HOLE) | 
|  | return btrfs_punch_hole(inode, offset, len); | 
|  |  | 
|  | /* | 
|  | * Make sure we have enough space before we do the | 
|  | * allocation. | 
|  | */ | 
|  | ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start); | 
|  | if (ret) | 
|  | return ret; | 
|  | if (root->fs_info->quota_enabled) { | 
|  | ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start); | 
|  | if (ret) | 
|  | goto out_reserve_fail; | 
|  | } | 
|  |  | 
|  | mutex_lock(&inode->i_mutex); | 
|  | ret = inode_newsize_ok(inode, alloc_end); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if (alloc_start > inode->i_size) { | 
|  | ret = btrfs_cont_expand(inode, i_size_read(inode), | 
|  | alloc_start); | 
|  | if (ret) | 
|  | goto out; | 
|  | } else { | 
|  | /* | 
|  | * If we are fallocating from the end of the file onward we | 
|  | * need to zero out the end of the page if i_size lands in the | 
|  | * middle of a page. | 
|  | */ | 
|  | ret = btrfs_truncate_page(inode, inode->i_size, 0, 0); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * wait for ordered IO before we have any locks.  We'll loop again | 
|  | * below with the locks held. | 
|  | */ | 
|  | ret = btrfs_wait_ordered_range(inode, alloc_start, | 
|  | alloc_end - alloc_start); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | locked_end = alloc_end - 1; | 
|  | while (1) { | 
|  | struct btrfs_ordered_extent *ordered; | 
|  |  | 
|  | /* the extent lock is ordered inside the running | 
|  | * transaction | 
|  | */ | 
|  | lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, | 
|  | locked_end, 0, &cached_state); | 
|  | ordered = btrfs_lookup_first_ordered_extent(inode, | 
|  | alloc_end - 1); | 
|  | if (ordered && | 
|  | ordered->file_offset + ordered->len > alloc_start && | 
|  | ordered->file_offset < alloc_end) { | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | unlock_extent_cached(&BTRFS_I(inode)->io_tree, | 
|  | alloc_start, locked_end, | 
|  | &cached_state, GFP_NOFS); | 
|  | /* | 
|  | * we can't wait on the range with the transaction | 
|  | * running or with the extent lock held | 
|  | */ | 
|  | ret = btrfs_wait_ordered_range(inode, alloc_start, | 
|  | alloc_end - alloc_start); | 
|  | if (ret) | 
|  | goto out; | 
|  | } else { | 
|  | if (ordered) | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | cur_offset = alloc_start; | 
|  | while (1) { | 
|  | u64 actual_end; | 
|  |  | 
|  | em = btrfs_get_extent(inode, NULL, 0, cur_offset, | 
|  | alloc_end - cur_offset, 0); | 
|  | if (IS_ERR_OR_NULL(em)) { | 
|  | if (!em) | 
|  | ret = -ENOMEM; | 
|  | else | 
|  | ret = PTR_ERR(em); | 
|  | break; | 
|  | } | 
|  | last_byte = min(extent_map_end(em), alloc_end); | 
|  | actual_end = min_t(u64, extent_map_end(em), offset + len); | 
|  | last_byte = ALIGN(last_byte, blocksize); | 
|  |  | 
|  | if (em->block_start == EXTENT_MAP_HOLE || | 
|  | (cur_offset >= inode->i_size && | 
|  | !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { | 
|  | ret = btrfs_prealloc_file_range(inode, mode, cur_offset, | 
|  | last_byte - cur_offset, | 
|  | 1 << inode->i_blkbits, | 
|  | offset + len, | 
|  | &alloc_hint); | 
|  |  | 
|  | if (ret < 0) { | 
|  | free_extent_map(em); | 
|  | break; | 
|  | } | 
|  | } else if (actual_end > inode->i_size && | 
|  | !(mode & FALLOC_FL_KEEP_SIZE)) { | 
|  | /* | 
|  | * We didn't need to allocate any more space, but we | 
|  | * still extended the size of the file so we need to | 
|  | * update i_size. | 
|  | */ | 
|  | inode->i_ctime = CURRENT_TIME; | 
|  | i_size_write(inode, actual_end); | 
|  | btrfs_ordered_update_i_size(inode, actual_end, NULL); | 
|  | } | 
|  | free_extent_map(em); | 
|  |  | 
|  | cur_offset = last_byte; | 
|  | if (cur_offset >= alloc_end) { | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  | unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, | 
|  | &cached_state, GFP_NOFS); | 
|  | out: | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | if (root->fs_info->quota_enabled) | 
|  | btrfs_qgroup_free(root, alloc_end - alloc_start); | 
|  | out_reserve_fail: | 
|  | /* Let go of our reservation. */ | 
|  | btrfs_free_reserved_data_space(inode, alloc_end - alloc_start); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int find_desired_extent(struct inode *inode, loff_t *offset, int whence) | 
|  | { | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | struct extent_map *em = NULL; | 
|  | struct extent_state *cached_state = NULL; | 
|  | u64 lockstart = *offset; | 
|  | u64 lockend = i_size_read(inode); | 
|  | u64 start = *offset; | 
|  | u64 len = i_size_read(inode); | 
|  | int ret = 0; | 
|  |  | 
|  | lockend = max_t(u64, root->sectorsize, lockend); | 
|  | if (lockend <= lockstart) | 
|  | lockend = lockstart + root->sectorsize; | 
|  |  | 
|  | lockend--; | 
|  | len = lockend - lockstart + 1; | 
|  |  | 
|  | len = max_t(u64, len, root->sectorsize); | 
|  | if (inode->i_size == 0) | 
|  | return -ENXIO; | 
|  |  | 
|  | lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0, | 
|  | &cached_state); | 
|  |  | 
|  | while (start < inode->i_size) { | 
|  | em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0); | 
|  | if (IS_ERR(em)) { | 
|  | ret = PTR_ERR(em); | 
|  | em = NULL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (whence == SEEK_HOLE && | 
|  | (em->block_start == EXTENT_MAP_HOLE || | 
|  | test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) | 
|  | break; | 
|  | else if (whence == SEEK_DATA && | 
|  | (em->block_start != EXTENT_MAP_HOLE && | 
|  | !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) | 
|  | break; | 
|  |  | 
|  | start = em->start + em->len; | 
|  | free_extent_map(em); | 
|  | em = NULL; | 
|  | cond_resched(); | 
|  | } | 
|  | free_extent_map(em); | 
|  | if (!ret) { | 
|  | if (whence == SEEK_DATA && start >= inode->i_size) | 
|  | ret = -ENXIO; | 
|  | else | 
|  | *offset = min_t(loff_t, start, inode->i_size); | 
|  | } | 
|  | unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, | 
|  | &cached_state, GFP_NOFS); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) | 
|  | { | 
|  | struct inode *inode = file->f_mapping->host; | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&inode->i_mutex); | 
|  | switch (whence) { | 
|  | case SEEK_END: | 
|  | case SEEK_CUR: | 
|  | offset = generic_file_llseek(file, offset, whence); | 
|  | goto out; | 
|  | case SEEK_DATA: | 
|  | case SEEK_HOLE: | 
|  | if (offset >= i_size_read(inode)) { | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | return -ENXIO; | 
|  | } | 
|  |  | 
|  | ret = find_desired_extent(inode, &offset, whence); | 
|  | if (ret) { | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); | 
|  | out: | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | return offset; | 
|  | } | 
|  |  | 
|  | const struct file_operations btrfs_file_operations = { | 
|  | .llseek		= btrfs_file_llseek, | 
|  | .read		= do_sync_read, | 
|  | .write		= do_sync_write, | 
|  | .aio_read       = generic_file_aio_read, | 
|  | .splice_read	= generic_file_splice_read, | 
|  | .aio_write	= btrfs_file_aio_write, | 
|  | .mmap		= btrfs_file_mmap, | 
|  | .open		= generic_file_open, | 
|  | .release	= btrfs_release_file, | 
|  | .fsync		= btrfs_sync_file, | 
|  | .fallocate	= btrfs_fallocate, | 
|  | .unlocked_ioctl	= btrfs_ioctl, | 
|  | #ifdef CONFIG_COMPAT | 
|  | .compat_ioctl	= btrfs_ioctl, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | void btrfs_auto_defrag_exit(void) | 
|  | { | 
|  | if (btrfs_inode_defrag_cachep) | 
|  | kmem_cache_destroy(btrfs_inode_defrag_cachep); | 
|  | } | 
|  |  | 
|  | int btrfs_auto_defrag_init(void) | 
|  | { | 
|  | btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", | 
|  | sizeof(struct inode_defrag), 0, | 
|  | SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, | 
|  | NULL); | 
|  | if (!btrfs_inode_defrag_cachep) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } |