|  | /* | 
|  | * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix | 
|  | * Copyright (C) 2006 Andrey Volkov, Varma Electronics | 
|  | * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the version 2 of the GNU General Public License | 
|  | * as published by the Free Software Foundation | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/if_arp.h> | 
|  | #include <linux/can.h> | 
|  | #include <linux/can/dev.h> | 
|  | #include <linux/can/skb.h> | 
|  | #include <linux/can/netlink.h> | 
|  | #include <linux/can/led.h> | 
|  | #include <net/rtnetlink.h> | 
|  |  | 
|  | #define MOD_DESC "CAN device driver interface" | 
|  |  | 
|  | MODULE_DESCRIPTION(MOD_DESC); | 
|  | MODULE_LICENSE("GPL v2"); | 
|  | MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>"); | 
|  |  | 
|  | /* CAN DLC to real data length conversion helpers */ | 
|  |  | 
|  | static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7, | 
|  | 8, 12, 16, 20, 24, 32, 48, 64}; | 
|  |  | 
|  | /* get data length from can_dlc with sanitized can_dlc */ | 
|  | u8 can_dlc2len(u8 can_dlc) | 
|  | { | 
|  | return dlc2len[can_dlc & 0x0F]; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(can_dlc2len); | 
|  |  | 
|  | static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8,		/* 0 - 8 */ | 
|  | 9, 9, 9, 9,			/* 9 - 12 */ | 
|  | 10, 10, 10, 10,			/* 13 - 16 */ | 
|  | 11, 11, 11, 11,			/* 17 - 20 */ | 
|  | 12, 12, 12, 12,			/* 21 - 24 */ | 
|  | 13, 13, 13, 13, 13, 13, 13, 13,	/* 25 - 32 */ | 
|  | 14, 14, 14, 14, 14, 14, 14, 14,	/* 33 - 40 */ | 
|  | 14, 14, 14, 14, 14, 14, 14, 14,	/* 41 - 48 */ | 
|  | 15, 15, 15, 15, 15, 15, 15, 15,	/* 49 - 56 */ | 
|  | 15, 15, 15, 15, 15, 15, 15, 15};	/* 57 - 64 */ | 
|  |  | 
|  | /* map the sanitized data length to an appropriate data length code */ | 
|  | u8 can_len2dlc(u8 len) | 
|  | { | 
|  | if (unlikely(len > 64)) | 
|  | return 0xF; | 
|  |  | 
|  | return len2dlc[len]; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(can_len2dlc); | 
|  |  | 
|  | #ifdef CONFIG_CAN_CALC_BITTIMING | 
|  | #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */ | 
|  |  | 
|  | /* | 
|  | * Bit-timing calculation derived from: | 
|  | * | 
|  | * Code based on LinCAN sources and H8S2638 project | 
|  | * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz | 
|  | * Copyright 2005      Stanislav Marek | 
|  | * email: pisa@cmp.felk.cvut.cz | 
|  | * | 
|  | * Calculates proper bit-timing parameters for a specified bit-rate | 
|  | * and sample-point, which can then be used to set the bit-timing | 
|  | * registers of the CAN controller. You can find more information | 
|  | * in the header file linux/can/netlink.h. | 
|  | */ | 
|  | static int can_update_spt(const struct can_bittiming_const *btc, | 
|  | int sampl_pt, int tseg, int *tseg1, int *tseg2) | 
|  | { | 
|  | *tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000; | 
|  | if (*tseg2 < btc->tseg2_min) | 
|  | *tseg2 = btc->tseg2_min; | 
|  | if (*tseg2 > btc->tseg2_max) | 
|  | *tseg2 = btc->tseg2_max; | 
|  | *tseg1 = tseg - *tseg2; | 
|  | if (*tseg1 > btc->tseg1_max) { | 
|  | *tseg1 = btc->tseg1_max; | 
|  | *tseg2 = tseg - *tseg1; | 
|  | } | 
|  | return 1000 * (tseg + 1 - *tseg2) / (tseg + 1); | 
|  | } | 
|  |  | 
|  | static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt) | 
|  | { | 
|  | struct can_priv *priv = netdev_priv(dev); | 
|  | const struct can_bittiming_const *btc = priv->bittiming_const; | 
|  | long rate, best_rate = 0; | 
|  | long best_error = 1000000000, error = 0; | 
|  | int best_tseg = 0, best_brp = 0, brp = 0; | 
|  | int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0; | 
|  | int spt_error = 1000, spt = 0, sampl_pt; | 
|  | u64 v64; | 
|  |  | 
|  | if (!priv->bittiming_const) | 
|  | return -ENOTSUPP; | 
|  |  | 
|  | /* Use CIA recommended sample points */ | 
|  | if (bt->sample_point) { | 
|  | sampl_pt = bt->sample_point; | 
|  | } else { | 
|  | if (bt->bitrate > 800000) | 
|  | sampl_pt = 750; | 
|  | else if (bt->bitrate > 500000) | 
|  | sampl_pt = 800; | 
|  | else | 
|  | sampl_pt = 875; | 
|  | } | 
|  |  | 
|  | /* tseg even = round down, odd = round up */ | 
|  | for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1; | 
|  | tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) { | 
|  | tsegall = 1 + tseg / 2; | 
|  | /* Compute all possible tseg choices (tseg=tseg1+tseg2) */ | 
|  | brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2; | 
|  | /* chose brp step which is possible in system */ | 
|  | brp = (brp / btc->brp_inc) * btc->brp_inc; | 
|  | if ((brp < btc->brp_min) || (brp > btc->brp_max)) | 
|  | continue; | 
|  | rate = priv->clock.freq / (brp * tsegall); | 
|  | error = bt->bitrate - rate; | 
|  | /* tseg brp biterror */ | 
|  | if (error < 0) | 
|  | error = -error; | 
|  | if (error > best_error) | 
|  | continue; | 
|  | best_error = error; | 
|  | if (error == 0) { | 
|  | spt = can_update_spt(btc, sampl_pt, tseg / 2, | 
|  | &tseg1, &tseg2); | 
|  | error = sampl_pt - spt; | 
|  | if (error < 0) | 
|  | error = -error; | 
|  | if (error > spt_error) | 
|  | continue; | 
|  | spt_error = error; | 
|  | } | 
|  | best_tseg = tseg / 2; | 
|  | best_brp = brp; | 
|  | best_rate = rate; | 
|  | if (error == 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (best_error) { | 
|  | /* Error in one-tenth of a percent */ | 
|  | error = (best_error * 1000) / bt->bitrate; | 
|  | if (error > CAN_CALC_MAX_ERROR) { | 
|  | netdev_err(dev, | 
|  | "bitrate error %ld.%ld%% too high\n", | 
|  | error / 10, error % 10); | 
|  | return -EDOM; | 
|  | } else { | 
|  | netdev_warn(dev, "bitrate error %ld.%ld%%\n", | 
|  | error / 10, error % 10); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* real sample point */ | 
|  | bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg, | 
|  | &tseg1, &tseg2); | 
|  |  | 
|  | v64 = (u64)best_brp * 1000000000UL; | 
|  | do_div(v64, priv->clock.freq); | 
|  | bt->tq = (u32)v64; | 
|  | bt->prop_seg = tseg1 / 2; | 
|  | bt->phase_seg1 = tseg1 - bt->prop_seg; | 
|  | bt->phase_seg2 = tseg2; | 
|  |  | 
|  | /* check for sjw user settings */ | 
|  | if (!bt->sjw || !btc->sjw_max) | 
|  | bt->sjw = 1; | 
|  | else { | 
|  | /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */ | 
|  | if (bt->sjw > btc->sjw_max) | 
|  | bt->sjw = btc->sjw_max; | 
|  | /* bt->sjw must not be higher than tseg2 */ | 
|  | if (tseg2 < bt->sjw) | 
|  | bt->sjw = tseg2; | 
|  | } | 
|  |  | 
|  | bt->brp = best_brp; | 
|  | /* real bit-rate */ | 
|  | bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #else /* !CONFIG_CAN_CALC_BITTIMING */ | 
|  | static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt) | 
|  | { | 
|  | netdev_err(dev, "bit-timing calculation not available\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | #endif /* CONFIG_CAN_CALC_BITTIMING */ | 
|  |  | 
|  | /* | 
|  | * Checks the validity of the specified bit-timing parameters prop_seg, | 
|  | * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate | 
|  | * prescaler value brp. You can find more information in the header | 
|  | * file linux/can/netlink.h. | 
|  | */ | 
|  | static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt) | 
|  | { | 
|  | struct can_priv *priv = netdev_priv(dev); | 
|  | const struct can_bittiming_const *btc = priv->bittiming_const; | 
|  | int tseg1, alltseg; | 
|  | u64 brp64; | 
|  |  | 
|  | if (!priv->bittiming_const) | 
|  | return -ENOTSUPP; | 
|  |  | 
|  | tseg1 = bt->prop_seg + bt->phase_seg1; | 
|  | if (!bt->sjw) | 
|  | bt->sjw = 1; | 
|  | if (bt->sjw > btc->sjw_max || | 
|  | tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max || | 
|  | bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max) | 
|  | return -ERANGE; | 
|  |  | 
|  | brp64 = (u64)priv->clock.freq * (u64)bt->tq; | 
|  | if (btc->brp_inc > 1) | 
|  | do_div(brp64, btc->brp_inc); | 
|  | brp64 += 500000000UL - 1; | 
|  | do_div(brp64, 1000000000UL); /* the practicable BRP */ | 
|  | if (btc->brp_inc > 1) | 
|  | brp64 *= btc->brp_inc; | 
|  | bt->brp = (u32)brp64; | 
|  |  | 
|  | if (bt->brp < btc->brp_min || bt->brp > btc->brp_max) | 
|  | return -EINVAL; | 
|  |  | 
|  | alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1; | 
|  | bt->bitrate = priv->clock.freq / (bt->brp * alltseg); | 
|  | bt->sample_point = ((tseg1 + 1) * 1000) / alltseg; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt) | 
|  | { | 
|  | struct can_priv *priv = netdev_priv(dev); | 
|  | int err; | 
|  |  | 
|  | /* Check if the CAN device has bit-timing parameters */ | 
|  | if (priv->bittiming_const) { | 
|  |  | 
|  | /* Non-expert mode? Check if the bitrate has been pre-defined */ | 
|  | if (!bt->tq) | 
|  | /* Determine bit-timing parameters */ | 
|  | err = can_calc_bittiming(dev, bt); | 
|  | else | 
|  | /* Check bit-timing params and calculate proper brp */ | 
|  | err = can_fixup_bittiming(dev, bt); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Local echo of CAN messages | 
|  | * | 
|  | * CAN network devices *should* support a local echo functionality | 
|  | * (see Documentation/networking/can.txt). To test the handling of CAN | 
|  | * interfaces that do not support the local echo both driver types are | 
|  | * implemented. In the case that the driver does not support the echo | 
|  | * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core | 
|  | * to perform the echo as a fallback solution. | 
|  | */ | 
|  | static void can_flush_echo_skb(struct net_device *dev) | 
|  | { | 
|  | struct can_priv *priv = netdev_priv(dev); | 
|  | struct net_device_stats *stats = &dev->stats; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < priv->echo_skb_max; i++) { | 
|  | if (priv->echo_skb[i]) { | 
|  | kfree_skb(priv->echo_skb[i]); | 
|  | priv->echo_skb[i] = NULL; | 
|  | stats->tx_dropped++; | 
|  | stats->tx_aborted_errors++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Put the skb on the stack to be looped backed locally lateron | 
|  | * | 
|  | * The function is typically called in the start_xmit function | 
|  | * of the device driver. The driver must protect access to | 
|  | * priv->echo_skb, if necessary. | 
|  | */ | 
|  | void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev, | 
|  | unsigned int idx) | 
|  | { | 
|  | struct can_priv *priv = netdev_priv(dev); | 
|  |  | 
|  | BUG_ON(idx >= priv->echo_skb_max); | 
|  |  | 
|  | /* check flag whether this packet has to be looped back */ | 
|  | if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK) { | 
|  | kfree_skb(skb); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!priv->echo_skb[idx]) { | 
|  | struct sock *srcsk = skb->sk; | 
|  |  | 
|  | if (atomic_read(&skb->users) != 1) { | 
|  | struct sk_buff *old_skb = skb; | 
|  |  | 
|  | skb = skb_clone(old_skb, GFP_ATOMIC); | 
|  | kfree_skb(old_skb); | 
|  | if (!skb) | 
|  | return; | 
|  | } else | 
|  | skb_orphan(skb); | 
|  |  | 
|  | skb->sk = srcsk; | 
|  |  | 
|  | /* make settings for echo to reduce code in irq context */ | 
|  | skb->protocol = htons(ETH_P_CAN); | 
|  | skb->pkt_type = PACKET_BROADCAST; | 
|  | skb->ip_summed = CHECKSUM_UNNECESSARY; | 
|  | skb->dev = dev; | 
|  |  | 
|  | /* save this skb for tx interrupt echo handling */ | 
|  | priv->echo_skb[idx] = skb; | 
|  | } else { | 
|  | /* locking problem with netif_stop_queue() ?? */ | 
|  | netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__); | 
|  | kfree_skb(skb); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(can_put_echo_skb); | 
|  |  | 
|  | /* | 
|  | * Get the skb from the stack and loop it back locally | 
|  | * | 
|  | * The function is typically called when the TX done interrupt | 
|  | * is handled in the device driver. The driver must protect | 
|  | * access to priv->echo_skb, if necessary. | 
|  | */ | 
|  | unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx) | 
|  | { | 
|  | struct can_priv *priv = netdev_priv(dev); | 
|  |  | 
|  | BUG_ON(idx >= priv->echo_skb_max); | 
|  |  | 
|  | if (priv->echo_skb[idx]) { | 
|  | struct sk_buff *skb = priv->echo_skb[idx]; | 
|  | struct can_frame *cf = (struct can_frame *)skb->data; | 
|  | u8 dlc = cf->can_dlc; | 
|  |  | 
|  | netif_rx(priv->echo_skb[idx]); | 
|  | priv->echo_skb[idx] = NULL; | 
|  |  | 
|  | return dlc; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(can_get_echo_skb); | 
|  |  | 
|  | /* | 
|  | * Remove the skb from the stack and free it. | 
|  | * | 
|  | * The function is typically called when TX failed. | 
|  | */ | 
|  | void can_free_echo_skb(struct net_device *dev, unsigned int idx) | 
|  | { | 
|  | struct can_priv *priv = netdev_priv(dev); | 
|  |  | 
|  | BUG_ON(idx >= priv->echo_skb_max); | 
|  |  | 
|  | if (priv->echo_skb[idx]) { | 
|  | kfree_skb(priv->echo_skb[idx]); | 
|  | priv->echo_skb[idx] = NULL; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(can_free_echo_skb); | 
|  |  | 
|  | /* | 
|  | * CAN device restart for bus-off recovery | 
|  | */ | 
|  | static void can_restart(unsigned long data) | 
|  | { | 
|  | struct net_device *dev = (struct net_device *)data; | 
|  | struct can_priv *priv = netdev_priv(dev); | 
|  | struct net_device_stats *stats = &dev->stats; | 
|  | struct sk_buff *skb; | 
|  | struct can_frame *cf; | 
|  | int err; | 
|  |  | 
|  | BUG_ON(netif_carrier_ok(dev)); | 
|  |  | 
|  | /* | 
|  | * No synchronization needed because the device is bus-off and | 
|  | * no messages can come in or go out. | 
|  | */ | 
|  | can_flush_echo_skb(dev); | 
|  |  | 
|  | /* send restart message upstream */ | 
|  | skb = alloc_can_err_skb(dev, &cf); | 
|  | if (skb == NULL) { | 
|  | err = -ENOMEM; | 
|  | goto restart; | 
|  | } | 
|  | cf->can_id |= CAN_ERR_RESTARTED; | 
|  |  | 
|  | netif_rx(skb); | 
|  |  | 
|  | stats->rx_packets++; | 
|  | stats->rx_bytes += cf->can_dlc; | 
|  |  | 
|  | restart: | 
|  | netdev_dbg(dev, "restarted\n"); | 
|  | priv->can_stats.restarts++; | 
|  |  | 
|  | /* Now restart the device */ | 
|  | err = priv->do_set_mode(dev, CAN_MODE_START); | 
|  |  | 
|  | netif_carrier_on(dev); | 
|  | if (err) | 
|  | netdev_err(dev, "Error %d during restart", err); | 
|  | } | 
|  |  | 
|  | int can_restart_now(struct net_device *dev) | 
|  | { | 
|  | struct can_priv *priv = netdev_priv(dev); | 
|  |  | 
|  | /* | 
|  | * A manual restart is only permitted if automatic restart is | 
|  | * disabled and the device is in the bus-off state | 
|  | */ | 
|  | if (priv->restart_ms) | 
|  | return -EINVAL; | 
|  | if (priv->state != CAN_STATE_BUS_OFF) | 
|  | return -EBUSY; | 
|  |  | 
|  | /* Runs as soon as possible in the timer context */ | 
|  | mod_timer(&priv->restart_timer, jiffies); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * CAN bus-off | 
|  | * | 
|  | * This functions should be called when the device goes bus-off to | 
|  | * tell the netif layer that no more packets can be sent or received. | 
|  | * If enabled, a timer is started to trigger bus-off recovery. | 
|  | */ | 
|  | void can_bus_off(struct net_device *dev) | 
|  | { | 
|  | struct can_priv *priv = netdev_priv(dev); | 
|  |  | 
|  | netdev_dbg(dev, "bus-off\n"); | 
|  |  | 
|  | netif_carrier_off(dev); | 
|  | priv->can_stats.bus_off++; | 
|  |  | 
|  | if (priv->restart_ms) | 
|  | mod_timer(&priv->restart_timer, | 
|  | jiffies + (priv->restart_ms * HZ) / 1000); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(can_bus_off); | 
|  |  | 
|  | static void can_setup(struct net_device *dev) | 
|  | { | 
|  | dev->type = ARPHRD_CAN; | 
|  | dev->mtu = CAN_MTU; | 
|  | dev->hard_header_len = 0; | 
|  | dev->addr_len = 0; | 
|  | dev->tx_queue_len = 10; | 
|  |  | 
|  | /* New-style flags. */ | 
|  | dev->flags = IFF_NOARP; | 
|  | dev->features = NETIF_F_HW_CSUM; | 
|  | } | 
|  |  | 
|  | struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) + | 
|  | sizeof(struct can_frame)); | 
|  | if (unlikely(!skb)) | 
|  | return NULL; | 
|  |  | 
|  | skb->protocol = htons(ETH_P_CAN); | 
|  | skb->pkt_type = PACKET_BROADCAST; | 
|  | skb->ip_summed = CHECKSUM_UNNECESSARY; | 
|  |  | 
|  | can_skb_reserve(skb); | 
|  | can_skb_prv(skb)->ifindex = dev->ifindex; | 
|  |  | 
|  | *cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame)); | 
|  | memset(*cf, 0, sizeof(struct can_frame)); | 
|  |  | 
|  | return skb; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(alloc_can_skb); | 
|  |  | 
|  | struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | skb = alloc_can_skb(dev, cf); | 
|  | if (unlikely(!skb)) | 
|  | return NULL; | 
|  |  | 
|  | (*cf)->can_id = CAN_ERR_FLAG; | 
|  | (*cf)->can_dlc = CAN_ERR_DLC; | 
|  |  | 
|  | return skb; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(alloc_can_err_skb); | 
|  |  | 
|  | /* | 
|  | * Allocate and setup space for the CAN network device | 
|  | */ | 
|  | struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max) | 
|  | { | 
|  | struct net_device *dev; | 
|  | struct can_priv *priv; | 
|  | int size; | 
|  |  | 
|  | if (echo_skb_max) | 
|  | size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) + | 
|  | echo_skb_max * sizeof(struct sk_buff *); | 
|  | else | 
|  | size = sizeof_priv; | 
|  |  | 
|  | dev = alloc_netdev(size, "can%d", can_setup); | 
|  | if (!dev) | 
|  | return NULL; | 
|  |  | 
|  | priv = netdev_priv(dev); | 
|  |  | 
|  | if (echo_skb_max) { | 
|  | priv->echo_skb_max = echo_skb_max; | 
|  | priv->echo_skb = (void *)priv + | 
|  | ALIGN(sizeof_priv, sizeof(struct sk_buff *)); | 
|  | } | 
|  |  | 
|  | priv->state = CAN_STATE_STOPPED; | 
|  |  | 
|  | init_timer(&priv->restart_timer); | 
|  |  | 
|  | return dev; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(alloc_candev); | 
|  |  | 
|  | /* | 
|  | * Free space of the CAN network device | 
|  | */ | 
|  | void free_candev(struct net_device *dev) | 
|  | { | 
|  | free_netdev(dev); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(free_candev); | 
|  |  | 
|  | /* | 
|  | * Common open function when the device gets opened. | 
|  | * | 
|  | * This function should be called in the open function of the device | 
|  | * driver. | 
|  | */ | 
|  | int open_candev(struct net_device *dev) | 
|  | { | 
|  | struct can_priv *priv = netdev_priv(dev); | 
|  |  | 
|  | if (!priv->bittiming.tq && !priv->bittiming.bitrate) { | 
|  | netdev_err(dev, "bit-timing not yet defined\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Switch carrier on if device was stopped while in bus-off state */ | 
|  | if (!netif_carrier_ok(dev)) | 
|  | netif_carrier_on(dev); | 
|  |  | 
|  | setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(open_candev); | 
|  |  | 
|  | /* | 
|  | * Common close function for cleanup before the device gets closed. | 
|  | * | 
|  | * This function should be called in the close function of the device | 
|  | * driver. | 
|  | */ | 
|  | void close_candev(struct net_device *dev) | 
|  | { | 
|  | struct can_priv *priv = netdev_priv(dev); | 
|  |  | 
|  | del_timer_sync(&priv->restart_timer); | 
|  | can_flush_echo_skb(dev); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(close_candev); | 
|  |  | 
|  | /* | 
|  | * CAN netlink interface | 
|  | */ | 
|  | static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = { | 
|  | [IFLA_CAN_STATE]	= { .type = NLA_U32 }, | 
|  | [IFLA_CAN_CTRLMODE]	= { .len = sizeof(struct can_ctrlmode) }, | 
|  | [IFLA_CAN_RESTART_MS]	= { .type = NLA_U32 }, | 
|  | [IFLA_CAN_RESTART]	= { .type = NLA_U32 }, | 
|  | [IFLA_CAN_BITTIMING]	= { .len = sizeof(struct can_bittiming) }, | 
|  | [IFLA_CAN_BITTIMING_CONST] | 
|  | = { .len = sizeof(struct can_bittiming_const) }, | 
|  | [IFLA_CAN_CLOCK]	= { .len = sizeof(struct can_clock) }, | 
|  | [IFLA_CAN_BERR_COUNTER]	= { .len = sizeof(struct can_berr_counter) }, | 
|  | }; | 
|  |  | 
|  | static int can_changelink(struct net_device *dev, | 
|  | struct nlattr *tb[], struct nlattr *data[]) | 
|  | { | 
|  | struct can_priv *priv = netdev_priv(dev); | 
|  | int err; | 
|  |  | 
|  | /* We need synchronization with dev->stop() */ | 
|  | ASSERT_RTNL(); | 
|  |  | 
|  | if (data[IFLA_CAN_BITTIMING]) { | 
|  | struct can_bittiming bt; | 
|  |  | 
|  | /* Do not allow changing bittiming while running */ | 
|  | if (dev->flags & IFF_UP) | 
|  | return -EBUSY; | 
|  | memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt)); | 
|  | if ((!bt.bitrate && !bt.tq) || (bt.bitrate && bt.tq)) | 
|  | return -EINVAL; | 
|  | err = can_get_bittiming(dev, &bt); | 
|  | if (err) | 
|  | return err; | 
|  | memcpy(&priv->bittiming, &bt, sizeof(bt)); | 
|  |  | 
|  | if (priv->do_set_bittiming) { | 
|  | /* Finally, set the bit-timing registers */ | 
|  | err = priv->do_set_bittiming(dev); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (data[IFLA_CAN_CTRLMODE]) { | 
|  | struct can_ctrlmode *cm; | 
|  |  | 
|  | /* Do not allow changing controller mode while running */ | 
|  | if (dev->flags & IFF_UP) | 
|  | return -EBUSY; | 
|  | cm = nla_data(data[IFLA_CAN_CTRLMODE]); | 
|  | if (cm->flags & ~priv->ctrlmode_supported) | 
|  | return -EOPNOTSUPP; | 
|  | priv->ctrlmode &= ~cm->mask; | 
|  | priv->ctrlmode |= cm->flags; | 
|  | } | 
|  |  | 
|  | if (data[IFLA_CAN_RESTART_MS]) { | 
|  | /* Do not allow changing restart delay while running */ | 
|  | if (dev->flags & IFF_UP) | 
|  | return -EBUSY; | 
|  | priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]); | 
|  | } | 
|  |  | 
|  | if (data[IFLA_CAN_RESTART]) { | 
|  | /* Do not allow a restart while not running */ | 
|  | if (!(dev->flags & IFF_UP)) | 
|  | return -EINVAL; | 
|  | err = can_restart_now(dev); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static size_t can_get_size(const struct net_device *dev) | 
|  | { | 
|  | struct can_priv *priv = netdev_priv(dev); | 
|  | size_t size = 0; | 
|  |  | 
|  | size += nla_total_size(sizeof(struct can_bittiming));	/* IFLA_CAN_BITTIMING */ | 
|  | if (priv->bittiming_const)				/* IFLA_CAN_BITTIMING_CONST */ | 
|  | size += nla_total_size(sizeof(struct can_bittiming_const)); | 
|  | size += nla_total_size(sizeof(struct can_clock));	/* IFLA_CAN_CLOCK */ | 
|  | size += nla_total_size(sizeof(u32));			/* IFLA_CAN_STATE */ | 
|  | size += nla_total_size(sizeof(struct can_ctrlmode));	/* IFLA_CAN_CTRLMODE */ | 
|  | size += nla_total_size(sizeof(u32));			/* IFLA_CAN_RESTART_MS */ | 
|  | if (priv->do_get_berr_counter)				/* IFLA_CAN_BERR_COUNTER */ | 
|  | size += nla_total_size(sizeof(struct can_berr_counter)); | 
|  |  | 
|  | return size; | 
|  | } | 
|  |  | 
|  | static int can_fill_info(struct sk_buff *skb, const struct net_device *dev) | 
|  | { | 
|  | struct can_priv *priv = netdev_priv(dev); | 
|  | struct can_ctrlmode cm = {.flags = priv->ctrlmode}; | 
|  | struct can_berr_counter bec; | 
|  | enum can_state state = priv->state; | 
|  |  | 
|  | if (priv->do_get_state) | 
|  | priv->do_get_state(dev, &state); | 
|  | if (nla_put(skb, IFLA_CAN_BITTIMING, | 
|  | sizeof(priv->bittiming), &priv->bittiming) || | 
|  | (priv->bittiming_const && | 
|  | nla_put(skb, IFLA_CAN_BITTIMING_CONST, | 
|  | sizeof(*priv->bittiming_const), priv->bittiming_const)) || | 
|  | nla_put(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock) || | 
|  | nla_put_u32(skb, IFLA_CAN_STATE, state) || | 
|  | nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) || | 
|  | nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) || | 
|  | (priv->do_get_berr_counter && | 
|  | !priv->do_get_berr_counter(dev, &bec) && | 
|  | nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec))) | 
|  | return -EMSGSIZE; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static size_t can_get_xstats_size(const struct net_device *dev) | 
|  | { | 
|  | return sizeof(struct can_device_stats); | 
|  | } | 
|  |  | 
|  | static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev) | 
|  | { | 
|  | struct can_priv *priv = netdev_priv(dev); | 
|  |  | 
|  | if (nla_put(skb, IFLA_INFO_XSTATS, | 
|  | sizeof(priv->can_stats), &priv->can_stats)) | 
|  | goto nla_put_failure; | 
|  | return 0; | 
|  |  | 
|  | nla_put_failure: | 
|  | return -EMSGSIZE; | 
|  | } | 
|  |  | 
|  | static int can_newlink(struct net *src_net, struct net_device *dev, | 
|  | struct nlattr *tb[], struct nlattr *data[]) | 
|  | { | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | static struct rtnl_link_ops can_link_ops __read_mostly = { | 
|  | .kind		= "can", | 
|  | .maxtype	= IFLA_CAN_MAX, | 
|  | .policy		= can_policy, | 
|  | .setup		= can_setup, | 
|  | .newlink	= can_newlink, | 
|  | .changelink	= can_changelink, | 
|  | .get_size	= can_get_size, | 
|  | .fill_info	= can_fill_info, | 
|  | .get_xstats_size = can_get_xstats_size, | 
|  | .fill_xstats	= can_fill_xstats, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Register the CAN network device | 
|  | */ | 
|  | int register_candev(struct net_device *dev) | 
|  | { | 
|  | dev->rtnl_link_ops = &can_link_ops; | 
|  | return register_netdev(dev); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(register_candev); | 
|  |  | 
|  | /* | 
|  | * Unregister the CAN network device | 
|  | */ | 
|  | void unregister_candev(struct net_device *dev) | 
|  | { | 
|  | unregister_netdev(dev); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(unregister_candev); | 
|  |  | 
|  | /* | 
|  | * Test if a network device is a candev based device | 
|  | * and return the can_priv* if so. | 
|  | */ | 
|  | struct can_priv *safe_candev_priv(struct net_device *dev) | 
|  | { | 
|  | if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops)) | 
|  | return NULL; | 
|  |  | 
|  | return netdev_priv(dev); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(safe_candev_priv); | 
|  |  | 
|  | static __init int can_dev_init(void) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | can_led_notifier_init(); | 
|  |  | 
|  | err = rtnl_link_register(&can_link_ops); | 
|  | if (!err) | 
|  | printk(KERN_INFO MOD_DESC "\n"); | 
|  |  | 
|  | return err; | 
|  | } | 
|  | module_init(can_dev_init); | 
|  |  | 
|  | static __exit void can_dev_exit(void) | 
|  | { | 
|  | rtnl_link_unregister(&can_link_ops); | 
|  |  | 
|  | can_led_notifier_exit(); | 
|  | } | 
|  | module_exit(can_dev_exit); | 
|  |  | 
|  | MODULE_ALIAS_RTNL_LINK("can"); |