blob: f7a3fbe5447effe3ef63b74417a938133c516bea [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Asynchronous Compression operations
*
* Copyright (c) 2016, Intel Corporation
* Authors: Weigang Li <weigang.li@intel.com>
* Giovanni Cabiddu <giovanni.cabiddu@intel.com>
*/
#include <crypto/internal/acompress.h>
#include <linux/cryptouser.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/page-flags.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <net/netlink.h>
#include "compress.h"
struct crypto_scomp;
static const struct crypto_type crypto_acomp_type;
static void acomp_reqchain_done(void *data, int err);
static inline struct acomp_alg *__crypto_acomp_alg(struct crypto_alg *alg)
{
return container_of(alg, struct acomp_alg, calg.base);
}
static inline struct acomp_alg *crypto_acomp_alg(struct crypto_acomp *tfm)
{
return __crypto_acomp_alg(crypto_acomp_tfm(tfm)->__crt_alg);
}
static int __maybe_unused crypto_acomp_report(
struct sk_buff *skb, struct crypto_alg *alg)
{
struct crypto_report_acomp racomp;
memset(&racomp, 0, sizeof(racomp));
strscpy(racomp.type, "acomp", sizeof(racomp.type));
return nla_put(skb, CRYPTOCFGA_REPORT_ACOMP, sizeof(racomp), &racomp);
}
static void crypto_acomp_show(struct seq_file *m, struct crypto_alg *alg)
__maybe_unused;
static void crypto_acomp_show(struct seq_file *m, struct crypto_alg *alg)
{
seq_puts(m, "type : acomp\n");
}
static void crypto_acomp_exit_tfm(struct crypto_tfm *tfm)
{
struct crypto_acomp *acomp = __crypto_acomp_tfm(tfm);
struct acomp_alg *alg = crypto_acomp_alg(acomp);
if (alg->exit)
alg->exit(acomp);
if (acomp_is_async(acomp))
crypto_free_acomp(acomp->fb);
}
static int crypto_acomp_init_tfm(struct crypto_tfm *tfm)
{
struct crypto_acomp *acomp = __crypto_acomp_tfm(tfm);
struct acomp_alg *alg = crypto_acomp_alg(acomp);
struct crypto_acomp *fb = NULL;
int err;
acomp->fb = acomp;
if (tfm->__crt_alg->cra_type != &crypto_acomp_type)
return crypto_init_scomp_ops_async(tfm);
if (acomp_is_async(acomp)) {
fb = crypto_alloc_acomp(crypto_acomp_alg_name(acomp), 0,
CRYPTO_ALG_ASYNC);
if (IS_ERR(fb))
return PTR_ERR(fb);
err = -EINVAL;
if (crypto_acomp_reqsize(fb) > MAX_SYNC_COMP_REQSIZE)
goto out_free_fb;
acomp->fb = fb;
}
acomp->compress = alg->compress;
acomp->decompress = alg->decompress;
acomp->reqsize = alg->reqsize;
acomp->base.exit = crypto_acomp_exit_tfm;
if (!alg->init)
return 0;
err = alg->init(acomp);
if (err)
goto out_free_fb;
return 0;
out_free_fb:
crypto_free_acomp(fb);
return err;
}
static unsigned int crypto_acomp_extsize(struct crypto_alg *alg)
{
int extsize = crypto_alg_extsize(alg);
if (alg->cra_type != &crypto_acomp_type)
extsize += sizeof(struct crypto_scomp *);
return extsize;
}
static const struct crypto_type crypto_acomp_type = {
.extsize = crypto_acomp_extsize,
.init_tfm = crypto_acomp_init_tfm,
#ifdef CONFIG_PROC_FS
.show = crypto_acomp_show,
#endif
#if IS_ENABLED(CONFIG_CRYPTO_USER)
.report = crypto_acomp_report,
#endif
.maskclear = ~CRYPTO_ALG_TYPE_MASK,
.maskset = CRYPTO_ALG_TYPE_ACOMPRESS_MASK,
.type = CRYPTO_ALG_TYPE_ACOMPRESS,
.tfmsize = offsetof(struct crypto_acomp, base),
};
struct crypto_acomp *crypto_alloc_acomp(const char *alg_name, u32 type,
u32 mask)
{
return crypto_alloc_tfm(alg_name, &crypto_acomp_type, type, mask);
}
EXPORT_SYMBOL_GPL(crypto_alloc_acomp);
struct crypto_acomp *crypto_alloc_acomp_node(const char *alg_name, u32 type,
u32 mask, int node)
{
return crypto_alloc_tfm_node(alg_name, &crypto_acomp_type, type, mask,
node);
}
EXPORT_SYMBOL_GPL(crypto_alloc_acomp_node);
static void acomp_save_req(struct acomp_req *req, crypto_completion_t cplt)
{
struct acomp_req_chain *state = &req->chain;
state->compl = req->base.complete;
state->data = req->base.data;
req->base.complete = cplt;
req->base.data = state;
state->req0 = req;
}
static void acomp_restore_req(struct acomp_req *req)
{
struct acomp_req_chain *state = req->base.data;
req->base.complete = state->compl;
req->base.data = state->data;
}
static void acomp_reqchain_virt(struct acomp_req_chain *state, int err)
{
struct acomp_req *req = state->cur;
unsigned int slen = req->slen;
unsigned int dlen = req->dlen;
req->base.err = err;
state = &req->chain;
if (state->flags & CRYPTO_ACOMP_REQ_SRC_VIRT)
acomp_request_set_src_dma(req, state->src, slen);
else if (state->flags & CRYPTO_ACOMP_REQ_SRC_FOLIO)
acomp_request_set_src_folio(req, state->sfolio, state->soff, slen);
if (state->flags & CRYPTO_ACOMP_REQ_DST_VIRT)
acomp_request_set_dst_dma(req, state->dst, dlen);
else if (state->flags & CRYPTO_ACOMP_REQ_DST_FOLIO)
acomp_request_set_dst_folio(req, state->dfolio, state->doff, dlen);
}
static void acomp_virt_to_sg(struct acomp_req *req)
{
struct acomp_req_chain *state = &req->chain;
state->flags = req->base.flags & (CRYPTO_ACOMP_REQ_SRC_VIRT |
CRYPTO_ACOMP_REQ_DST_VIRT |
CRYPTO_ACOMP_REQ_SRC_FOLIO |
CRYPTO_ACOMP_REQ_DST_FOLIO);
if (acomp_request_src_isvirt(req)) {
unsigned int slen = req->slen;
const u8 *svirt = req->svirt;
state->src = svirt;
sg_init_one(&state->ssg, svirt, slen);
acomp_request_set_src_sg(req, &state->ssg, slen);
} else if (acomp_request_src_isfolio(req)) {
struct folio *folio = req->sfolio;
unsigned int slen = req->slen;
size_t off = req->soff;
state->sfolio = folio;
state->soff = off;
sg_init_table(&state->ssg, 1);
sg_set_page(&state->ssg, folio_page(folio, off / PAGE_SIZE),
slen, off % PAGE_SIZE);
acomp_request_set_src_sg(req, &state->ssg, slen);
}
if (acomp_request_dst_isvirt(req)) {
unsigned int dlen = req->dlen;
u8 *dvirt = req->dvirt;
state->dst = dvirt;
sg_init_one(&state->dsg, dvirt, dlen);
acomp_request_set_dst_sg(req, &state->dsg, dlen);
} else if (acomp_request_dst_isfolio(req)) {
struct folio *folio = req->dfolio;
unsigned int dlen = req->dlen;
size_t off = req->doff;
state->dfolio = folio;
state->doff = off;
sg_init_table(&state->dsg, 1);
sg_set_page(&state->dsg, folio_page(folio, off / PAGE_SIZE),
dlen, off % PAGE_SIZE);
acomp_request_set_src_sg(req, &state->dsg, dlen);
}
}
static int acomp_do_nondma(struct acomp_req_chain *state,
struct acomp_req *req)
{
u32 keep = CRYPTO_ACOMP_REQ_SRC_VIRT |
CRYPTO_ACOMP_REQ_SRC_NONDMA |
CRYPTO_ACOMP_REQ_DST_VIRT |
CRYPTO_ACOMP_REQ_DST_NONDMA;
ACOMP_REQUEST_ON_STACK(fbreq, crypto_acomp_reqtfm(req));
int err;
acomp_request_set_callback(fbreq, req->base.flags, NULL, NULL);
fbreq->base.flags &= ~keep;
fbreq->base.flags |= req->base.flags & keep;
fbreq->src = req->src;
fbreq->dst = req->dst;
fbreq->slen = req->slen;
fbreq->dlen = req->dlen;
if (state->op == crypto_acomp_reqtfm(req)->compress)
err = crypto_acomp_compress(fbreq);
else
err = crypto_acomp_decompress(fbreq);
req->dlen = fbreq->dlen;
return err;
}
static int acomp_do_one_req(struct acomp_req_chain *state,
struct acomp_req *req)
{
state->cur = req;
if (acomp_request_isnondma(req))
return acomp_do_nondma(state, req);
acomp_virt_to_sg(req);
return state->op(req);
}
static int acomp_reqchain_finish(struct acomp_req *req0, int err, u32 mask)
{
struct acomp_req_chain *state = req0->base.data;
struct acomp_req *req = state->cur;
struct acomp_req *n;
acomp_reqchain_virt(state, err);
if (req != req0)
list_add_tail(&req->base.list, &req0->base.list);
list_for_each_entry_safe(req, n, &state->head, base.list) {
list_del_init(&req->base.list);
req->base.flags &= mask;
req->base.complete = acomp_reqchain_done;
req->base.data = state;
err = acomp_do_one_req(state, req);
if (err == -EINPROGRESS) {
if (!list_empty(&state->head))
err = -EBUSY;
goto out;
}
if (err == -EBUSY)
goto out;
acomp_reqchain_virt(state, err);
list_add_tail(&req->base.list, &req0->base.list);
}
acomp_restore_req(req0);
out:
return err;
}
static void acomp_reqchain_done(void *data, int err)
{
struct acomp_req_chain *state = data;
crypto_completion_t compl = state->compl;
data = state->data;
if (err == -EINPROGRESS) {
if (!list_empty(&state->head))
return;
goto notify;
}
err = acomp_reqchain_finish(state->req0, err,
CRYPTO_TFM_REQ_MAY_BACKLOG);
if (err == -EBUSY)
return;
notify:
compl(data, err);
}
static int acomp_do_req_chain(struct acomp_req *req,
int (*op)(struct acomp_req *req))
{
struct crypto_acomp *tfm = crypto_acomp_reqtfm(req);
struct acomp_req_chain *state;
int err;
if (crypto_acomp_req_chain(tfm) ||
(!acomp_request_chained(req) && acomp_request_issg(req)))
return op(req);
acomp_save_req(req, acomp_reqchain_done);
state = req->base.data;
state->op = op;
state->src = NULL;
INIT_LIST_HEAD(&state->head);
list_splice_init(&req->base.list, &state->head);
err = acomp_do_one_req(state, req);
if (err == -EBUSY || err == -EINPROGRESS)
return -EBUSY;
return acomp_reqchain_finish(req, err, ~0);
}
int crypto_acomp_compress(struct acomp_req *req)
{
return acomp_do_req_chain(req, crypto_acomp_reqtfm(req)->compress);
}
EXPORT_SYMBOL_GPL(crypto_acomp_compress);
int crypto_acomp_decompress(struct acomp_req *req)
{
return acomp_do_req_chain(req, crypto_acomp_reqtfm(req)->decompress);
}
EXPORT_SYMBOL_GPL(crypto_acomp_decompress);
void comp_prepare_alg(struct comp_alg_common *alg)
{
struct crypto_alg *base = &alg->base;
base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
}
int crypto_register_acomp(struct acomp_alg *alg)
{
struct crypto_alg *base = &alg->calg.base;
comp_prepare_alg(&alg->calg);
base->cra_type = &crypto_acomp_type;
base->cra_flags |= CRYPTO_ALG_TYPE_ACOMPRESS;
return crypto_register_alg(base);
}
EXPORT_SYMBOL_GPL(crypto_register_acomp);
void crypto_unregister_acomp(struct acomp_alg *alg)
{
crypto_unregister_alg(&alg->base);
}
EXPORT_SYMBOL_GPL(crypto_unregister_acomp);
int crypto_register_acomps(struct acomp_alg *algs, int count)
{
int i, ret;
for (i = 0; i < count; i++) {
ret = crypto_register_acomp(&algs[i]);
if (ret)
goto err;
}
return 0;
err:
for (--i; i >= 0; --i)
crypto_unregister_acomp(&algs[i]);
return ret;
}
EXPORT_SYMBOL_GPL(crypto_register_acomps);
void crypto_unregister_acomps(struct acomp_alg *algs, int count)
{
int i;
for (i = count - 1; i >= 0; --i)
crypto_unregister_acomp(&algs[i]);
}
EXPORT_SYMBOL_GPL(crypto_unregister_acomps);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Asynchronous compression type");