|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /**************************************************************************** | 
|  | * Driver for Solarflare network controllers and boards | 
|  | * Copyright 2005-2006 Fen Systems Ltd. | 
|  | * Copyright 2006-2013 Solarflare Communications Inc. | 
|  | */ | 
|  |  | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/crc32.h> | 
|  | #include "net_driver.h" | 
|  | #include "bitfield.h" | 
|  | #include "efx.h" | 
|  | #include "nic.h" | 
|  | #include "farch_regs.h" | 
|  | #include "sriov.h" | 
|  | #include "siena_sriov.h" | 
|  | #include "io.h" | 
|  | #include "workarounds.h" | 
|  |  | 
|  | /* Falcon-architecture (SFC9000-family) support */ | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * Configurable values | 
|  | * | 
|  | ************************************************************************** | 
|  | */ | 
|  |  | 
|  | /* This is set to 16 for a good reason.  In summary, if larger than | 
|  | * 16, the descriptor cache holds more than a default socket | 
|  | * buffer's worth of packets (for UDP we can only have at most one | 
|  | * socket buffer's worth outstanding).  This combined with the fact | 
|  | * that we only get 1 TX event per descriptor cache means the NIC | 
|  | * goes idle. | 
|  | */ | 
|  | #define TX_DC_ENTRIES 16 | 
|  | #define TX_DC_ENTRIES_ORDER 1 | 
|  |  | 
|  | #define RX_DC_ENTRIES 64 | 
|  | #define RX_DC_ENTRIES_ORDER 3 | 
|  |  | 
|  | /* If EFX_MAX_INT_ERRORS internal errors occur within | 
|  | * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and | 
|  | * disable it. | 
|  | */ | 
|  | #define EFX_INT_ERROR_EXPIRE 3600 | 
|  | #define EFX_MAX_INT_ERRORS 5 | 
|  |  | 
|  | /* Depth of RX flush request fifo */ | 
|  | #define EFX_RX_FLUSH_COUNT 4 | 
|  |  | 
|  | /* Driver generated events */ | 
|  | #define _EFX_CHANNEL_MAGIC_TEST		0x000101 | 
|  | #define _EFX_CHANNEL_MAGIC_FILL		0x000102 | 
|  | #define _EFX_CHANNEL_MAGIC_RX_DRAIN	0x000103 | 
|  | #define _EFX_CHANNEL_MAGIC_TX_DRAIN	0x000104 | 
|  |  | 
|  | #define _EFX_CHANNEL_MAGIC(_code, _data)	((_code) << 8 | (_data)) | 
|  | #define _EFX_CHANNEL_MAGIC_CODE(_magic)		((_magic) >> 8) | 
|  |  | 
|  | #define EFX_CHANNEL_MAGIC_TEST(_channel)				\ | 
|  | _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel) | 
|  | #define EFX_CHANNEL_MAGIC_FILL(_rx_queue)				\ | 
|  | _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,			\ | 
|  | efx_rx_queue_index(_rx_queue)) | 
|  | #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)				\ | 
|  | _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,			\ | 
|  | efx_rx_queue_index(_rx_queue)) | 
|  | #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)				\ | 
|  | _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,			\ | 
|  | (_tx_queue)->queue) | 
|  |  | 
|  | static void efx_farch_magic_event(struct efx_channel *channel, u32 magic); | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * Hardware access | 
|  | * | 
|  | **************************************************************************/ | 
|  |  | 
|  | static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value, | 
|  | unsigned int index) | 
|  | { | 
|  | efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base, | 
|  | value, index); | 
|  | } | 
|  |  | 
|  | static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b, | 
|  | const efx_oword_t *mask) | 
|  | { | 
|  | return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) || | 
|  | ((a->u64[1] ^ b->u64[1]) & mask->u64[1]); | 
|  | } | 
|  |  | 
|  | int efx_farch_test_registers(struct efx_nic *efx, | 
|  | const struct efx_farch_register_test *regs, | 
|  | size_t n_regs) | 
|  | { | 
|  | unsigned address = 0; | 
|  | int i, j; | 
|  | efx_oword_t mask, imask, original, reg, buf; | 
|  |  | 
|  | for (i = 0; i < n_regs; ++i) { | 
|  | address = regs[i].address; | 
|  | mask = imask = regs[i].mask; | 
|  | EFX_INVERT_OWORD(imask); | 
|  |  | 
|  | efx_reado(efx, &original, address); | 
|  |  | 
|  | /* bit sweep on and off */ | 
|  | for (j = 0; j < 128; j++) { | 
|  | if (!EFX_EXTRACT_OWORD32(mask, j, j)) | 
|  | continue; | 
|  |  | 
|  | /* Test this testable bit can be set in isolation */ | 
|  | EFX_AND_OWORD(reg, original, mask); | 
|  | EFX_SET_OWORD32(reg, j, j, 1); | 
|  |  | 
|  | efx_writeo(efx, ®, address); | 
|  | efx_reado(efx, &buf, address); | 
|  |  | 
|  | if (efx_masked_compare_oword(®, &buf, &mask)) | 
|  | goto fail; | 
|  |  | 
|  | /* Test this testable bit can be cleared in isolation */ | 
|  | EFX_OR_OWORD(reg, original, mask); | 
|  | EFX_SET_OWORD32(reg, j, j, 0); | 
|  |  | 
|  | efx_writeo(efx, ®, address); | 
|  | efx_reado(efx, &buf, address); | 
|  |  | 
|  | if (efx_masked_compare_oword(®, &buf, &mask)) | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | efx_writeo(efx, &original, address); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | netif_err(efx, hw, efx->net_dev, | 
|  | "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT | 
|  | " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg), | 
|  | EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask)); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * Special buffer handling | 
|  | * Special buffers are used for event queues and the TX and RX | 
|  | * descriptor rings. | 
|  | * | 
|  | *************************************************************************/ | 
|  |  | 
|  | /* | 
|  | * Initialise a special buffer | 
|  | * | 
|  | * This will define a buffer (previously allocated via | 
|  | * efx_alloc_special_buffer()) in the buffer table, allowing | 
|  | * it to be used for event queues, descriptor rings etc. | 
|  | */ | 
|  | static void | 
|  | efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) | 
|  | { | 
|  | efx_qword_t buf_desc; | 
|  | unsigned int index; | 
|  | dma_addr_t dma_addr; | 
|  | int i; | 
|  |  | 
|  | EFX_WARN_ON_PARANOID(!buffer->buf.addr); | 
|  |  | 
|  | /* Write buffer descriptors to NIC */ | 
|  | for (i = 0; i < buffer->entries; i++) { | 
|  | index = buffer->index + i; | 
|  | dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE); | 
|  | netif_dbg(efx, probe, efx->net_dev, | 
|  | "mapping special buffer %d at %llx\n", | 
|  | index, (unsigned long long)dma_addr); | 
|  | EFX_POPULATE_QWORD_3(buf_desc, | 
|  | FRF_AZ_BUF_ADR_REGION, 0, | 
|  | FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12, | 
|  | FRF_AZ_BUF_OWNER_ID_FBUF, 0); | 
|  | efx_write_buf_tbl(efx, &buf_desc, index); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Unmaps a buffer and clears the buffer table entries */ | 
|  | static void | 
|  | efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) | 
|  | { | 
|  | efx_oword_t buf_tbl_upd; | 
|  | unsigned int start = buffer->index; | 
|  | unsigned int end = (buffer->index + buffer->entries - 1); | 
|  |  | 
|  | if (!buffer->entries) | 
|  | return; | 
|  |  | 
|  | netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n", | 
|  | buffer->index, buffer->index + buffer->entries - 1); | 
|  |  | 
|  | EFX_POPULATE_OWORD_4(buf_tbl_upd, | 
|  | FRF_AZ_BUF_UPD_CMD, 0, | 
|  | FRF_AZ_BUF_CLR_CMD, 1, | 
|  | FRF_AZ_BUF_CLR_END_ID, end, | 
|  | FRF_AZ_BUF_CLR_START_ID, start); | 
|  | efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a new special buffer | 
|  | * | 
|  | * This allocates memory for a new buffer, clears it and allocates a | 
|  | * new buffer ID range.  It does not write into the buffer table. | 
|  | * | 
|  | * This call will allocate 4KB buffers, since 8KB buffers can't be | 
|  | * used for event queues and descriptor rings. | 
|  | */ | 
|  | static int efx_alloc_special_buffer(struct efx_nic *efx, | 
|  | struct efx_special_buffer *buffer, | 
|  | unsigned int len) | 
|  | { | 
|  | #ifdef CONFIG_SFC_SRIOV | 
|  | struct siena_nic_data *nic_data = efx->nic_data; | 
|  | #endif | 
|  | len = ALIGN(len, EFX_BUF_SIZE); | 
|  |  | 
|  | if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL)) | 
|  | return -ENOMEM; | 
|  | buffer->entries = len / EFX_BUF_SIZE; | 
|  | BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1)); | 
|  |  | 
|  | /* Select new buffer ID */ | 
|  | buffer->index = efx->next_buffer_table; | 
|  | efx->next_buffer_table += buffer->entries; | 
|  | #ifdef CONFIG_SFC_SRIOV | 
|  | BUG_ON(efx_siena_sriov_enabled(efx) && | 
|  | nic_data->vf_buftbl_base < efx->next_buffer_table); | 
|  | #endif | 
|  |  | 
|  | netif_dbg(efx, probe, efx->net_dev, | 
|  | "allocating special buffers %d-%d at %llx+%x " | 
|  | "(virt %p phys %llx)\n", buffer->index, | 
|  | buffer->index + buffer->entries - 1, | 
|  | (u64)buffer->buf.dma_addr, len, | 
|  | buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) | 
|  | { | 
|  | if (!buffer->buf.addr) | 
|  | return; | 
|  |  | 
|  | netif_dbg(efx, hw, efx->net_dev, | 
|  | "deallocating special buffers %d-%d at %llx+%x " | 
|  | "(virt %p phys %llx)\n", buffer->index, | 
|  | buffer->index + buffer->entries - 1, | 
|  | (u64)buffer->buf.dma_addr, buffer->buf.len, | 
|  | buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr)); | 
|  |  | 
|  | efx_nic_free_buffer(efx, &buffer->buf); | 
|  | buffer->entries = 0; | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * TX path | 
|  | * | 
|  | **************************************************************************/ | 
|  |  | 
|  | /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */ | 
|  | static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue) | 
|  | { | 
|  | unsigned write_ptr; | 
|  | efx_dword_t reg; | 
|  |  | 
|  | write_ptr = tx_queue->write_count & tx_queue->ptr_mask; | 
|  | EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr); | 
|  | efx_writed_page(tx_queue->efx, ®, | 
|  | FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue); | 
|  | } | 
|  |  | 
|  | /* Write pointer and first descriptor for TX descriptor ring */ | 
|  | static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue, | 
|  | const efx_qword_t *txd) | 
|  | { | 
|  | unsigned write_ptr; | 
|  | efx_oword_t reg; | 
|  |  | 
|  | BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0); | 
|  | BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0); | 
|  |  | 
|  | write_ptr = tx_queue->write_count & tx_queue->ptr_mask; | 
|  | EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true, | 
|  | FRF_AZ_TX_DESC_WPTR, write_ptr); | 
|  | reg.qword[0] = *txd; | 
|  | efx_writeo_page(tx_queue->efx, ®, | 
|  | FR_BZ_TX_DESC_UPD_P0, tx_queue->queue); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* For each entry inserted into the software descriptor ring, create a | 
|  | * descriptor in the hardware TX descriptor ring (in host memory), and | 
|  | * write a doorbell. | 
|  | */ | 
|  | void efx_farch_tx_write(struct efx_tx_queue *tx_queue) | 
|  | { | 
|  | struct efx_tx_buffer *buffer; | 
|  | efx_qword_t *txd; | 
|  | unsigned write_ptr; | 
|  | unsigned old_write_count = tx_queue->write_count; | 
|  |  | 
|  | tx_queue->xmit_more_available = false; | 
|  | if (unlikely(tx_queue->write_count == tx_queue->insert_count)) | 
|  | return; | 
|  |  | 
|  | do { | 
|  | write_ptr = tx_queue->write_count & tx_queue->ptr_mask; | 
|  | buffer = &tx_queue->buffer[write_ptr]; | 
|  | txd = efx_tx_desc(tx_queue, write_ptr); | 
|  | ++tx_queue->write_count; | 
|  |  | 
|  | EFX_WARN_ON_ONCE_PARANOID(buffer->flags & EFX_TX_BUF_OPTION); | 
|  |  | 
|  | /* Create TX descriptor ring entry */ | 
|  | BUILD_BUG_ON(EFX_TX_BUF_CONT != 1); | 
|  | EFX_POPULATE_QWORD_4(*txd, | 
|  | FSF_AZ_TX_KER_CONT, | 
|  | buffer->flags & EFX_TX_BUF_CONT, | 
|  | FSF_AZ_TX_KER_BYTE_COUNT, buffer->len, | 
|  | FSF_AZ_TX_KER_BUF_REGION, 0, | 
|  | FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr); | 
|  | } while (tx_queue->write_count != tx_queue->insert_count); | 
|  |  | 
|  | wmb(); /* Ensure descriptors are written before they are fetched */ | 
|  |  | 
|  | if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) { | 
|  | txd = efx_tx_desc(tx_queue, | 
|  | old_write_count & tx_queue->ptr_mask); | 
|  | efx_farch_push_tx_desc(tx_queue, txd); | 
|  | ++tx_queue->pushes; | 
|  | } else { | 
|  | efx_farch_notify_tx_desc(tx_queue); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue, | 
|  | dma_addr_t dma_addr, unsigned int len) | 
|  | { | 
|  | /* Don't cross 4K boundaries with descriptors. */ | 
|  | unsigned int limit = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1; | 
|  |  | 
|  | len = min(limit, len); | 
|  |  | 
|  | return len; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Allocate hardware resources for a TX queue */ | 
|  | int efx_farch_tx_probe(struct efx_tx_queue *tx_queue) | 
|  | { | 
|  | struct efx_nic *efx = tx_queue->efx; | 
|  | unsigned entries; | 
|  |  | 
|  | entries = tx_queue->ptr_mask + 1; | 
|  | return efx_alloc_special_buffer(efx, &tx_queue->txd, | 
|  | entries * sizeof(efx_qword_t)); | 
|  | } | 
|  |  | 
|  | void efx_farch_tx_init(struct efx_tx_queue *tx_queue) | 
|  | { | 
|  | int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD; | 
|  | struct efx_nic *efx = tx_queue->efx; | 
|  | efx_oword_t reg; | 
|  |  | 
|  | /* Pin TX descriptor ring */ | 
|  | efx_init_special_buffer(efx, &tx_queue->txd); | 
|  |  | 
|  | /* Push TX descriptor ring to card */ | 
|  | EFX_POPULATE_OWORD_10(reg, | 
|  | FRF_AZ_TX_DESCQ_EN, 1, | 
|  | FRF_AZ_TX_ISCSI_DDIG_EN, 0, | 
|  | FRF_AZ_TX_ISCSI_HDIG_EN, 0, | 
|  | FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index, | 
|  | FRF_AZ_TX_DESCQ_EVQ_ID, | 
|  | tx_queue->channel->channel, | 
|  | FRF_AZ_TX_DESCQ_OWNER_ID, 0, | 
|  | FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue, | 
|  | FRF_AZ_TX_DESCQ_SIZE, | 
|  | __ffs(tx_queue->txd.entries), | 
|  | FRF_AZ_TX_DESCQ_TYPE, 0, | 
|  | FRF_BZ_TX_NON_IP_DROP_DIS, 1); | 
|  |  | 
|  | EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum); | 
|  | EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS, !csum); | 
|  |  | 
|  | efx_writeo_table(efx, ®, efx->type->txd_ptr_tbl_base, | 
|  | tx_queue->queue); | 
|  |  | 
|  | EFX_POPULATE_OWORD_1(reg, | 
|  | FRF_BZ_TX_PACE, | 
|  | (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ? | 
|  | FFE_BZ_TX_PACE_OFF : | 
|  | FFE_BZ_TX_PACE_RESERVED); | 
|  | efx_writeo_table(efx, ®, FR_BZ_TX_PACE_TBL, tx_queue->queue); | 
|  | } | 
|  |  | 
|  | static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue) | 
|  | { | 
|  | struct efx_nic *efx = tx_queue->efx; | 
|  | efx_oword_t tx_flush_descq; | 
|  |  | 
|  | WARN_ON(atomic_read(&tx_queue->flush_outstanding)); | 
|  | atomic_set(&tx_queue->flush_outstanding, 1); | 
|  |  | 
|  | EFX_POPULATE_OWORD_2(tx_flush_descq, | 
|  | FRF_AZ_TX_FLUSH_DESCQ_CMD, 1, | 
|  | FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue); | 
|  | efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ); | 
|  | } | 
|  |  | 
|  | void efx_farch_tx_fini(struct efx_tx_queue *tx_queue) | 
|  | { | 
|  | struct efx_nic *efx = tx_queue->efx; | 
|  | efx_oword_t tx_desc_ptr; | 
|  |  | 
|  | /* Remove TX descriptor ring from card */ | 
|  | EFX_ZERO_OWORD(tx_desc_ptr); | 
|  | efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base, | 
|  | tx_queue->queue); | 
|  |  | 
|  | /* Unpin TX descriptor ring */ | 
|  | efx_fini_special_buffer(efx, &tx_queue->txd); | 
|  | } | 
|  |  | 
|  | /* Free buffers backing TX queue */ | 
|  | void efx_farch_tx_remove(struct efx_tx_queue *tx_queue) | 
|  | { | 
|  | efx_free_special_buffer(tx_queue->efx, &tx_queue->txd); | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * RX path | 
|  | * | 
|  | **************************************************************************/ | 
|  |  | 
|  | /* This creates an entry in the RX descriptor queue */ | 
|  | static inline void | 
|  | efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index) | 
|  | { | 
|  | struct efx_rx_buffer *rx_buf; | 
|  | efx_qword_t *rxd; | 
|  |  | 
|  | rxd = efx_rx_desc(rx_queue, index); | 
|  | rx_buf = efx_rx_buffer(rx_queue, index); | 
|  | EFX_POPULATE_QWORD_3(*rxd, | 
|  | FSF_AZ_RX_KER_BUF_SIZE, | 
|  | rx_buf->len - | 
|  | rx_queue->efx->type->rx_buffer_padding, | 
|  | FSF_AZ_RX_KER_BUF_REGION, 0, | 
|  | FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr); | 
|  | } | 
|  |  | 
|  | /* This writes to the RX_DESC_WPTR register for the specified receive | 
|  | * descriptor ring. | 
|  | */ | 
|  | void efx_farch_rx_write(struct efx_rx_queue *rx_queue) | 
|  | { | 
|  | struct efx_nic *efx = rx_queue->efx; | 
|  | efx_dword_t reg; | 
|  | unsigned write_ptr; | 
|  |  | 
|  | while (rx_queue->notified_count != rx_queue->added_count) { | 
|  | efx_farch_build_rx_desc( | 
|  | rx_queue, | 
|  | rx_queue->notified_count & rx_queue->ptr_mask); | 
|  | ++rx_queue->notified_count; | 
|  | } | 
|  |  | 
|  | wmb(); | 
|  | write_ptr = rx_queue->added_count & rx_queue->ptr_mask; | 
|  | EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr); | 
|  | efx_writed_page(efx, ®, FR_AZ_RX_DESC_UPD_DWORD_P0, | 
|  | efx_rx_queue_index(rx_queue)); | 
|  | } | 
|  |  | 
|  | int efx_farch_rx_probe(struct efx_rx_queue *rx_queue) | 
|  | { | 
|  | struct efx_nic *efx = rx_queue->efx; | 
|  | unsigned entries; | 
|  |  | 
|  | entries = rx_queue->ptr_mask + 1; | 
|  | return efx_alloc_special_buffer(efx, &rx_queue->rxd, | 
|  | entries * sizeof(efx_qword_t)); | 
|  | } | 
|  |  | 
|  | void efx_farch_rx_init(struct efx_rx_queue *rx_queue) | 
|  | { | 
|  | efx_oword_t rx_desc_ptr; | 
|  | struct efx_nic *efx = rx_queue->efx; | 
|  | bool jumbo_en; | 
|  |  | 
|  | /* For kernel-mode queues in Siena, the JUMBO flag enables scatter. */ | 
|  | jumbo_en = efx->rx_scatter; | 
|  |  | 
|  | netif_dbg(efx, hw, efx->net_dev, | 
|  | "RX queue %d ring in special buffers %d-%d\n", | 
|  | efx_rx_queue_index(rx_queue), rx_queue->rxd.index, | 
|  | rx_queue->rxd.index + rx_queue->rxd.entries - 1); | 
|  |  | 
|  | rx_queue->scatter_n = 0; | 
|  |  | 
|  | /* Pin RX descriptor ring */ | 
|  | efx_init_special_buffer(efx, &rx_queue->rxd); | 
|  |  | 
|  | /* Push RX descriptor ring to card */ | 
|  | EFX_POPULATE_OWORD_10(rx_desc_ptr, | 
|  | FRF_AZ_RX_ISCSI_DDIG_EN, true, | 
|  | FRF_AZ_RX_ISCSI_HDIG_EN, true, | 
|  | FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index, | 
|  | FRF_AZ_RX_DESCQ_EVQ_ID, | 
|  | efx_rx_queue_channel(rx_queue)->channel, | 
|  | FRF_AZ_RX_DESCQ_OWNER_ID, 0, | 
|  | FRF_AZ_RX_DESCQ_LABEL, | 
|  | efx_rx_queue_index(rx_queue), | 
|  | FRF_AZ_RX_DESCQ_SIZE, | 
|  | __ffs(rx_queue->rxd.entries), | 
|  | FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ , | 
|  | FRF_AZ_RX_DESCQ_JUMBO, jumbo_en, | 
|  | FRF_AZ_RX_DESCQ_EN, 1); | 
|  | efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, | 
|  | efx_rx_queue_index(rx_queue)); | 
|  | } | 
|  |  | 
|  | static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue) | 
|  | { | 
|  | struct efx_nic *efx = rx_queue->efx; | 
|  | efx_oword_t rx_flush_descq; | 
|  |  | 
|  | EFX_POPULATE_OWORD_2(rx_flush_descq, | 
|  | FRF_AZ_RX_FLUSH_DESCQ_CMD, 1, | 
|  | FRF_AZ_RX_FLUSH_DESCQ, | 
|  | efx_rx_queue_index(rx_queue)); | 
|  | efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ); | 
|  | } | 
|  |  | 
|  | void efx_farch_rx_fini(struct efx_rx_queue *rx_queue) | 
|  | { | 
|  | efx_oword_t rx_desc_ptr; | 
|  | struct efx_nic *efx = rx_queue->efx; | 
|  |  | 
|  | /* Remove RX descriptor ring from card */ | 
|  | EFX_ZERO_OWORD(rx_desc_ptr); | 
|  | efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, | 
|  | efx_rx_queue_index(rx_queue)); | 
|  |  | 
|  | /* Unpin RX descriptor ring */ | 
|  | efx_fini_special_buffer(efx, &rx_queue->rxd); | 
|  | } | 
|  |  | 
|  | /* Free buffers backing RX queue */ | 
|  | void efx_farch_rx_remove(struct efx_rx_queue *rx_queue) | 
|  | { | 
|  | efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd); | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * Flush handling | 
|  | * | 
|  | **************************************************************************/ | 
|  |  | 
|  | /* efx_farch_flush_queues() must be woken up when all flushes are completed, | 
|  | * or more RX flushes can be kicked off. | 
|  | */ | 
|  | static bool efx_farch_flush_wake(struct efx_nic *efx) | 
|  | { | 
|  | /* Ensure that all updates are visible to efx_farch_flush_queues() */ | 
|  | smp_mb(); | 
|  |  | 
|  | return (atomic_read(&efx->active_queues) == 0 || | 
|  | (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT | 
|  | && atomic_read(&efx->rxq_flush_pending) > 0)); | 
|  | } | 
|  |  | 
|  | static bool efx_check_tx_flush_complete(struct efx_nic *efx) | 
|  | { | 
|  | bool i = true; | 
|  | efx_oword_t txd_ptr_tbl; | 
|  | struct efx_channel *channel; | 
|  | struct efx_tx_queue *tx_queue; | 
|  |  | 
|  | efx_for_each_channel(channel, efx) { | 
|  | efx_for_each_channel_tx_queue(tx_queue, channel) { | 
|  | efx_reado_table(efx, &txd_ptr_tbl, | 
|  | FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue); | 
|  | if (EFX_OWORD_FIELD(txd_ptr_tbl, | 
|  | FRF_AZ_TX_DESCQ_FLUSH) || | 
|  | EFX_OWORD_FIELD(txd_ptr_tbl, | 
|  | FRF_AZ_TX_DESCQ_EN)) { | 
|  | netif_dbg(efx, hw, efx->net_dev, | 
|  | "flush did not complete on TXQ %d\n", | 
|  | tx_queue->queue); | 
|  | i = false; | 
|  | } else if (atomic_cmpxchg(&tx_queue->flush_outstanding, | 
|  | 1, 0)) { | 
|  | /* The flush is complete, but we didn't | 
|  | * receive a flush completion event | 
|  | */ | 
|  | netif_dbg(efx, hw, efx->net_dev, | 
|  | "flush complete on TXQ %d, so drain " | 
|  | "the queue\n", tx_queue->queue); | 
|  | /* Don't need to increment active_queues as it | 
|  | * has already been incremented for the queues | 
|  | * which did not drain | 
|  | */ | 
|  | efx_farch_magic_event(channel, | 
|  | EFX_CHANNEL_MAGIC_TX_DRAIN( | 
|  | tx_queue)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return i; | 
|  | } | 
|  |  | 
|  | /* Flush all the transmit queues, and continue flushing receive queues until | 
|  | * they're all flushed. Wait for the DRAIN events to be received so that there | 
|  | * are no more RX and TX events left on any channel. */ | 
|  | static int efx_farch_do_flush(struct efx_nic *efx) | 
|  | { | 
|  | unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */ | 
|  | struct efx_channel *channel; | 
|  | struct efx_rx_queue *rx_queue; | 
|  | struct efx_tx_queue *tx_queue; | 
|  | int rc = 0; | 
|  |  | 
|  | efx_for_each_channel(channel, efx) { | 
|  | efx_for_each_channel_tx_queue(tx_queue, channel) { | 
|  | efx_farch_flush_tx_queue(tx_queue); | 
|  | } | 
|  | efx_for_each_channel_rx_queue(rx_queue, channel) { | 
|  | rx_queue->flush_pending = true; | 
|  | atomic_inc(&efx->rxq_flush_pending); | 
|  | } | 
|  | } | 
|  |  | 
|  | while (timeout && atomic_read(&efx->active_queues) > 0) { | 
|  | /* If SRIOV is enabled, then offload receive queue flushing to | 
|  | * the firmware (though we will still have to poll for | 
|  | * completion). If that fails, fall back to the old scheme. | 
|  | */ | 
|  | if (efx_siena_sriov_enabled(efx)) { | 
|  | rc = efx_mcdi_flush_rxqs(efx); | 
|  | if (!rc) | 
|  | goto wait; | 
|  | } | 
|  |  | 
|  | /* The hardware supports four concurrent rx flushes, each of | 
|  | * which may need to be retried if there is an outstanding | 
|  | * descriptor fetch | 
|  | */ | 
|  | efx_for_each_channel(channel, efx) { | 
|  | efx_for_each_channel_rx_queue(rx_queue, channel) { | 
|  | if (atomic_read(&efx->rxq_flush_outstanding) >= | 
|  | EFX_RX_FLUSH_COUNT) | 
|  | break; | 
|  |  | 
|  | if (rx_queue->flush_pending) { | 
|  | rx_queue->flush_pending = false; | 
|  | atomic_dec(&efx->rxq_flush_pending); | 
|  | atomic_inc(&efx->rxq_flush_outstanding); | 
|  | efx_farch_flush_rx_queue(rx_queue); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | wait: | 
|  | timeout = wait_event_timeout(efx->flush_wq, | 
|  | efx_farch_flush_wake(efx), | 
|  | timeout); | 
|  | } | 
|  |  | 
|  | if (atomic_read(&efx->active_queues) && | 
|  | !efx_check_tx_flush_complete(efx)) { | 
|  | netif_err(efx, hw, efx->net_dev, "failed to flush %d queues " | 
|  | "(rx %d+%d)\n", atomic_read(&efx->active_queues), | 
|  | atomic_read(&efx->rxq_flush_outstanding), | 
|  | atomic_read(&efx->rxq_flush_pending)); | 
|  | rc = -ETIMEDOUT; | 
|  |  | 
|  | atomic_set(&efx->active_queues, 0); | 
|  | atomic_set(&efx->rxq_flush_pending, 0); | 
|  | atomic_set(&efx->rxq_flush_outstanding, 0); | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int efx_farch_fini_dmaq(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_channel *channel; | 
|  | struct efx_tx_queue *tx_queue; | 
|  | struct efx_rx_queue *rx_queue; | 
|  | int rc = 0; | 
|  |  | 
|  | /* Do not attempt to write to the NIC during EEH recovery */ | 
|  | if (efx->state != STATE_RECOVERY) { | 
|  | /* Only perform flush if DMA is enabled */ | 
|  | if (efx->pci_dev->is_busmaster) { | 
|  | efx->type->prepare_flush(efx); | 
|  | rc = efx_farch_do_flush(efx); | 
|  | efx->type->finish_flush(efx); | 
|  | } | 
|  |  | 
|  | efx_for_each_channel(channel, efx) { | 
|  | efx_for_each_channel_rx_queue(rx_queue, channel) | 
|  | efx_farch_rx_fini(rx_queue); | 
|  | efx_for_each_channel_tx_queue(tx_queue, channel) | 
|  | efx_farch_tx_fini(tx_queue); | 
|  | } | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Reset queue and flush accounting after FLR | 
|  | * | 
|  | * One possible cause of FLR recovery is that DMA may be failing (eg. if bus | 
|  | * mastering was disabled), in which case we don't receive (RXQ) flush | 
|  | * completion events.  This means that efx->rxq_flush_outstanding remained at 4 | 
|  | * after the FLR; also, efx->active_queues was non-zero (as no flush completion | 
|  | * events were received, and we didn't go through efx_check_tx_flush_complete()) | 
|  | * If we don't fix this up, on the next call to efx_realloc_channels() we won't | 
|  | * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4 | 
|  | * for batched flush requests; and the efx->active_queues gets messed up because | 
|  | * we keep incrementing for the newly initialised queues, but it never went to | 
|  | * zero previously.  Then we get a timeout every time we try to restart the | 
|  | * queues, as it doesn't go back to zero when we should be flushing the queues. | 
|  | */ | 
|  | void efx_farch_finish_flr(struct efx_nic *efx) | 
|  | { | 
|  | atomic_set(&efx->rxq_flush_pending, 0); | 
|  | atomic_set(&efx->rxq_flush_outstanding, 0); | 
|  | atomic_set(&efx->active_queues, 0); | 
|  | } | 
|  |  | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * Event queue processing | 
|  | * Event queues are processed by per-channel tasklets. | 
|  | * | 
|  | **************************************************************************/ | 
|  |  | 
|  | /* Update a channel's event queue's read pointer (RPTR) register | 
|  | * | 
|  | * This writes the EVQ_RPTR_REG register for the specified channel's | 
|  | * event queue. | 
|  | */ | 
|  | void efx_farch_ev_read_ack(struct efx_channel *channel) | 
|  | { | 
|  | efx_dword_t reg; | 
|  | struct efx_nic *efx = channel->efx; | 
|  |  | 
|  | EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, | 
|  | channel->eventq_read_ptr & channel->eventq_mask); | 
|  |  | 
|  | /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size | 
|  | * of 4 bytes, but it is really 16 bytes just like later revisions. | 
|  | */ | 
|  | efx_writed(efx, ®, | 
|  | efx->type->evq_rptr_tbl_base + | 
|  | FR_BZ_EVQ_RPTR_STEP * channel->channel); | 
|  | } | 
|  |  | 
|  | /* Use HW to insert a SW defined event */ | 
|  | void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq, | 
|  | efx_qword_t *event) | 
|  | { | 
|  | efx_oword_t drv_ev_reg; | 
|  |  | 
|  | BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 || | 
|  | FRF_AZ_DRV_EV_DATA_WIDTH != 64); | 
|  | drv_ev_reg.u32[0] = event->u32[0]; | 
|  | drv_ev_reg.u32[1] = event->u32[1]; | 
|  | drv_ev_reg.u32[2] = 0; | 
|  | drv_ev_reg.u32[3] = 0; | 
|  | EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq); | 
|  | efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV); | 
|  | } | 
|  |  | 
|  | static void efx_farch_magic_event(struct efx_channel *channel, u32 magic) | 
|  | { | 
|  | efx_qword_t event; | 
|  |  | 
|  | EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE, | 
|  | FSE_AZ_EV_CODE_DRV_GEN_EV, | 
|  | FSF_AZ_DRV_GEN_EV_MAGIC, magic); | 
|  | efx_farch_generate_event(channel->efx, channel->channel, &event); | 
|  | } | 
|  |  | 
|  | /* Handle a transmit completion event | 
|  | * | 
|  | * The NIC batches TX completion events; the message we receive is of | 
|  | * the form "complete all TX events up to this index". | 
|  | */ | 
|  | static void | 
|  | efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event) | 
|  | { | 
|  | unsigned int tx_ev_desc_ptr; | 
|  | unsigned int tx_ev_q_label; | 
|  | struct efx_tx_queue *tx_queue; | 
|  | struct efx_nic *efx = channel->efx; | 
|  |  | 
|  | if (unlikely(READ_ONCE(efx->reset_pending))) | 
|  | return; | 
|  |  | 
|  | if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) { | 
|  | /* Transmit completion */ | 
|  | tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR); | 
|  | tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL); | 
|  | tx_queue = efx_channel_get_tx_queue( | 
|  | channel, tx_ev_q_label % EFX_TXQ_TYPES); | 
|  | efx_xmit_done(tx_queue, tx_ev_desc_ptr); | 
|  | } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) { | 
|  | /* Rewrite the FIFO write pointer */ | 
|  | tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL); | 
|  | tx_queue = efx_channel_get_tx_queue( | 
|  | channel, tx_ev_q_label % EFX_TXQ_TYPES); | 
|  |  | 
|  | netif_tx_lock(efx->net_dev); | 
|  | efx_farch_notify_tx_desc(tx_queue); | 
|  | netif_tx_unlock(efx->net_dev); | 
|  | } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) { | 
|  | efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR); | 
|  | } else { | 
|  | netif_err(efx, tx_err, efx->net_dev, | 
|  | "channel %d unexpected TX event " | 
|  | EFX_QWORD_FMT"\n", channel->channel, | 
|  | EFX_QWORD_VAL(*event)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Detect errors included in the rx_evt_pkt_ok bit. */ | 
|  | static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue, | 
|  | const efx_qword_t *event) | 
|  | { | 
|  | struct efx_channel *channel = efx_rx_queue_channel(rx_queue); | 
|  | struct efx_nic *efx = rx_queue->efx; | 
|  | bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err; | 
|  | bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err; | 
|  | bool rx_ev_frm_trunc, rx_ev_tobe_disc; | 
|  | bool rx_ev_other_err, rx_ev_pause_frm; | 
|  | bool rx_ev_hdr_type, rx_ev_mcast_pkt; | 
|  | unsigned rx_ev_pkt_type; | 
|  |  | 
|  | rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE); | 
|  | rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT); | 
|  | rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC); | 
|  | rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE); | 
|  | rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event, | 
|  | FSF_AZ_RX_EV_BUF_OWNER_ID_ERR); | 
|  | rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event, | 
|  | FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR); | 
|  | rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event, | 
|  | FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR); | 
|  | rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR); | 
|  | rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC); | 
|  | rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR); | 
|  |  | 
|  | /* Every error apart from tobe_disc and pause_frm */ | 
|  | rx_ev_other_err = (rx_ev_tcp_udp_chksum_err | | 
|  | rx_ev_buf_owner_id_err | rx_ev_eth_crc_err | | 
|  | rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err); | 
|  |  | 
|  | /* Count errors that are not in MAC stats.  Ignore expected | 
|  | * checksum errors during self-test. */ | 
|  | if (rx_ev_frm_trunc) | 
|  | ++channel->n_rx_frm_trunc; | 
|  | else if (rx_ev_tobe_disc) | 
|  | ++channel->n_rx_tobe_disc; | 
|  | else if (!efx->loopback_selftest) { | 
|  | if (rx_ev_ip_hdr_chksum_err) | 
|  | ++channel->n_rx_ip_hdr_chksum_err; | 
|  | else if (rx_ev_tcp_udp_chksum_err) | 
|  | ++channel->n_rx_tcp_udp_chksum_err; | 
|  | } | 
|  |  | 
|  | /* TOBE_DISC is expected on unicast mismatches; don't print out an | 
|  | * error message.  FRM_TRUNC indicates RXDP dropped the packet due | 
|  | * to a FIFO overflow. | 
|  | */ | 
|  | #ifdef DEBUG | 
|  | if (rx_ev_other_err && net_ratelimit()) { | 
|  | netif_dbg(efx, rx_err, efx->net_dev, | 
|  | " RX queue %d unexpected RX event " | 
|  | EFX_QWORD_FMT "%s%s%s%s%s%s%s\n", | 
|  | efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event), | 
|  | rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "", | 
|  | rx_ev_ip_hdr_chksum_err ? | 
|  | " [IP_HDR_CHKSUM_ERR]" : "", | 
|  | rx_ev_tcp_udp_chksum_err ? | 
|  | " [TCP_UDP_CHKSUM_ERR]" : "", | 
|  | rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "", | 
|  | rx_ev_frm_trunc ? " [FRM_TRUNC]" : "", | 
|  | rx_ev_tobe_disc ? " [TOBE_DISC]" : "", | 
|  | rx_ev_pause_frm ? " [PAUSE]" : ""); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (efx->net_dev->features & NETIF_F_RXALL) | 
|  | /* don't discard frame for CRC error */ | 
|  | rx_ev_eth_crc_err = false; | 
|  |  | 
|  | /* The frame must be discarded if any of these are true. */ | 
|  | return (rx_ev_eth_crc_err | rx_ev_frm_trunc | | 
|  | rx_ev_tobe_disc | rx_ev_pause_frm) ? | 
|  | EFX_RX_PKT_DISCARD : 0; | 
|  | } | 
|  |  | 
|  | /* Handle receive events that are not in-order. Return true if this | 
|  | * can be handled as a partial packet discard, false if it's more | 
|  | * serious. | 
|  | */ | 
|  | static bool | 
|  | efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index) | 
|  | { | 
|  | struct efx_channel *channel = efx_rx_queue_channel(rx_queue); | 
|  | struct efx_nic *efx = rx_queue->efx; | 
|  | unsigned expected, dropped; | 
|  |  | 
|  | if (rx_queue->scatter_n && | 
|  | index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) & | 
|  | rx_queue->ptr_mask)) { | 
|  | ++channel->n_rx_nodesc_trunc; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | expected = rx_queue->removed_count & rx_queue->ptr_mask; | 
|  | dropped = (index - expected) & rx_queue->ptr_mask; | 
|  | netif_info(efx, rx_err, efx->net_dev, | 
|  | "dropped %d events (index=%d expected=%d)\n", | 
|  | dropped, index, expected); | 
|  |  | 
|  | efx_schedule_reset(efx, RESET_TYPE_DISABLE); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Handle a packet received event | 
|  | * | 
|  | * The NIC gives a "discard" flag if it's a unicast packet with the | 
|  | * wrong destination address | 
|  | * Also "is multicast" and "matches multicast filter" flags can be used to | 
|  | * discard non-matching multicast packets. | 
|  | */ | 
|  | static void | 
|  | efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event) | 
|  | { | 
|  | unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt; | 
|  | unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt; | 
|  | unsigned expected_ptr; | 
|  | bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont; | 
|  | u16 flags; | 
|  | struct efx_rx_queue *rx_queue; | 
|  | struct efx_nic *efx = channel->efx; | 
|  |  | 
|  | if (unlikely(READ_ONCE(efx->reset_pending))) | 
|  | return; | 
|  |  | 
|  | rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT); | 
|  | rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP); | 
|  | WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) != | 
|  | channel->channel); | 
|  |  | 
|  | rx_queue = efx_channel_get_rx_queue(channel); | 
|  |  | 
|  | rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR); | 
|  | expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) & | 
|  | rx_queue->ptr_mask); | 
|  |  | 
|  | /* Check for partial drops and other errors */ | 
|  | if (unlikely(rx_ev_desc_ptr != expected_ptr) || | 
|  | unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) { | 
|  | if (rx_ev_desc_ptr != expected_ptr && | 
|  | !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr)) | 
|  | return; | 
|  |  | 
|  | /* Discard all pending fragments */ | 
|  | if (rx_queue->scatter_n) { | 
|  | efx_rx_packet( | 
|  | rx_queue, | 
|  | rx_queue->removed_count & rx_queue->ptr_mask, | 
|  | rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD); | 
|  | rx_queue->removed_count += rx_queue->scatter_n; | 
|  | rx_queue->scatter_n = 0; | 
|  | } | 
|  |  | 
|  | /* Return if there is no new fragment */ | 
|  | if (rx_ev_desc_ptr != expected_ptr) | 
|  | return; | 
|  |  | 
|  | /* Discard new fragment if not SOP */ | 
|  | if (!rx_ev_sop) { | 
|  | efx_rx_packet( | 
|  | rx_queue, | 
|  | rx_queue->removed_count & rx_queue->ptr_mask, | 
|  | 1, 0, EFX_RX_PKT_DISCARD); | 
|  | ++rx_queue->removed_count; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | ++rx_queue->scatter_n; | 
|  | if (rx_ev_cont) | 
|  | return; | 
|  |  | 
|  | rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT); | 
|  | rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK); | 
|  | rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE); | 
|  |  | 
|  | if (likely(rx_ev_pkt_ok)) { | 
|  | /* If packet is marked as OK then we can rely on the | 
|  | * hardware checksum and classification. | 
|  | */ | 
|  | flags = 0; | 
|  | switch (rx_ev_hdr_type) { | 
|  | case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP: | 
|  | flags |= EFX_RX_PKT_TCP; | 
|  | /* fall through */ | 
|  | case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP: | 
|  | flags |= EFX_RX_PKT_CSUMMED; | 
|  | /* fall through */ | 
|  | case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER: | 
|  | case FSE_AZ_RX_EV_HDR_TYPE_OTHER: | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | flags = efx_farch_handle_rx_not_ok(rx_queue, event); | 
|  | } | 
|  |  | 
|  | /* Detect multicast packets that didn't match the filter */ | 
|  | rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT); | 
|  | if (rx_ev_mcast_pkt) { | 
|  | unsigned int rx_ev_mcast_hash_match = | 
|  | EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH); | 
|  |  | 
|  | if (unlikely(!rx_ev_mcast_hash_match)) { | 
|  | ++channel->n_rx_mcast_mismatch; | 
|  | flags |= EFX_RX_PKT_DISCARD; | 
|  | } | 
|  | } | 
|  |  | 
|  | channel->irq_mod_score += 2; | 
|  |  | 
|  | /* Handle received packet */ | 
|  | efx_rx_packet(rx_queue, | 
|  | rx_queue->removed_count & rx_queue->ptr_mask, | 
|  | rx_queue->scatter_n, rx_ev_byte_cnt, flags); | 
|  | rx_queue->removed_count += rx_queue->scatter_n; | 
|  | rx_queue->scatter_n = 0; | 
|  | } | 
|  |  | 
|  | /* If this flush done event corresponds to a &struct efx_tx_queue, then | 
|  | * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue | 
|  | * of all transmit completions. | 
|  | */ | 
|  | static void | 
|  | efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event) | 
|  | { | 
|  | struct efx_tx_queue *tx_queue; | 
|  | int qid; | 
|  |  | 
|  | qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA); | 
|  | if (qid < EFX_TXQ_TYPES * (efx->n_tx_channels + efx->n_extra_tx_channels)) { | 
|  | tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES, | 
|  | qid % EFX_TXQ_TYPES); | 
|  | if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) { | 
|  | efx_farch_magic_event(tx_queue->channel, | 
|  | EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush | 
|  | * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add | 
|  | * the RX queue back to the mask of RX queues in need of flushing. | 
|  | */ | 
|  | static void | 
|  | efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event) | 
|  | { | 
|  | struct efx_channel *channel; | 
|  | struct efx_rx_queue *rx_queue; | 
|  | int qid; | 
|  | bool failed; | 
|  |  | 
|  | qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID); | 
|  | failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL); | 
|  | if (qid >= efx->n_channels) | 
|  | return; | 
|  | channel = efx_get_channel(efx, qid); | 
|  | if (!efx_channel_has_rx_queue(channel)) | 
|  | return; | 
|  | rx_queue = efx_channel_get_rx_queue(channel); | 
|  |  | 
|  | if (failed) { | 
|  | netif_info(efx, hw, efx->net_dev, | 
|  | "RXQ %d flush retry\n", qid); | 
|  | rx_queue->flush_pending = true; | 
|  | atomic_inc(&efx->rxq_flush_pending); | 
|  | } else { | 
|  | efx_farch_magic_event(efx_rx_queue_channel(rx_queue), | 
|  | EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)); | 
|  | } | 
|  | atomic_dec(&efx->rxq_flush_outstanding); | 
|  | if (efx_farch_flush_wake(efx)) | 
|  | wake_up(&efx->flush_wq); | 
|  | } | 
|  |  | 
|  | static void | 
|  | efx_farch_handle_drain_event(struct efx_channel *channel) | 
|  | { | 
|  | struct efx_nic *efx = channel->efx; | 
|  |  | 
|  | WARN_ON(atomic_read(&efx->active_queues) == 0); | 
|  | atomic_dec(&efx->active_queues); | 
|  | if (efx_farch_flush_wake(efx)) | 
|  | wake_up(&efx->flush_wq); | 
|  | } | 
|  |  | 
|  | static void efx_farch_handle_generated_event(struct efx_channel *channel, | 
|  | efx_qword_t *event) | 
|  | { | 
|  | struct efx_nic *efx = channel->efx; | 
|  | struct efx_rx_queue *rx_queue = | 
|  | efx_channel_has_rx_queue(channel) ? | 
|  | efx_channel_get_rx_queue(channel) : NULL; | 
|  | unsigned magic, code; | 
|  |  | 
|  | magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC); | 
|  | code = _EFX_CHANNEL_MAGIC_CODE(magic); | 
|  |  | 
|  | if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) { | 
|  | channel->event_test_cpu = raw_smp_processor_id(); | 
|  | } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) { | 
|  | /* The queue must be empty, so we won't receive any rx | 
|  | * events, so efx_process_channel() won't refill the | 
|  | * queue. Refill it here */ | 
|  | efx_fast_push_rx_descriptors(rx_queue, true); | 
|  | } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) { | 
|  | efx_farch_handle_drain_event(channel); | 
|  | } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) { | 
|  | efx_farch_handle_drain_event(channel); | 
|  | } else { | 
|  | netif_dbg(efx, hw, efx->net_dev, "channel %d received " | 
|  | "generated event "EFX_QWORD_FMT"\n", | 
|  | channel->channel, EFX_QWORD_VAL(*event)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event) | 
|  | { | 
|  | struct efx_nic *efx = channel->efx; | 
|  | unsigned int ev_sub_code; | 
|  | unsigned int ev_sub_data; | 
|  |  | 
|  | ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE); | 
|  | ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA); | 
|  |  | 
|  | switch (ev_sub_code) { | 
|  | case FSE_AZ_TX_DESCQ_FLS_DONE_EV: | 
|  | netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n", | 
|  | channel->channel, ev_sub_data); | 
|  | efx_farch_handle_tx_flush_done(efx, event); | 
|  | #ifdef CONFIG_SFC_SRIOV | 
|  | efx_siena_sriov_tx_flush_done(efx, event); | 
|  | #endif | 
|  | break; | 
|  | case FSE_AZ_RX_DESCQ_FLS_DONE_EV: | 
|  | netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n", | 
|  | channel->channel, ev_sub_data); | 
|  | efx_farch_handle_rx_flush_done(efx, event); | 
|  | #ifdef CONFIG_SFC_SRIOV | 
|  | efx_siena_sriov_rx_flush_done(efx, event); | 
|  | #endif | 
|  | break; | 
|  | case FSE_AZ_EVQ_INIT_DONE_EV: | 
|  | netif_dbg(efx, hw, efx->net_dev, | 
|  | "channel %d EVQ %d initialised\n", | 
|  | channel->channel, ev_sub_data); | 
|  | break; | 
|  | case FSE_AZ_SRM_UPD_DONE_EV: | 
|  | netif_vdbg(efx, hw, efx->net_dev, | 
|  | "channel %d SRAM update done\n", channel->channel); | 
|  | break; | 
|  | case FSE_AZ_WAKE_UP_EV: | 
|  | netif_vdbg(efx, hw, efx->net_dev, | 
|  | "channel %d RXQ %d wakeup event\n", | 
|  | channel->channel, ev_sub_data); | 
|  | break; | 
|  | case FSE_AZ_TIMER_EV: | 
|  | netif_vdbg(efx, hw, efx->net_dev, | 
|  | "channel %d RX queue %d timer expired\n", | 
|  | channel->channel, ev_sub_data); | 
|  | break; | 
|  | case FSE_AA_RX_RECOVER_EV: | 
|  | netif_err(efx, rx_err, efx->net_dev, | 
|  | "channel %d seen DRIVER RX_RESET event. " | 
|  | "Resetting.\n", channel->channel); | 
|  | atomic_inc(&efx->rx_reset); | 
|  | efx_schedule_reset(efx, RESET_TYPE_DISABLE); | 
|  | break; | 
|  | case FSE_BZ_RX_DSC_ERROR_EV: | 
|  | if (ev_sub_data < EFX_VI_BASE) { | 
|  | netif_err(efx, rx_err, efx->net_dev, | 
|  | "RX DMA Q %d reports descriptor fetch error." | 
|  | " RX Q %d is disabled.\n", ev_sub_data, | 
|  | ev_sub_data); | 
|  | efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR); | 
|  | } | 
|  | #ifdef CONFIG_SFC_SRIOV | 
|  | else | 
|  | efx_siena_sriov_desc_fetch_err(efx, ev_sub_data); | 
|  | #endif | 
|  | break; | 
|  | case FSE_BZ_TX_DSC_ERROR_EV: | 
|  | if (ev_sub_data < EFX_VI_BASE) { | 
|  | netif_err(efx, tx_err, efx->net_dev, | 
|  | "TX DMA Q %d reports descriptor fetch error." | 
|  | " TX Q %d is disabled.\n", ev_sub_data, | 
|  | ev_sub_data); | 
|  | efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR); | 
|  | } | 
|  | #ifdef CONFIG_SFC_SRIOV | 
|  | else | 
|  | efx_siena_sriov_desc_fetch_err(efx, ev_sub_data); | 
|  | #endif | 
|  | break; | 
|  | default: | 
|  | netif_vdbg(efx, hw, efx->net_dev, | 
|  | "channel %d unknown driver event code %d " | 
|  | "data %04x\n", channel->channel, ev_sub_code, | 
|  | ev_sub_data); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | int efx_farch_ev_process(struct efx_channel *channel, int budget) | 
|  | { | 
|  | struct efx_nic *efx = channel->efx; | 
|  | unsigned int read_ptr; | 
|  | efx_qword_t event, *p_event; | 
|  | int ev_code; | 
|  | int spent = 0; | 
|  |  | 
|  | if (budget <= 0) | 
|  | return spent; | 
|  |  | 
|  | read_ptr = channel->eventq_read_ptr; | 
|  |  | 
|  | for (;;) { | 
|  | p_event = efx_event(channel, read_ptr); | 
|  | event = *p_event; | 
|  |  | 
|  | if (!efx_event_present(&event)) | 
|  | /* End of events */ | 
|  | break; | 
|  |  | 
|  | netif_vdbg(channel->efx, intr, channel->efx->net_dev, | 
|  | "channel %d event is "EFX_QWORD_FMT"\n", | 
|  | channel->channel, EFX_QWORD_VAL(event)); | 
|  |  | 
|  | /* Clear this event by marking it all ones */ | 
|  | EFX_SET_QWORD(*p_event); | 
|  |  | 
|  | ++read_ptr; | 
|  |  | 
|  | ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE); | 
|  |  | 
|  | switch (ev_code) { | 
|  | case FSE_AZ_EV_CODE_RX_EV: | 
|  | efx_farch_handle_rx_event(channel, &event); | 
|  | if (++spent == budget) | 
|  | goto out; | 
|  | break; | 
|  | case FSE_AZ_EV_CODE_TX_EV: | 
|  | efx_farch_handle_tx_event(channel, &event); | 
|  | break; | 
|  | case FSE_AZ_EV_CODE_DRV_GEN_EV: | 
|  | efx_farch_handle_generated_event(channel, &event); | 
|  | break; | 
|  | case FSE_AZ_EV_CODE_DRIVER_EV: | 
|  | efx_farch_handle_driver_event(channel, &event); | 
|  | break; | 
|  | #ifdef CONFIG_SFC_SRIOV | 
|  | case FSE_CZ_EV_CODE_USER_EV: | 
|  | efx_siena_sriov_event(channel, &event); | 
|  | break; | 
|  | #endif | 
|  | case FSE_CZ_EV_CODE_MCDI_EV: | 
|  | efx_mcdi_process_event(channel, &event); | 
|  | break; | 
|  | case FSE_AZ_EV_CODE_GLOBAL_EV: | 
|  | if (efx->type->handle_global_event && | 
|  | efx->type->handle_global_event(channel, &event)) | 
|  | break; | 
|  | /* else fall through */ | 
|  | default: | 
|  | netif_err(channel->efx, hw, channel->efx->net_dev, | 
|  | "channel %d unknown event type %d (data " | 
|  | EFX_QWORD_FMT ")\n", channel->channel, | 
|  | ev_code, EFX_QWORD_VAL(event)); | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | channel->eventq_read_ptr = read_ptr; | 
|  | return spent; | 
|  | } | 
|  |  | 
|  | /* Allocate buffer table entries for event queue */ | 
|  | int efx_farch_ev_probe(struct efx_channel *channel) | 
|  | { | 
|  | struct efx_nic *efx = channel->efx; | 
|  | unsigned entries; | 
|  |  | 
|  | entries = channel->eventq_mask + 1; | 
|  | return efx_alloc_special_buffer(efx, &channel->eventq, | 
|  | entries * sizeof(efx_qword_t)); | 
|  | } | 
|  |  | 
|  | int efx_farch_ev_init(struct efx_channel *channel) | 
|  | { | 
|  | efx_oword_t reg; | 
|  | struct efx_nic *efx = channel->efx; | 
|  |  | 
|  | netif_dbg(efx, hw, efx->net_dev, | 
|  | "channel %d event queue in special buffers %d-%d\n", | 
|  | channel->channel, channel->eventq.index, | 
|  | channel->eventq.index + channel->eventq.entries - 1); | 
|  |  | 
|  | EFX_POPULATE_OWORD_3(reg, | 
|  | FRF_CZ_TIMER_Q_EN, 1, | 
|  | FRF_CZ_HOST_NOTIFY_MODE, 0, | 
|  | FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS); | 
|  | efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel); | 
|  |  | 
|  | /* Pin event queue buffer */ | 
|  | efx_init_special_buffer(efx, &channel->eventq); | 
|  |  | 
|  | /* Fill event queue with all ones (i.e. empty events) */ | 
|  | memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len); | 
|  |  | 
|  | /* Push event queue to card */ | 
|  | EFX_POPULATE_OWORD_3(reg, | 
|  | FRF_AZ_EVQ_EN, 1, | 
|  | FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries), | 
|  | FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index); | 
|  | efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base, | 
|  | channel->channel); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void efx_farch_ev_fini(struct efx_channel *channel) | 
|  | { | 
|  | efx_oword_t reg; | 
|  | struct efx_nic *efx = channel->efx; | 
|  |  | 
|  | /* Remove event queue from card */ | 
|  | EFX_ZERO_OWORD(reg); | 
|  | efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base, | 
|  | channel->channel); | 
|  | efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel); | 
|  |  | 
|  | /* Unpin event queue */ | 
|  | efx_fini_special_buffer(efx, &channel->eventq); | 
|  | } | 
|  |  | 
|  | /* Free buffers backing event queue */ | 
|  | void efx_farch_ev_remove(struct efx_channel *channel) | 
|  | { | 
|  | efx_free_special_buffer(channel->efx, &channel->eventq); | 
|  | } | 
|  |  | 
|  |  | 
|  | void efx_farch_ev_test_generate(struct efx_channel *channel) | 
|  | { | 
|  | efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel)); | 
|  | } | 
|  |  | 
|  | void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue) | 
|  | { | 
|  | efx_farch_magic_event(efx_rx_queue_channel(rx_queue), | 
|  | EFX_CHANNEL_MAGIC_FILL(rx_queue)); | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * Hardware interrupts | 
|  | * The hardware interrupt handler does very little work; all the event | 
|  | * queue processing is carried out by per-channel tasklets. | 
|  | * | 
|  | **************************************************************************/ | 
|  |  | 
|  | /* Enable/disable/generate interrupts */ | 
|  | static inline void efx_farch_interrupts(struct efx_nic *efx, | 
|  | bool enabled, bool force) | 
|  | { | 
|  | efx_oword_t int_en_reg_ker; | 
|  |  | 
|  | EFX_POPULATE_OWORD_3(int_en_reg_ker, | 
|  | FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level, | 
|  | FRF_AZ_KER_INT_KER, force, | 
|  | FRF_AZ_DRV_INT_EN_KER, enabled); | 
|  | efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER); | 
|  | } | 
|  |  | 
|  | void efx_farch_irq_enable_master(struct efx_nic *efx) | 
|  | { | 
|  | EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr)); | 
|  | wmb(); /* Ensure interrupt vector is clear before interrupts enabled */ | 
|  |  | 
|  | efx_farch_interrupts(efx, true, false); | 
|  | } | 
|  |  | 
|  | void efx_farch_irq_disable_master(struct efx_nic *efx) | 
|  | { | 
|  | /* Disable interrupts */ | 
|  | efx_farch_interrupts(efx, false, false); | 
|  | } | 
|  |  | 
|  | /* Generate a test interrupt | 
|  | * Interrupt must already have been enabled, otherwise nasty things | 
|  | * may happen. | 
|  | */ | 
|  | int efx_farch_irq_test_generate(struct efx_nic *efx) | 
|  | { | 
|  | efx_farch_interrupts(efx, true, true); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Process a fatal interrupt | 
|  | * Disable bus mastering ASAP and schedule a reset | 
|  | */ | 
|  | irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx) | 
|  | { | 
|  | efx_oword_t *int_ker = efx->irq_status.addr; | 
|  | efx_oword_t fatal_intr; | 
|  | int error, mem_perr; | 
|  |  | 
|  | efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER); | 
|  | error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR); | 
|  |  | 
|  | netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status " | 
|  | EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker), | 
|  | EFX_OWORD_VAL(fatal_intr), | 
|  | error ? "disabling bus mastering" : "no recognised error"); | 
|  |  | 
|  | /* If this is a memory parity error dump which blocks are offending */ | 
|  | mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) || | 
|  | EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER)); | 
|  | if (mem_perr) { | 
|  | efx_oword_t reg; | 
|  | efx_reado(efx, ®, FR_AZ_MEM_STAT); | 
|  | netif_err(efx, hw, efx->net_dev, | 
|  | "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n", | 
|  | EFX_OWORD_VAL(reg)); | 
|  | } | 
|  |  | 
|  | /* Disable both devices */ | 
|  | pci_clear_master(efx->pci_dev); | 
|  | efx_farch_irq_disable_master(efx); | 
|  |  | 
|  | /* Count errors and reset or disable the NIC accordingly */ | 
|  | if (efx->int_error_count == 0 || | 
|  | time_after(jiffies, efx->int_error_expire)) { | 
|  | efx->int_error_count = 0; | 
|  | efx->int_error_expire = | 
|  | jiffies + EFX_INT_ERROR_EXPIRE * HZ; | 
|  | } | 
|  | if (++efx->int_error_count < EFX_MAX_INT_ERRORS) { | 
|  | netif_err(efx, hw, efx->net_dev, | 
|  | "SYSTEM ERROR - reset scheduled\n"); | 
|  | efx_schedule_reset(efx, RESET_TYPE_INT_ERROR); | 
|  | } else { | 
|  | netif_err(efx, hw, efx->net_dev, | 
|  | "SYSTEM ERROR - max number of errors seen." | 
|  | "NIC will be disabled\n"); | 
|  | efx_schedule_reset(efx, RESET_TYPE_DISABLE); | 
|  | } | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* Handle a legacy interrupt | 
|  | * Acknowledges the interrupt and schedule event queue processing. | 
|  | */ | 
|  | irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id) | 
|  | { | 
|  | struct efx_nic *efx = dev_id; | 
|  | bool soft_enabled = READ_ONCE(efx->irq_soft_enabled); | 
|  | efx_oword_t *int_ker = efx->irq_status.addr; | 
|  | irqreturn_t result = IRQ_NONE; | 
|  | struct efx_channel *channel; | 
|  | efx_dword_t reg; | 
|  | u32 queues; | 
|  | int syserr; | 
|  |  | 
|  | /* Read the ISR which also ACKs the interrupts */ | 
|  | efx_readd(efx, ®, FR_BZ_INT_ISR0); | 
|  | queues = EFX_EXTRACT_DWORD(reg, 0, 31); | 
|  |  | 
|  | /* Legacy interrupts are disabled too late by the EEH kernel | 
|  | * code. Disable them earlier. | 
|  | * If an EEH error occurred, the read will have returned all ones. | 
|  | */ | 
|  | if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) && | 
|  | !efx->eeh_disabled_legacy_irq) { | 
|  | disable_irq_nosync(efx->legacy_irq); | 
|  | efx->eeh_disabled_legacy_irq = true; | 
|  | } | 
|  |  | 
|  | /* Handle non-event-queue sources */ | 
|  | if (queues & (1U << efx->irq_level) && soft_enabled) { | 
|  | syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); | 
|  | if (unlikely(syserr)) | 
|  | return efx_farch_fatal_interrupt(efx); | 
|  | efx->last_irq_cpu = raw_smp_processor_id(); | 
|  | } | 
|  |  | 
|  | if (queues != 0) { | 
|  | efx->irq_zero_count = 0; | 
|  |  | 
|  | /* Schedule processing of any interrupting queues */ | 
|  | if (likely(soft_enabled)) { | 
|  | efx_for_each_channel(channel, efx) { | 
|  | if (queues & 1) | 
|  | efx_schedule_channel_irq(channel); | 
|  | queues >>= 1; | 
|  | } | 
|  | } | 
|  | result = IRQ_HANDLED; | 
|  |  | 
|  | } else { | 
|  | efx_qword_t *event; | 
|  |  | 
|  | /* Legacy ISR read can return zero once (SF bug 15783) */ | 
|  |  | 
|  | /* We can't return IRQ_HANDLED more than once on seeing ISR=0 | 
|  | * because this might be a shared interrupt. */ | 
|  | if (efx->irq_zero_count++ == 0) | 
|  | result = IRQ_HANDLED; | 
|  |  | 
|  | /* Ensure we schedule or rearm all event queues */ | 
|  | if (likely(soft_enabled)) { | 
|  | efx_for_each_channel(channel, efx) { | 
|  | event = efx_event(channel, | 
|  | channel->eventq_read_ptr); | 
|  | if (efx_event_present(event)) | 
|  | efx_schedule_channel_irq(channel); | 
|  | else | 
|  | efx_farch_ev_read_ack(channel); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (result == IRQ_HANDLED) | 
|  | netif_vdbg(efx, intr, efx->net_dev, | 
|  | "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n", | 
|  | irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg)); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* Handle an MSI interrupt | 
|  | * | 
|  | * Handle an MSI hardware interrupt.  This routine schedules event | 
|  | * queue processing.  No interrupt acknowledgement cycle is necessary. | 
|  | * Also, we never need to check that the interrupt is for us, since | 
|  | * MSI interrupts cannot be shared. | 
|  | */ | 
|  | irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id) | 
|  | { | 
|  | struct efx_msi_context *context = dev_id; | 
|  | struct efx_nic *efx = context->efx; | 
|  | efx_oword_t *int_ker = efx->irq_status.addr; | 
|  | int syserr; | 
|  |  | 
|  | netif_vdbg(efx, intr, efx->net_dev, | 
|  | "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n", | 
|  | irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker)); | 
|  |  | 
|  | if (!likely(READ_ONCE(efx->irq_soft_enabled))) | 
|  | return IRQ_HANDLED; | 
|  |  | 
|  | /* Handle non-event-queue sources */ | 
|  | if (context->index == efx->irq_level) { | 
|  | syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); | 
|  | if (unlikely(syserr)) | 
|  | return efx_farch_fatal_interrupt(efx); | 
|  | efx->last_irq_cpu = raw_smp_processor_id(); | 
|  | } | 
|  |  | 
|  | /* Schedule processing of the channel */ | 
|  | efx_schedule_channel_irq(efx->channel[context->index]); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* Setup RSS indirection table. | 
|  | * This maps from the hash value of the packet to RXQ | 
|  | */ | 
|  | void efx_farch_rx_push_indir_table(struct efx_nic *efx) | 
|  | { | 
|  | size_t i = 0; | 
|  | efx_dword_t dword; | 
|  |  | 
|  | BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) != | 
|  | FR_BZ_RX_INDIRECTION_TBL_ROWS); | 
|  |  | 
|  | for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) { | 
|  | EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE, | 
|  | efx->rss_context.rx_indir_table[i]); | 
|  | efx_writed(efx, &dword, | 
|  | FR_BZ_RX_INDIRECTION_TBL + | 
|  | FR_BZ_RX_INDIRECTION_TBL_STEP * i); | 
|  | } | 
|  | } | 
|  |  | 
|  | void efx_farch_rx_pull_indir_table(struct efx_nic *efx) | 
|  | { | 
|  | size_t i = 0; | 
|  | efx_dword_t dword; | 
|  |  | 
|  | BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) != | 
|  | FR_BZ_RX_INDIRECTION_TBL_ROWS); | 
|  |  | 
|  | for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) { | 
|  | efx_readd(efx, &dword, | 
|  | FR_BZ_RX_INDIRECTION_TBL + | 
|  | FR_BZ_RX_INDIRECTION_TBL_STEP * i); | 
|  | efx->rss_context.rx_indir_table[i] = EFX_DWORD_FIELD(dword, FRF_BZ_IT_QUEUE); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Looks at available SRAM resources and works out how many queues we | 
|  | * can support, and where things like descriptor caches should live. | 
|  | * | 
|  | * SRAM is split up as follows: | 
|  | * 0                          buftbl entries for channels | 
|  | * efx->vf_buftbl_base        buftbl entries for SR-IOV | 
|  | * efx->rx_dc_base            RX descriptor caches | 
|  | * efx->tx_dc_base            TX descriptor caches | 
|  | */ | 
|  | void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw) | 
|  | { | 
|  | unsigned vi_count, buftbl_min, total_tx_channels; | 
|  |  | 
|  | #ifdef CONFIG_SFC_SRIOV | 
|  | struct siena_nic_data *nic_data = efx->nic_data; | 
|  | #endif | 
|  |  | 
|  | total_tx_channels = efx->n_tx_channels + efx->n_extra_tx_channels; | 
|  | /* Account for the buffer table entries backing the datapath channels | 
|  | * and the descriptor caches for those channels. | 
|  | */ | 
|  | buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE + | 
|  | total_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE + | 
|  | efx->n_channels * EFX_MAX_EVQ_SIZE) | 
|  | * sizeof(efx_qword_t) / EFX_BUF_SIZE); | 
|  | vi_count = max(efx->n_channels, total_tx_channels * EFX_TXQ_TYPES); | 
|  |  | 
|  | #ifdef CONFIG_SFC_SRIOV | 
|  | if (efx->type->sriov_wanted) { | 
|  | if (efx->type->sriov_wanted(efx)) { | 
|  | unsigned vi_dc_entries, buftbl_free; | 
|  | unsigned entries_per_vf, vf_limit; | 
|  |  | 
|  | nic_data->vf_buftbl_base = buftbl_min; | 
|  |  | 
|  | vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES; | 
|  | vi_count = max(vi_count, EFX_VI_BASE); | 
|  | buftbl_free = (sram_lim_qw - buftbl_min - | 
|  | vi_count * vi_dc_entries); | 
|  |  | 
|  | entries_per_vf = ((vi_dc_entries + | 
|  | EFX_VF_BUFTBL_PER_VI) * | 
|  | efx_vf_size(efx)); | 
|  | vf_limit = min(buftbl_free / entries_per_vf, | 
|  | (1024U - EFX_VI_BASE) >> efx->vi_scale); | 
|  |  | 
|  | if (efx->vf_count > vf_limit) { | 
|  | netif_err(efx, probe, efx->net_dev, | 
|  | "Reducing VF count from from %d to %d\n", | 
|  | efx->vf_count, vf_limit); | 
|  | efx->vf_count = vf_limit; | 
|  | } | 
|  | vi_count += efx->vf_count * efx_vf_size(efx); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES; | 
|  | efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES; | 
|  | } | 
|  |  | 
|  | u32 efx_farch_fpga_ver(struct efx_nic *efx) | 
|  | { | 
|  | efx_oword_t altera_build; | 
|  | efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD); | 
|  | return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER); | 
|  | } | 
|  |  | 
|  | void efx_farch_init_common(struct efx_nic *efx) | 
|  | { | 
|  | efx_oword_t temp; | 
|  |  | 
|  | /* Set positions of descriptor caches in SRAM. */ | 
|  | EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base); | 
|  | efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG); | 
|  | EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base); | 
|  | efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG); | 
|  |  | 
|  | /* Set TX descriptor cache size. */ | 
|  | BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER)); | 
|  | EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER); | 
|  | efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG); | 
|  |  | 
|  | /* Set RX descriptor cache size.  Set low watermark to size-8, as | 
|  | * this allows most efficient prefetching. | 
|  | */ | 
|  | BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER)); | 
|  | EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER); | 
|  | efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG); | 
|  | EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8); | 
|  | efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM); | 
|  |  | 
|  | /* Program INT_KER address */ | 
|  | EFX_POPULATE_OWORD_2(temp, | 
|  | FRF_AZ_NORM_INT_VEC_DIS_KER, | 
|  | EFX_INT_MODE_USE_MSI(efx), | 
|  | FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr); | 
|  | efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER); | 
|  |  | 
|  | if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx)) | 
|  | /* Use an interrupt level unused by event queues */ | 
|  | efx->irq_level = 0x1f; | 
|  | else | 
|  | /* Use a valid MSI-X vector */ | 
|  | efx->irq_level = 0; | 
|  |  | 
|  | /* Enable all the genuinely fatal interrupts.  (They are still | 
|  | * masked by the overall interrupt mask, controlled by | 
|  | * falcon_interrupts()). | 
|  | * | 
|  | * Note: All other fatal interrupts are enabled | 
|  | */ | 
|  | EFX_POPULATE_OWORD_3(temp, | 
|  | FRF_AZ_ILL_ADR_INT_KER_EN, 1, | 
|  | FRF_AZ_RBUF_OWN_INT_KER_EN, 1, | 
|  | FRF_AZ_TBUF_OWN_INT_KER_EN, 1); | 
|  | EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1); | 
|  | EFX_INVERT_OWORD(temp); | 
|  | efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER); | 
|  |  | 
|  | /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be | 
|  | * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q. | 
|  | */ | 
|  | efx_reado(efx, &temp, FR_AZ_TX_RESERVED); | 
|  | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe); | 
|  | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1); | 
|  | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1); | 
|  | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1); | 
|  | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1); | 
|  | /* Enable SW_EV to inherit in char driver - assume harmless here */ | 
|  | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1); | 
|  | /* Prefetch threshold 2 => fetch when descriptor cache half empty */ | 
|  | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2); | 
|  | /* Disable hardware watchdog which can misfire */ | 
|  | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff); | 
|  | /* Squash TX of packets of 16 bytes or less */ | 
|  | EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1); | 
|  | efx_writeo(efx, &temp, FR_AZ_TX_RESERVED); | 
|  |  | 
|  | EFX_POPULATE_OWORD_4(temp, | 
|  | /* Default values */ | 
|  | FRF_BZ_TX_PACE_SB_NOT_AF, 0x15, | 
|  | FRF_BZ_TX_PACE_SB_AF, 0xb, | 
|  | FRF_BZ_TX_PACE_FB_BASE, 0, | 
|  | /* Allow large pace values in the fast bin. */ | 
|  | FRF_BZ_TX_PACE_BIN_TH, | 
|  | FFE_BZ_TX_PACE_RESERVED); | 
|  | efx_writeo(efx, &temp, FR_BZ_TX_PACE); | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * Filter tables | 
|  | * | 
|  | ************************************************************************** | 
|  | */ | 
|  |  | 
|  | /* "Fudge factors" - difference between programmed value and actual depth. | 
|  | * Due to pipelined implementation we need to program H/W with a value that | 
|  | * is larger than the hop limit we want. | 
|  | */ | 
|  | #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3 | 
|  | #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1 | 
|  |  | 
|  | /* Hard maximum search limit.  Hardware will time-out beyond 200-something. | 
|  | * We also need to avoid infinite loops in efx_farch_filter_search() when the | 
|  | * table is full. | 
|  | */ | 
|  | #define EFX_FARCH_FILTER_CTL_SRCH_MAX 200 | 
|  |  | 
|  | /* Don't try very hard to find space for performance hints, as this is | 
|  | * counter-productive. */ | 
|  | #define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5 | 
|  |  | 
|  | enum efx_farch_filter_type { | 
|  | EFX_FARCH_FILTER_TCP_FULL = 0, | 
|  | EFX_FARCH_FILTER_TCP_WILD, | 
|  | EFX_FARCH_FILTER_UDP_FULL, | 
|  | EFX_FARCH_FILTER_UDP_WILD, | 
|  | EFX_FARCH_FILTER_MAC_FULL = 4, | 
|  | EFX_FARCH_FILTER_MAC_WILD, | 
|  | EFX_FARCH_FILTER_UC_DEF = 8, | 
|  | EFX_FARCH_FILTER_MC_DEF, | 
|  | EFX_FARCH_FILTER_TYPE_COUNT,		/* number of specific types */ | 
|  | }; | 
|  |  | 
|  | enum efx_farch_filter_table_id { | 
|  | EFX_FARCH_FILTER_TABLE_RX_IP = 0, | 
|  | EFX_FARCH_FILTER_TABLE_RX_MAC, | 
|  | EFX_FARCH_FILTER_TABLE_RX_DEF, | 
|  | EFX_FARCH_FILTER_TABLE_TX_MAC, | 
|  | EFX_FARCH_FILTER_TABLE_COUNT, | 
|  | }; | 
|  |  | 
|  | enum efx_farch_filter_index { | 
|  | EFX_FARCH_FILTER_INDEX_UC_DEF, | 
|  | EFX_FARCH_FILTER_INDEX_MC_DEF, | 
|  | EFX_FARCH_FILTER_SIZE_RX_DEF, | 
|  | }; | 
|  |  | 
|  | struct efx_farch_filter_spec { | 
|  | u8	type:4; | 
|  | u8	priority:4; | 
|  | u8	flags; | 
|  | u16	dmaq_id; | 
|  | u32	data[3]; | 
|  | }; | 
|  |  | 
|  | struct efx_farch_filter_table { | 
|  | enum efx_farch_filter_table_id id; | 
|  | u32		offset;		/* address of table relative to BAR */ | 
|  | unsigned	size;		/* number of entries */ | 
|  | unsigned	step;		/* step between entries */ | 
|  | unsigned	used;		/* number currently used */ | 
|  | unsigned long	*used_bitmap; | 
|  | struct efx_farch_filter_spec *spec; | 
|  | unsigned	search_limit[EFX_FARCH_FILTER_TYPE_COUNT]; | 
|  | }; | 
|  |  | 
|  | struct efx_farch_filter_state { | 
|  | struct rw_semaphore lock; /* Protects table contents */ | 
|  | struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT]; | 
|  | }; | 
|  |  | 
|  | static void | 
|  | efx_farch_filter_table_clear_entry(struct efx_nic *efx, | 
|  | struct efx_farch_filter_table *table, | 
|  | unsigned int filter_idx); | 
|  |  | 
|  | /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit | 
|  | * key derived from the n-tuple.  The initial LFSR state is 0xffff. */ | 
|  | static u16 efx_farch_filter_hash(u32 key) | 
|  | { | 
|  | u16 tmp; | 
|  |  | 
|  | /* First 16 rounds */ | 
|  | tmp = 0x1fff ^ key >> 16; | 
|  | tmp = tmp ^ tmp >> 3 ^ tmp >> 6; | 
|  | tmp = tmp ^ tmp >> 9; | 
|  | /* Last 16 rounds */ | 
|  | tmp = tmp ^ tmp << 13 ^ key; | 
|  | tmp = tmp ^ tmp >> 3 ^ tmp >> 6; | 
|  | return tmp ^ tmp >> 9; | 
|  | } | 
|  |  | 
|  | /* To allow for hash collisions, filter search continues at these | 
|  | * increments from the first possible entry selected by the hash. */ | 
|  | static u16 efx_farch_filter_increment(u32 key) | 
|  | { | 
|  | return key * 2 - 1; | 
|  | } | 
|  |  | 
|  | static enum efx_farch_filter_table_id | 
|  | efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec) | 
|  | { | 
|  | BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP != | 
|  | (EFX_FARCH_FILTER_TCP_FULL >> 2)); | 
|  | BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP != | 
|  | (EFX_FARCH_FILTER_TCP_WILD >> 2)); | 
|  | BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP != | 
|  | (EFX_FARCH_FILTER_UDP_FULL >> 2)); | 
|  | BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP != | 
|  | (EFX_FARCH_FILTER_UDP_WILD >> 2)); | 
|  | BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC != | 
|  | (EFX_FARCH_FILTER_MAC_FULL >> 2)); | 
|  | BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC != | 
|  | (EFX_FARCH_FILTER_MAC_WILD >> 2)); | 
|  | BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC != | 
|  | EFX_FARCH_FILTER_TABLE_RX_MAC + 2); | 
|  | return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0); | 
|  | } | 
|  |  | 
|  | static void efx_farch_filter_push_rx_config(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_farch_filter_state *state = efx->filter_state; | 
|  | struct efx_farch_filter_table *table; | 
|  | efx_oword_t filter_ctl; | 
|  |  | 
|  | efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL); | 
|  |  | 
|  | table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP]; | 
|  | EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT, | 
|  | table->search_limit[EFX_FARCH_FILTER_TCP_FULL] + | 
|  | EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL); | 
|  | EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT, | 
|  | table->search_limit[EFX_FARCH_FILTER_TCP_WILD] + | 
|  | EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD); | 
|  | EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT, | 
|  | table->search_limit[EFX_FARCH_FILTER_UDP_FULL] + | 
|  | EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL); | 
|  | EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT, | 
|  | table->search_limit[EFX_FARCH_FILTER_UDP_WILD] + | 
|  | EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD); | 
|  |  | 
|  | table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC]; | 
|  | if (table->size) { | 
|  | EFX_SET_OWORD_FIELD( | 
|  | filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT, | 
|  | table->search_limit[EFX_FARCH_FILTER_MAC_FULL] + | 
|  | EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL); | 
|  | EFX_SET_OWORD_FIELD( | 
|  | filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT, | 
|  | table->search_limit[EFX_FARCH_FILTER_MAC_WILD] + | 
|  | EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD); | 
|  | } | 
|  |  | 
|  | table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF]; | 
|  | if (table->size) { | 
|  | EFX_SET_OWORD_FIELD( | 
|  | filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID, | 
|  | table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id); | 
|  | EFX_SET_OWORD_FIELD( | 
|  | filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED, | 
|  | !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags & | 
|  | EFX_FILTER_FLAG_RX_RSS)); | 
|  | EFX_SET_OWORD_FIELD( | 
|  | filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID, | 
|  | table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id); | 
|  | EFX_SET_OWORD_FIELD( | 
|  | filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED, | 
|  | !!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags & | 
|  | EFX_FILTER_FLAG_RX_RSS)); | 
|  |  | 
|  | /* There is a single bit to enable RX scatter for all | 
|  | * unmatched packets.  Only set it if scatter is | 
|  | * enabled in both filter specs. | 
|  | */ | 
|  | EFX_SET_OWORD_FIELD( | 
|  | filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q, | 
|  | !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags & | 
|  | table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags & | 
|  | EFX_FILTER_FLAG_RX_SCATTER)); | 
|  | } else { | 
|  | /* We don't expose 'default' filters because unmatched | 
|  | * packets always go to the queue number found in the | 
|  | * RSS table.  But we still need to set the RX scatter | 
|  | * bit here. | 
|  | */ | 
|  | EFX_SET_OWORD_FIELD( | 
|  | filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q, | 
|  | efx->rx_scatter); | 
|  | } | 
|  |  | 
|  | efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL); | 
|  | } | 
|  |  | 
|  | static void efx_farch_filter_push_tx_limits(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_farch_filter_state *state = efx->filter_state; | 
|  | struct efx_farch_filter_table *table; | 
|  | efx_oword_t tx_cfg; | 
|  |  | 
|  | efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG); | 
|  |  | 
|  | table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC]; | 
|  | if (table->size) { | 
|  | EFX_SET_OWORD_FIELD( | 
|  | tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE, | 
|  | table->search_limit[EFX_FARCH_FILTER_MAC_FULL] + | 
|  | EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL); | 
|  | EFX_SET_OWORD_FIELD( | 
|  | tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE, | 
|  | table->search_limit[EFX_FARCH_FILTER_MAC_WILD] + | 
|  | EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD); | 
|  | } | 
|  |  | 
|  | efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG); | 
|  | } | 
|  |  | 
|  | static int | 
|  | efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec, | 
|  | const struct efx_filter_spec *gen_spec) | 
|  | { | 
|  | bool is_full = false; | 
|  |  | 
|  | if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) && gen_spec->rss_context) | 
|  | return -EINVAL; | 
|  |  | 
|  | spec->priority = gen_spec->priority; | 
|  | spec->flags = gen_spec->flags; | 
|  | spec->dmaq_id = gen_spec->dmaq_id; | 
|  |  | 
|  | switch (gen_spec->match_flags) { | 
|  | case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO | | 
|  | EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT | | 
|  | EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT): | 
|  | is_full = true; | 
|  | /* fall through */ | 
|  | case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO | | 
|  | EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): { | 
|  | __be32 rhost, host1, host2; | 
|  | __be16 rport, port1, port2; | 
|  |  | 
|  | EFX_WARN_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX)); | 
|  |  | 
|  | if (gen_spec->ether_type != htons(ETH_P_IP)) | 
|  | return -EPROTONOSUPPORT; | 
|  | if (gen_spec->loc_port == 0 || | 
|  | (is_full && gen_spec->rem_port == 0)) | 
|  | return -EADDRNOTAVAIL; | 
|  | switch (gen_spec->ip_proto) { | 
|  | case IPPROTO_TCP: | 
|  | spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL : | 
|  | EFX_FARCH_FILTER_TCP_WILD); | 
|  | break; | 
|  | case IPPROTO_UDP: | 
|  | spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL : | 
|  | EFX_FARCH_FILTER_UDP_WILD); | 
|  | break; | 
|  | default: | 
|  | return -EPROTONOSUPPORT; | 
|  | } | 
|  |  | 
|  | /* Filter is constructed in terms of source and destination, | 
|  | * with the odd wrinkle that the ports are swapped in a UDP | 
|  | * wildcard filter.  We need to convert from local and remote | 
|  | * (= zero for wildcard) addresses. | 
|  | */ | 
|  | rhost = is_full ? gen_spec->rem_host[0] : 0; | 
|  | rport = is_full ? gen_spec->rem_port : 0; | 
|  | host1 = rhost; | 
|  | host2 = gen_spec->loc_host[0]; | 
|  | if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) { | 
|  | port1 = gen_spec->loc_port; | 
|  | port2 = rport; | 
|  | } else { | 
|  | port1 = rport; | 
|  | port2 = gen_spec->loc_port; | 
|  | } | 
|  | spec->data[0] = ntohl(host1) << 16 | ntohs(port1); | 
|  | spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16; | 
|  | spec->data[2] = ntohl(host2); | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID: | 
|  | is_full = true; | 
|  | /* fall through */ | 
|  | case EFX_FILTER_MATCH_LOC_MAC: | 
|  | spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL : | 
|  | EFX_FARCH_FILTER_MAC_WILD); | 
|  | spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0; | 
|  | spec->data[1] = (gen_spec->loc_mac[2] << 24 | | 
|  | gen_spec->loc_mac[3] << 16 | | 
|  | gen_spec->loc_mac[4] << 8 | | 
|  | gen_spec->loc_mac[5]); | 
|  | spec->data[2] = (gen_spec->loc_mac[0] << 8 | | 
|  | gen_spec->loc_mac[1]); | 
|  | break; | 
|  |  | 
|  | case EFX_FILTER_MATCH_LOC_MAC_IG: | 
|  | spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ? | 
|  | EFX_FARCH_FILTER_MC_DEF : | 
|  | EFX_FARCH_FILTER_UC_DEF); | 
|  | memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */ | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return -EPROTONOSUPPORT; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec, | 
|  | const struct efx_farch_filter_spec *spec) | 
|  | { | 
|  | bool is_full = false; | 
|  |  | 
|  | /* *gen_spec should be completely initialised, to be consistent | 
|  | * with efx_filter_init_{rx,tx}() and in case we want to copy | 
|  | * it back to userland. | 
|  | */ | 
|  | memset(gen_spec, 0, sizeof(*gen_spec)); | 
|  |  | 
|  | gen_spec->priority = spec->priority; | 
|  | gen_spec->flags = spec->flags; | 
|  | gen_spec->dmaq_id = spec->dmaq_id; | 
|  |  | 
|  | switch (spec->type) { | 
|  | case EFX_FARCH_FILTER_TCP_FULL: | 
|  | case EFX_FARCH_FILTER_UDP_FULL: | 
|  | is_full = true; | 
|  | /* fall through */ | 
|  | case EFX_FARCH_FILTER_TCP_WILD: | 
|  | case EFX_FARCH_FILTER_UDP_WILD: { | 
|  | __be32 host1, host2; | 
|  | __be16 port1, port2; | 
|  |  | 
|  | gen_spec->match_flags = | 
|  | EFX_FILTER_MATCH_ETHER_TYPE | | 
|  | EFX_FILTER_MATCH_IP_PROTO | | 
|  | EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT; | 
|  | if (is_full) | 
|  | gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST | | 
|  | EFX_FILTER_MATCH_REM_PORT); | 
|  | gen_spec->ether_type = htons(ETH_P_IP); | 
|  | gen_spec->ip_proto = | 
|  | (spec->type == EFX_FARCH_FILTER_TCP_FULL || | 
|  | spec->type == EFX_FARCH_FILTER_TCP_WILD) ? | 
|  | IPPROTO_TCP : IPPROTO_UDP; | 
|  |  | 
|  | host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16); | 
|  | port1 = htons(spec->data[0]); | 
|  | host2 = htonl(spec->data[2]); | 
|  | port2 = htons(spec->data[1] >> 16); | 
|  | if (spec->flags & EFX_FILTER_FLAG_TX) { | 
|  | gen_spec->loc_host[0] = host1; | 
|  | gen_spec->rem_host[0] = host2; | 
|  | } else { | 
|  | gen_spec->loc_host[0] = host2; | 
|  | gen_spec->rem_host[0] = host1; | 
|  | } | 
|  | if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^ | 
|  | (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) { | 
|  | gen_spec->loc_port = port1; | 
|  | gen_spec->rem_port = port2; | 
|  | } else { | 
|  | gen_spec->loc_port = port2; | 
|  | gen_spec->rem_port = port1; | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | case EFX_FARCH_FILTER_MAC_FULL: | 
|  | is_full = true; | 
|  | /* fall through */ | 
|  | case EFX_FARCH_FILTER_MAC_WILD: | 
|  | gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC; | 
|  | if (is_full) | 
|  | gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID; | 
|  | gen_spec->loc_mac[0] = spec->data[2] >> 8; | 
|  | gen_spec->loc_mac[1] = spec->data[2]; | 
|  | gen_spec->loc_mac[2] = spec->data[1] >> 24; | 
|  | gen_spec->loc_mac[3] = spec->data[1] >> 16; | 
|  | gen_spec->loc_mac[4] = spec->data[1] >> 8; | 
|  | gen_spec->loc_mac[5] = spec->data[1]; | 
|  | gen_spec->outer_vid = htons(spec->data[0]); | 
|  | break; | 
|  |  | 
|  | case EFX_FARCH_FILTER_UC_DEF: | 
|  | case EFX_FARCH_FILTER_MC_DEF: | 
|  | gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG; | 
|  | gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | WARN_ON(1); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | efx_farch_filter_init_rx_auto(struct efx_nic *efx, | 
|  | struct efx_farch_filter_spec *spec) | 
|  | { | 
|  | /* If there's only one channel then disable RSS for non VF | 
|  | * traffic, thereby allowing VFs to use RSS when the PF can't. | 
|  | */ | 
|  | spec->priority = EFX_FILTER_PRI_AUTO; | 
|  | spec->flags = (EFX_FILTER_FLAG_RX | | 
|  | (efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0) | | 
|  | (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0)); | 
|  | spec->dmaq_id = 0; | 
|  | } | 
|  |  | 
|  | /* Build a filter entry and return its n-tuple key. */ | 
|  | static u32 efx_farch_filter_build(efx_oword_t *filter, | 
|  | struct efx_farch_filter_spec *spec) | 
|  | { | 
|  | u32 data3; | 
|  |  | 
|  | switch (efx_farch_filter_spec_table_id(spec)) { | 
|  | case EFX_FARCH_FILTER_TABLE_RX_IP: { | 
|  | bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL || | 
|  | spec->type == EFX_FARCH_FILTER_UDP_WILD); | 
|  | EFX_POPULATE_OWORD_7( | 
|  | *filter, | 
|  | FRF_BZ_RSS_EN, | 
|  | !!(spec->flags & EFX_FILTER_FLAG_RX_RSS), | 
|  | FRF_BZ_SCATTER_EN, | 
|  | !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER), | 
|  | FRF_BZ_TCP_UDP, is_udp, | 
|  | FRF_BZ_RXQ_ID, spec->dmaq_id, | 
|  | EFX_DWORD_2, spec->data[2], | 
|  | EFX_DWORD_1, spec->data[1], | 
|  | EFX_DWORD_0, spec->data[0]); | 
|  | data3 = is_udp; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case EFX_FARCH_FILTER_TABLE_RX_MAC: { | 
|  | bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD; | 
|  | EFX_POPULATE_OWORD_7( | 
|  | *filter, | 
|  | FRF_CZ_RMFT_RSS_EN, | 
|  | !!(spec->flags & EFX_FILTER_FLAG_RX_RSS), | 
|  | FRF_CZ_RMFT_SCATTER_EN, | 
|  | !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER), | 
|  | FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id, | 
|  | FRF_CZ_RMFT_WILDCARD_MATCH, is_wild, | 
|  | FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2], | 
|  | FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1], | 
|  | FRF_CZ_RMFT_VLAN_ID, spec->data[0]); | 
|  | data3 = is_wild; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case EFX_FARCH_FILTER_TABLE_TX_MAC: { | 
|  | bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD; | 
|  | EFX_POPULATE_OWORD_5(*filter, | 
|  | FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id, | 
|  | FRF_CZ_TMFT_WILDCARD_MATCH, is_wild, | 
|  | FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2], | 
|  | FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1], | 
|  | FRF_CZ_TMFT_VLAN_ID, spec->data[0]); | 
|  | data3 = is_wild | spec->dmaq_id << 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3; | 
|  | } | 
|  |  | 
|  | static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left, | 
|  | const struct efx_farch_filter_spec *right) | 
|  | { | 
|  | if (left->type != right->type || | 
|  | memcmp(left->data, right->data, sizeof(left->data))) | 
|  | return false; | 
|  |  | 
|  | if (left->flags & EFX_FILTER_FLAG_TX && | 
|  | left->dmaq_id != right->dmaq_id) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Construct/deconstruct external filter IDs.  At least the RX filter | 
|  | * IDs must be ordered by matching priority, for RX NFC semantics. | 
|  | * | 
|  | * Deconstruction needs to be robust against invalid IDs so that | 
|  | * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can | 
|  | * accept user-provided IDs. | 
|  | */ | 
|  |  | 
|  | #define EFX_FARCH_FILTER_MATCH_PRI_COUNT	5 | 
|  |  | 
|  | static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = { | 
|  | [EFX_FARCH_FILTER_TCP_FULL]	= 0, | 
|  | [EFX_FARCH_FILTER_UDP_FULL]	= 0, | 
|  | [EFX_FARCH_FILTER_TCP_WILD]	= 1, | 
|  | [EFX_FARCH_FILTER_UDP_WILD]	= 1, | 
|  | [EFX_FARCH_FILTER_MAC_FULL]	= 2, | 
|  | [EFX_FARCH_FILTER_MAC_WILD]	= 3, | 
|  | [EFX_FARCH_FILTER_UC_DEF]	= 4, | 
|  | [EFX_FARCH_FILTER_MC_DEF]	= 4, | 
|  | }; | 
|  |  | 
|  | static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = { | 
|  | EFX_FARCH_FILTER_TABLE_RX_IP,	/* RX match pri 0 */ | 
|  | EFX_FARCH_FILTER_TABLE_RX_IP, | 
|  | EFX_FARCH_FILTER_TABLE_RX_MAC, | 
|  | EFX_FARCH_FILTER_TABLE_RX_MAC, | 
|  | EFX_FARCH_FILTER_TABLE_RX_DEF,	/* RX match pri 4 */ | 
|  | EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 0 */ | 
|  | EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 1 */ | 
|  | }; | 
|  |  | 
|  | #define EFX_FARCH_FILTER_INDEX_WIDTH 13 | 
|  | #define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1) | 
|  |  | 
|  | static inline u32 | 
|  | efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec, | 
|  | unsigned int index) | 
|  | { | 
|  | unsigned int range; | 
|  |  | 
|  | range = efx_farch_filter_type_match_pri[spec->type]; | 
|  | if (!(spec->flags & EFX_FILTER_FLAG_RX)) | 
|  | range += EFX_FARCH_FILTER_MATCH_PRI_COUNT; | 
|  |  | 
|  | return range << EFX_FARCH_FILTER_INDEX_WIDTH | index; | 
|  | } | 
|  |  | 
|  | static inline enum efx_farch_filter_table_id | 
|  | efx_farch_filter_id_table_id(u32 id) | 
|  | { | 
|  | unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH; | 
|  |  | 
|  | if (range < ARRAY_SIZE(efx_farch_filter_range_table)) | 
|  | return efx_farch_filter_range_table[range]; | 
|  | else | 
|  | return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */ | 
|  | } | 
|  |  | 
|  | static inline unsigned int efx_farch_filter_id_index(u32 id) | 
|  | { | 
|  | return id & EFX_FARCH_FILTER_INDEX_MASK; | 
|  | } | 
|  |  | 
|  | u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_farch_filter_state *state = efx->filter_state; | 
|  | unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1; | 
|  | enum efx_farch_filter_table_id table_id; | 
|  |  | 
|  | do { | 
|  | table_id = efx_farch_filter_range_table[range]; | 
|  | if (state->table[table_id].size != 0) | 
|  | return range << EFX_FARCH_FILTER_INDEX_WIDTH | | 
|  | state->table[table_id].size; | 
|  | } while (range--); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | s32 efx_farch_filter_insert(struct efx_nic *efx, | 
|  | struct efx_filter_spec *gen_spec, | 
|  | bool replace_equal) | 
|  | { | 
|  | struct efx_farch_filter_state *state = efx->filter_state; | 
|  | struct efx_farch_filter_table *table; | 
|  | struct efx_farch_filter_spec spec; | 
|  | efx_oword_t filter; | 
|  | int rep_index, ins_index; | 
|  | unsigned int depth = 0; | 
|  | int rc; | 
|  |  | 
|  | rc = efx_farch_filter_from_gen_spec(&spec, gen_spec); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | down_write(&state->lock); | 
|  |  | 
|  | table = &state->table[efx_farch_filter_spec_table_id(&spec)]; | 
|  | if (table->size == 0) { | 
|  | rc = -EINVAL; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | netif_vdbg(efx, hw, efx->net_dev, | 
|  | "%s: type %d search_limit=%d", __func__, spec.type, | 
|  | table->search_limit[spec.type]); | 
|  |  | 
|  | if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) { | 
|  | /* One filter spec per type */ | 
|  | BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0); | 
|  | BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF != | 
|  | EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF); | 
|  | rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF; | 
|  | ins_index = rep_index; | 
|  | } else { | 
|  | /* Search concurrently for | 
|  | * (1) a filter to be replaced (rep_index): any filter | 
|  | *     with the same match values, up to the current | 
|  | *     search depth for this type, and | 
|  | * (2) the insertion point (ins_index): (1) or any | 
|  | *     free slot before it or up to the maximum search | 
|  | *     depth for this priority | 
|  | * We fail if we cannot find (2). | 
|  | * | 
|  | * We can stop once either | 
|  | * (a) we find (1), in which case we have definitely | 
|  | *     found (2) as well; or | 
|  | * (b) we have searched exhaustively for (1), and have | 
|  | *     either found (2) or searched exhaustively for it | 
|  | */ | 
|  | u32 key = efx_farch_filter_build(&filter, &spec); | 
|  | unsigned int hash = efx_farch_filter_hash(key); | 
|  | unsigned int incr = efx_farch_filter_increment(key); | 
|  | unsigned int max_rep_depth = table->search_limit[spec.type]; | 
|  | unsigned int max_ins_depth = | 
|  | spec.priority <= EFX_FILTER_PRI_HINT ? | 
|  | EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX : | 
|  | EFX_FARCH_FILTER_CTL_SRCH_MAX; | 
|  | unsigned int i = hash & (table->size - 1); | 
|  |  | 
|  | ins_index = -1; | 
|  | depth = 1; | 
|  |  | 
|  | for (;;) { | 
|  | if (!test_bit(i, table->used_bitmap)) { | 
|  | if (ins_index < 0) | 
|  | ins_index = i; | 
|  | } else if (efx_farch_filter_equal(&spec, | 
|  | &table->spec[i])) { | 
|  | /* Case (a) */ | 
|  | if (ins_index < 0) | 
|  | ins_index = i; | 
|  | rep_index = i; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (depth >= max_rep_depth && | 
|  | (ins_index >= 0 || depth >= max_ins_depth)) { | 
|  | /* Case (b) */ | 
|  | if (ins_index < 0) { | 
|  | rc = -EBUSY; | 
|  | goto out_unlock; | 
|  | } | 
|  | rep_index = -1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | i = (i + incr) & (table->size - 1); | 
|  | ++depth; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If we found a filter to be replaced, check whether we | 
|  | * should do so | 
|  | */ | 
|  | if (rep_index >= 0) { | 
|  | struct efx_farch_filter_spec *saved_spec = | 
|  | &table->spec[rep_index]; | 
|  |  | 
|  | if (spec.priority == saved_spec->priority && !replace_equal) { | 
|  | rc = -EEXIST; | 
|  | goto out_unlock; | 
|  | } | 
|  | if (spec.priority < saved_spec->priority) { | 
|  | rc = -EPERM; | 
|  | goto out_unlock; | 
|  | } | 
|  | if (saved_spec->priority == EFX_FILTER_PRI_AUTO || | 
|  | saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) | 
|  | spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO; | 
|  | } | 
|  |  | 
|  | /* Insert the filter */ | 
|  | if (ins_index != rep_index) { | 
|  | __set_bit(ins_index, table->used_bitmap); | 
|  | ++table->used; | 
|  | } | 
|  | table->spec[ins_index] = spec; | 
|  |  | 
|  | if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) { | 
|  | efx_farch_filter_push_rx_config(efx); | 
|  | } else { | 
|  | if (table->search_limit[spec.type] < depth) { | 
|  | table->search_limit[spec.type] = depth; | 
|  | if (spec.flags & EFX_FILTER_FLAG_TX) | 
|  | efx_farch_filter_push_tx_limits(efx); | 
|  | else | 
|  | efx_farch_filter_push_rx_config(efx); | 
|  | } | 
|  |  | 
|  | efx_writeo(efx, &filter, | 
|  | table->offset + table->step * ins_index); | 
|  |  | 
|  | /* If we were able to replace a filter by inserting | 
|  | * at a lower depth, clear the replaced filter | 
|  | */ | 
|  | if (ins_index != rep_index && rep_index >= 0) | 
|  | efx_farch_filter_table_clear_entry(efx, table, | 
|  | rep_index); | 
|  | } | 
|  |  | 
|  | netif_vdbg(efx, hw, efx->net_dev, | 
|  | "%s: filter type %d index %d rxq %u set", | 
|  | __func__, spec.type, ins_index, spec.dmaq_id); | 
|  | rc = efx_farch_filter_make_id(&spec, ins_index); | 
|  |  | 
|  | out_unlock: | 
|  | up_write(&state->lock); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void | 
|  | efx_farch_filter_table_clear_entry(struct efx_nic *efx, | 
|  | struct efx_farch_filter_table *table, | 
|  | unsigned int filter_idx) | 
|  | { | 
|  | static efx_oword_t filter; | 
|  |  | 
|  | EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap)); | 
|  | BUG_ON(table->offset == 0); /* can't clear MAC default filters */ | 
|  |  | 
|  | __clear_bit(filter_idx, table->used_bitmap); | 
|  | --table->used; | 
|  | memset(&table->spec[filter_idx], 0, sizeof(table->spec[0])); | 
|  |  | 
|  | efx_writeo(efx, &filter, table->offset + table->step * filter_idx); | 
|  |  | 
|  | /* If this filter required a greater search depth than | 
|  | * any other, the search limit for its type can now be | 
|  | * decreased.  However, it is hard to determine that | 
|  | * unless the table has become completely empty - in | 
|  | * which case, all its search limits can be set to 0. | 
|  | */ | 
|  | if (unlikely(table->used == 0)) { | 
|  | memset(table->search_limit, 0, sizeof(table->search_limit)); | 
|  | if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC) | 
|  | efx_farch_filter_push_tx_limits(efx); | 
|  | else | 
|  | efx_farch_filter_push_rx_config(efx); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int efx_farch_filter_remove(struct efx_nic *efx, | 
|  | struct efx_farch_filter_table *table, | 
|  | unsigned int filter_idx, | 
|  | enum efx_filter_priority priority) | 
|  | { | 
|  | struct efx_farch_filter_spec *spec = &table->spec[filter_idx]; | 
|  |  | 
|  | if (!test_bit(filter_idx, table->used_bitmap) || | 
|  | spec->priority != priority) | 
|  | return -ENOENT; | 
|  |  | 
|  | if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) { | 
|  | efx_farch_filter_init_rx_auto(efx, spec); | 
|  | efx_farch_filter_push_rx_config(efx); | 
|  | } else { | 
|  | efx_farch_filter_table_clear_entry(efx, table, filter_idx); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int efx_farch_filter_remove_safe(struct efx_nic *efx, | 
|  | enum efx_filter_priority priority, | 
|  | u32 filter_id) | 
|  | { | 
|  | struct efx_farch_filter_state *state = efx->filter_state; | 
|  | enum efx_farch_filter_table_id table_id; | 
|  | struct efx_farch_filter_table *table; | 
|  | unsigned int filter_idx; | 
|  | struct efx_farch_filter_spec *spec; | 
|  | int rc; | 
|  |  | 
|  | table_id = efx_farch_filter_id_table_id(filter_id); | 
|  | if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT) | 
|  | return -ENOENT; | 
|  | table = &state->table[table_id]; | 
|  |  | 
|  | filter_idx = efx_farch_filter_id_index(filter_id); | 
|  | if (filter_idx >= table->size) | 
|  | return -ENOENT; | 
|  | down_write(&state->lock); | 
|  | spec = &table->spec[filter_idx]; | 
|  |  | 
|  | rc = efx_farch_filter_remove(efx, table, filter_idx, priority); | 
|  | up_write(&state->lock); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int efx_farch_filter_get_safe(struct efx_nic *efx, | 
|  | enum efx_filter_priority priority, | 
|  | u32 filter_id, struct efx_filter_spec *spec_buf) | 
|  | { | 
|  | struct efx_farch_filter_state *state = efx->filter_state; | 
|  | enum efx_farch_filter_table_id table_id; | 
|  | struct efx_farch_filter_table *table; | 
|  | struct efx_farch_filter_spec *spec; | 
|  | unsigned int filter_idx; | 
|  | int rc = -ENOENT; | 
|  |  | 
|  | down_read(&state->lock); | 
|  |  | 
|  | table_id = efx_farch_filter_id_table_id(filter_id); | 
|  | if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT) | 
|  | goto out_unlock; | 
|  | table = &state->table[table_id]; | 
|  |  | 
|  | filter_idx = efx_farch_filter_id_index(filter_id); | 
|  | if (filter_idx >= table->size) | 
|  | goto out_unlock; | 
|  | spec = &table->spec[filter_idx]; | 
|  |  | 
|  | if (test_bit(filter_idx, table->used_bitmap) && | 
|  | spec->priority == priority) { | 
|  | efx_farch_filter_to_gen_spec(spec_buf, spec); | 
|  | rc = 0; | 
|  | } | 
|  |  | 
|  | out_unlock: | 
|  | up_read(&state->lock); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void | 
|  | efx_farch_filter_table_clear(struct efx_nic *efx, | 
|  | enum efx_farch_filter_table_id table_id, | 
|  | enum efx_filter_priority priority) | 
|  | { | 
|  | struct efx_farch_filter_state *state = efx->filter_state; | 
|  | struct efx_farch_filter_table *table = &state->table[table_id]; | 
|  | unsigned int filter_idx; | 
|  |  | 
|  | down_write(&state->lock); | 
|  | for (filter_idx = 0; filter_idx < table->size; ++filter_idx) { | 
|  | if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO) | 
|  | efx_farch_filter_remove(efx, table, | 
|  | filter_idx, priority); | 
|  | } | 
|  | up_write(&state->lock); | 
|  | } | 
|  |  | 
|  | int efx_farch_filter_clear_rx(struct efx_nic *efx, | 
|  | enum efx_filter_priority priority) | 
|  | { | 
|  | efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP, | 
|  | priority); | 
|  | efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC, | 
|  | priority); | 
|  | efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF, | 
|  | priority); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | u32 efx_farch_filter_count_rx_used(struct efx_nic *efx, | 
|  | enum efx_filter_priority priority) | 
|  | { | 
|  | struct efx_farch_filter_state *state = efx->filter_state; | 
|  | enum efx_farch_filter_table_id table_id; | 
|  | struct efx_farch_filter_table *table; | 
|  | unsigned int filter_idx; | 
|  | u32 count = 0; | 
|  |  | 
|  | down_read(&state->lock); | 
|  |  | 
|  | for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP; | 
|  | table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF; | 
|  | table_id++) { | 
|  | table = &state->table[table_id]; | 
|  | for (filter_idx = 0; filter_idx < table->size; filter_idx++) { | 
|  | if (test_bit(filter_idx, table->used_bitmap) && | 
|  | table->spec[filter_idx].priority == priority) | 
|  | ++count; | 
|  | } | 
|  | } | 
|  |  | 
|  | up_read(&state->lock); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx, | 
|  | enum efx_filter_priority priority, | 
|  | u32 *buf, u32 size) | 
|  | { | 
|  | struct efx_farch_filter_state *state = efx->filter_state; | 
|  | enum efx_farch_filter_table_id table_id; | 
|  | struct efx_farch_filter_table *table; | 
|  | unsigned int filter_idx; | 
|  | s32 count = 0; | 
|  |  | 
|  | down_read(&state->lock); | 
|  |  | 
|  | for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP; | 
|  | table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF; | 
|  | table_id++) { | 
|  | table = &state->table[table_id]; | 
|  | for (filter_idx = 0; filter_idx < table->size; filter_idx++) { | 
|  | if (test_bit(filter_idx, table->used_bitmap) && | 
|  | table->spec[filter_idx].priority == priority) { | 
|  | if (count == size) { | 
|  | count = -EMSGSIZE; | 
|  | goto out; | 
|  | } | 
|  | buf[count++] = efx_farch_filter_make_id( | 
|  | &table->spec[filter_idx], filter_idx); | 
|  | } | 
|  | } | 
|  | } | 
|  | out: | 
|  | up_read(&state->lock); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /* Restore filter stater after reset */ | 
|  | void efx_farch_filter_table_restore(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_farch_filter_state *state = efx->filter_state; | 
|  | enum efx_farch_filter_table_id table_id; | 
|  | struct efx_farch_filter_table *table; | 
|  | efx_oword_t filter; | 
|  | unsigned int filter_idx; | 
|  |  | 
|  | down_write(&state->lock); | 
|  |  | 
|  | for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) { | 
|  | table = &state->table[table_id]; | 
|  |  | 
|  | /* Check whether this is a regular register table */ | 
|  | if (table->step == 0) | 
|  | continue; | 
|  |  | 
|  | for (filter_idx = 0; filter_idx < table->size; filter_idx++) { | 
|  | if (!test_bit(filter_idx, table->used_bitmap)) | 
|  | continue; | 
|  | efx_farch_filter_build(&filter, &table->spec[filter_idx]); | 
|  | efx_writeo(efx, &filter, | 
|  | table->offset + table->step * filter_idx); | 
|  | } | 
|  | } | 
|  |  | 
|  | efx_farch_filter_push_rx_config(efx); | 
|  | efx_farch_filter_push_tx_limits(efx); | 
|  |  | 
|  | up_write(&state->lock); | 
|  | } | 
|  |  | 
|  | void efx_farch_filter_table_remove(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_farch_filter_state *state = efx->filter_state; | 
|  | enum efx_farch_filter_table_id table_id; | 
|  |  | 
|  | for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) { | 
|  | kfree(state->table[table_id].used_bitmap); | 
|  | vfree(state->table[table_id].spec); | 
|  | } | 
|  | kfree(state); | 
|  | } | 
|  |  | 
|  | int efx_farch_filter_table_probe(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_farch_filter_state *state; | 
|  | struct efx_farch_filter_table *table; | 
|  | unsigned table_id; | 
|  |  | 
|  | state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL); | 
|  | if (!state) | 
|  | return -ENOMEM; | 
|  | efx->filter_state = state; | 
|  | init_rwsem(&state->lock); | 
|  |  | 
|  | table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP]; | 
|  | table->id = EFX_FARCH_FILTER_TABLE_RX_IP; | 
|  | table->offset = FR_BZ_RX_FILTER_TBL0; | 
|  | table->size = FR_BZ_RX_FILTER_TBL0_ROWS; | 
|  | table->step = FR_BZ_RX_FILTER_TBL0_STEP; | 
|  |  | 
|  | table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC]; | 
|  | table->id = EFX_FARCH_FILTER_TABLE_RX_MAC; | 
|  | table->offset = FR_CZ_RX_MAC_FILTER_TBL0; | 
|  | table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS; | 
|  | table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP; | 
|  |  | 
|  | table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF]; | 
|  | table->id = EFX_FARCH_FILTER_TABLE_RX_DEF; | 
|  | table->size = EFX_FARCH_FILTER_SIZE_RX_DEF; | 
|  |  | 
|  | table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC]; | 
|  | table->id = EFX_FARCH_FILTER_TABLE_TX_MAC; | 
|  | table->offset = FR_CZ_TX_MAC_FILTER_TBL0; | 
|  | table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS; | 
|  | table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP; | 
|  |  | 
|  | for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) { | 
|  | table = &state->table[table_id]; | 
|  | if (table->size == 0) | 
|  | continue; | 
|  | table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size), | 
|  | sizeof(unsigned long), | 
|  | GFP_KERNEL); | 
|  | if (!table->used_bitmap) | 
|  | goto fail; | 
|  | table->spec = vzalloc(array_size(sizeof(*table->spec), | 
|  | table->size)); | 
|  | if (!table->spec) | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF]; | 
|  | if (table->size) { | 
|  | /* RX default filters must always exist */ | 
|  | struct efx_farch_filter_spec *spec; | 
|  | unsigned i; | 
|  |  | 
|  | for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) { | 
|  | spec = &table->spec[i]; | 
|  | spec->type = EFX_FARCH_FILTER_UC_DEF + i; | 
|  | efx_farch_filter_init_rx_auto(efx, spec); | 
|  | __set_bit(i, table->used_bitmap); | 
|  | } | 
|  | } | 
|  |  | 
|  | efx_farch_filter_push_rx_config(efx); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | efx_farch_filter_table_remove(efx); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Update scatter enable flags for filters pointing to our own RX queues */ | 
|  | void efx_farch_filter_update_rx_scatter(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_farch_filter_state *state = efx->filter_state; | 
|  | enum efx_farch_filter_table_id table_id; | 
|  | struct efx_farch_filter_table *table; | 
|  | efx_oword_t filter; | 
|  | unsigned int filter_idx; | 
|  |  | 
|  | down_write(&state->lock); | 
|  |  | 
|  | for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP; | 
|  | table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF; | 
|  | table_id++) { | 
|  | table = &state->table[table_id]; | 
|  |  | 
|  | for (filter_idx = 0; filter_idx < table->size; filter_idx++) { | 
|  | if (!test_bit(filter_idx, table->used_bitmap) || | 
|  | table->spec[filter_idx].dmaq_id >= | 
|  | efx->n_rx_channels) | 
|  | continue; | 
|  |  | 
|  | if (efx->rx_scatter) | 
|  | table->spec[filter_idx].flags |= | 
|  | EFX_FILTER_FLAG_RX_SCATTER; | 
|  | else | 
|  | table->spec[filter_idx].flags &= | 
|  | ~EFX_FILTER_FLAG_RX_SCATTER; | 
|  |  | 
|  | if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF) | 
|  | /* Pushed by efx_farch_filter_push_rx_config() */ | 
|  | continue; | 
|  |  | 
|  | efx_farch_filter_build(&filter, &table->spec[filter_idx]); | 
|  | efx_writeo(efx, &filter, | 
|  | table->offset + table->step * filter_idx); | 
|  | } | 
|  | } | 
|  |  | 
|  | efx_farch_filter_push_rx_config(efx); | 
|  |  | 
|  | up_write(&state->lock); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_RFS_ACCEL | 
|  |  | 
|  | bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id, | 
|  | unsigned int index) | 
|  | { | 
|  | struct efx_farch_filter_state *state = efx->filter_state; | 
|  | struct efx_farch_filter_table *table; | 
|  | bool ret = false, force = false; | 
|  | u16 arfs_id; | 
|  |  | 
|  | down_write(&state->lock); | 
|  | spin_lock_bh(&efx->rps_hash_lock); | 
|  | table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP]; | 
|  | if (test_bit(index, table->used_bitmap) && | 
|  | table->spec[index].priority == EFX_FILTER_PRI_HINT) { | 
|  | struct efx_arfs_rule *rule = NULL; | 
|  | struct efx_filter_spec spec; | 
|  |  | 
|  | efx_farch_filter_to_gen_spec(&spec, &table->spec[index]); | 
|  | if (!efx->rps_hash_table) { | 
|  | /* In the absence of the table, we always returned 0 to | 
|  | * ARFS, so use the same to query it. | 
|  | */ | 
|  | arfs_id = 0; | 
|  | } else { | 
|  | rule = efx_rps_hash_find(efx, &spec); | 
|  | if (!rule) { | 
|  | /* ARFS table doesn't know of this filter, remove it */ | 
|  | force = true; | 
|  | } else { | 
|  | arfs_id = rule->arfs_id; | 
|  | if (!efx_rps_check_rule(rule, index, &force)) | 
|  | goto out_unlock; | 
|  | } | 
|  | } | 
|  | if (force || rps_may_expire_flow(efx->net_dev, spec.dmaq_id, | 
|  | flow_id, arfs_id)) { | 
|  | if (rule) | 
|  | rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING; | 
|  | efx_rps_hash_del(efx, &spec); | 
|  | efx_farch_filter_table_clear_entry(efx, table, index); | 
|  | ret = true; | 
|  | } | 
|  | } | 
|  | out_unlock: | 
|  | spin_unlock_bh(&efx->rps_hash_lock); | 
|  | up_write(&state->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_RFS_ACCEL */ | 
|  |  | 
|  | void efx_farch_filter_sync_rx_mode(struct efx_nic *efx) | 
|  | { | 
|  | struct net_device *net_dev = efx->net_dev; | 
|  | struct netdev_hw_addr *ha; | 
|  | union efx_multicast_hash *mc_hash = &efx->multicast_hash; | 
|  | u32 crc; | 
|  | int bit; | 
|  |  | 
|  | if (!efx_dev_registered(efx)) | 
|  | return; | 
|  |  | 
|  | netif_addr_lock_bh(net_dev); | 
|  |  | 
|  | efx->unicast_filter = !(net_dev->flags & IFF_PROMISC); | 
|  |  | 
|  | /* Build multicast hash table */ | 
|  | if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) { | 
|  | memset(mc_hash, 0xff, sizeof(*mc_hash)); | 
|  | } else { | 
|  | memset(mc_hash, 0x00, sizeof(*mc_hash)); | 
|  | netdev_for_each_mc_addr(ha, net_dev) { | 
|  | crc = ether_crc_le(ETH_ALEN, ha->addr); | 
|  | bit = crc & (EFX_MCAST_HASH_ENTRIES - 1); | 
|  | __set_bit_le(bit, mc_hash); | 
|  | } | 
|  |  | 
|  | /* Broadcast packets go through the multicast hash filter. | 
|  | * ether_crc_le() of the broadcast address is 0xbe2612ff | 
|  | * so we always add bit 0xff to the mask. | 
|  | */ | 
|  | __set_bit_le(0xff, mc_hash); | 
|  | } | 
|  |  | 
|  | netif_addr_unlock_bh(net_dev); | 
|  | } |