blob: 0d4b3935e6873270553cfddf5e7beb9f1254a5f1 [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0+
/*
* This is i.MX low power i2c controller driver.
*
* Copyright 2016 Freescale Semiconductor, Inc.
*/
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/sched.h>
#include <linux/slab.h>
#define DRIVER_NAME "imx-lpi2c"
#define LPI2C_PARAM 0x04 /* i2c RX/TX FIFO size */
#define LPI2C_MCR 0x10 /* i2c contrl register */
#define LPI2C_MSR 0x14 /* i2c status register */
#define LPI2C_MIER 0x18 /* i2c interrupt enable */
#define LPI2C_MDER 0x1C /* i2c DMA enable */
#define LPI2C_MCFGR0 0x20 /* i2c master configuration */
#define LPI2C_MCFGR1 0x24 /* i2c master configuration */
#define LPI2C_MCFGR2 0x28 /* i2c master configuration */
#define LPI2C_MCFGR3 0x2C /* i2c master configuration */
#define LPI2C_MCCR0 0x48 /* i2c master clk configuration */
#define LPI2C_MCCR1 0x50 /* i2c master clk configuration */
#define LPI2C_MFCR 0x58 /* i2c master FIFO control */
#define LPI2C_MFSR 0x5C /* i2c master FIFO status */
#define LPI2C_MTDR 0x60 /* i2c master TX data register */
#define LPI2C_MRDR 0x70 /* i2c master RX data register */
#define LPI2C_SCR 0x110 /* i2c target control register */
#define LPI2C_SSR 0x114 /* i2c target status register */
#define LPI2C_SIER 0x118 /* i2c target interrupt enable */
#define LPI2C_SDER 0x11C /* i2c target DMA enable */
#define LPI2C_SCFGR0 0x120 /* i2c target configuration */
#define LPI2C_SCFGR1 0x124 /* i2c target configuration */
#define LPI2C_SCFGR2 0x128 /* i2c target configuration */
#define LPI2C_SAMR 0x140 /* i2c target address match */
#define LPI2C_SASR 0x150 /* i2c target address status */
#define LPI2C_STAR 0x154 /* i2c target transmit ACK */
#define LPI2C_STDR 0x160 /* i2c target transmit data */
#define LPI2C_SRDR 0x170 /* i2c target receive data */
#define LPI2C_SRDROR 0x178 /* i2c target receive data read only */
/* i2c command */
#define TRAN_DATA 0X00
#define RECV_DATA 0X01
#define GEN_STOP 0X02
#define RECV_DISCARD 0X03
#define GEN_START 0X04
#define START_NACK 0X05
#define START_HIGH 0X06
#define START_HIGH_NACK 0X07
#define MCR_MEN BIT(0)
#define MCR_RST BIT(1)
#define MCR_DOZEN BIT(2)
#define MCR_DBGEN BIT(3)
#define MCR_RTF BIT(8)
#define MCR_RRF BIT(9)
#define MSR_TDF BIT(0)
#define MSR_RDF BIT(1)
#define MSR_SDF BIT(9)
#define MSR_NDF BIT(10)
#define MSR_ALF BIT(11)
#define MSR_MBF BIT(24)
#define MSR_BBF BIT(25)
#define MIER_TDIE BIT(0)
#define MIER_RDIE BIT(1)
#define MIER_SDIE BIT(9)
#define MIER_NDIE BIT(10)
#define MCFGR1_AUTOSTOP BIT(8)
#define MCFGR1_IGNACK BIT(9)
#define MRDR_RXEMPTY BIT(14)
#define MDER_TDDE BIT(0)
#define MDER_RDDE BIT(1)
#define SCR_SEN BIT(0)
#define SCR_RST BIT(1)
#define SCR_FILTEN BIT(4)
#define SCR_RTF BIT(8)
#define SCR_RRF BIT(9)
#define SSR_TDF BIT(0)
#define SSR_RDF BIT(1)
#define SSR_AVF BIT(2)
#define SSR_TAF BIT(3)
#define SSR_RSF BIT(8)
#define SSR_SDF BIT(9)
#define SSR_BEF BIT(10)
#define SSR_FEF BIT(11)
#define SSR_SBF BIT(24)
#define SSR_BBF BIT(25)
#define SSR_CLEAR_BITS (SSR_RSF | SSR_SDF | SSR_BEF | SSR_FEF)
#define SIER_TDIE BIT(0)
#define SIER_RDIE BIT(1)
#define SIER_AVIE BIT(2)
#define SIER_TAIE BIT(3)
#define SIER_RSIE BIT(8)
#define SIER_SDIE BIT(9)
#define SIER_BEIE BIT(10)
#define SIER_FEIE BIT(11)
#define SIER_AM0F BIT(12)
#define SCFGR1_RXSTALL BIT(1)
#define SCFGR1_TXDSTALL BIT(2)
#define SCFGR2_FILTSDA_SHIFT 24
#define SCFGR2_FILTSCL_SHIFT 16
#define SCFGR2_CLKHOLD(x) (x)
#define SCFGR2_FILTSDA(x) ((x) << SCFGR2_FILTSDA_SHIFT)
#define SCFGR2_FILTSCL(x) ((x) << SCFGR2_FILTSCL_SHIFT)
#define SASR_READ_REQ 0x1
#define SLAVE_INT_FLAG (SIER_TDIE | SIER_RDIE | SIER_AVIE | \
SIER_SDIE | SIER_BEIE)
#define I2C_CLK_RATIO 2
#define CHUNK_DATA 256
#define I2C_PM_TIMEOUT 10 /* ms */
#define I2C_DMA_THRESHOLD 8 /* bytes */
enum lpi2c_imx_mode {
STANDARD, /* 100+Kbps */
FAST, /* 400+Kbps */
FAST_PLUS, /* 1.0+Mbps */
HS, /* 3.4+Mbps */
ULTRA_FAST, /* 5.0+Mbps */
};
enum lpi2c_imx_pincfg {
TWO_PIN_OD,
TWO_PIN_OO,
TWO_PIN_PP,
FOUR_PIN_PP,
};
struct lpi2c_imx_dma {
bool using_pio_mode;
u8 rx_cmd_buf_len;
u8 *dma_buf;
u16 *rx_cmd_buf;
unsigned int dma_len;
unsigned int tx_burst_num;
unsigned int rx_burst_num;
unsigned long dma_msg_flag;
resource_size_t phy_addr;
dma_addr_t dma_tx_addr;
dma_addr_t dma_addr;
enum dma_data_direction dma_data_dir;
enum dma_transfer_direction dma_transfer_dir;
struct dma_chan *chan_tx;
struct dma_chan *chan_rx;
};
struct lpi2c_imx_struct {
struct i2c_adapter adapter;
int num_clks;
struct clk_bulk_data *clks;
void __iomem *base;
__u8 *rx_buf;
__u8 *tx_buf;
struct completion complete;
unsigned long rate_per;
unsigned int msglen;
unsigned int delivered;
unsigned int block_data;
unsigned int bitrate;
unsigned int txfifosize;
unsigned int rxfifosize;
enum lpi2c_imx_mode mode;
struct i2c_bus_recovery_info rinfo;
bool can_use_dma;
struct lpi2c_imx_dma *dma;
struct i2c_client *target;
};
static void lpi2c_imx_intctrl(struct lpi2c_imx_struct *lpi2c_imx,
unsigned int enable)
{
writel(enable, lpi2c_imx->base + LPI2C_MIER);
}
static int lpi2c_imx_bus_busy(struct lpi2c_imx_struct *lpi2c_imx)
{
unsigned long orig_jiffies = jiffies;
unsigned int temp;
while (1) {
temp = readl(lpi2c_imx->base + LPI2C_MSR);
/* check for arbitration lost, clear if set */
if (temp & MSR_ALF) {
writel(temp, lpi2c_imx->base + LPI2C_MSR);
return -EAGAIN;
}
if (temp & (MSR_BBF | MSR_MBF))
break;
if (time_after(jiffies, orig_jiffies + msecs_to_jiffies(500))) {
dev_dbg(&lpi2c_imx->adapter.dev, "bus not work\n");
if (lpi2c_imx->adapter.bus_recovery_info)
i2c_recover_bus(&lpi2c_imx->adapter);
return -ETIMEDOUT;
}
schedule();
}
return 0;
}
static void lpi2c_imx_set_mode(struct lpi2c_imx_struct *lpi2c_imx)
{
unsigned int bitrate = lpi2c_imx->bitrate;
enum lpi2c_imx_mode mode;
if (bitrate < I2C_MAX_FAST_MODE_FREQ)
mode = STANDARD;
else if (bitrate < I2C_MAX_FAST_MODE_PLUS_FREQ)
mode = FAST;
else if (bitrate < I2C_MAX_HIGH_SPEED_MODE_FREQ)
mode = FAST_PLUS;
else if (bitrate < I2C_MAX_ULTRA_FAST_MODE_FREQ)
mode = HS;
else
mode = ULTRA_FAST;
lpi2c_imx->mode = mode;
}
static int lpi2c_imx_start(struct lpi2c_imx_struct *lpi2c_imx,
struct i2c_msg *msgs)
{
unsigned int temp;
temp = readl(lpi2c_imx->base + LPI2C_MCR);
temp |= MCR_RRF | MCR_RTF;
writel(temp, lpi2c_imx->base + LPI2C_MCR);
writel(0x7f00, lpi2c_imx->base + LPI2C_MSR);
temp = i2c_8bit_addr_from_msg(msgs) | (GEN_START << 8);
writel(temp, lpi2c_imx->base + LPI2C_MTDR);
return lpi2c_imx_bus_busy(lpi2c_imx);
}
static void lpi2c_imx_stop(struct lpi2c_imx_struct *lpi2c_imx)
{
unsigned long orig_jiffies = jiffies;
unsigned int temp;
writel(GEN_STOP << 8, lpi2c_imx->base + LPI2C_MTDR);
do {
temp = readl(lpi2c_imx->base + LPI2C_MSR);
if (temp & MSR_SDF)
break;
if (time_after(jiffies, orig_jiffies + msecs_to_jiffies(500))) {
dev_dbg(&lpi2c_imx->adapter.dev, "stop timeout\n");
if (lpi2c_imx->adapter.bus_recovery_info)
i2c_recover_bus(&lpi2c_imx->adapter);
break;
}
schedule();
} while (1);
}
/* CLKLO = I2C_CLK_RATIO * CLKHI, SETHOLD = CLKHI, DATAVD = CLKHI/2 */
static int lpi2c_imx_config(struct lpi2c_imx_struct *lpi2c_imx)
{
u8 prescale, filt, sethold, datavd;
unsigned int clk_rate, clk_cycle, clkhi, clklo;
enum lpi2c_imx_pincfg pincfg;
unsigned int temp;
lpi2c_imx_set_mode(lpi2c_imx);
clk_rate = lpi2c_imx->rate_per;
if (lpi2c_imx->mode == HS || lpi2c_imx->mode == ULTRA_FAST)
filt = 0;
else
filt = 2;
for (prescale = 0; prescale <= 7; prescale++) {
clk_cycle = clk_rate / ((1 << prescale) * lpi2c_imx->bitrate)
- 3 - (filt >> 1);
clkhi = DIV_ROUND_UP(clk_cycle, I2C_CLK_RATIO + 1);
clklo = clk_cycle - clkhi;
if (clklo < 64)
break;
}
if (prescale > 7)
return -EINVAL;
/* set MCFGR1: PINCFG, PRESCALE, IGNACK */
if (lpi2c_imx->mode == ULTRA_FAST)
pincfg = TWO_PIN_OO;
else
pincfg = TWO_PIN_OD;
temp = prescale | pincfg << 24;
if (lpi2c_imx->mode == ULTRA_FAST)
temp |= MCFGR1_IGNACK;
writel(temp, lpi2c_imx->base + LPI2C_MCFGR1);
/* set MCFGR2: FILTSDA, FILTSCL */
temp = (filt << 16) | (filt << 24);
writel(temp, lpi2c_imx->base + LPI2C_MCFGR2);
/* set MCCR: DATAVD, SETHOLD, CLKHI, CLKLO */
sethold = clkhi;
datavd = clkhi >> 1;
temp = datavd << 24 | sethold << 16 | clkhi << 8 | clklo;
if (lpi2c_imx->mode == HS)
writel(temp, lpi2c_imx->base + LPI2C_MCCR1);
else
writel(temp, lpi2c_imx->base + LPI2C_MCCR0);
return 0;
}
static int lpi2c_imx_master_enable(struct lpi2c_imx_struct *lpi2c_imx)
{
unsigned int temp;
int ret;
ret = pm_runtime_resume_and_get(lpi2c_imx->adapter.dev.parent);
if (ret < 0)
return ret;
temp = MCR_RST;
writel(temp, lpi2c_imx->base + LPI2C_MCR);
writel(0, lpi2c_imx->base + LPI2C_MCR);
ret = lpi2c_imx_config(lpi2c_imx);
if (ret)
goto rpm_put;
temp = readl(lpi2c_imx->base + LPI2C_MCR);
temp |= MCR_MEN;
writel(temp, lpi2c_imx->base + LPI2C_MCR);
return 0;
rpm_put:
pm_runtime_mark_last_busy(lpi2c_imx->adapter.dev.parent);
pm_runtime_put_autosuspend(lpi2c_imx->adapter.dev.parent);
return ret;
}
static int lpi2c_imx_master_disable(struct lpi2c_imx_struct *lpi2c_imx)
{
u32 temp;
temp = readl(lpi2c_imx->base + LPI2C_MCR);
temp &= ~MCR_MEN;
writel(temp, lpi2c_imx->base + LPI2C_MCR);
pm_runtime_mark_last_busy(lpi2c_imx->adapter.dev.parent);
pm_runtime_put_autosuspend(lpi2c_imx->adapter.dev.parent);
return 0;
}
static int lpi2c_imx_pio_msg_complete(struct lpi2c_imx_struct *lpi2c_imx)
{
unsigned long time_left;
time_left = wait_for_completion_timeout(&lpi2c_imx->complete, HZ);
return time_left ? 0 : -ETIMEDOUT;
}
static int lpi2c_imx_txfifo_empty(struct lpi2c_imx_struct *lpi2c_imx)
{
unsigned long orig_jiffies = jiffies;
u32 txcnt;
do {
txcnt = readl(lpi2c_imx->base + LPI2C_MFSR) & 0xff;
if (readl(lpi2c_imx->base + LPI2C_MSR) & MSR_NDF) {
dev_dbg(&lpi2c_imx->adapter.dev, "NDF detected\n");
return -EIO;
}
if (time_after(jiffies, orig_jiffies + msecs_to_jiffies(500))) {
dev_dbg(&lpi2c_imx->adapter.dev, "txfifo empty timeout\n");
if (lpi2c_imx->adapter.bus_recovery_info)
i2c_recover_bus(&lpi2c_imx->adapter);
return -ETIMEDOUT;
}
schedule();
} while (txcnt);
return 0;
}
static void lpi2c_imx_set_tx_watermark(struct lpi2c_imx_struct *lpi2c_imx)
{
writel(lpi2c_imx->txfifosize >> 1, lpi2c_imx->base + LPI2C_MFCR);
}
static void lpi2c_imx_set_rx_watermark(struct lpi2c_imx_struct *lpi2c_imx)
{
unsigned int temp, remaining;
remaining = lpi2c_imx->msglen - lpi2c_imx->delivered;
if (remaining > (lpi2c_imx->rxfifosize >> 1))
temp = lpi2c_imx->rxfifosize >> 1;
else
temp = 0;
writel(temp << 16, lpi2c_imx->base + LPI2C_MFCR);
}
static void lpi2c_imx_write_txfifo(struct lpi2c_imx_struct *lpi2c_imx)
{
unsigned int data, txcnt;
txcnt = readl(lpi2c_imx->base + LPI2C_MFSR) & 0xff;
while (txcnt < lpi2c_imx->txfifosize) {
if (lpi2c_imx->delivered == lpi2c_imx->msglen)
break;
data = lpi2c_imx->tx_buf[lpi2c_imx->delivered++];
writel(data, lpi2c_imx->base + LPI2C_MTDR);
txcnt++;
}
if (lpi2c_imx->delivered < lpi2c_imx->msglen)
lpi2c_imx_intctrl(lpi2c_imx, MIER_TDIE | MIER_NDIE);
else
complete(&lpi2c_imx->complete);
}
static void lpi2c_imx_read_rxfifo(struct lpi2c_imx_struct *lpi2c_imx)
{
unsigned int blocklen, remaining;
unsigned int temp, data;
do {
data = readl(lpi2c_imx->base + LPI2C_MRDR);
if (data & MRDR_RXEMPTY)
break;
lpi2c_imx->rx_buf[lpi2c_imx->delivered++] = data & 0xff;
} while (1);
/*
* First byte is the length of remaining packet in the SMBus block
* data read. Add it to msgs->len.
*/
if (lpi2c_imx->block_data) {
blocklen = lpi2c_imx->rx_buf[0];
lpi2c_imx->msglen += blocklen;
}
remaining = lpi2c_imx->msglen - lpi2c_imx->delivered;
if (!remaining) {
complete(&lpi2c_imx->complete);
return;
}
/* not finished, still waiting for rx data */
lpi2c_imx_set_rx_watermark(lpi2c_imx);
/* multiple receive commands */
if (lpi2c_imx->block_data) {
lpi2c_imx->block_data = 0;
temp = remaining;
temp |= (RECV_DATA << 8);
writel(temp, lpi2c_imx->base + LPI2C_MTDR);
} else if (!(lpi2c_imx->delivered & 0xff)) {
temp = (remaining > CHUNK_DATA ? CHUNK_DATA : remaining) - 1;
temp |= (RECV_DATA << 8);
writel(temp, lpi2c_imx->base + LPI2C_MTDR);
}
lpi2c_imx_intctrl(lpi2c_imx, MIER_RDIE);
}
static void lpi2c_imx_write(struct lpi2c_imx_struct *lpi2c_imx,
struct i2c_msg *msgs)
{
lpi2c_imx->tx_buf = msgs->buf;
lpi2c_imx_set_tx_watermark(lpi2c_imx);
lpi2c_imx_write_txfifo(lpi2c_imx);
}
static void lpi2c_imx_read(struct lpi2c_imx_struct *lpi2c_imx,
struct i2c_msg *msgs)
{
unsigned int temp;
lpi2c_imx->rx_buf = msgs->buf;
lpi2c_imx->block_data = msgs->flags & I2C_M_RECV_LEN;
lpi2c_imx_set_rx_watermark(lpi2c_imx);
temp = msgs->len > CHUNK_DATA ? CHUNK_DATA - 1 : msgs->len - 1;
temp |= (RECV_DATA << 8);
writel(temp, lpi2c_imx->base + LPI2C_MTDR);
lpi2c_imx_intctrl(lpi2c_imx, MIER_RDIE | MIER_NDIE);
}
static bool is_use_dma(struct lpi2c_imx_struct *lpi2c_imx, struct i2c_msg *msg)
{
if (!lpi2c_imx->can_use_dma)
return false;
/*
* When the length of data is less than I2C_DMA_THRESHOLD,
* cpu mode is used directly to avoid low performance.
*/
return !(msg->len < I2C_DMA_THRESHOLD);
}
static int lpi2c_imx_pio_xfer(struct lpi2c_imx_struct *lpi2c_imx,
struct i2c_msg *msg)
{
reinit_completion(&lpi2c_imx->complete);
if (msg->flags & I2C_M_RD)
lpi2c_imx_read(lpi2c_imx, msg);
else
lpi2c_imx_write(lpi2c_imx, msg);
return lpi2c_imx_pio_msg_complete(lpi2c_imx);
}
static int lpi2c_imx_dma_timeout_calculate(struct lpi2c_imx_struct *lpi2c_imx)
{
unsigned long time = 0;
time = 8 * lpi2c_imx->dma->dma_len * 1000 / lpi2c_imx->bitrate;
/* Add extra second for scheduler related activities */
time += 1;
/* Double calculated time */
return msecs_to_jiffies(time * MSEC_PER_SEC);
}
static int lpi2c_imx_alloc_rx_cmd_buf(struct lpi2c_imx_struct *lpi2c_imx)
{
struct lpi2c_imx_dma *dma = lpi2c_imx->dma;
u16 rx_remain = dma->dma_len;
int cmd_num;
u16 temp;
/*
* Calculate the number of rx command words via the DMA TX channel
* writing into command register based on the i2c msg len, and build
* the rx command words buffer.
*/
cmd_num = DIV_ROUND_UP(rx_remain, CHUNK_DATA);
dma->rx_cmd_buf = kcalloc(cmd_num, sizeof(u16), GFP_KERNEL);
dma->rx_cmd_buf_len = cmd_num * sizeof(u16);
if (!dma->rx_cmd_buf) {
dev_err(&lpi2c_imx->adapter.dev, "Alloc RX cmd buffer failed\n");
return -ENOMEM;
}
for (int i = 0; i < cmd_num ; i++) {
temp = rx_remain > CHUNK_DATA ? CHUNK_DATA - 1 : rx_remain - 1;
temp |= (RECV_DATA << 8);
rx_remain -= CHUNK_DATA;
dma->rx_cmd_buf[i] = temp;
}
return 0;
}
static int lpi2c_imx_dma_msg_complete(struct lpi2c_imx_struct *lpi2c_imx)
{
unsigned long time_left, time;
time = lpi2c_imx_dma_timeout_calculate(lpi2c_imx);
time_left = wait_for_completion_timeout(&lpi2c_imx->complete, time);
if (time_left == 0) {
dev_err(&lpi2c_imx->adapter.dev, "I/O Error in DMA Data Transfer\n");
return -ETIMEDOUT;
}
return 0;
}
static void lpi2c_dma_unmap(struct lpi2c_imx_dma *dma)
{
struct dma_chan *chan = dma->dma_data_dir == DMA_FROM_DEVICE
? dma->chan_rx : dma->chan_tx;
dma_unmap_single(chan->device->dev, dma->dma_addr,
dma->dma_len, dma->dma_data_dir);
dma->dma_data_dir = DMA_NONE;
}
static void lpi2c_cleanup_rx_cmd_dma(struct lpi2c_imx_dma *dma)
{
dmaengine_terminate_sync(dma->chan_tx);
dma_unmap_single(dma->chan_tx->device->dev, dma->dma_tx_addr,
dma->rx_cmd_buf_len, DMA_TO_DEVICE);
}
static void lpi2c_cleanup_dma(struct lpi2c_imx_dma *dma)
{
if (dma->dma_data_dir == DMA_FROM_DEVICE)
dmaengine_terminate_sync(dma->chan_rx);
else if (dma->dma_data_dir == DMA_TO_DEVICE)
dmaengine_terminate_sync(dma->chan_tx);
lpi2c_dma_unmap(dma);
}
static void lpi2c_dma_callback(void *data)
{
struct lpi2c_imx_struct *lpi2c_imx = (struct lpi2c_imx_struct *)data;
complete(&lpi2c_imx->complete);
}
static int lpi2c_dma_rx_cmd_submit(struct lpi2c_imx_struct *lpi2c_imx)
{
struct dma_async_tx_descriptor *rx_cmd_desc;
struct lpi2c_imx_dma *dma = lpi2c_imx->dma;
struct dma_chan *txchan = dma->chan_tx;
dma_cookie_t cookie;
dma->dma_tx_addr = dma_map_single(txchan->device->dev,
dma->rx_cmd_buf, dma->rx_cmd_buf_len,
DMA_TO_DEVICE);
if (dma_mapping_error(txchan->device->dev, dma->dma_tx_addr)) {
dev_err(&lpi2c_imx->adapter.dev, "DMA map failed, use pio\n");
return -EINVAL;
}
rx_cmd_desc = dmaengine_prep_slave_single(txchan, dma->dma_tx_addr,
dma->rx_cmd_buf_len, DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!rx_cmd_desc) {
dev_err(&lpi2c_imx->adapter.dev, "DMA prep slave sg failed, use pio\n");
goto desc_prepare_err_exit;
}
cookie = dmaengine_submit(rx_cmd_desc);
if (dma_submit_error(cookie)) {
dev_err(&lpi2c_imx->adapter.dev, "submitting DMA failed, use pio\n");
goto submit_err_exit;
}
dma_async_issue_pending(txchan);
return 0;
desc_prepare_err_exit:
dma_unmap_single(txchan->device->dev, dma->dma_tx_addr,
dma->rx_cmd_buf_len, DMA_TO_DEVICE);
return -EINVAL;
submit_err_exit:
dma_unmap_single(txchan->device->dev, dma->dma_tx_addr,
dma->rx_cmd_buf_len, DMA_TO_DEVICE);
dmaengine_desc_free(rx_cmd_desc);
return -EINVAL;
}
static int lpi2c_dma_submit(struct lpi2c_imx_struct *lpi2c_imx)
{
struct lpi2c_imx_dma *dma = lpi2c_imx->dma;
struct dma_async_tx_descriptor *desc;
struct dma_chan *chan;
dma_cookie_t cookie;
if (dma->dma_msg_flag & I2C_M_RD) {
chan = dma->chan_rx;
dma->dma_data_dir = DMA_FROM_DEVICE;
dma->dma_transfer_dir = DMA_DEV_TO_MEM;
} else {
chan = dma->chan_tx;
dma->dma_data_dir = DMA_TO_DEVICE;
dma->dma_transfer_dir = DMA_MEM_TO_DEV;
}
dma->dma_addr = dma_map_single(chan->device->dev,
dma->dma_buf, dma->dma_len, dma->dma_data_dir);
if (dma_mapping_error(chan->device->dev, dma->dma_addr)) {
dev_err(&lpi2c_imx->adapter.dev, "DMA map failed, use pio\n");
return -EINVAL;
}
desc = dmaengine_prep_slave_single(chan, dma->dma_addr,
dma->dma_len, dma->dma_transfer_dir,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc) {
dev_err(&lpi2c_imx->adapter.dev, "DMA prep slave sg failed, use pio\n");
goto desc_prepare_err_exit;
}
reinit_completion(&lpi2c_imx->complete);
desc->callback = lpi2c_dma_callback;
desc->callback_param = lpi2c_imx;
cookie = dmaengine_submit(desc);
if (dma_submit_error(cookie)) {
dev_err(&lpi2c_imx->adapter.dev, "submitting DMA failed, use pio\n");
goto submit_err_exit;
}
/* Can't switch to PIO mode when DMA have started transfer */
dma->using_pio_mode = false;
dma_async_issue_pending(chan);
return 0;
desc_prepare_err_exit:
lpi2c_dma_unmap(dma);
return -EINVAL;
submit_err_exit:
lpi2c_dma_unmap(dma);
dmaengine_desc_free(desc);
return -EINVAL;
}
static int lpi2c_imx_find_max_burst_num(unsigned int fifosize, unsigned int len)
{
unsigned int i;
for (i = fifosize / 2; i > 0; i--)
if (!(len % i))
break;
return i;
}
/*
* For a highest DMA efficiency, tx/rx burst number should be calculated according
* to the FIFO depth.
*/
static void lpi2c_imx_dma_burst_num_calculate(struct lpi2c_imx_struct *lpi2c_imx)
{
struct lpi2c_imx_dma *dma = lpi2c_imx->dma;
unsigned int cmd_num;
if (dma->dma_msg_flag & I2C_M_RD) {
/*
* One RX cmd word can trigger DMA receive no more than 256 bytes.
* The number of RX cmd words should be calculated based on the data
* length.
*/
cmd_num = DIV_ROUND_UP(dma->dma_len, CHUNK_DATA);
dma->tx_burst_num = lpi2c_imx_find_max_burst_num(lpi2c_imx->txfifosize,
cmd_num);
dma->rx_burst_num = lpi2c_imx_find_max_burst_num(lpi2c_imx->rxfifosize,
dma->dma_len);
} else {
dma->tx_burst_num = lpi2c_imx_find_max_burst_num(lpi2c_imx->txfifosize,
dma->dma_len);
}
}
static int lpi2c_dma_config(struct lpi2c_imx_struct *lpi2c_imx)
{
struct lpi2c_imx_dma *dma = lpi2c_imx->dma;
struct dma_slave_config rx = {}, tx = {};
int ret;
lpi2c_imx_dma_burst_num_calculate(lpi2c_imx);
if (dma->dma_msg_flag & I2C_M_RD) {
tx.dst_addr = dma->phy_addr + LPI2C_MTDR;
tx.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
tx.dst_maxburst = dma->tx_burst_num;
tx.direction = DMA_MEM_TO_DEV;
ret = dmaengine_slave_config(dma->chan_tx, &tx);
if (ret < 0)
return ret;
rx.src_addr = dma->phy_addr + LPI2C_MRDR;
rx.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
rx.src_maxburst = dma->rx_burst_num;
rx.direction = DMA_DEV_TO_MEM;
ret = dmaengine_slave_config(dma->chan_rx, &rx);
if (ret < 0)
return ret;
} else {
tx.dst_addr = dma->phy_addr + LPI2C_MTDR;
tx.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
tx.dst_maxburst = dma->tx_burst_num;
tx.direction = DMA_MEM_TO_DEV;
ret = dmaengine_slave_config(dma->chan_tx, &tx);
if (ret < 0)
return ret;
}
return 0;
}
static void lpi2c_dma_enable(struct lpi2c_imx_struct *lpi2c_imx)
{
struct lpi2c_imx_dma *dma = lpi2c_imx->dma;
/*
* TX interrupt will be triggered when the number of words in
* the transmit FIFO is equal or less than TX watermark.
* RX interrupt will be triggered when the number of words in
* the receive FIFO is greater than RX watermark.
* In order to trigger the DMA interrupt, TX watermark should be
* set equal to the DMA TX burst number but RX watermark should
* be set less than the DMA RX burst number.
*/
if (dma->dma_msg_flag & I2C_M_RD) {
/* Set I2C TX/RX watermark */
writel(dma->tx_burst_num | (dma->rx_burst_num - 1) << 16,
lpi2c_imx->base + LPI2C_MFCR);
/* Enable I2C DMA TX/RX function */
writel(MDER_TDDE | MDER_RDDE, lpi2c_imx->base + LPI2C_MDER);
} else {
/* Set I2C TX watermark */
writel(dma->tx_burst_num, lpi2c_imx->base + LPI2C_MFCR);
/* Enable I2C DMA TX function */
writel(MDER_TDDE, lpi2c_imx->base + LPI2C_MDER);
}
/* Enable NACK detected */
lpi2c_imx_intctrl(lpi2c_imx, MIER_NDIE);
};
/*
* When lpi2c is in TX DMA mode we can use one DMA TX channel to write
* data word into TXFIFO, but in RX DMA mode it is different.
*
* The LPI2C MTDR register is a command data and transmit data register.
* Bits 8-10 are the command data field and Bits 0-7 are the transmit
* data field. When the LPI2C master needs to read data, the number of
* bytes to read should be set in the command field and RECV_DATA should
* be set into the command data field to receive (DATA[7:0] + 1) bytes.
* The recv data command word is made of RECV_DATA in the command data
* field and the number of bytes to read in transmit data field. When the
* length of data to be read exceeds 256 bytes, recv data command word
* needs to be written to TXFIFO multiple times.
*
* So when in RX DMA mode, the TX channel also must to be configured to
* send RX command words and the RX command word must be set in advance
* before transmitting.
*/
static int lpi2c_imx_dma_xfer(struct lpi2c_imx_struct *lpi2c_imx,
struct i2c_msg *msg)
{
struct lpi2c_imx_dma *dma = lpi2c_imx->dma;
int ret;
/* When DMA mode fails before transferring, CPU mode can be used. */
dma->using_pio_mode = true;
dma->dma_len = msg->len;
dma->dma_msg_flag = msg->flags;
dma->dma_buf = i2c_get_dma_safe_msg_buf(msg, I2C_DMA_THRESHOLD);
if (!dma->dma_buf)
return -ENOMEM;
ret = lpi2c_dma_config(lpi2c_imx);
if (ret) {
dev_err(&lpi2c_imx->adapter.dev, "Failed to configure DMA (%d)\n", ret);
goto disable_dma;
}
lpi2c_dma_enable(lpi2c_imx);
ret = lpi2c_dma_submit(lpi2c_imx);
if (ret) {
dev_err(&lpi2c_imx->adapter.dev, "DMA submission failed (%d)\n", ret);
goto disable_dma;
}
if (dma->dma_msg_flag & I2C_M_RD) {
ret = lpi2c_imx_alloc_rx_cmd_buf(lpi2c_imx);
if (ret)
goto disable_cleanup_data_dma;
ret = lpi2c_dma_rx_cmd_submit(lpi2c_imx);
if (ret)
goto disable_cleanup_data_dma;
}
ret = lpi2c_imx_dma_msg_complete(lpi2c_imx);
if (ret)
goto disable_cleanup_all_dma;
/* When encountering NACK in transfer, clean up all DMA transfers */
if ((readl(lpi2c_imx->base + LPI2C_MSR) & MSR_NDF) && !ret) {
ret = -EIO;
goto disable_cleanup_all_dma;
}
if (dma->dma_msg_flag & I2C_M_RD)
dma_unmap_single(dma->chan_tx->device->dev, dma->dma_tx_addr,
dma->rx_cmd_buf_len, DMA_TO_DEVICE);
lpi2c_dma_unmap(dma);
goto disable_dma;
disable_cleanup_all_dma:
if (dma->dma_msg_flag & I2C_M_RD)
lpi2c_cleanup_rx_cmd_dma(dma);
disable_cleanup_data_dma:
lpi2c_cleanup_dma(dma);
disable_dma:
/* Disable I2C DMA function */
writel(0, lpi2c_imx->base + LPI2C_MDER);
if (dma->dma_msg_flag & I2C_M_RD)
kfree(dma->rx_cmd_buf);
if (ret)
i2c_put_dma_safe_msg_buf(dma->dma_buf, msg, false);
else
i2c_put_dma_safe_msg_buf(dma->dma_buf, msg, true);
return ret;
}
static int lpi2c_imx_xfer(struct i2c_adapter *adapter,
struct i2c_msg *msgs, int num)
{
struct lpi2c_imx_struct *lpi2c_imx = i2c_get_adapdata(adapter);
unsigned int temp;
int i, result;
result = lpi2c_imx_master_enable(lpi2c_imx);
if (result)
return result;
for (i = 0; i < num; i++) {
result = lpi2c_imx_start(lpi2c_imx, &msgs[i]);
if (result)
goto disable;
/* quick smbus */
if (num == 1 && msgs[0].len == 0)
goto stop;
lpi2c_imx->rx_buf = NULL;
lpi2c_imx->tx_buf = NULL;
lpi2c_imx->delivered = 0;
lpi2c_imx->msglen = msgs[i].len;
init_completion(&lpi2c_imx->complete);
if (is_use_dma(lpi2c_imx, &msgs[i])) {
result = lpi2c_imx_dma_xfer(lpi2c_imx, &msgs[i]);
if (result && lpi2c_imx->dma->using_pio_mode)
result = lpi2c_imx_pio_xfer(lpi2c_imx, &msgs[i]);
} else {
result = lpi2c_imx_pio_xfer(lpi2c_imx, &msgs[i]);
}
if (result)
goto stop;
if (!(msgs[i].flags & I2C_M_RD)) {
result = lpi2c_imx_txfifo_empty(lpi2c_imx);
if (result)
goto stop;
}
}
stop:
lpi2c_imx_stop(lpi2c_imx);
temp = readl(lpi2c_imx->base + LPI2C_MSR);
if ((temp & MSR_NDF) && !result)
result = -EIO;
disable:
lpi2c_imx_master_disable(lpi2c_imx);
dev_dbg(&lpi2c_imx->adapter.dev, "<%s> exit with: %s: %d\n", __func__,
(result < 0) ? "error" : "success msg",
(result < 0) ? result : num);
return (result < 0) ? result : num;
}
static irqreturn_t lpi2c_imx_target_isr(struct lpi2c_imx_struct *lpi2c_imx,
u32 ssr, u32 sier_filter)
{
u8 value;
u32 sasr;
/* Arbitration lost */
if (sier_filter & SSR_BEF) {
writel(0, lpi2c_imx->base + LPI2C_SIER);
return IRQ_HANDLED;
}
/* Address detected */
if (sier_filter & SSR_AVF) {
sasr = readl(lpi2c_imx->base + LPI2C_SASR);
if (SASR_READ_REQ & sasr) {
/* Read request */
i2c_slave_event(lpi2c_imx->target, I2C_SLAVE_READ_REQUESTED, &value);
writel(value, lpi2c_imx->base + LPI2C_STDR);
goto ret;
} else {
/* Write request */
i2c_slave_event(lpi2c_imx->target, I2C_SLAVE_WRITE_REQUESTED, &value);
}
}
if (sier_filter & SSR_SDF)
/* STOP */
i2c_slave_event(lpi2c_imx->target, I2C_SLAVE_STOP, &value);
if (sier_filter & SSR_TDF) {
/* Target send data */
i2c_slave_event(lpi2c_imx->target, I2C_SLAVE_READ_PROCESSED, &value);
writel(value, lpi2c_imx->base + LPI2C_STDR);
}
if (sier_filter & SSR_RDF) {
/* Target receive data */
value = readl(lpi2c_imx->base + LPI2C_SRDR);
i2c_slave_event(lpi2c_imx->target, I2C_SLAVE_WRITE_RECEIVED, &value);
}
ret:
/* Clear SSR */
writel(ssr & SSR_CLEAR_BITS, lpi2c_imx->base + LPI2C_SSR);
return IRQ_HANDLED;
}
static irqreturn_t lpi2c_imx_master_isr(struct lpi2c_imx_struct *lpi2c_imx)
{
unsigned int enabled;
unsigned int temp;
enabled = readl(lpi2c_imx->base + LPI2C_MIER);
lpi2c_imx_intctrl(lpi2c_imx, 0);
temp = readl(lpi2c_imx->base + LPI2C_MSR);
temp &= enabled;
if (temp & MSR_NDF)
complete(&lpi2c_imx->complete);
else if (temp & MSR_RDF)
lpi2c_imx_read_rxfifo(lpi2c_imx);
else if (temp & MSR_TDF)
lpi2c_imx_write_txfifo(lpi2c_imx);
return IRQ_HANDLED;
}
static irqreturn_t lpi2c_imx_isr(int irq, void *dev_id)
{
struct lpi2c_imx_struct *lpi2c_imx = dev_id;
if (lpi2c_imx->target) {
u32 scr = readl(lpi2c_imx->base + LPI2C_SCR);
u32 ssr = readl(lpi2c_imx->base + LPI2C_SSR);
u32 sier_filter = ssr & readl(lpi2c_imx->base + LPI2C_SIER);
/*
* The target is enabled and an interrupt has been triggered.
* Enter the target's irq handler.
*/
if ((scr & SCR_SEN) && sier_filter)
return lpi2c_imx_target_isr(lpi2c_imx, ssr, sier_filter);
}
/*
* Otherwise the interrupt has been triggered by the master.
* Enter the master's irq handler.
*/
return lpi2c_imx_master_isr(lpi2c_imx);
}
static void lpi2c_imx_target_init(struct lpi2c_imx_struct *lpi2c_imx)
{
u32 temp;
/* reset target module */
writel(SCR_RST, lpi2c_imx->base + LPI2C_SCR);
writel(0, lpi2c_imx->base + LPI2C_SCR);
/* Set target address */
writel((lpi2c_imx->target->addr << 1), lpi2c_imx->base + LPI2C_SAMR);
writel(SCFGR1_RXSTALL | SCFGR1_TXDSTALL, lpi2c_imx->base + LPI2C_SCFGR1);
/*
* set SCFGR2: FILTSDA, FILTSCL and CLKHOLD
*
* FILTSCL/FILTSDA can eliminate signal skew. It should generally be
* set to the same value and should be set >= 50ns.
*
* CLKHOLD is only used when clock stretching is enabled, but it will
* extend the clock stretching to ensure there is an additional delay
* between the target driving SDA and the target releasing the SCL pin.
*
* CLKHOLD setting is crucial for lpi2c target. When master read data
* from target, if there is a delay caused by cpu idle, excessive load,
* or other delays between two bytes in one message transmission, it
* will cause a short interval time between the driving SDA signal and
* releasing SCL signal. The lpi2c master will mistakenly think it is a stop
* signal resulting in an arbitration failure. This issue can be avoided
* by setting CLKHOLD.
*
* In order to ensure lpi2c function normally when the lpi2c speed is as
* low as 100kHz, CLKHOLD should be set to 3 and it is also compatible with
* higher clock frequency like 400kHz and 1MHz.
*/
temp = SCFGR2_FILTSDA(2) | SCFGR2_FILTSCL(2) | SCFGR2_CLKHOLD(3);
writel(temp, lpi2c_imx->base + LPI2C_SCFGR2);
/*
* Enable module:
* SCR_FILTEN can enable digital filter and output delay counter for LPI2C
* target mode. So SCR_FILTEN need be asserted when enable SDA/SCL FILTER
* and CLKHOLD.
*/
writel(SCR_SEN | SCR_FILTEN, lpi2c_imx->base + LPI2C_SCR);
/* Enable interrupt from i2c module */
writel(SLAVE_INT_FLAG, lpi2c_imx->base + LPI2C_SIER);
}
static int lpi2c_imx_register_target(struct i2c_client *client)
{
struct lpi2c_imx_struct *lpi2c_imx = i2c_get_adapdata(client->adapter);
int ret;
if (lpi2c_imx->target)
return -EBUSY;
lpi2c_imx->target = client;
ret = pm_runtime_resume_and_get(lpi2c_imx->adapter.dev.parent);
if (ret < 0) {
dev_err(&lpi2c_imx->adapter.dev, "failed to resume i2c controller");
return ret;
}
lpi2c_imx_target_init(lpi2c_imx);
return 0;
}
static int lpi2c_imx_unregister_target(struct i2c_client *client)
{
struct lpi2c_imx_struct *lpi2c_imx = i2c_get_adapdata(client->adapter);
int ret;
if (!lpi2c_imx->target)
return -EINVAL;
/* Reset target address. */
writel(0, lpi2c_imx->base + LPI2C_SAMR);
writel(SCR_RST, lpi2c_imx->base + LPI2C_SCR);
writel(0, lpi2c_imx->base + LPI2C_SCR);
lpi2c_imx->target = NULL;
ret = pm_runtime_put_sync(lpi2c_imx->adapter.dev.parent);
if (ret < 0)
dev_err(&lpi2c_imx->adapter.dev, "failed to suspend i2c controller");
return ret;
}
static int lpi2c_imx_init_recovery_info(struct lpi2c_imx_struct *lpi2c_imx,
struct platform_device *pdev)
{
struct i2c_bus_recovery_info *bri = &lpi2c_imx->rinfo;
bri->pinctrl = devm_pinctrl_get(&pdev->dev);
if (IS_ERR(bri->pinctrl))
return PTR_ERR(bri->pinctrl);
lpi2c_imx->adapter.bus_recovery_info = bri;
return 0;
}
static void dma_exit(struct device *dev, struct lpi2c_imx_dma *dma)
{
if (dma->chan_rx)
dma_release_channel(dma->chan_rx);
if (dma->chan_tx)
dma_release_channel(dma->chan_tx);
devm_kfree(dev, dma);
}
static int lpi2c_dma_init(struct device *dev, dma_addr_t phy_addr)
{
struct lpi2c_imx_struct *lpi2c_imx = dev_get_drvdata(dev);
struct lpi2c_imx_dma *dma;
int ret;
dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
if (!dma)
return -ENOMEM;
dma->phy_addr = phy_addr;
/* Prepare for TX DMA: */
dma->chan_tx = dma_request_chan(dev, "tx");
if (IS_ERR(dma->chan_tx)) {
ret = PTR_ERR(dma->chan_tx);
if (ret != -ENODEV && ret != -EPROBE_DEFER)
dev_err(dev, "can't request DMA tx channel (%d)\n", ret);
dma->chan_tx = NULL;
goto dma_exit;
}
/* Prepare for RX DMA: */
dma->chan_rx = dma_request_chan(dev, "rx");
if (IS_ERR(dma->chan_rx)) {
ret = PTR_ERR(dma->chan_rx);
if (ret != -ENODEV && ret != -EPROBE_DEFER)
dev_err(dev, "can't request DMA rx channel (%d)\n", ret);
dma->chan_rx = NULL;
goto dma_exit;
}
lpi2c_imx->can_use_dma = true;
lpi2c_imx->dma = dma;
return 0;
dma_exit:
dma_exit(dev, dma);
return ret;
}
static u32 lpi2c_imx_func(struct i2c_adapter *adapter)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
I2C_FUNC_SMBUS_READ_BLOCK_DATA;
}
static const struct i2c_algorithm lpi2c_imx_algo = {
.master_xfer = lpi2c_imx_xfer,
.functionality = lpi2c_imx_func,
.reg_target = lpi2c_imx_register_target,
.unreg_target = lpi2c_imx_unregister_target,
};
static const struct of_device_id lpi2c_imx_of_match[] = {
{ .compatible = "fsl,imx7ulp-lpi2c" },
{ }
};
MODULE_DEVICE_TABLE(of, lpi2c_imx_of_match);
static int lpi2c_imx_probe(struct platform_device *pdev)
{
struct lpi2c_imx_struct *lpi2c_imx;
struct resource *res;
dma_addr_t phy_addr;
unsigned int temp;
int irq, ret;
lpi2c_imx = devm_kzalloc(&pdev->dev, sizeof(*lpi2c_imx), GFP_KERNEL);
if (!lpi2c_imx)
return -ENOMEM;
lpi2c_imx->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(lpi2c_imx->base))
return PTR_ERR(lpi2c_imx->base);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
lpi2c_imx->adapter.owner = THIS_MODULE;
lpi2c_imx->adapter.algo = &lpi2c_imx_algo;
lpi2c_imx->adapter.dev.parent = &pdev->dev;
lpi2c_imx->adapter.dev.of_node = pdev->dev.of_node;
strscpy(lpi2c_imx->adapter.name, pdev->name,
sizeof(lpi2c_imx->adapter.name));
phy_addr = (dma_addr_t)res->start;
ret = devm_clk_bulk_get_all(&pdev->dev, &lpi2c_imx->clks);
if (ret < 0)
return dev_err_probe(&pdev->dev, ret, "can't get I2C peripheral clock\n");
lpi2c_imx->num_clks = ret;
ret = of_property_read_u32(pdev->dev.of_node,
"clock-frequency", &lpi2c_imx->bitrate);
if (ret)
lpi2c_imx->bitrate = I2C_MAX_STANDARD_MODE_FREQ;
ret = devm_request_irq(&pdev->dev, irq, lpi2c_imx_isr, IRQF_NO_SUSPEND,
pdev->name, lpi2c_imx);
if (ret)
return dev_err_probe(&pdev->dev, ret, "can't claim irq %d\n", irq);
i2c_set_adapdata(&lpi2c_imx->adapter, lpi2c_imx);
platform_set_drvdata(pdev, lpi2c_imx);
ret = clk_bulk_prepare_enable(lpi2c_imx->num_clks, lpi2c_imx->clks);
if (ret)
return ret;
/*
* Lock the parent clock rate to avoid getting parent clock upon
* each transfer
*/
ret = devm_clk_rate_exclusive_get(&pdev->dev, lpi2c_imx->clks[0].clk);
if (ret)
return dev_err_probe(&pdev->dev, ret,
"can't lock I2C peripheral clock rate\n");
lpi2c_imx->rate_per = clk_get_rate(lpi2c_imx->clks[0].clk);
if (!lpi2c_imx->rate_per)
return dev_err_probe(&pdev->dev, -EINVAL,
"can't get I2C peripheral clock rate\n");
pm_runtime_set_autosuspend_delay(&pdev->dev, I2C_PM_TIMEOUT);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_get_noresume(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
temp = readl(lpi2c_imx->base + LPI2C_PARAM);
lpi2c_imx->txfifosize = 1 << (temp & 0x0f);
lpi2c_imx->rxfifosize = 1 << ((temp >> 8) & 0x0f);
/* Init optional bus recovery function */
ret = lpi2c_imx_init_recovery_info(lpi2c_imx, pdev);
/* Give it another chance if pinctrl used is not ready yet */
if (ret == -EPROBE_DEFER)
goto rpm_disable;
/* Init DMA */
ret = lpi2c_dma_init(&pdev->dev, phy_addr);
if (ret) {
if (ret == -EPROBE_DEFER)
goto rpm_disable;
dev_info(&pdev->dev, "use pio mode\n");
}
ret = i2c_add_adapter(&lpi2c_imx->adapter);
if (ret)
goto rpm_disable;
pm_runtime_mark_last_busy(&pdev->dev);
pm_runtime_put_autosuspend(&pdev->dev);
dev_info(&lpi2c_imx->adapter.dev, "LPI2C adapter registered\n");
return 0;
rpm_disable:
pm_runtime_put(&pdev->dev);
pm_runtime_disable(&pdev->dev);
pm_runtime_dont_use_autosuspend(&pdev->dev);
return ret;
}
static void lpi2c_imx_remove(struct platform_device *pdev)
{
struct lpi2c_imx_struct *lpi2c_imx = platform_get_drvdata(pdev);
i2c_del_adapter(&lpi2c_imx->adapter);
pm_runtime_disable(&pdev->dev);
pm_runtime_dont_use_autosuspend(&pdev->dev);
}
static int __maybe_unused lpi2c_runtime_suspend(struct device *dev)
{
struct lpi2c_imx_struct *lpi2c_imx = dev_get_drvdata(dev);
clk_bulk_disable(lpi2c_imx->num_clks, lpi2c_imx->clks);
pinctrl_pm_select_sleep_state(dev);
return 0;
}
static int __maybe_unused lpi2c_runtime_resume(struct device *dev)
{
struct lpi2c_imx_struct *lpi2c_imx = dev_get_drvdata(dev);
int ret;
pinctrl_pm_select_default_state(dev);
ret = clk_bulk_enable(lpi2c_imx->num_clks, lpi2c_imx->clks);
if (ret) {
dev_err(dev, "failed to enable I2C clock, ret=%d\n", ret);
return ret;
}
return 0;
}
static int __maybe_unused lpi2c_suspend_noirq(struct device *dev)
{
return pm_runtime_force_suspend(dev);
}
static int __maybe_unused lpi2c_resume_noirq(struct device *dev)
{
struct lpi2c_imx_struct *lpi2c_imx = dev_get_drvdata(dev);
int ret;
ret = pm_runtime_force_resume(dev);
if (ret)
return ret;
/*
* If the I2C module powers down during system suspend,
* the register values will be lost. Therefore, reinitialize
* the target when the system resumes.
*/
if (lpi2c_imx->target)
lpi2c_imx_target_init(lpi2c_imx);
return 0;
}
static int lpi2c_suspend(struct device *dev)
{
/*
* Some I2C devices may need the I2C controller to remain active
* during resume_noirq() or suspend_noirq(). If the controller is
* autosuspended, there is no way to wake it up once runtime PM is
* disabled (in suspend_late()).
*
* During system resume, the I2C controller will be available only
* after runtime PM is re-enabled (in resume_early()). However, this
* may be too late for some devices.
*
* Wake up the controller in the suspend() callback while runtime PM
* is still enabled. The I2C controller will remain available until
* the suspend_noirq() callback (pm_runtime_force_suspend()) is
* called. During resume, the I2C controller can be restored by the
* resume_noirq() callback (pm_runtime_force_resume()).
*
* Finally, the resume() callback re-enables autosuspend, ensuring
* the I2C controller remains available until the system enters
* suspend_noirq() and from resume_noirq().
*/
return pm_runtime_resume_and_get(dev);
}
static int lpi2c_resume(struct device *dev)
{
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return 0;
}
static const struct dev_pm_ops lpi2c_pm_ops = {
SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(lpi2c_suspend_noirq,
lpi2c_resume_noirq)
SYSTEM_SLEEP_PM_OPS(lpi2c_suspend, lpi2c_resume)
SET_RUNTIME_PM_OPS(lpi2c_runtime_suspend,
lpi2c_runtime_resume, NULL)
};
static struct platform_driver lpi2c_imx_driver = {
.probe = lpi2c_imx_probe,
.remove = lpi2c_imx_remove,
.driver = {
.name = DRIVER_NAME,
.of_match_table = lpi2c_imx_of_match,
.pm = &lpi2c_pm_ops,
},
};
module_platform_driver(lpi2c_imx_driver);
MODULE_AUTHOR("Gao Pan <pandy.gao@nxp.com>");
MODULE_DESCRIPTION("I2C adapter driver for LPI2C bus");
MODULE_LICENSE("GPL");