|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | // | 
|  | // Driver for the SPI-NAND mode of Mediatek NAND Flash Interface | 
|  | // | 
|  | // Copyright (c) 2022 Chuanhong Guo <gch981213@gmail.com> | 
|  | // | 
|  | // This driver is based on the SPI-NAND mtd driver from Mediatek SDK: | 
|  | // | 
|  | // Copyright (C) 2020 MediaTek Inc. | 
|  | // Author: Weijie Gao <weijie.gao@mediatek.com> | 
|  | // | 
|  | // This controller organize the page data as several interleaved sectors | 
|  | // like the following: (sizeof(FDM + ECC) = snf->nfi_cfg.spare_size) | 
|  | // +---------+------+------+---------+------+------+-----+ | 
|  | // | Sector1 | FDM1 | ECC1 | Sector2 | FDM2 | ECC2 | ... | | 
|  | // +---------+------+------+---------+------+------+-----+ | 
|  | // With auto-format turned on, DMA only returns this part: | 
|  | // +---------+---------+-----+ | 
|  | // | Sector1 | Sector2 | ... | | 
|  | // +---------+---------+-----+ | 
|  | // The FDM data will be filled to the registers, and ECC parity data isn't | 
|  | // accessible. | 
|  | // With auto-format off, all ((Sector+FDM+ECC)*nsectors) will be read over DMA | 
|  | // in it's original order shown in the first table. ECC can't be turned on when | 
|  | // auto-format is off. | 
|  | // | 
|  | // However, Linux SPI-NAND driver expects the data returned as: | 
|  | // +------+-----+ | 
|  | // | Page | OOB | | 
|  | // +------+-----+ | 
|  | // where the page data is continuously stored instead of interleaved. | 
|  | // So we assume all instructions matching the page_op template between ECC | 
|  | // prepare_io_req and finish_io_req are for page cache r/w. | 
|  | // Here's how this spi-mem driver operates when reading: | 
|  | //  1. Always set snf->autofmt = true in prepare_io_req (even when ECC is off). | 
|  | //  2. Perform page ops and let the controller fill the DMA bounce buffer with | 
|  | //     de-interleaved sector data and set FDM registers. | 
|  | //  3. Return the data as: | 
|  | //     +---------+---------+-----+------+------+-----+ | 
|  | //     | Sector1 | Sector2 | ... | FDM1 | FDM2 | ... | | 
|  | //     +---------+---------+-----+------+------+-----+ | 
|  | //  4. For other matching spi_mem ops outside a prepare/finish_io_req pair, | 
|  | //     read the data with auto-format off into the bounce buffer and copy | 
|  | //     needed data to the buffer specified in the request. | 
|  | // | 
|  | // Write requests operates in a similar manner. | 
|  | // As a limitation of this strategy, we won't be able to access any ECC parity | 
|  | // data at all in Linux. | 
|  | // | 
|  | // Here's the bad block mark situation on MTK chips: | 
|  | // In older chips like mt7622, MTK uses the first FDM byte in the first sector | 
|  | // as the bad block mark. After de-interleaving, this byte appears at [pagesize] | 
|  | // in the returned data, which is the BBM position expected by kernel. However, | 
|  | // the conventional bad block mark is the first byte of the OOB, which is part | 
|  | // of the last sector data in the interleaved layout. Instead of fixing their | 
|  | // hardware, MTK decided to address this inconsistency in software. On these | 
|  | // later chips, the BootROM expects the following: | 
|  | // 1. The [pagesize] byte on a nand page is used as BBM, which will appear at | 
|  | //    (page_size - (nsectors - 1) * spare_size) in the DMA buffer. | 
|  | // 2. The original byte stored at that position in the DMA buffer will be stored | 
|  | //    as the first byte of the FDM section in the last sector. | 
|  | // We can't disagree with the BootROM, so after de-interleaving, we need to | 
|  | // perform the following swaps in read: | 
|  | // 1. Store the BBM at [page_size - (nsectors - 1) * spare_size] to [page_size], | 
|  | //    which is the expected BBM position by kernel. | 
|  | // 2. Store the page data byte at [pagesize + (nsectors-1) * fdm] back to | 
|  | //    [page_size - (nsectors - 1) * spare_size] | 
|  | // Similarly, when writing, we need to perform swaps in the other direction. | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/clk.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/iopoll.h> | 
|  | #include <linux/of_platform.h> | 
|  | #include <linux/mtd/nand-ecc-mtk.h> | 
|  | #include <linux/spi/spi.h> | 
|  | #include <linux/spi/spi-mem.h> | 
|  | #include <linux/mtd/nand.h> | 
|  |  | 
|  | // NFI registers | 
|  | #define NFI_CNFG 0x000 | 
|  | #define CNFG_OP_MODE_S 12 | 
|  | #define CNFG_OP_MODE_CUST 6 | 
|  | #define CNFG_OP_MODE_PROGRAM 3 | 
|  | #define CNFG_AUTO_FMT_EN BIT(9) | 
|  | #define CNFG_HW_ECC_EN BIT(8) | 
|  | #define CNFG_DMA_BURST_EN BIT(2) | 
|  | #define CNFG_READ_MODE BIT(1) | 
|  | #define CNFG_DMA_MODE BIT(0) | 
|  |  | 
|  | #define NFI_PAGEFMT 0x0004 | 
|  | #define NFI_SPARE_SIZE_LS_S 16 | 
|  | #define NFI_FDM_ECC_NUM_S 12 | 
|  | #define NFI_FDM_NUM_S 8 | 
|  | #define NFI_SPARE_SIZE_S 4 | 
|  | #define NFI_SEC_SEL_512 BIT(2) | 
|  | #define NFI_PAGE_SIZE_S 0 | 
|  | #define NFI_PAGE_SIZE_512_2K 0 | 
|  | #define NFI_PAGE_SIZE_2K_4K 1 | 
|  | #define NFI_PAGE_SIZE_4K_8K 2 | 
|  | #define NFI_PAGE_SIZE_8K_16K 3 | 
|  |  | 
|  | #define NFI_CON 0x008 | 
|  | #define CON_SEC_NUM_S 12 | 
|  | #define CON_BWR BIT(9) | 
|  | #define CON_BRD BIT(8) | 
|  | #define CON_NFI_RST BIT(1) | 
|  | #define CON_FIFO_FLUSH BIT(0) | 
|  |  | 
|  | #define NFI_INTR_EN 0x010 | 
|  | #define NFI_INTR_STA 0x014 | 
|  | #define NFI_IRQ_INTR_EN BIT(31) | 
|  | #define NFI_IRQ_CUS_READ BIT(8) | 
|  | #define NFI_IRQ_CUS_PG BIT(7) | 
|  |  | 
|  | #define NFI_CMD 0x020 | 
|  | #define NFI_CMD_DUMMY_READ 0x00 | 
|  | #define NFI_CMD_DUMMY_WRITE 0x80 | 
|  |  | 
|  | #define NFI_STRDATA 0x040 | 
|  | #define STR_DATA BIT(0) | 
|  |  | 
|  | #define NFI_STA 0x060 | 
|  | #define NFI_NAND_FSM_7622 GENMASK(28, 24) | 
|  | #define NFI_NAND_FSM_7986 GENMASK(29, 23) | 
|  | #define NFI_FSM GENMASK(19, 16) | 
|  | #define READ_EMPTY BIT(12) | 
|  |  | 
|  | #define NFI_FIFOSTA 0x064 | 
|  | #define FIFO_WR_REMAIN_S 8 | 
|  | #define FIFO_RD_REMAIN_S 0 | 
|  |  | 
|  | #define NFI_ADDRCNTR 0x070 | 
|  | #define SEC_CNTR GENMASK(16, 12) | 
|  | #define SEC_CNTR_S 12 | 
|  | #define NFI_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S) | 
|  |  | 
|  | #define NFI_STRADDR 0x080 | 
|  |  | 
|  | #define NFI_BYTELEN 0x084 | 
|  | #define BUS_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S) | 
|  |  | 
|  | #define NFI_FDM0L 0x0a0 | 
|  | #define NFI_FDM0M 0x0a4 | 
|  | #define NFI_FDML(n) (NFI_FDM0L + (n)*8) | 
|  | #define NFI_FDMM(n) (NFI_FDM0M + (n)*8) | 
|  |  | 
|  | #define NFI_DEBUG_CON1 0x220 | 
|  | #define WBUF_EN BIT(2) | 
|  |  | 
|  | #define NFI_MASTERSTA 0x224 | 
|  | #define MAS_ADDR GENMASK(11, 9) | 
|  | #define MAS_RD GENMASK(8, 6) | 
|  | #define MAS_WR GENMASK(5, 3) | 
|  | #define MAS_RDDLY GENMASK(2, 0) | 
|  | #define NFI_MASTERSTA_MASK_7622 (MAS_ADDR | MAS_RD | MAS_WR | MAS_RDDLY) | 
|  | #define NFI_MASTERSTA_MASK_7986 3 | 
|  |  | 
|  | // SNFI registers | 
|  | #define SNF_MAC_CTL 0x500 | 
|  | #define MAC_XIO_SEL BIT(4) | 
|  | #define SF_MAC_EN BIT(3) | 
|  | #define SF_TRIG BIT(2) | 
|  | #define WIP_READY BIT(1) | 
|  | #define WIP BIT(0) | 
|  |  | 
|  | #define SNF_MAC_OUTL 0x504 | 
|  | #define SNF_MAC_INL 0x508 | 
|  |  | 
|  | #define SNF_RD_CTL2 0x510 | 
|  | #define DATA_READ_DUMMY_S 8 | 
|  | #define DATA_READ_MAX_DUMMY 0xf | 
|  | #define DATA_READ_CMD_S 0 | 
|  |  | 
|  | #define SNF_RD_CTL3 0x514 | 
|  |  | 
|  | #define SNF_PG_CTL1 0x524 | 
|  | #define PG_LOAD_CMD_S 8 | 
|  |  | 
|  | #define SNF_PG_CTL2 0x528 | 
|  |  | 
|  | #define SNF_MISC_CTL 0x538 | 
|  | #define SW_RST BIT(28) | 
|  | #define FIFO_RD_LTC_S 25 | 
|  | #define PG_LOAD_X4_EN BIT(20) | 
|  | #define DATA_READ_MODE_S 16 | 
|  | #define DATA_READ_MODE GENMASK(18, 16) | 
|  | #define DATA_READ_MODE_X1 0 | 
|  | #define DATA_READ_MODE_X2 1 | 
|  | #define DATA_READ_MODE_X4 2 | 
|  | #define DATA_READ_MODE_DUAL 5 | 
|  | #define DATA_READ_MODE_QUAD 6 | 
|  | #define DATA_READ_LATCH_LAT GENMASK(9, 8) | 
|  | #define DATA_READ_LATCH_LAT_S 8 | 
|  | #define PG_LOAD_CUSTOM_EN BIT(7) | 
|  | #define DATARD_CUSTOM_EN BIT(6) | 
|  | #define CS_DESELECT_CYC_S 0 | 
|  |  | 
|  | #define SNF_MISC_CTL2 0x53c | 
|  | #define PROGRAM_LOAD_BYTE_NUM_S 16 | 
|  | #define READ_DATA_BYTE_NUM_S 11 | 
|  |  | 
|  | #define SNF_DLY_CTL3 0x548 | 
|  | #define SFCK_SAM_DLY_S 0 | 
|  | #define SFCK_SAM_DLY GENMASK(5, 0) | 
|  | #define SFCK_SAM_DLY_TOTAL 9 | 
|  | #define SFCK_SAM_DLY_RANGE 47 | 
|  |  | 
|  | #define SNF_STA_CTL1 0x550 | 
|  | #define CUS_PG_DONE BIT(28) | 
|  | #define CUS_READ_DONE BIT(27) | 
|  | #define SPI_STATE_S 0 | 
|  | #define SPI_STATE GENMASK(3, 0) | 
|  |  | 
|  | #define SNF_CFG 0x55c | 
|  | #define SPI_MODE BIT(0) | 
|  |  | 
|  | #define SNF_GPRAM 0x800 | 
|  | #define SNF_GPRAM_SIZE 0xa0 | 
|  |  | 
|  | #define SNFI_POLL_INTERVAL 1000000 | 
|  |  | 
|  | static const u8 mt7622_spare_sizes[] = { 16, 26, 27, 28 }; | 
|  |  | 
|  | static const u8 mt7986_spare_sizes[] = { | 
|  | 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67, | 
|  | 74 | 
|  | }; | 
|  |  | 
|  | struct mtk_snand_caps { | 
|  | u16 sector_size; | 
|  | u16 max_sectors; | 
|  | u16 fdm_size; | 
|  | u16 fdm_ecc_size; | 
|  | u16 fifo_size; | 
|  |  | 
|  | bool bbm_swap; | 
|  | bool empty_page_check; | 
|  | u32 mastersta_mask; | 
|  | u32 nandfsm_mask; | 
|  |  | 
|  | const u8 *spare_sizes; | 
|  | u32 num_spare_size; | 
|  | }; | 
|  |  | 
|  | static const struct mtk_snand_caps mt7622_snand_caps = { | 
|  | .sector_size = 512, | 
|  | .max_sectors = 8, | 
|  | .fdm_size = 8, | 
|  | .fdm_ecc_size = 1, | 
|  | .fifo_size = 32, | 
|  | .bbm_swap = false, | 
|  | .empty_page_check = false, | 
|  | .mastersta_mask = NFI_MASTERSTA_MASK_7622, | 
|  | .nandfsm_mask = NFI_NAND_FSM_7622, | 
|  | .spare_sizes = mt7622_spare_sizes, | 
|  | .num_spare_size = ARRAY_SIZE(mt7622_spare_sizes) | 
|  | }; | 
|  |  | 
|  | static const struct mtk_snand_caps mt7629_snand_caps = { | 
|  | .sector_size = 512, | 
|  | .max_sectors = 8, | 
|  | .fdm_size = 8, | 
|  | .fdm_ecc_size = 1, | 
|  | .fifo_size = 32, | 
|  | .bbm_swap = true, | 
|  | .empty_page_check = false, | 
|  | .mastersta_mask = NFI_MASTERSTA_MASK_7622, | 
|  | .nandfsm_mask = NFI_NAND_FSM_7622, | 
|  | .spare_sizes = mt7622_spare_sizes, | 
|  | .num_spare_size = ARRAY_SIZE(mt7622_spare_sizes) | 
|  | }; | 
|  |  | 
|  | static const struct mtk_snand_caps mt7986_snand_caps = { | 
|  | .sector_size = 1024, | 
|  | .max_sectors = 8, | 
|  | .fdm_size = 8, | 
|  | .fdm_ecc_size = 1, | 
|  | .fifo_size = 64, | 
|  | .bbm_swap = true, | 
|  | .empty_page_check = true, | 
|  | .mastersta_mask = NFI_MASTERSTA_MASK_7986, | 
|  | .nandfsm_mask = NFI_NAND_FSM_7986, | 
|  | .spare_sizes = mt7986_spare_sizes, | 
|  | .num_spare_size = ARRAY_SIZE(mt7986_spare_sizes) | 
|  | }; | 
|  |  | 
|  | struct mtk_snand_conf { | 
|  | size_t page_size; | 
|  | size_t oob_size; | 
|  | u8 nsectors; | 
|  | u8 spare_size; | 
|  | }; | 
|  |  | 
|  | struct mtk_snand { | 
|  | struct spi_controller *ctlr; | 
|  | struct device *dev; | 
|  | struct clk *nfi_clk; | 
|  | struct clk *pad_clk; | 
|  | struct clk *nfi_hclk; | 
|  | void __iomem *nfi_base; | 
|  | int irq; | 
|  | struct completion op_done; | 
|  | const struct mtk_snand_caps *caps; | 
|  | struct mtk_ecc_config *ecc_cfg; | 
|  | struct mtk_ecc *ecc; | 
|  | struct mtk_snand_conf nfi_cfg; | 
|  | struct mtk_ecc_stats ecc_stats; | 
|  | struct nand_ecc_engine ecc_eng; | 
|  | bool autofmt; | 
|  | u8 *buf; | 
|  | size_t buf_len; | 
|  | }; | 
|  |  | 
|  | static struct mtk_snand *nand_to_mtk_snand(struct nand_device *nand) | 
|  | { | 
|  | struct nand_ecc_engine *eng = nand->ecc.engine; | 
|  |  | 
|  | return container_of(eng, struct mtk_snand, ecc_eng); | 
|  | } | 
|  |  | 
|  | static inline int snand_prepare_bouncebuf(struct mtk_snand *snf, size_t size) | 
|  | { | 
|  | if (snf->buf_len >= size) | 
|  | return 0; | 
|  | kfree(snf->buf); | 
|  | snf->buf = kmalloc(size, GFP_KERNEL); | 
|  | if (!snf->buf) | 
|  | return -ENOMEM; | 
|  | snf->buf_len = size; | 
|  | memset(snf->buf, 0xff, snf->buf_len); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline u32 nfi_read32(struct mtk_snand *snf, u32 reg) | 
|  | { | 
|  | return readl(snf->nfi_base + reg); | 
|  | } | 
|  |  | 
|  | static inline void nfi_write32(struct mtk_snand *snf, u32 reg, u32 val) | 
|  | { | 
|  | writel(val, snf->nfi_base + reg); | 
|  | } | 
|  |  | 
|  | static inline void nfi_write16(struct mtk_snand *snf, u32 reg, u16 val) | 
|  | { | 
|  | writew(val, snf->nfi_base + reg); | 
|  | } | 
|  |  | 
|  | static inline void nfi_rmw32(struct mtk_snand *snf, u32 reg, u32 clr, u32 set) | 
|  | { | 
|  | u32 val; | 
|  |  | 
|  | val = readl(snf->nfi_base + reg); | 
|  | val &= ~clr; | 
|  | val |= set; | 
|  | writel(val, snf->nfi_base + reg); | 
|  | } | 
|  |  | 
|  | static void nfi_read_data(struct mtk_snand *snf, u32 reg, u8 *data, u32 len) | 
|  | { | 
|  | u32 i, val = 0, es = sizeof(u32); | 
|  |  | 
|  | for (i = reg; i < reg + len; i++) { | 
|  | if (i == reg || i % es == 0) | 
|  | val = nfi_read32(snf, i & ~(es - 1)); | 
|  |  | 
|  | *data++ = (u8)(val >> (8 * (i % es))); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int mtk_nfi_reset(struct mtk_snand *snf) | 
|  | { | 
|  | u32 val, fifo_mask; | 
|  | int ret; | 
|  |  | 
|  | nfi_write32(snf, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST); | 
|  |  | 
|  | ret = readw_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val, | 
|  | !(val & snf->caps->mastersta_mask), 0, | 
|  | SNFI_POLL_INTERVAL); | 
|  | if (ret) { | 
|  | dev_err(snf->dev, "NFI master is still busy after reset\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = readl_poll_timeout(snf->nfi_base + NFI_STA, val, | 
|  | !(val & (NFI_FSM | snf->caps->nandfsm_mask)), 0, | 
|  | SNFI_POLL_INTERVAL); | 
|  | if (ret) { | 
|  | dev_err(snf->dev, "Failed to reset NFI\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | fifo_mask = ((snf->caps->fifo_size - 1) << FIFO_RD_REMAIN_S) | | 
|  | ((snf->caps->fifo_size - 1) << FIFO_WR_REMAIN_S); | 
|  | ret = readw_poll_timeout(snf->nfi_base + NFI_FIFOSTA, val, | 
|  | !(val & fifo_mask), 0, SNFI_POLL_INTERVAL); | 
|  | if (ret) { | 
|  | dev_err(snf->dev, "NFI FIFOs are not empty\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int mtk_snand_mac_reset(struct mtk_snand *snf) | 
|  | { | 
|  | int ret; | 
|  | u32 val; | 
|  |  | 
|  | nfi_rmw32(snf, SNF_MISC_CTL, 0, SW_RST); | 
|  |  | 
|  | ret = readl_poll_timeout(snf->nfi_base + SNF_STA_CTL1, val, | 
|  | !(val & SPI_STATE), 0, SNFI_POLL_INTERVAL); | 
|  | if (ret) | 
|  | dev_err(snf->dev, "Failed to reset SNFI MAC\n"); | 
|  |  | 
|  | nfi_write32(snf, SNF_MISC_CTL, | 
|  | (2 << FIFO_RD_LTC_S) | (10 << CS_DESELECT_CYC_S)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int mtk_snand_mac_trigger(struct mtk_snand *snf, u32 outlen, u32 inlen) | 
|  | { | 
|  | int ret; | 
|  | u32 val; | 
|  |  | 
|  | nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN); | 
|  | nfi_write32(snf, SNF_MAC_OUTL, outlen); | 
|  | nfi_write32(snf, SNF_MAC_INL, inlen); | 
|  |  | 
|  | nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN | SF_TRIG); | 
|  |  | 
|  | ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val, | 
|  | val & WIP_READY, 0, SNFI_POLL_INTERVAL); | 
|  | if (ret) { | 
|  | dev_err(snf->dev, "Timed out waiting for WIP_READY\n"); | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val, !(val & WIP), | 
|  | 0, SNFI_POLL_INTERVAL); | 
|  | if (ret) | 
|  | dev_err(snf->dev, "Timed out waiting for WIP cleared\n"); | 
|  |  | 
|  | cleanup: | 
|  | nfi_write32(snf, SNF_MAC_CTL, 0); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int mtk_snand_mac_io(struct mtk_snand *snf, const struct spi_mem_op *op) | 
|  | { | 
|  | u32 rx_len = 0; | 
|  | u32 reg_offs = 0; | 
|  | u32 val = 0; | 
|  | const u8 *tx_buf = NULL; | 
|  | u8 *rx_buf = NULL; | 
|  | int i, ret; | 
|  | u8 b; | 
|  |  | 
|  | if (op->data.dir == SPI_MEM_DATA_IN) { | 
|  | rx_len = op->data.nbytes; | 
|  | rx_buf = op->data.buf.in; | 
|  | } else { | 
|  | tx_buf = op->data.buf.out; | 
|  | } | 
|  |  | 
|  | mtk_snand_mac_reset(snf); | 
|  |  | 
|  | for (i = 0; i < op->cmd.nbytes; i++, reg_offs++) { | 
|  | b = (op->cmd.opcode >> ((op->cmd.nbytes - i - 1) * 8)) & 0xff; | 
|  | val |= b << (8 * (reg_offs % 4)); | 
|  | if (reg_offs % 4 == 3) { | 
|  | nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val); | 
|  | val = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < op->addr.nbytes; i++, reg_offs++) { | 
|  | b = (op->addr.val >> ((op->addr.nbytes - i - 1) * 8)) & 0xff; | 
|  | val |= b << (8 * (reg_offs % 4)); | 
|  | if (reg_offs % 4 == 3) { | 
|  | nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val); | 
|  | val = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < op->dummy.nbytes; i++, reg_offs++) { | 
|  | if (reg_offs % 4 == 3) { | 
|  | nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val); | 
|  | val = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (op->data.dir == SPI_MEM_DATA_OUT) { | 
|  | for (i = 0; i < op->data.nbytes; i++, reg_offs++) { | 
|  | val |= tx_buf[i] << (8 * (reg_offs % 4)); | 
|  | if (reg_offs % 4 == 3) { | 
|  | nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val); | 
|  | val = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (reg_offs % 4) | 
|  | nfi_write32(snf, SNF_GPRAM + (reg_offs & ~3), val); | 
|  |  | 
|  | for (i = 0; i < reg_offs; i += 4) | 
|  | dev_dbg(snf->dev, "%d: %08X", i, | 
|  | nfi_read32(snf, SNF_GPRAM + i)); | 
|  |  | 
|  | dev_dbg(snf->dev, "SNF TX: %u RX: %u", reg_offs, rx_len); | 
|  |  | 
|  | ret = mtk_snand_mac_trigger(snf, reg_offs, rx_len); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (!rx_len) | 
|  | return 0; | 
|  |  | 
|  | nfi_read_data(snf, SNF_GPRAM + reg_offs, rx_buf, rx_len); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int mtk_snand_setup_pagefmt(struct mtk_snand *snf, u32 page_size, | 
|  | u32 oob_size) | 
|  | { | 
|  | int spare_idx = -1; | 
|  | u32 spare_size, spare_size_shift, pagesize_idx; | 
|  | u32 sector_size_512; | 
|  | u8 nsectors; | 
|  | int i; | 
|  |  | 
|  | // skip if it's already configured as required. | 
|  | if (snf->nfi_cfg.page_size == page_size && | 
|  | snf->nfi_cfg.oob_size == oob_size) | 
|  | return 0; | 
|  |  | 
|  | nsectors = page_size / snf->caps->sector_size; | 
|  | if (nsectors > snf->caps->max_sectors) { | 
|  | dev_err(snf->dev, "too many sectors required.\n"); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (snf->caps->sector_size == 512) { | 
|  | sector_size_512 = NFI_SEC_SEL_512; | 
|  | spare_size_shift = NFI_SPARE_SIZE_S; | 
|  | } else { | 
|  | sector_size_512 = 0; | 
|  | spare_size_shift = NFI_SPARE_SIZE_LS_S; | 
|  | } | 
|  |  | 
|  | switch (page_size) { | 
|  | case SZ_512: | 
|  | pagesize_idx = NFI_PAGE_SIZE_512_2K; | 
|  | break; | 
|  | case SZ_2K: | 
|  | if (snf->caps->sector_size == 512) | 
|  | pagesize_idx = NFI_PAGE_SIZE_2K_4K; | 
|  | else | 
|  | pagesize_idx = NFI_PAGE_SIZE_512_2K; | 
|  | break; | 
|  | case SZ_4K: | 
|  | if (snf->caps->sector_size == 512) | 
|  | pagesize_idx = NFI_PAGE_SIZE_4K_8K; | 
|  | else | 
|  | pagesize_idx = NFI_PAGE_SIZE_2K_4K; | 
|  | break; | 
|  | case SZ_8K: | 
|  | if (snf->caps->sector_size == 512) | 
|  | pagesize_idx = NFI_PAGE_SIZE_8K_16K; | 
|  | else | 
|  | pagesize_idx = NFI_PAGE_SIZE_4K_8K; | 
|  | break; | 
|  | case SZ_16K: | 
|  | pagesize_idx = NFI_PAGE_SIZE_8K_16K; | 
|  | break; | 
|  | default: | 
|  | dev_err(snf->dev, "unsupported page size.\n"); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | spare_size = oob_size / nsectors; | 
|  | // If we're using the 1KB sector size, HW will automatically double the | 
|  | // spare size. We should only use half of the value in this case. | 
|  | if (snf->caps->sector_size == 1024) | 
|  | spare_size /= 2; | 
|  |  | 
|  | for (i = snf->caps->num_spare_size - 1; i >= 0; i--) { | 
|  | if (snf->caps->spare_sizes[i] <= spare_size) { | 
|  | spare_size = snf->caps->spare_sizes[i]; | 
|  | if (snf->caps->sector_size == 1024) | 
|  | spare_size *= 2; | 
|  | spare_idx = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (spare_idx < 0) { | 
|  | dev_err(snf->dev, "unsupported spare size: %u\n", spare_size); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | nfi_write32(snf, NFI_PAGEFMT, | 
|  | (snf->caps->fdm_ecc_size << NFI_FDM_ECC_NUM_S) | | 
|  | (snf->caps->fdm_size << NFI_FDM_NUM_S) | | 
|  | (spare_idx << spare_size_shift) | | 
|  | (pagesize_idx << NFI_PAGE_SIZE_S) | | 
|  | sector_size_512); | 
|  |  | 
|  | snf->nfi_cfg.page_size = page_size; | 
|  | snf->nfi_cfg.oob_size = oob_size; | 
|  | snf->nfi_cfg.nsectors = nsectors; | 
|  | snf->nfi_cfg.spare_size = spare_size; | 
|  |  | 
|  | dev_dbg(snf->dev, "page format: (%u + %u) * %u\n", | 
|  | snf->caps->sector_size, spare_size, nsectors); | 
|  | return snand_prepare_bouncebuf(snf, page_size + oob_size); | 
|  | err: | 
|  | dev_err(snf->dev, "page size %u + %u is not supported\n", page_size, | 
|  | oob_size); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | static int mtk_snand_ooblayout_ecc(struct mtd_info *mtd, int section, | 
|  | struct mtd_oob_region *oobecc) | 
|  | { | 
|  | // ECC area is not accessible | 
|  | return -ERANGE; | 
|  | } | 
|  |  | 
|  | static int mtk_snand_ooblayout_free(struct mtd_info *mtd, int section, | 
|  | struct mtd_oob_region *oobfree) | 
|  | { | 
|  | struct nand_device *nand = mtd_to_nanddev(mtd); | 
|  | struct mtk_snand *ms = nand_to_mtk_snand(nand); | 
|  |  | 
|  | if (section >= ms->nfi_cfg.nsectors) | 
|  | return -ERANGE; | 
|  |  | 
|  | oobfree->length = ms->caps->fdm_size - 1; | 
|  | oobfree->offset = section * ms->caps->fdm_size + 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct mtd_ooblayout_ops mtk_snand_ooblayout = { | 
|  | .ecc = mtk_snand_ooblayout_ecc, | 
|  | .free = mtk_snand_ooblayout_free, | 
|  | }; | 
|  |  | 
|  | static int mtk_snand_ecc_init_ctx(struct nand_device *nand) | 
|  | { | 
|  | struct mtk_snand *snf = nand_to_mtk_snand(nand); | 
|  | struct nand_ecc_props *conf = &nand->ecc.ctx.conf; | 
|  | struct nand_ecc_props *reqs = &nand->ecc.requirements; | 
|  | struct nand_ecc_props *user = &nand->ecc.user_conf; | 
|  | struct mtd_info *mtd = nanddev_to_mtd(nand); | 
|  | int step_size = 0, strength = 0, desired_correction = 0, steps; | 
|  | bool ecc_user = false; | 
|  | int ret; | 
|  | u32 parity_bits, max_ecc_bytes; | 
|  | struct mtk_ecc_config *ecc_cfg; | 
|  |  | 
|  | ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize, | 
|  | nand->memorg.oobsize); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ecc_cfg = kzalloc(sizeof(*ecc_cfg), GFP_KERNEL); | 
|  | if (!ecc_cfg) | 
|  | return -ENOMEM; | 
|  |  | 
|  | nand->ecc.ctx.priv = ecc_cfg; | 
|  |  | 
|  | if (user->step_size && user->strength) { | 
|  | step_size = user->step_size; | 
|  | strength = user->strength; | 
|  | ecc_user = true; | 
|  | } else if (reqs->step_size && reqs->strength) { | 
|  | step_size = reqs->step_size; | 
|  | strength = reqs->strength; | 
|  | } | 
|  |  | 
|  | if (step_size && strength) { | 
|  | steps = mtd->writesize / step_size; | 
|  | desired_correction = steps * strength; | 
|  | strength = desired_correction / snf->nfi_cfg.nsectors; | 
|  | } | 
|  |  | 
|  | ecc_cfg->mode = ECC_NFI_MODE; | 
|  | ecc_cfg->sectors = snf->nfi_cfg.nsectors; | 
|  | ecc_cfg->len = snf->caps->sector_size + snf->caps->fdm_ecc_size; | 
|  |  | 
|  | // calculate the max possible strength under current page format | 
|  | parity_bits = mtk_ecc_get_parity_bits(snf->ecc); | 
|  | max_ecc_bytes = snf->nfi_cfg.spare_size - snf->caps->fdm_size; | 
|  | ecc_cfg->strength = max_ecc_bytes * 8 / parity_bits; | 
|  | mtk_ecc_adjust_strength(snf->ecc, &ecc_cfg->strength); | 
|  |  | 
|  | // if there's a user requested strength, find the minimum strength that | 
|  | // meets the requirement. Otherwise use the maximum strength which is | 
|  | // expected by BootROM. | 
|  | if (ecc_user && strength) { | 
|  | u32 s_next = ecc_cfg->strength - 1; | 
|  |  | 
|  | while (1) { | 
|  | mtk_ecc_adjust_strength(snf->ecc, &s_next); | 
|  | if (s_next >= ecc_cfg->strength) | 
|  | break; | 
|  | if (s_next < strength) | 
|  | break; | 
|  | s_next = ecc_cfg->strength - 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | mtd_set_ooblayout(mtd, &mtk_snand_ooblayout); | 
|  |  | 
|  | conf->step_size = snf->caps->sector_size; | 
|  | conf->strength = ecc_cfg->strength; | 
|  |  | 
|  | if (ecc_cfg->strength < strength) | 
|  | dev_warn(snf->dev, "unable to fulfill ECC of %u bits.\n", | 
|  | strength); | 
|  | dev_info(snf->dev, "ECC strength: %u bits per %u bytes\n", | 
|  | ecc_cfg->strength, snf->caps->sector_size); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void mtk_snand_ecc_cleanup_ctx(struct nand_device *nand) | 
|  | { | 
|  | struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand); | 
|  |  | 
|  | kfree(ecc_cfg); | 
|  | } | 
|  |  | 
|  | static int mtk_snand_ecc_prepare_io_req(struct nand_device *nand, | 
|  | struct nand_page_io_req *req) | 
|  | { | 
|  | struct mtk_snand *snf = nand_to_mtk_snand(nand); | 
|  | struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand); | 
|  | int ret; | 
|  |  | 
|  | ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize, | 
|  | nand->memorg.oobsize); | 
|  | if (ret) | 
|  | return ret; | 
|  | snf->autofmt = true; | 
|  | snf->ecc_cfg = ecc_cfg; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int mtk_snand_ecc_finish_io_req(struct nand_device *nand, | 
|  | struct nand_page_io_req *req) | 
|  | { | 
|  | struct mtk_snand *snf = nand_to_mtk_snand(nand); | 
|  | struct mtd_info *mtd = nanddev_to_mtd(nand); | 
|  |  | 
|  | snf->ecc_cfg = NULL; | 
|  | snf->autofmt = false; | 
|  | if ((req->mode == MTD_OPS_RAW) || (req->type != NAND_PAGE_READ)) | 
|  | return 0; | 
|  |  | 
|  | if (snf->ecc_stats.failed) | 
|  | mtd->ecc_stats.failed += snf->ecc_stats.failed; | 
|  | mtd->ecc_stats.corrected += snf->ecc_stats.corrected; | 
|  | return snf->ecc_stats.failed ? -EBADMSG : snf->ecc_stats.bitflips; | 
|  | } | 
|  |  | 
|  | static struct nand_ecc_engine_ops mtk_snfi_ecc_engine_ops = { | 
|  | .init_ctx = mtk_snand_ecc_init_ctx, | 
|  | .cleanup_ctx = mtk_snand_ecc_cleanup_ctx, | 
|  | .prepare_io_req = mtk_snand_ecc_prepare_io_req, | 
|  | .finish_io_req = mtk_snand_ecc_finish_io_req, | 
|  | }; | 
|  |  | 
|  | static void mtk_snand_read_fdm(struct mtk_snand *snf, u8 *buf) | 
|  | { | 
|  | u32 vall, valm; | 
|  | u8 *oobptr = buf; | 
|  | int i, j; | 
|  |  | 
|  | for (i = 0; i < snf->nfi_cfg.nsectors; i++) { | 
|  | vall = nfi_read32(snf, NFI_FDML(i)); | 
|  | valm = nfi_read32(snf, NFI_FDMM(i)); | 
|  |  | 
|  | for (j = 0; j < snf->caps->fdm_size; j++) | 
|  | oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8); | 
|  |  | 
|  | oobptr += snf->caps->fdm_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mtk_snand_write_fdm(struct mtk_snand *snf, const u8 *buf) | 
|  | { | 
|  | u32 fdm_size = snf->caps->fdm_size; | 
|  | const u8 *oobptr = buf; | 
|  | u32 vall, valm; | 
|  | int i, j; | 
|  |  | 
|  | for (i = 0; i < snf->nfi_cfg.nsectors; i++) { | 
|  | vall = 0; | 
|  | valm = 0; | 
|  |  | 
|  | for (j = 0; j < 8; j++) { | 
|  | if (j < 4) | 
|  | vall |= (j < fdm_size ? oobptr[j] : 0xff) | 
|  | << (j * 8); | 
|  | else | 
|  | valm |= (j < fdm_size ? oobptr[j] : 0xff) | 
|  | << ((j - 4) * 8); | 
|  | } | 
|  |  | 
|  | nfi_write32(snf, NFI_FDML(i), vall); | 
|  | nfi_write32(snf, NFI_FDMM(i), valm); | 
|  |  | 
|  | oobptr += fdm_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mtk_snand_bm_swap(struct mtk_snand *snf, u8 *buf) | 
|  | { | 
|  | u32 buf_bbm_pos, fdm_bbm_pos; | 
|  |  | 
|  | if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1) | 
|  | return; | 
|  |  | 
|  | // swap [pagesize] byte on nand with the first fdm byte | 
|  | // in the last sector. | 
|  | buf_bbm_pos = snf->nfi_cfg.page_size - | 
|  | (snf->nfi_cfg.nsectors - 1) * snf->nfi_cfg.spare_size; | 
|  | fdm_bbm_pos = snf->nfi_cfg.page_size + | 
|  | (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size; | 
|  |  | 
|  | swap(snf->buf[fdm_bbm_pos], buf[buf_bbm_pos]); | 
|  | } | 
|  |  | 
|  | static void mtk_snand_fdm_bm_swap(struct mtk_snand *snf) | 
|  | { | 
|  | u32 fdm_bbm_pos1, fdm_bbm_pos2; | 
|  |  | 
|  | if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1) | 
|  | return; | 
|  |  | 
|  | // swap the first fdm byte in the first and the last sector. | 
|  | fdm_bbm_pos1 = snf->nfi_cfg.page_size; | 
|  | fdm_bbm_pos2 = snf->nfi_cfg.page_size + | 
|  | (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size; | 
|  | swap(snf->buf[fdm_bbm_pos1], snf->buf[fdm_bbm_pos2]); | 
|  | } | 
|  |  | 
|  | static int mtk_snand_read_page_cache(struct mtk_snand *snf, | 
|  | const struct spi_mem_op *op) | 
|  | { | 
|  | u8 *buf = snf->buf; | 
|  | u8 *buf_fdm = buf + snf->nfi_cfg.page_size; | 
|  | // the address part to be sent by the controller | 
|  | u32 op_addr = op->addr.val; | 
|  | // where to start copying data from bounce buffer | 
|  | u32 rd_offset = 0; | 
|  | u32 dummy_clk = (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth); | 
|  | u32 op_mode = 0; | 
|  | u32 dma_len = snf->buf_len; | 
|  | int ret = 0; | 
|  | u32 rd_mode, rd_bytes, val; | 
|  | dma_addr_t buf_dma; | 
|  |  | 
|  | if (snf->autofmt) { | 
|  | u32 last_bit; | 
|  | u32 mask; | 
|  |  | 
|  | dma_len = snf->nfi_cfg.page_size; | 
|  | op_mode = CNFG_AUTO_FMT_EN; | 
|  | if (op->data.ecc) | 
|  | op_mode |= CNFG_HW_ECC_EN; | 
|  | // extract the plane bit: | 
|  | // Find the highest bit set in (pagesize+oobsize). | 
|  | // Bits higher than that in op->addr are kept and sent over SPI | 
|  | // Lower bits are used as an offset for copying data from DMA | 
|  | // bounce buffer. | 
|  | last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size); | 
|  | mask = (1 << last_bit) - 1; | 
|  | rd_offset = op_addr & mask; | 
|  | op_addr &= ~mask; | 
|  |  | 
|  | // check if we can dma to the caller memory | 
|  | if (rd_offset == 0 && op->data.nbytes >= snf->nfi_cfg.page_size) | 
|  | buf = op->data.buf.in; | 
|  | } | 
|  | mtk_snand_mac_reset(snf); | 
|  | mtk_nfi_reset(snf); | 
|  |  | 
|  | // command and dummy cycles | 
|  | nfi_write32(snf, SNF_RD_CTL2, | 
|  | (dummy_clk << DATA_READ_DUMMY_S) | | 
|  | (op->cmd.opcode << DATA_READ_CMD_S)); | 
|  |  | 
|  | // read address | 
|  | nfi_write32(snf, SNF_RD_CTL3, op_addr); | 
|  |  | 
|  | // Set read op_mode | 
|  | if (op->data.buswidth == 4) | 
|  | rd_mode = op->addr.buswidth == 4 ? DATA_READ_MODE_QUAD : | 
|  | DATA_READ_MODE_X4; | 
|  | else if (op->data.buswidth == 2) | 
|  | rd_mode = op->addr.buswidth == 2 ? DATA_READ_MODE_DUAL : | 
|  | DATA_READ_MODE_X2; | 
|  | else | 
|  | rd_mode = DATA_READ_MODE_X1; | 
|  | rd_mode <<= DATA_READ_MODE_S; | 
|  | nfi_rmw32(snf, SNF_MISC_CTL, DATA_READ_MODE, | 
|  | rd_mode | DATARD_CUSTOM_EN); | 
|  |  | 
|  | // Set bytes to read | 
|  | rd_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) * | 
|  | snf->nfi_cfg.nsectors; | 
|  | nfi_write32(snf, SNF_MISC_CTL2, | 
|  | (rd_bytes << PROGRAM_LOAD_BYTE_NUM_S) | rd_bytes); | 
|  |  | 
|  | // NFI read prepare | 
|  | nfi_write16(snf, NFI_CNFG, | 
|  | (CNFG_OP_MODE_CUST << CNFG_OP_MODE_S) | CNFG_DMA_BURST_EN | | 
|  | CNFG_READ_MODE | CNFG_DMA_MODE | op_mode); | 
|  |  | 
|  | nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S)); | 
|  |  | 
|  | buf_dma = dma_map_single(snf->dev, buf, dma_len, DMA_FROM_DEVICE); | 
|  | ret = dma_mapping_error(snf->dev, buf_dma); | 
|  | if (ret) { | 
|  | dev_err(snf->dev, "DMA mapping failed.\n"); | 
|  | goto cleanup; | 
|  | } | 
|  | nfi_write32(snf, NFI_STRADDR, buf_dma); | 
|  | if (op->data.ecc) { | 
|  | snf->ecc_cfg->op = ECC_DECODE; | 
|  | ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg); | 
|  | if (ret) | 
|  | goto cleanup_dma; | 
|  | } | 
|  | // Prepare for custom read interrupt | 
|  | nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_READ); | 
|  | reinit_completion(&snf->op_done); | 
|  |  | 
|  | // Trigger NFI into custom mode | 
|  | nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_READ); | 
|  |  | 
|  | // Start DMA read | 
|  | nfi_rmw32(snf, NFI_CON, 0, CON_BRD); | 
|  | nfi_write16(snf, NFI_STRDATA, STR_DATA); | 
|  |  | 
|  | if (!wait_for_completion_timeout( | 
|  | &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) { | 
|  | dev_err(snf->dev, "DMA timed out for reading from cache.\n"); | 
|  | ret = -ETIMEDOUT; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | // Wait for BUS_SEC_CNTR returning expected value | 
|  | ret = readl_poll_timeout(snf->nfi_base + NFI_BYTELEN, val, | 
|  | BUS_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0, | 
|  | SNFI_POLL_INTERVAL); | 
|  | if (ret) { | 
|  | dev_err(snf->dev, "Timed out waiting for BUS_SEC_CNTR\n"); | 
|  | goto cleanup2; | 
|  | } | 
|  |  | 
|  | // Wait for bus becoming idle | 
|  | ret = readl_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val, | 
|  | !(val & snf->caps->mastersta_mask), 0, | 
|  | SNFI_POLL_INTERVAL); | 
|  | if (ret) { | 
|  | dev_err(snf->dev, "Timed out waiting for bus becoming idle\n"); | 
|  | goto cleanup2; | 
|  | } | 
|  |  | 
|  | if (op->data.ecc) { | 
|  | ret = mtk_ecc_wait_done(snf->ecc, ECC_DECODE); | 
|  | if (ret) { | 
|  | dev_err(snf->dev, "wait ecc done timeout\n"); | 
|  | goto cleanup2; | 
|  | } | 
|  | // save status before disabling ecc | 
|  | mtk_ecc_get_stats(snf->ecc, &snf->ecc_stats, | 
|  | snf->nfi_cfg.nsectors); | 
|  | } | 
|  |  | 
|  | dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE); | 
|  |  | 
|  | if (snf->autofmt) { | 
|  | mtk_snand_read_fdm(snf, buf_fdm); | 
|  | if (snf->caps->bbm_swap) { | 
|  | mtk_snand_bm_swap(snf, buf); | 
|  | mtk_snand_fdm_bm_swap(snf); | 
|  | } | 
|  | } | 
|  |  | 
|  | // copy data back | 
|  | if (nfi_read32(snf, NFI_STA) & READ_EMPTY) { | 
|  | memset(op->data.buf.in, 0xff, op->data.nbytes); | 
|  | snf->ecc_stats.bitflips = 0; | 
|  | snf->ecc_stats.failed = 0; | 
|  | snf->ecc_stats.corrected = 0; | 
|  | } else { | 
|  | if (buf == op->data.buf.in) { | 
|  | u32 cap_len = snf->buf_len - snf->nfi_cfg.page_size; | 
|  | u32 req_left = op->data.nbytes - snf->nfi_cfg.page_size; | 
|  |  | 
|  | if (req_left) | 
|  | memcpy(op->data.buf.in + snf->nfi_cfg.page_size, | 
|  | buf_fdm, | 
|  | cap_len < req_left ? cap_len : req_left); | 
|  | } else if (rd_offset < snf->buf_len) { | 
|  | u32 cap_len = snf->buf_len - rd_offset; | 
|  |  | 
|  | if (op->data.nbytes < cap_len) | 
|  | cap_len = op->data.nbytes; | 
|  | memcpy(op->data.buf.in, snf->buf + rd_offset, cap_len); | 
|  | } | 
|  | } | 
|  | cleanup2: | 
|  | if (op->data.ecc) | 
|  | mtk_ecc_disable(snf->ecc); | 
|  | cleanup_dma: | 
|  | // unmap dma only if any error happens. (otherwise it's done before | 
|  | // data copying) | 
|  | if (ret) | 
|  | dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE); | 
|  | cleanup: | 
|  | // Stop read | 
|  | nfi_write32(snf, NFI_CON, 0); | 
|  | nfi_write16(snf, NFI_CNFG, 0); | 
|  |  | 
|  | // Clear SNF done flag | 
|  | nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_READ_DONE); | 
|  | nfi_write32(snf, SNF_STA_CTL1, 0); | 
|  |  | 
|  | // Disable interrupt | 
|  | nfi_read32(snf, NFI_INTR_STA); | 
|  | nfi_write32(snf, NFI_INTR_EN, 0); | 
|  |  | 
|  | nfi_rmw32(snf, SNF_MISC_CTL, DATARD_CUSTOM_EN, 0); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int mtk_snand_write_page_cache(struct mtk_snand *snf, | 
|  | const struct spi_mem_op *op) | 
|  | { | 
|  | // the address part to be sent by the controller | 
|  | u32 op_addr = op->addr.val; | 
|  | // where to start copying data from bounce buffer | 
|  | u32 wr_offset = 0; | 
|  | u32 op_mode = 0; | 
|  | int ret = 0; | 
|  | u32 wr_mode = 0; | 
|  | u32 dma_len = snf->buf_len; | 
|  | u32 wr_bytes, val; | 
|  | size_t cap_len; | 
|  | dma_addr_t buf_dma; | 
|  |  | 
|  | if (snf->autofmt) { | 
|  | u32 last_bit; | 
|  | u32 mask; | 
|  |  | 
|  | dma_len = snf->nfi_cfg.page_size; | 
|  | op_mode = CNFG_AUTO_FMT_EN; | 
|  | if (op->data.ecc) | 
|  | op_mode |= CNFG_HW_ECC_EN; | 
|  |  | 
|  | last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size); | 
|  | mask = (1 << last_bit) - 1; | 
|  | wr_offset = op_addr & mask; | 
|  | op_addr &= ~mask; | 
|  | } | 
|  | mtk_snand_mac_reset(snf); | 
|  | mtk_nfi_reset(snf); | 
|  |  | 
|  | if (wr_offset) | 
|  | memset(snf->buf, 0xff, wr_offset); | 
|  |  | 
|  | cap_len = snf->buf_len - wr_offset; | 
|  | if (op->data.nbytes < cap_len) | 
|  | cap_len = op->data.nbytes; | 
|  | memcpy(snf->buf + wr_offset, op->data.buf.out, cap_len); | 
|  | if (snf->autofmt) { | 
|  | if (snf->caps->bbm_swap) { | 
|  | mtk_snand_fdm_bm_swap(snf); | 
|  | mtk_snand_bm_swap(snf, snf->buf); | 
|  | } | 
|  | mtk_snand_write_fdm(snf, snf->buf + snf->nfi_cfg.page_size); | 
|  | } | 
|  |  | 
|  | // Command | 
|  | nfi_write32(snf, SNF_PG_CTL1, (op->cmd.opcode << PG_LOAD_CMD_S)); | 
|  |  | 
|  | // write address | 
|  | nfi_write32(snf, SNF_PG_CTL2, op_addr); | 
|  |  | 
|  | // Set read op_mode | 
|  | if (op->data.buswidth == 4) | 
|  | wr_mode = PG_LOAD_X4_EN; | 
|  |  | 
|  | nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_X4_EN, | 
|  | wr_mode | PG_LOAD_CUSTOM_EN); | 
|  |  | 
|  | // Set bytes to write | 
|  | wr_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) * | 
|  | snf->nfi_cfg.nsectors; | 
|  | nfi_write32(snf, SNF_MISC_CTL2, | 
|  | (wr_bytes << PROGRAM_LOAD_BYTE_NUM_S) | wr_bytes); | 
|  |  | 
|  | // NFI write prepare | 
|  | nfi_write16(snf, NFI_CNFG, | 
|  | (CNFG_OP_MODE_PROGRAM << CNFG_OP_MODE_S) | | 
|  | CNFG_DMA_BURST_EN | CNFG_DMA_MODE | op_mode); | 
|  |  | 
|  | nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S)); | 
|  | buf_dma = dma_map_single(snf->dev, snf->buf, dma_len, DMA_TO_DEVICE); | 
|  | ret = dma_mapping_error(snf->dev, buf_dma); | 
|  | if (ret) { | 
|  | dev_err(snf->dev, "DMA mapping failed.\n"); | 
|  | goto cleanup; | 
|  | } | 
|  | nfi_write32(snf, NFI_STRADDR, buf_dma); | 
|  | if (op->data.ecc) { | 
|  | snf->ecc_cfg->op = ECC_ENCODE; | 
|  | ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg); | 
|  | if (ret) | 
|  | goto cleanup_dma; | 
|  | } | 
|  | // Prepare for custom write interrupt | 
|  | nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_PG); | 
|  | reinit_completion(&snf->op_done); | 
|  | ; | 
|  |  | 
|  | // Trigger NFI into custom mode | 
|  | nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_WRITE); | 
|  |  | 
|  | // Start DMA write | 
|  | nfi_rmw32(snf, NFI_CON, 0, CON_BWR); | 
|  | nfi_write16(snf, NFI_STRDATA, STR_DATA); | 
|  |  | 
|  | if (!wait_for_completion_timeout( | 
|  | &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) { | 
|  | dev_err(snf->dev, "DMA timed out for program load.\n"); | 
|  | ret = -ETIMEDOUT; | 
|  | goto cleanup_ecc; | 
|  | } | 
|  |  | 
|  | // Wait for NFI_SEC_CNTR returning expected value | 
|  | ret = readl_poll_timeout(snf->nfi_base + NFI_ADDRCNTR, val, | 
|  | NFI_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0, | 
|  | SNFI_POLL_INTERVAL); | 
|  | if (ret) | 
|  | dev_err(snf->dev, "Timed out waiting for NFI_SEC_CNTR\n"); | 
|  |  | 
|  | cleanup_ecc: | 
|  | if (op->data.ecc) | 
|  | mtk_ecc_disable(snf->ecc); | 
|  | cleanup_dma: | 
|  | dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_TO_DEVICE); | 
|  | cleanup: | 
|  | // Stop write | 
|  | nfi_write32(snf, NFI_CON, 0); | 
|  | nfi_write16(snf, NFI_CNFG, 0); | 
|  |  | 
|  | // Clear SNF done flag | 
|  | nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_PG_DONE); | 
|  | nfi_write32(snf, SNF_STA_CTL1, 0); | 
|  |  | 
|  | // Disable interrupt | 
|  | nfi_read32(snf, NFI_INTR_STA); | 
|  | nfi_write32(snf, NFI_INTR_EN, 0); | 
|  |  | 
|  | nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_CUSTOM_EN, 0); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mtk_snand_is_page_ops() - check if the op is a controller supported page op. | 
|  | * @op spi-mem op to check | 
|  | * | 
|  | * Check whether op can be executed with read_from_cache or program_load | 
|  | * mode in the controller. | 
|  | * This controller can execute typical Read From Cache and Program Load | 
|  | * instructions found on SPI-NAND with 2-byte address. | 
|  | * DTR and cmd buswidth & nbytes should be checked before calling this. | 
|  | * | 
|  | * Return: true if the op matches the instruction template | 
|  | */ | 
|  | static bool mtk_snand_is_page_ops(const struct spi_mem_op *op) | 
|  | { | 
|  | if (op->addr.nbytes != 2) | 
|  | return false; | 
|  |  | 
|  | if (op->addr.buswidth != 1 && op->addr.buswidth != 2 && | 
|  | op->addr.buswidth != 4) | 
|  | return false; | 
|  |  | 
|  | // match read from page instructions | 
|  | if (op->data.dir == SPI_MEM_DATA_IN) { | 
|  | // check dummy cycle first | 
|  | if (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth > | 
|  | DATA_READ_MAX_DUMMY) | 
|  | return false; | 
|  | // quad io / quad out | 
|  | if ((op->addr.buswidth == 4 || op->addr.buswidth == 1) && | 
|  | op->data.buswidth == 4) | 
|  | return true; | 
|  |  | 
|  | // dual io / dual out | 
|  | if ((op->addr.buswidth == 2 || op->addr.buswidth == 1) && | 
|  | op->data.buswidth == 2) | 
|  | return true; | 
|  |  | 
|  | // standard spi | 
|  | if (op->addr.buswidth == 1 && op->data.buswidth == 1) | 
|  | return true; | 
|  | } else if (op->data.dir == SPI_MEM_DATA_OUT) { | 
|  | // check dummy cycle first | 
|  | if (op->dummy.nbytes) | 
|  | return false; | 
|  | // program load quad out | 
|  | if (op->addr.buswidth == 1 && op->data.buswidth == 4) | 
|  | return true; | 
|  | // standard spi | 
|  | if (op->addr.buswidth == 1 && op->data.buswidth == 1) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool mtk_snand_supports_op(struct spi_mem *mem, | 
|  | const struct spi_mem_op *op) | 
|  | { | 
|  | if (!spi_mem_default_supports_op(mem, op)) | 
|  | return false; | 
|  | if (op->cmd.nbytes != 1 || op->cmd.buswidth != 1) | 
|  | return false; | 
|  | if (mtk_snand_is_page_ops(op)) | 
|  | return true; | 
|  | return ((op->addr.nbytes == 0 || op->addr.buswidth == 1) && | 
|  | (op->dummy.nbytes == 0 || op->dummy.buswidth == 1) && | 
|  | (op->data.nbytes == 0 || op->data.buswidth == 1)); | 
|  | } | 
|  |  | 
|  | static int mtk_snand_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) | 
|  | { | 
|  | struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master); | 
|  | // page ops transfer size must be exactly ((sector_size + spare_size) * | 
|  | // nsectors). Limit the op size if the caller requests more than that. | 
|  | // exec_op will read more than needed and discard the leftover if the | 
|  | // caller requests less data. | 
|  | if (mtk_snand_is_page_ops(op)) { | 
|  | size_t l; | 
|  | // skip adjust_op_size for page ops | 
|  | if (ms->autofmt) | 
|  | return 0; | 
|  | l = ms->caps->sector_size + ms->nfi_cfg.spare_size; | 
|  | l *= ms->nfi_cfg.nsectors; | 
|  | if (op->data.nbytes > l) | 
|  | op->data.nbytes = l; | 
|  | } else { | 
|  | size_t hl = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes; | 
|  |  | 
|  | if (hl >= SNF_GPRAM_SIZE) | 
|  | return -EOPNOTSUPP; | 
|  | if (op->data.nbytes > SNF_GPRAM_SIZE - hl) | 
|  | op->data.nbytes = SNF_GPRAM_SIZE - hl; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int mtk_snand_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) | 
|  | { | 
|  | struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master); | 
|  |  | 
|  | dev_dbg(ms->dev, "OP %02x ADDR %08llX@%d:%u DATA %d:%u", op->cmd.opcode, | 
|  | op->addr.val, op->addr.buswidth, op->addr.nbytes, | 
|  | op->data.buswidth, op->data.nbytes); | 
|  | if (mtk_snand_is_page_ops(op)) { | 
|  | if (op->data.dir == SPI_MEM_DATA_IN) | 
|  | return mtk_snand_read_page_cache(ms, op); | 
|  | else | 
|  | return mtk_snand_write_page_cache(ms, op); | 
|  | } else { | 
|  | return mtk_snand_mac_io(ms, op); | 
|  | } | 
|  | } | 
|  |  | 
|  | static const struct spi_controller_mem_ops mtk_snand_mem_ops = { | 
|  | .adjust_op_size = mtk_snand_adjust_op_size, | 
|  | .supports_op = mtk_snand_supports_op, | 
|  | .exec_op = mtk_snand_exec_op, | 
|  | }; | 
|  |  | 
|  | static const struct spi_controller_mem_caps mtk_snand_mem_caps = { | 
|  | .ecc = true, | 
|  | }; | 
|  |  | 
|  | static irqreturn_t mtk_snand_irq(int irq, void *id) | 
|  | { | 
|  | struct mtk_snand *snf = id; | 
|  | u32 sta, ien; | 
|  |  | 
|  | sta = nfi_read32(snf, NFI_INTR_STA); | 
|  | ien = nfi_read32(snf, NFI_INTR_EN); | 
|  |  | 
|  | if (!(sta & ien)) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | nfi_write32(snf, NFI_INTR_EN, 0); | 
|  | complete(&snf->op_done); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static const struct of_device_id mtk_snand_ids[] = { | 
|  | { .compatible = "mediatek,mt7622-snand", .data = &mt7622_snand_caps }, | 
|  | { .compatible = "mediatek,mt7629-snand", .data = &mt7629_snand_caps }, | 
|  | { .compatible = "mediatek,mt7986-snand", .data = &mt7986_snand_caps }, | 
|  | {}, | 
|  | }; | 
|  |  | 
|  | MODULE_DEVICE_TABLE(of, mtk_snand_ids); | 
|  |  | 
|  | static int mtk_snand_enable_clk(struct mtk_snand *ms) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = clk_prepare_enable(ms->nfi_clk); | 
|  | if (ret) { | 
|  | dev_err(ms->dev, "unable to enable nfi clk\n"); | 
|  | return ret; | 
|  | } | 
|  | ret = clk_prepare_enable(ms->pad_clk); | 
|  | if (ret) { | 
|  | dev_err(ms->dev, "unable to enable pad clk\n"); | 
|  | goto err1; | 
|  | } | 
|  | ret = clk_prepare_enable(ms->nfi_hclk); | 
|  | if (ret) { | 
|  | dev_err(ms->dev, "unable to enable nfi hclk\n"); | 
|  | goto err2; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err2: | 
|  | clk_disable_unprepare(ms->pad_clk); | 
|  | err1: | 
|  | clk_disable_unprepare(ms->nfi_clk); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void mtk_snand_disable_clk(struct mtk_snand *ms) | 
|  | { | 
|  | clk_disable_unprepare(ms->nfi_hclk); | 
|  | clk_disable_unprepare(ms->pad_clk); | 
|  | clk_disable_unprepare(ms->nfi_clk); | 
|  | } | 
|  |  | 
|  | static int mtk_snand_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct device_node *np = pdev->dev.of_node; | 
|  | const struct of_device_id *dev_id; | 
|  | struct spi_controller *ctlr; | 
|  | struct mtk_snand *ms; | 
|  | unsigned long spi_freq; | 
|  | u32 val = 0; | 
|  | int ret; | 
|  |  | 
|  | dev_id = of_match_node(mtk_snand_ids, np); | 
|  | if (!dev_id) | 
|  | return -EINVAL; | 
|  |  | 
|  | ctlr = devm_spi_alloc_master(&pdev->dev, sizeof(*ms)); | 
|  | if (!ctlr) | 
|  | return -ENOMEM; | 
|  | platform_set_drvdata(pdev, ctlr); | 
|  |  | 
|  | ms = spi_controller_get_devdata(ctlr); | 
|  |  | 
|  | ms->ctlr = ctlr; | 
|  | ms->caps = dev_id->data; | 
|  |  | 
|  | ms->ecc = of_mtk_ecc_get(np); | 
|  | if (IS_ERR(ms->ecc)) | 
|  | return PTR_ERR(ms->ecc); | 
|  | else if (!ms->ecc) | 
|  | return -ENODEV; | 
|  |  | 
|  | ms->nfi_base = devm_platform_ioremap_resource(pdev, 0); | 
|  | if (IS_ERR(ms->nfi_base)) { | 
|  | ret = PTR_ERR(ms->nfi_base); | 
|  | goto release_ecc; | 
|  | } | 
|  |  | 
|  | ms->dev = &pdev->dev; | 
|  |  | 
|  | ms->nfi_clk = devm_clk_get(&pdev->dev, "nfi_clk"); | 
|  | if (IS_ERR(ms->nfi_clk)) { | 
|  | ret = PTR_ERR(ms->nfi_clk); | 
|  | dev_err(&pdev->dev, "unable to get nfi_clk, err = %d\n", ret); | 
|  | goto release_ecc; | 
|  | } | 
|  |  | 
|  | ms->pad_clk = devm_clk_get(&pdev->dev, "pad_clk"); | 
|  | if (IS_ERR(ms->pad_clk)) { | 
|  | ret = PTR_ERR(ms->pad_clk); | 
|  | dev_err(&pdev->dev, "unable to get pad_clk, err = %d\n", ret); | 
|  | goto release_ecc; | 
|  | } | 
|  |  | 
|  | ms->nfi_hclk = devm_clk_get_optional(&pdev->dev, "nfi_hclk"); | 
|  | if (IS_ERR(ms->nfi_hclk)) { | 
|  | ret = PTR_ERR(ms->nfi_hclk); | 
|  | dev_err(&pdev->dev, "unable to get nfi_hclk, err = %d\n", ret); | 
|  | goto release_ecc; | 
|  | } | 
|  |  | 
|  | ret = mtk_snand_enable_clk(ms); | 
|  | if (ret) | 
|  | goto release_ecc; | 
|  |  | 
|  | init_completion(&ms->op_done); | 
|  |  | 
|  | ms->irq = platform_get_irq(pdev, 0); | 
|  | if (ms->irq < 0) { | 
|  | ret = ms->irq; | 
|  | goto disable_clk; | 
|  | } | 
|  | ret = devm_request_irq(ms->dev, ms->irq, mtk_snand_irq, 0x0, | 
|  | "mtk-snand", ms); | 
|  | if (ret) { | 
|  | dev_err(ms->dev, "failed to request snfi irq\n"); | 
|  | goto disable_clk; | 
|  | } | 
|  |  | 
|  | ret = dma_set_mask(ms->dev, DMA_BIT_MASK(32)); | 
|  | if (ret) { | 
|  | dev_err(ms->dev, "failed to set dma mask\n"); | 
|  | goto disable_clk; | 
|  | } | 
|  |  | 
|  | // switch to SNFI mode | 
|  | nfi_write32(ms, SNF_CFG, SPI_MODE); | 
|  |  | 
|  | ret = of_property_read_u32(np, "rx-sample-delay-ns", &val); | 
|  | if (!ret) | 
|  | nfi_rmw32(ms, SNF_DLY_CTL3, SFCK_SAM_DLY, | 
|  | val * SFCK_SAM_DLY_RANGE / SFCK_SAM_DLY_TOTAL); | 
|  |  | 
|  | ret = of_property_read_u32(np, "mediatek,rx-latch-latency-ns", &val); | 
|  | if (!ret) { | 
|  | spi_freq = clk_get_rate(ms->pad_clk); | 
|  | val = DIV_ROUND_CLOSEST(val, NSEC_PER_SEC / spi_freq); | 
|  | nfi_rmw32(ms, SNF_MISC_CTL, DATA_READ_LATCH_LAT, | 
|  | val << DATA_READ_LATCH_LAT_S); | 
|  | } | 
|  |  | 
|  | // setup an initial page format for ops matching page_cache_op template | 
|  | // before ECC is called. | 
|  | ret = mtk_snand_setup_pagefmt(ms, SZ_2K, SZ_64); | 
|  | if (ret) { | 
|  | dev_err(ms->dev, "failed to set initial page format\n"); | 
|  | goto disable_clk; | 
|  | } | 
|  |  | 
|  | // setup ECC engine | 
|  | ms->ecc_eng.dev = &pdev->dev; | 
|  | ms->ecc_eng.integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED; | 
|  | ms->ecc_eng.ops = &mtk_snfi_ecc_engine_ops; | 
|  | ms->ecc_eng.priv = ms; | 
|  |  | 
|  | ret = nand_ecc_register_on_host_hw_engine(&ms->ecc_eng); | 
|  | if (ret) { | 
|  | dev_err(&pdev->dev, "failed to register ecc engine.\n"); | 
|  | goto disable_clk; | 
|  | } | 
|  |  | 
|  | ctlr->num_chipselect = 1; | 
|  | ctlr->mem_ops = &mtk_snand_mem_ops; | 
|  | ctlr->mem_caps = &mtk_snand_mem_caps; | 
|  | ctlr->bits_per_word_mask = SPI_BPW_MASK(8); | 
|  | ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD; | 
|  | ctlr->dev.of_node = pdev->dev.of_node; | 
|  | ret = spi_register_controller(ctlr); | 
|  | if (ret) { | 
|  | dev_err(&pdev->dev, "spi_register_controller failed.\n"); | 
|  | goto disable_clk; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | disable_clk: | 
|  | mtk_snand_disable_clk(ms); | 
|  | release_ecc: | 
|  | mtk_ecc_release(ms->ecc); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void mtk_snand_remove(struct platform_device *pdev) | 
|  | { | 
|  | struct spi_controller *ctlr = platform_get_drvdata(pdev); | 
|  | struct mtk_snand *ms = spi_controller_get_devdata(ctlr); | 
|  |  | 
|  | spi_unregister_controller(ctlr); | 
|  | mtk_snand_disable_clk(ms); | 
|  | mtk_ecc_release(ms->ecc); | 
|  | kfree(ms->buf); | 
|  | } | 
|  |  | 
|  | static struct platform_driver mtk_snand_driver = { | 
|  | .probe = mtk_snand_probe, | 
|  | .remove_new = mtk_snand_remove, | 
|  | .driver = { | 
|  | .name = "mtk-snand", | 
|  | .of_match_table = mtk_snand_ids, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | module_platform_driver(mtk_snand_driver); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("Chuanhong Guo <gch981213@gmail.com>"); | 
|  | MODULE_DESCRIPTION("MeidaTek SPI-NAND Flash Controller Driver"); |