|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | *  linux/mm/swap_state.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
|  | *  Swap reorganised 29.12.95, Stephen Tweedie | 
|  | * | 
|  | *  Rewritten to use page cache, (C) 1998 Stephen Tweedie | 
|  | */ | 
|  | #include <linux/mm.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include <linux/migrate.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/swap_slots.h> | 
|  | #include <linux/huge_mm.h> | 
|  | #include <linux/shmem_fs.h> | 
|  | #include "internal.h" | 
|  | #include "swap.h" | 
|  |  | 
|  | /* | 
|  | * swapper_space is a fiction, retained to simplify the path through | 
|  | * vmscan's shrink_page_list. | 
|  | */ | 
|  | static const struct address_space_operations swap_aops = { | 
|  | .writepage	= swap_writepage, | 
|  | .dirty_folio	= noop_dirty_folio, | 
|  | #ifdef CONFIG_MIGRATION | 
|  | .migrate_folio	= migrate_folio, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly; | 
|  | static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly; | 
|  | static bool enable_vma_readahead __read_mostly = true; | 
|  |  | 
|  | #define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2) | 
|  | #define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1) | 
|  | #define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK | 
|  | #define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK) | 
|  |  | 
|  | #define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK) | 
|  | #define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT) | 
|  | #define SWAP_RA_ADDR(v)		((v) & PAGE_MASK) | 
|  |  | 
|  | #define SWAP_RA_VAL(addr, win, hits)				\ | 
|  | (((addr) & PAGE_MASK) |					\ | 
|  | (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\ | 
|  | ((hits) & SWAP_RA_HITS_MASK)) | 
|  |  | 
|  | /* Initial readahead hits is 4 to start up with a small window */ | 
|  | #define GET_SWAP_RA_VAL(vma)					\ | 
|  | (atomic_long_read(&(vma)->swap_readahead_info) ? : 4) | 
|  |  | 
|  | static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); | 
|  |  | 
|  | void show_swap_cache_info(void) | 
|  | { | 
|  | printk("%lu pages in swap cache\n", total_swapcache_pages()); | 
|  | printk("Free swap  = %ldkB\n", | 
|  | get_nr_swap_pages() << (PAGE_SHIFT - 10)); | 
|  | printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); | 
|  | } | 
|  |  | 
|  | void *get_shadow_from_swap_cache(swp_entry_t entry) | 
|  | { | 
|  | struct address_space *address_space = swap_address_space(entry); | 
|  | pgoff_t idx = swp_offset(entry); | 
|  | struct page *page; | 
|  |  | 
|  | page = xa_load(&address_space->i_pages, idx); | 
|  | if (xa_is_value(page)) | 
|  | return page; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * add_to_swap_cache resembles filemap_add_folio on swapper_space, | 
|  | * but sets SwapCache flag and private instead of mapping and index. | 
|  | */ | 
|  | int add_to_swap_cache(struct folio *folio, swp_entry_t entry, | 
|  | gfp_t gfp, void **shadowp) | 
|  | { | 
|  | struct address_space *address_space = swap_address_space(entry); | 
|  | pgoff_t idx = swp_offset(entry); | 
|  | XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio)); | 
|  | unsigned long i, nr = folio_nr_pages(folio); | 
|  | void *old; | 
|  |  | 
|  | xas_set_update(&xas, workingset_update_node); | 
|  |  | 
|  | VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); | 
|  | VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); | 
|  | VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); | 
|  |  | 
|  | folio_ref_add(folio, nr); | 
|  | folio_set_swapcache(folio); | 
|  |  | 
|  | do { | 
|  | xas_lock_irq(&xas); | 
|  | xas_create_range(&xas); | 
|  | if (xas_error(&xas)) | 
|  | goto unlock; | 
|  | for (i = 0; i < nr; i++) { | 
|  | VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio); | 
|  | old = xas_load(&xas); | 
|  | if (xa_is_value(old)) { | 
|  | if (shadowp) | 
|  | *shadowp = old; | 
|  | } | 
|  | set_page_private(folio_page(folio, i), entry.val + i); | 
|  | xas_store(&xas, folio); | 
|  | xas_next(&xas); | 
|  | } | 
|  | address_space->nrpages += nr; | 
|  | __node_stat_mod_folio(folio, NR_FILE_PAGES, nr); | 
|  | __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr); | 
|  | unlock: | 
|  | xas_unlock_irq(&xas); | 
|  | } while (xas_nomem(&xas, gfp)); | 
|  |  | 
|  | if (!xas_error(&xas)) | 
|  | return 0; | 
|  |  | 
|  | folio_clear_swapcache(folio); | 
|  | folio_ref_sub(folio, nr); | 
|  | return xas_error(&xas); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This must be called only on folios that have | 
|  | * been verified to be in the swap cache. | 
|  | */ | 
|  | void __delete_from_swap_cache(struct folio *folio, | 
|  | swp_entry_t entry, void *shadow) | 
|  | { | 
|  | struct address_space *address_space = swap_address_space(entry); | 
|  | int i; | 
|  | long nr = folio_nr_pages(folio); | 
|  | pgoff_t idx = swp_offset(entry); | 
|  | XA_STATE(xas, &address_space->i_pages, idx); | 
|  |  | 
|  | xas_set_update(&xas, workingset_update_node); | 
|  |  | 
|  | VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); | 
|  | VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio); | 
|  | VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); | 
|  |  | 
|  | for (i = 0; i < nr; i++) { | 
|  | void *entry = xas_store(&xas, shadow); | 
|  | VM_BUG_ON_PAGE(entry != folio, entry); | 
|  | set_page_private(folio_page(folio, i), 0); | 
|  | xas_next(&xas); | 
|  | } | 
|  | folio_clear_swapcache(folio); | 
|  | address_space->nrpages -= nr; | 
|  | __node_stat_mod_folio(folio, NR_FILE_PAGES, -nr); | 
|  | __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * add_to_swap - allocate swap space for a folio | 
|  | * @folio: folio we want to move to swap | 
|  | * | 
|  | * Allocate swap space for the folio and add the folio to the | 
|  | * swap cache. | 
|  | * | 
|  | * Context: Caller needs to hold the folio lock. | 
|  | * Return: Whether the folio was added to the swap cache. | 
|  | */ | 
|  | bool add_to_swap(struct folio *folio) | 
|  | { | 
|  | swp_entry_t entry; | 
|  | int err; | 
|  |  | 
|  | VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); | 
|  | VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio); | 
|  |  | 
|  | entry = folio_alloc_swap(folio); | 
|  | if (!entry.val) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * XArray node allocations from PF_MEMALLOC contexts could | 
|  | * completely exhaust the page allocator. __GFP_NOMEMALLOC | 
|  | * stops emergency reserves from being allocated. | 
|  | * | 
|  | * TODO: this could cause a theoretical memory reclaim | 
|  | * deadlock in the swap out path. | 
|  | */ | 
|  | /* | 
|  | * Add it to the swap cache. | 
|  | */ | 
|  | err = add_to_swap_cache(folio, entry, | 
|  | __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL); | 
|  | if (err) | 
|  | /* | 
|  | * add_to_swap_cache() doesn't return -EEXIST, so we can safely | 
|  | * clear SWAP_HAS_CACHE flag. | 
|  | */ | 
|  | goto fail; | 
|  | /* | 
|  | * Normally the folio will be dirtied in unmap because its | 
|  | * pte should be dirty. A special case is MADV_FREE page. The | 
|  | * page's pte could have dirty bit cleared but the folio's | 
|  | * SwapBacked flag is still set because clearing the dirty bit | 
|  | * and SwapBacked flag has no lock protected. For such folio, | 
|  | * unmap will not set dirty bit for it, so folio reclaim will | 
|  | * not write the folio out. This can cause data corruption when | 
|  | * the folio is swapped in later. Always setting the dirty flag | 
|  | * for the folio solves the problem. | 
|  | */ | 
|  | folio_mark_dirty(folio); | 
|  |  | 
|  | return true; | 
|  |  | 
|  | fail: | 
|  | put_swap_folio(folio, entry); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This must be called only on folios that have | 
|  | * been verified to be in the swap cache and locked. | 
|  | * It will never put the folio into the free list, | 
|  | * the caller has a reference on the folio. | 
|  | */ | 
|  | void delete_from_swap_cache(struct folio *folio) | 
|  | { | 
|  | swp_entry_t entry = folio_swap_entry(folio); | 
|  | struct address_space *address_space = swap_address_space(entry); | 
|  |  | 
|  | xa_lock_irq(&address_space->i_pages); | 
|  | __delete_from_swap_cache(folio, entry, NULL); | 
|  | xa_unlock_irq(&address_space->i_pages); | 
|  |  | 
|  | put_swap_folio(folio, entry); | 
|  | folio_ref_sub(folio, folio_nr_pages(folio)); | 
|  | } | 
|  |  | 
|  | void clear_shadow_from_swap_cache(int type, unsigned long begin, | 
|  | unsigned long end) | 
|  | { | 
|  | unsigned long curr = begin; | 
|  | void *old; | 
|  |  | 
|  | for (;;) { | 
|  | swp_entry_t entry = swp_entry(type, curr); | 
|  | struct address_space *address_space = swap_address_space(entry); | 
|  | XA_STATE(xas, &address_space->i_pages, curr); | 
|  |  | 
|  | xas_set_update(&xas, workingset_update_node); | 
|  |  | 
|  | xa_lock_irq(&address_space->i_pages); | 
|  | xas_for_each(&xas, old, end) { | 
|  | if (!xa_is_value(old)) | 
|  | continue; | 
|  | xas_store(&xas, NULL); | 
|  | } | 
|  | xa_unlock_irq(&address_space->i_pages); | 
|  |  | 
|  | /* search the next swapcache until we meet end */ | 
|  | curr >>= SWAP_ADDRESS_SPACE_SHIFT; | 
|  | curr++; | 
|  | curr <<= SWAP_ADDRESS_SPACE_SHIFT; | 
|  | if (curr > end) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we are the only user, then try to free up the swap cache. | 
|  | * | 
|  | * Its ok to check the swapcache flag without the folio lock | 
|  | * here because we are going to recheck again inside | 
|  | * folio_free_swap() _with_ the lock. | 
|  | * 					- Marcelo | 
|  | */ | 
|  | void free_swap_cache(struct page *page) | 
|  | { | 
|  | struct folio *folio = page_folio(page); | 
|  |  | 
|  | if (folio_test_swapcache(folio) && !folio_mapped(folio) && | 
|  | folio_trylock(folio)) { | 
|  | folio_free_swap(folio); | 
|  | folio_unlock(folio); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Perform a free_page(), also freeing any swap cache associated with | 
|  | * this page if it is the last user of the page. | 
|  | */ | 
|  | void free_page_and_swap_cache(struct page *page) | 
|  | { | 
|  | free_swap_cache(page); | 
|  | if (!is_huge_zero_page(page)) | 
|  | put_page(page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Passed an array of pages, drop them all from swapcache and then release | 
|  | * them.  They are removed from the LRU and freed if this is their last use. | 
|  | */ | 
|  | void free_pages_and_swap_cache(struct encoded_page **pages, int nr) | 
|  | { | 
|  | lru_add_drain(); | 
|  | for (int i = 0; i < nr; i++) | 
|  | free_swap_cache(encoded_page_ptr(pages[i])); | 
|  | release_pages(pages, nr); | 
|  | } | 
|  |  | 
|  | static inline bool swap_use_vma_readahead(void) | 
|  | { | 
|  | return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lookup a swap entry in the swap cache. A found folio will be returned | 
|  | * unlocked and with its refcount incremented - we rely on the kernel | 
|  | * lock getting page table operations atomic even if we drop the folio | 
|  | * lock before returning. | 
|  | * | 
|  | * Caller must lock the swap device or hold a reference to keep it valid. | 
|  | */ | 
|  | struct folio *swap_cache_get_folio(swp_entry_t entry, | 
|  | struct vm_area_struct *vma, unsigned long addr) | 
|  | { | 
|  | struct folio *folio; | 
|  |  | 
|  | folio = filemap_get_folio(swap_address_space(entry), swp_offset(entry)); | 
|  | if (!IS_ERR(folio)) { | 
|  | bool vma_ra = swap_use_vma_readahead(); | 
|  | bool readahead; | 
|  |  | 
|  | /* | 
|  | * At the moment, we don't support PG_readahead for anon THP | 
|  | * so let's bail out rather than confusing the readahead stat. | 
|  | */ | 
|  | if (unlikely(folio_test_large(folio))) | 
|  | return folio; | 
|  |  | 
|  | readahead = folio_test_clear_readahead(folio); | 
|  | if (vma && vma_ra) { | 
|  | unsigned long ra_val; | 
|  | int win, hits; | 
|  |  | 
|  | ra_val = GET_SWAP_RA_VAL(vma); | 
|  | win = SWAP_RA_WIN(ra_val); | 
|  | hits = SWAP_RA_HITS(ra_val); | 
|  | if (readahead) | 
|  | hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX); | 
|  | atomic_long_set(&vma->swap_readahead_info, | 
|  | SWAP_RA_VAL(addr, win, hits)); | 
|  | } | 
|  |  | 
|  | if (readahead) { | 
|  | count_vm_event(SWAP_RA_HIT); | 
|  | if (!vma || !vma_ra) | 
|  | atomic_inc(&swapin_readahead_hits); | 
|  | } | 
|  | } else { | 
|  | folio = NULL; | 
|  | } | 
|  |  | 
|  | return folio; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * filemap_get_incore_folio - Find and get a folio from the page or swap caches. | 
|  | * @mapping: The address_space to search. | 
|  | * @index: The page cache index. | 
|  | * | 
|  | * This differs from filemap_get_folio() in that it will also look for the | 
|  | * folio in the swap cache. | 
|  | * | 
|  | * Return: The found folio or %NULL. | 
|  | */ | 
|  | struct folio *filemap_get_incore_folio(struct address_space *mapping, | 
|  | pgoff_t index) | 
|  | { | 
|  | swp_entry_t swp; | 
|  | struct swap_info_struct *si; | 
|  | struct folio *folio = filemap_get_entry(mapping, index); | 
|  |  | 
|  | if (!folio) | 
|  | return ERR_PTR(-ENOENT); | 
|  | if (!xa_is_value(folio)) | 
|  | return folio; | 
|  | if (!shmem_mapping(mapping)) | 
|  | return ERR_PTR(-ENOENT); | 
|  |  | 
|  | swp = radix_to_swp_entry(folio); | 
|  | /* There might be swapin error entries in shmem mapping. */ | 
|  | if (non_swap_entry(swp)) | 
|  | return ERR_PTR(-ENOENT); | 
|  | /* Prevent swapoff from happening to us */ | 
|  | si = get_swap_device(swp); | 
|  | if (!si) | 
|  | return ERR_PTR(-ENOENT); | 
|  | index = swp_offset(swp); | 
|  | folio = filemap_get_folio(swap_address_space(swp), index); | 
|  | put_swap_device(si); | 
|  | return folio; | 
|  | } | 
|  |  | 
|  | struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, | 
|  | struct vm_area_struct *vma, unsigned long addr, | 
|  | bool *new_page_allocated) | 
|  | { | 
|  | struct swap_info_struct *si; | 
|  | struct folio *folio; | 
|  | void *shadow = NULL; | 
|  |  | 
|  | *new_page_allocated = false; | 
|  |  | 
|  | for (;;) { | 
|  | int err; | 
|  | /* | 
|  | * First check the swap cache.  Since this is normally | 
|  | * called after swap_cache_get_folio() failed, re-calling | 
|  | * that would confuse statistics. | 
|  | */ | 
|  | si = get_swap_device(entry); | 
|  | if (!si) | 
|  | return NULL; | 
|  | folio = filemap_get_folio(swap_address_space(entry), | 
|  | swp_offset(entry)); | 
|  | put_swap_device(si); | 
|  | if (!IS_ERR(folio)) | 
|  | return folio_file_page(folio, swp_offset(entry)); | 
|  |  | 
|  | /* | 
|  | * Just skip read ahead for unused swap slot. | 
|  | * During swap_off when swap_slot_cache is disabled, | 
|  | * we have to handle the race between putting | 
|  | * swap entry in swap cache and marking swap slot | 
|  | * as SWAP_HAS_CACHE.  That's done in later part of code or | 
|  | * else swap_off will be aborted if we return NULL. | 
|  | */ | 
|  | if (!__swp_swapcount(entry) && swap_slot_cache_enabled) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * Get a new page to read into from swap.  Allocate it now, | 
|  | * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will | 
|  | * cause any racers to loop around until we add it to cache. | 
|  | */ | 
|  | folio = vma_alloc_folio(gfp_mask, 0, vma, addr, false); | 
|  | if (!folio) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * Swap entry may have been freed since our caller observed it. | 
|  | */ | 
|  | err = swapcache_prepare(entry); | 
|  | if (!err) | 
|  | break; | 
|  |  | 
|  | folio_put(folio); | 
|  | if (err != -EEXIST) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * We might race against __delete_from_swap_cache(), and | 
|  | * stumble across a swap_map entry whose SWAP_HAS_CACHE | 
|  | * has not yet been cleared.  Or race against another | 
|  | * __read_swap_cache_async(), which has set SWAP_HAS_CACHE | 
|  | * in swap_map, but not yet added its page to swap cache. | 
|  | */ | 
|  | schedule_timeout_uninterruptible(1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The swap entry is ours to swap in. Prepare the new page. | 
|  | */ | 
|  |  | 
|  | __folio_set_locked(folio); | 
|  | __folio_set_swapbacked(folio); | 
|  |  | 
|  | if (mem_cgroup_swapin_charge_folio(folio, NULL, gfp_mask, entry)) | 
|  | goto fail_unlock; | 
|  |  | 
|  | /* May fail (-ENOMEM) if XArray node allocation failed. */ | 
|  | if (add_to_swap_cache(folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow)) | 
|  | goto fail_unlock; | 
|  |  | 
|  | mem_cgroup_swapin_uncharge_swap(entry); | 
|  |  | 
|  | if (shadow) | 
|  | workingset_refault(folio, shadow); | 
|  |  | 
|  | /* Caller will initiate read into locked folio */ | 
|  | folio_add_lru(folio); | 
|  | *new_page_allocated = true; | 
|  | return &folio->page; | 
|  |  | 
|  | fail_unlock: | 
|  | put_swap_folio(folio, entry); | 
|  | folio_unlock(folio); | 
|  | folio_put(folio); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Locate a page of swap in physical memory, reserving swap cache space | 
|  | * and reading the disk if it is not already cached. | 
|  | * A failure return means that either the page allocation failed or that | 
|  | * the swap entry is no longer in use. | 
|  | */ | 
|  | struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned long addr, bool do_poll, | 
|  | struct swap_iocb **plug) | 
|  | { | 
|  | bool page_was_allocated; | 
|  | struct page *retpage = __read_swap_cache_async(entry, gfp_mask, | 
|  | vma, addr, &page_was_allocated); | 
|  |  | 
|  | if (page_was_allocated) | 
|  | swap_readpage(retpage, do_poll, plug); | 
|  |  | 
|  | return retpage; | 
|  | } | 
|  |  | 
|  | static unsigned int __swapin_nr_pages(unsigned long prev_offset, | 
|  | unsigned long offset, | 
|  | int hits, | 
|  | int max_pages, | 
|  | int prev_win) | 
|  | { | 
|  | unsigned int pages, last_ra; | 
|  |  | 
|  | /* | 
|  | * This heuristic has been found to work well on both sequential and | 
|  | * random loads, swapping to hard disk or to SSD: please don't ask | 
|  | * what the "+ 2" means, it just happens to work well, that's all. | 
|  | */ | 
|  | pages = hits + 2; | 
|  | if (pages == 2) { | 
|  | /* | 
|  | * We can have no readahead hits to judge by: but must not get | 
|  | * stuck here forever, so check for an adjacent offset instead | 
|  | * (and don't even bother to check whether swap type is same). | 
|  | */ | 
|  | if (offset != prev_offset + 1 && offset != prev_offset - 1) | 
|  | pages = 1; | 
|  | } else { | 
|  | unsigned int roundup = 4; | 
|  | while (roundup < pages) | 
|  | roundup <<= 1; | 
|  | pages = roundup; | 
|  | } | 
|  |  | 
|  | if (pages > max_pages) | 
|  | pages = max_pages; | 
|  |  | 
|  | /* Don't shrink readahead too fast */ | 
|  | last_ra = prev_win / 2; | 
|  | if (pages < last_ra) | 
|  | pages = last_ra; | 
|  |  | 
|  | return pages; | 
|  | } | 
|  |  | 
|  | static unsigned long swapin_nr_pages(unsigned long offset) | 
|  | { | 
|  | static unsigned long prev_offset; | 
|  | unsigned int hits, pages, max_pages; | 
|  | static atomic_t last_readahead_pages; | 
|  |  | 
|  | max_pages = 1 << READ_ONCE(page_cluster); | 
|  | if (max_pages <= 1) | 
|  | return 1; | 
|  |  | 
|  | hits = atomic_xchg(&swapin_readahead_hits, 0); | 
|  | pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits, | 
|  | max_pages, | 
|  | atomic_read(&last_readahead_pages)); | 
|  | if (!hits) | 
|  | WRITE_ONCE(prev_offset, offset); | 
|  | atomic_set(&last_readahead_pages, pages); | 
|  |  | 
|  | return pages; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * swap_cluster_readahead - swap in pages in hope we need them soon | 
|  | * @entry: swap entry of this memory | 
|  | * @gfp_mask: memory allocation flags | 
|  | * @vmf: fault information | 
|  | * | 
|  | * Returns the struct page for entry and addr, after queueing swapin. | 
|  | * | 
|  | * Primitive swap readahead code. We simply read an aligned block of | 
|  | * (1 << page_cluster) entries in the swap area. This method is chosen | 
|  | * because it doesn't cost us any seek time.  We also make sure to queue | 
|  | * the 'original' request together with the readahead ones... | 
|  | * | 
|  | * This has been extended to use the NUMA policies from the mm triggering | 
|  | * the readahead. | 
|  | * | 
|  | * Caller must hold read mmap_lock if vmf->vma is not NULL. | 
|  | */ | 
|  | struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask, | 
|  | struct vm_fault *vmf) | 
|  | { | 
|  | struct page *page; | 
|  | unsigned long entry_offset = swp_offset(entry); | 
|  | unsigned long offset = entry_offset; | 
|  | unsigned long start_offset, end_offset; | 
|  | unsigned long mask; | 
|  | struct swap_info_struct *si = swp_swap_info(entry); | 
|  | struct blk_plug plug; | 
|  | struct swap_iocb *splug = NULL; | 
|  | bool do_poll = true, page_allocated; | 
|  | struct vm_area_struct *vma = vmf->vma; | 
|  | unsigned long addr = vmf->address; | 
|  |  | 
|  | mask = swapin_nr_pages(offset) - 1; | 
|  | if (!mask) | 
|  | goto skip; | 
|  |  | 
|  | do_poll = false; | 
|  | /* Read a page_cluster sized and aligned cluster around offset. */ | 
|  | start_offset = offset & ~mask; | 
|  | end_offset = offset | mask; | 
|  | if (!start_offset)	/* First page is swap header. */ | 
|  | start_offset++; | 
|  | if (end_offset >= si->max) | 
|  | end_offset = si->max - 1; | 
|  |  | 
|  | blk_start_plug(&plug); | 
|  | for (offset = start_offset; offset <= end_offset ; offset++) { | 
|  | /* Ok, do the async read-ahead now */ | 
|  | page = __read_swap_cache_async( | 
|  | swp_entry(swp_type(entry), offset), | 
|  | gfp_mask, vma, addr, &page_allocated); | 
|  | if (!page) | 
|  | continue; | 
|  | if (page_allocated) { | 
|  | swap_readpage(page, false, &splug); | 
|  | if (offset != entry_offset) { | 
|  | SetPageReadahead(page); | 
|  | count_vm_event(SWAP_RA); | 
|  | } | 
|  | } | 
|  | put_page(page); | 
|  | } | 
|  | blk_finish_plug(&plug); | 
|  | swap_read_unplug(splug); | 
|  |  | 
|  | lru_add_drain();	/* Push any new pages onto the LRU now */ | 
|  | skip: | 
|  | /* The page was likely read above, so no need for plugging here */ | 
|  | return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll, NULL); | 
|  | } | 
|  |  | 
|  | int init_swap_address_space(unsigned int type, unsigned long nr_pages) | 
|  | { | 
|  | struct address_space *spaces, *space; | 
|  | unsigned int i, nr; | 
|  |  | 
|  | nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES); | 
|  | spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL); | 
|  | if (!spaces) | 
|  | return -ENOMEM; | 
|  | for (i = 0; i < nr; i++) { | 
|  | space = spaces + i; | 
|  | xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ); | 
|  | atomic_set(&space->i_mmap_writable, 0); | 
|  | space->a_ops = &swap_aops; | 
|  | /* swap cache doesn't use writeback related tags */ | 
|  | mapping_set_no_writeback_tags(space); | 
|  | } | 
|  | nr_swapper_spaces[type] = nr; | 
|  | swapper_spaces[type] = spaces; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void exit_swap_address_space(unsigned int type) | 
|  | { | 
|  | int i; | 
|  | struct address_space *spaces = swapper_spaces[type]; | 
|  |  | 
|  | for (i = 0; i < nr_swapper_spaces[type]; i++) | 
|  | VM_WARN_ON_ONCE(!mapping_empty(&spaces[i])); | 
|  | kvfree(spaces); | 
|  | nr_swapper_spaces[type] = 0; | 
|  | swapper_spaces[type] = NULL; | 
|  | } | 
|  |  | 
|  | static void swap_ra_info(struct vm_fault *vmf, | 
|  | struct vma_swap_readahead *ra_info) | 
|  | { | 
|  | struct vm_area_struct *vma = vmf->vma; | 
|  | unsigned long ra_val; | 
|  | unsigned long faddr, pfn, fpfn, lpfn, rpfn; | 
|  | unsigned long start, end; | 
|  | pte_t *pte, *orig_pte; | 
|  | unsigned int max_win, hits, prev_win, win; | 
|  | #ifndef CONFIG_64BIT | 
|  | pte_t *tpte; | 
|  | #endif | 
|  |  | 
|  | max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster), | 
|  | SWAP_RA_ORDER_CEILING); | 
|  | if (max_win == 1) { | 
|  | ra_info->win = 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | faddr = vmf->address; | 
|  | fpfn = PFN_DOWN(faddr); | 
|  | ra_val = GET_SWAP_RA_VAL(vma); | 
|  | pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val)); | 
|  | prev_win = SWAP_RA_WIN(ra_val); | 
|  | hits = SWAP_RA_HITS(ra_val); | 
|  | ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits, | 
|  | max_win, prev_win); | 
|  | atomic_long_set(&vma->swap_readahead_info, | 
|  | SWAP_RA_VAL(faddr, win, 0)); | 
|  |  | 
|  | if (win == 1) | 
|  | return; | 
|  |  | 
|  | /* Copy the PTEs because the page table may be unmapped */ | 
|  | orig_pte = pte = pte_offset_map(vmf->pmd, faddr); | 
|  | if (fpfn == pfn + 1) { | 
|  | lpfn = fpfn; | 
|  | rpfn = fpfn + win; | 
|  | } else if (pfn == fpfn + 1) { | 
|  | lpfn = fpfn - win + 1; | 
|  | rpfn = fpfn + 1; | 
|  | } else { | 
|  | unsigned int left = (win - 1) / 2; | 
|  |  | 
|  | lpfn = fpfn - left; | 
|  | rpfn = fpfn + win - left; | 
|  | } | 
|  | start = max3(lpfn, PFN_DOWN(vma->vm_start), | 
|  | PFN_DOWN(faddr & PMD_MASK)); | 
|  | end = min3(rpfn, PFN_DOWN(vma->vm_end), | 
|  | PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE)); | 
|  |  | 
|  | ra_info->nr_pte = end - start; | 
|  | ra_info->offset = fpfn - start; | 
|  | pte -= ra_info->offset; | 
|  | #ifdef CONFIG_64BIT | 
|  | ra_info->ptes = pte; | 
|  | #else | 
|  | tpte = ra_info->ptes; | 
|  | for (pfn = start; pfn != end; pfn++) | 
|  | *tpte++ = *pte++; | 
|  | #endif | 
|  | pte_unmap(orig_pte); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * swap_vma_readahead - swap in pages in hope we need them soon | 
|  | * @fentry: swap entry of this memory | 
|  | * @gfp_mask: memory allocation flags | 
|  | * @vmf: fault information | 
|  | * | 
|  | * Returns the struct page for entry and addr, after queueing swapin. | 
|  | * | 
|  | * Primitive swap readahead code. We simply read in a few pages whose | 
|  | * virtual addresses are around the fault address in the same vma. | 
|  | * | 
|  | * Caller must hold read mmap_lock if vmf->vma is not NULL. | 
|  | * | 
|  | */ | 
|  | static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask, | 
|  | struct vm_fault *vmf) | 
|  | { | 
|  | struct blk_plug plug; | 
|  | struct swap_iocb *splug = NULL; | 
|  | struct vm_area_struct *vma = vmf->vma; | 
|  | struct page *page; | 
|  | pte_t *pte, pentry; | 
|  | swp_entry_t entry; | 
|  | unsigned int i; | 
|  | bool page_allocated; | 
|  | struct vma_swap_readahead ra_info = { | 
|  | .win = 1, | 
|  | }; | 
|  |  | 
|  | swap_ra_info(vmf, &ra_info); | 
|  | if (ra_info.win == 1) | 
|  | goto skip; | 
|  |  | 
|  | blk_start_plug(&plug); | 
|  | for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte; | 
|  | i++, pte++) { | 
|  | pentry = *pte; | 
|  | if (!is_swap_pte(pentry)) | 
|  | continue; | 
|  | entry = pte_to_swp_entry(pentry); | 
|  | if (unlikely(non_swap_entry(entry))) | 
|  | continue; | 
|  | page = __read_swap_cache_async(entry, gfp_mask, vma, | 
|  | vmf->address, &page_allocated); | 
|  | if (!page) | 
|  | continue; | 
|  | if (page_allocated) { | 
|  | swap_readpage(page, false, &splug); | 
|  | if (i != ra_info.offset) { | 
|  | SetPageReadahead(page); | 
|  | count_vm_event(SWAP_RA); | 
|  | } | 
|  | } | 
|  | put_page(page); | 
|  | } | 
|  | blk_finish_plug(&plug); | 
|  | swap_read_unplug(splug); | 
|  | lru_add_drain(); | 
|  | skip: | 
|  | /* The page was likely read above, so no need for plugging here */ | 
|  | return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address, | 
|  | ra_info.win == 1, NULL); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * swapin_readahead - swap in pages in hope we need them soon | 
|  | * @entry: swap entry of this memory | 
|  | * @gfp_mask: memory allocation flags | 
|  | * @vmf: fault information | 
|  | * | 
|  | * Returns the struct page for entry and addr, after queueing swapin. | 
|  | * | 
|  | * It's a main entry function for swap readahead. By the configuration, | 
|  | * it will read ahead blocks by cluster-based(ie, physical disk based) | 
|  | * or vma-based(ie, virtual address based on faulty address) readahead. | 
|  | */ | 
|  | struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, | 
|  | struct vm_fault *vmf) | 
|  | { | 
|  | return swap_use_vma_readahead() ? | 
|  | swap_vma_readahead(entry, gfp_mask, vmf) : | 
|  | swap_cluster_readahead(entry, gfp_mask, vmf); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SYSFS | 
|  | static ssize_t vma_ra_enabled_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | return sysfs_emit(buf, "%s\n", | 
|  | enable_vma_readahead ? "true" : "false"); | 
|  | } | 
|  | static ssize_t vma_ra_enabled_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | ssize_t ret; | 
|  |  | 
|  | ret = kstrtobool(buf, &enable_vma_readahead); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return count; | 
|  | } | 
|  | static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled); | 
|  |  | 
|  | static struct attribute *swap_attrs[] = { | 
|  | &vma_ra_enabled_attr.attr, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static const struct attribute_group swap_attr_group = { | 
|  | .attrs = swap_attrs, | 
|  | }; | 
|  |  | 
|  | static int __init swap_init_sysfs(void) | 
|  | { | 
|  | int err; | 
|  | struct kobject *swap_kobj; | 
|  |  | 
|  | swap_kobj = kobject_create_and_add("swap", mm_kobj); | 
|  | if (!swap_kobj) { | 
|  | pr_err("failed to create swap kobject\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | err = sysfs_create_group(swap_kobj, &swap_attr_group); | 
|  | if (err) { | 
|  | pr_err("failed to register swap group\n"); | 
|  | goto delete_obj; | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | delete_obj: | 
|  | kobject_put(swap_kobj); | 
|  | return err; | 
|  | } | 
|  | subsys_initcall(swap_init_sysfs); | 
|  | #endif |