|  | /* | 
|  | * SLOB Allocator: Simple List Of Blocks | 
|  | * | 
|  | * Matt Mackall <mpm@selenic.com> 12/30/03 | 
|  | * | 
|  | * NUMA support by Paul Mundt, 2007. | 
|  | * | 
|  | * How SLOB works: | 
|  | * | 
|  | * The core of SLOB is a traditional K&R style heap allocator, with | 
|  | * support for returning aligned objects. The granularity of this | 
|  | * allocator is as little as 2 bytes, however typically most architectures | 
|  | * will require 4 bytes on 32-bit and 8 bytes on 64-bit. | 
|  | * | 
|  | * The slob heap is a set of linked list of pages from alloc_pages(), | 
|  | * and within each page, there is a singly-linked list of free blocks | 
|  | * (slob_t). The heap is grown on demand. To reduce fragmentation, | 
|  | * heap pages are segregated into three lists, with objects less than | 
|  | * 256 bytes, objects less than 1024 bytes, and all other objects. | 
|  | * | 
|  | * Allocation from heap involves first searching for a page with | 
|  | * sufficient free blocks (using a next-fit-like approach) followed by | 
|  | * a first-fit scan of the page. Deallocation inserts objects back | 
|  | * into the free list in address order, so this is effectively an | 
|  | * address-ordered first fit. | 
|  | * | 
|  | * Above this is an implementation of kmalloc/kfree. Blocks returned | 
|  | * from kmalloc are prepended with a 4-byte header with the kmalloc size. | 
|  | * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls | 
|  | * alloc_pages() directly, allocating compound pages so the page order | 
|  | * does not have to be separately tracked. | 
|  | * These objects are detected in kfree() because PageSlab() | 
|  | * is false for them. | 
|  | * | 
|  | * SLAB is emulated on top of SLOB by simply calling constructors and | 
|  | * destructors for every SLAB allocation. Objects are returned with the | 
|  | * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which | 
|  | * case the low-level allocator will fragment blocks to create the proper | 
|  | * alignment. Again, objects of page-size or greater are allocated by | 
|  | * calling alloc_pages(). As SLAB objects know their size, no separate | 
|  | * size bookkeeping is necessary and there is essentially no allocation | 
|  | * space overhead, and compound pages aren't needed for multi-page | 
|  | * allocations. | 
|  | * | 
|  | * NUMA support in SLOB is fairly simplistic, pushing most of the real | 
|  | * logic down to the page allocator, and simply doing the node accounting | 
|  | * on the upper levels. In the event that a node id is explicitly | 
|  | * provided, alloc_pages_exact_node() with the specified node id is used | 
|  | * instead. The common case (or when the node id isn't explicitly provided) | 
|  | * will default to the current node, as per numa_node_id(). | 
|  | * | 
|  | * Node aware pages are still inserted in to the global freelist, and | 
|  | * these are scanned for by matching against the node id encoded in the | 
|  | * page flags. As a result, block allocations that can be satisfied from | 
|  | * the freelist will only be done so on pages residing on the same node, | 
|  | * in order to prevent random node placement. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/swap.h> /* struct reclaim_state */ | 
|  | #include <linux/cache.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/kmemleak.h> | 
|  |  | 
|  | #include <trace/events/kmem.h> | 
|  |  | 
|  | #include <linux/atomic.h> | 
|  |  | 
|  | #include "slab.h" | 
|  | /* | 
|  | * slob_block has a field 'units', which indicates size of block if +ve, | 
|  | * or offset of next block if -ve (in SLOB_UNITs). | 
|  | * | 
|  | * Free blocks of size 1 unit simply contain the offset of the next block. | 
|  | * Those with larger size contain their size in the first SLOB_UNIT of | 
|  | * memory, and the offset of the next free block in the second SLOB_UNIT. | 
|  | */ | 
|  | #if PAGE_SIZE <= (32767 * 2) | 
|  | typedef s16 slobidx_t; | 
|  | #else | 
|  | typedef s32 slobidx_t; | 
|  | #endif | 
|  |  | 
|  | struct slob_block { | 
|  | slobidx_t units; | 
|  | }; | 
|  | typedef struct slob_block slob_t; | 
|  |  | 
|  | /* | 
|  | * All partially free slob pages go on these lists. | 
|  | */ | 
|  | #define SLOB_BREAK1 256 | 
|  | #define SLOB_BREAK2 1024 | 
|  | static LIST_HEAD(free_slob_small); | 
|  | static LIST_HEAD(free_slob_medium); | 
|  | static LIST_HEAD(free_slob_large); | 
|  |  | 
|  | /* | 
|  | * slob_page_free: true for pages on free_slob_pages list. | 
|  | */ | 
|  | static inline int slob_page_free(struct page *sp) | 
|  | { | 
|  | return PageSlobFree(sp); | 
|  | } | 
|  |  | 
|  | static void set_slob_page_free(struct page *sp, struct list_head *list) | 
|  | { | 
|  | list_add(&sp->list, list); | 
|  | __SetPageSlobFree(sp); | 
|  | } | 
|  |  | 
|  | static inline void clear_slob_page_free(struct page *sp) | 
|  | { | 
|  | list_del(&sp->list); | 
|  | __ClearPageSlobFree(sp); | 
|  | } | 
|  |  | 
|  | #define SLOB_UNIT sizeof(slob_t) | 
|  | #define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT) | 
|  |  | 
|  | /* | 
|  | * struct slob_rcu is inserted at the tail of allocated slob blocks, which | 
|  | * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free | 
|  | * the block using call_rcu. | 
|  | */ | 
|  | struct slob_rcu { | 
|  | struct rcu_head head; | 
|  | int size; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * slob_lock protects all slob allocator structures. | 
|  | */ | 
|  | static DEFINE_SPINLOCK(slob_lock); | 
|  |  | 
|  | /* | 
|  | * Encode the given size and next info into a free slob block s. | 
|  | */ | 
|  | static void set_slob(slob_t *s, slobidx_t size, slob_t *next) | 
|  | { | 
|  | slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK); | 
|  | slobidx_t offset = next - base; | 
|  |  | 
|  | if (size > 1) { | 
|  | s[0].units = size; | 
|  | s[1].units = offset; | 
|  | } else | 
|  | s[0].units = -offset; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the size of a slob block. | 
|  | */ | 
|  | static slobidx_t slob_units(slob_t *s) | 
|  | { | 
|  | if (s->units > 0) | 
|  | return s->units; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the next free slob block pointer after this one. | 
|  | */ | 
|  | static slob_t *slob_next(slob_t *s) | 
|  | { | 
|  | slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK); | 
|  | slobidx_t next; | 
|  |  | 
|  | if (s[0].units < 0) | 
|  | next = -s[0].units; | 
|  | else | 
|  | next = s[1].units; | 
|  | return base+next; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns true if s is the last free block in its page. | 
|  | */ | 
|  | static int slob_last(slob_t *s) | 
|  | { | 
|  | return !((unsigned long)slob_next(s) & ~PAGE_MASK); | 
|  | } | 
|  |  | 
|  | static void *slob_new_pages(gfp_t gfp, int order, int node) | 
|  | { | 
|  | void *page; | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | if (node != NUMA_NO_NODE) | 
|  | page = alloc_pages_exact_node(node, gfp, order); | 
|  | else | 
|  | #endif | 
|  | page = alloc_pages(gfp, order); | 
|  |  | 
|  | if (!page) | 
|  | return NULL; | 
|  |  | 
|  | return page_address(page); | 
|  | } | 
|  |  | 
|  | static void slob_free_pages(void *b, int order) | 
|  | { | 
|  | if (current->reclaim_state) | 
|  | current->reclaim_state->reclaimed_slab += 1 << order; | 
|  | free_pages((unsigned long)b, order); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a slob block within a given slob_page sp. | 
|  | */ | 
|  | static void *slob_page_alloc(struct page *sp, size_t size, int align) | 
|  | { | 
|  | slob_t *prev, *cur, *aligned = NULL; | 
|  | int delta = 0, units = SLOB_UNITS(size); | 
|  |  | 
|  | for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) { | 
|  | slobidx_t avail = slob_units(cur); | 
|  |  | 
|  | if (align) { | 
|  | aligned = (slob_t *)ALIGN((unsigned long)cur, align); | 
|  | delta = aligned - cur; | 
|  | } | 
|  | if (avail >= units + delta) { /* room enough? */ | 
|  | slob_t *next; | 
|  |  | 
|  | if (delta) { /* need to fragment head to align? */ | 
|  | next = slob_next(cur); | 
|  | set_slob(aligned, avail - delta, next); | 
|  | set_slob(cur, delta, aligned); | 
|  | prev = cur; | 
|  | cur = aligned; | 
|  | avail = slob_units(cur); | 
|  | } | 
|  |  | 
|  | next = slob_next(cur); | 
|  | if (avail == units) { /* exact fit? unlink. */ | 
|  | if (prev) | 
|  | set_slob(prev, slob_units(prev), next); | 
|  | else | 
|  | sp->freelist = next; | 
|  | } else { /* fragment */ | 
|  | if (prev) | 
|  | set_slob(prev, slob_units(prev), cur + units); | 
|  | else | 
|  | sp->freelist = cur + units; | 
|  | set_slob(cur + units, avail - units, next); | 
|  | } | 
|  |  | 
|  | sp->units -= units; | 
|  | if (!sp->units) | 
|  | clear_slob_page_free(sp); | 
|  | return cur; | 
|  | } | 
|  | if (slob_last(cur)) | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * slob_alloc: entry point into the slob allocator. | 
|  | */ | 
|  | static void *slob_alloc(size_t size, gfp_t gfp, int align, int node) | 
|  | { | 
|  | struct page *sp; | 
|  | struct list_head *prev; | 
|  | struct list_head *slob_list; | 
|  | slob_t *b = NULL; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (size < SLOB_BREAK1) | 
|  | slob_list = &free_slob_small; | 
|  | else if (size < SLOB_BREAK2) | 
|  | slob_list = &free_slob_medium; | 
|  | else | 
|  | slob_list = &free_slob_large; | 
|  |  | 
|  | spin_lock_irqsave(&slob_lock, flags); | 
|  | /* Iterate through each partially free page, try to find room */ | 
|  | list_for_each_entry(sp, slob_list, list) { | 
|  | #ifdef CONFIG_NUMA | 
|  | /* | 
|  | * If there's a node specification, search for a partial | 
|  | * page with a matching node id in the freelist. | 
|  | */ | 
|  | if (node != NUMA_NO_NODE && page_to_nid(sp) != node) | 
|  | continue; | 
|  | #endif | 
|  | /* Enough room on this page? */ | 
|  | if (sp->units < SLOB_UNITS(size)) | 
|  | continue; | 
|  |  | 
|  | /* Attempt to alloc */ | 
|  | prev = sp->list.prev; | 
|  | b = slob_page_alloc(sp, size, align); | 
|  | if (!b) | 
|  | continue; | 
|  |  | 
|  | /* Improve fragment distribution and reduce our average | 
|  | * search time by starting our next search here. (see | 
|  | * Knuth vol 1, sec 2.5, pg 449) */ | 
|  | if (prev != slob_list->prev && | 
|  | slob_list->next != prev->next) | 
|  | list_move_tail(slob_list, prev->next); | 
|  | break; | 
|  | } | 
|  | spin_unlock_irqrestore(&slob_lock, flags); | 
|  |  | 
|  | /* Not enough space: must allocate a new page */ | 
|  | if (!b) { | 
|  | b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node); | 
|  | if (!b) | 
|  | return NULL; | 
|  | sp = virt_to_page(b); | 
|  | __SetPageSlab(sp); | 
|  |  | 
|  | spin_lock_irqsave(&slob_lock, flags); | 
|  | sp->units = SLOB_UNITS(PAGE_SIZE); | 
|  | sp->freelist = b; | 
|  | INIT_LIST_HEAD(&sp->list); | 
|  | set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE)); | 
|  | set_slob_page_free(sp, slob_list); | 
|  | b = slob_page_alloc(sp, size, align); | 
|  | BUG_ON(!b); | 
|  | spin_unlock_irqrestore(&slob_lock, flags); | 
|  | } | 
|  | if (unlikely((gfp & __GFP_ZERO) && b)) | 
|  | memset(b, 0, size); | 
|  | return b; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * slob_free: entry point into the slob allocator. | 
|  | */ | 
|  | static void slob_free(void *block, int size) | 
|  | { | 
|  | struct page *sp; | 
|  | slob_t *prev, *next, *b = (slob_t *)block; | 
|  | slobidx_t units; | 
|  | unsigned long flags; | 
|  | struct list_head *slob_list; | 
|  |  | 
|  | if (unlikely(ZERO_OR_NULL_PTR(block))) | 
|  | return; | 
|  | BUG_ON(!size); | 
|  |  | 
|  | sp = virt_to_page(block); | 
|  | units = SLOB_UNITS(size); | 
|  |  | 
|  | spin_lock_irqsave(&slob_lock, flags); | 
|  |  | 
|  | if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) { | 
|  | /* Go directly to page allocator. Do not pass slob allocator */ | 
|  | if (slob_page_free(sp)) | 
|  | clear_slob_page_free(sp); | 
|  | spin_unlock_irqrestore(&slob_lock, flags); | 
|  | __ClearPageSlab(sp); | 
|  | page_mapcount_reset(sp); | 
|  | slob_free_pages(b, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!slob_page_free(sp)) { | 
|  | /* This slob page is about to become partially free. Easy! */ | 
|  | sp->units = units; | 
|  | sp->freelist = b; | 
|  | set_slob(b, units, | 
|  | (void *)((unsigned long)(b + | 
|  | SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK)); | 
|  | if (size < SLOB_BREAK1) | 
|  | slob_list = &free_slob_small; | 
|  | else if (size < SLOB_BREAK2) | 
|  | slob_list = &free_slob_medium; | 
|  | else | 
|  | slob_list = &free_slob_large; | 
|  | set_slob_page_free(sp, slob_list); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Otherwise the page is already partially free, so find reinsertion | 
|  | * point. | 
|  | */ | 
|  | sp->units += units; | 
|  |  | 
|  | if (b < (slob_t *)sp->freelist) { | 
|  | if (b + units == sp->freelist) { | 
|  | units += slob_units(sp->freelist); | 
|  | sp->freelist = slob_next(sp->freelist); | 
|  | } | 
|  | set_slob(b, units, sp->freelist); | 
|  | sp->freelist = b; | 
|  | } else { | 
|  | prev = sp->freelist; | 
|  | next = slob_next(prev); | 
|  | while (b > next) { | 
|  | prev = next; | 
|  | next = slob_next(prev); | 
|  | } | 
|  |  | 
|  | if (!slob_last(prev) && b + units == next) { | 
|  | units += slob_units(next); | 
|  | set_slob(b, units, slob_next(next)); | 
|  | } else | 
|  | set_slob(b, units, next); | 
|  |  | 
|  | if (prev + slob_units(prev) == b) { | 
|  | units = slob_units(b) + slob_units(prev); | 
|  | set_slob(prev, units, slob_next(b)); | 
|  | } else | 
|  | set_slob(prev, slob_units(prev), b); | 
|  | } | 
|  | out: | 
|  | spin_unlock_irqrestore(&slob_lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend. | 
|  | */ | 
|  |  | 
|  | static __always_inline void * | 
|  | __do_kmalloc_node(size_t size, gfp_t gfp, int node, unsigned long caller) | 
|  | { | 
|  | unsigned int *m; | 
|  | int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); | 
|  | void *ret; | 
|  |  | 
|  | gfp &= gfp_allowed_mask; | 
|  |  | 
|  | lockdep_trace_alloc(gfp); | 
|  |  | 
|  | if (size < PAGE_SIZE - align) { | 
|  | if (!size) | 
|  | return ZERO_SIZE_PTR; | 
|  |  | 
|  | m = slob_alloc(size + align, gfp, align, node); | 
|  |  | 
|  | if (!m) | 
|  | return NULL; | 
|  | *m = size; | 
|  | ret = (void *)m + align; | 
|  |  | 
|  | trace_kmalloc_node(caller, ret, | 
|  | size, size + align, gfp, node); | 
|  | } else { | 
|  | unsigned int order = get_order(size); | 
|  |  | 
|  | if (likely(order)) | 
|  | gfp |= __GFP_COMP; | 
|  | ret = slob_new_pages(gfp, order, node); | 
|  |  | 
|  | trace_kmalloc_node(caller, ret, | 
|  | size, PAGE_SIZE << order, gfp, node); | 
|  | } | 
|  |  | 
|  | kmemleak_alloc(ret, size, 1, gfp); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void *__kmalloc_node(size_t size, gfp_t gfp, int node) | 
|  | { | 
|  | return __do_kmalloc_node(size, gfp, node, _RET_IP_); | 
|  | } | 
|  | EXPORT_SYMBOL(__kmalloc_node); | 
|  |  | 
|  | #ifdef CONFIG_TRACING | 
|  | void *__kmalloc_track_caller(size_t size, gfp_t gfp, unsigned long caller) | 
|  | { | 
|  | return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, caller); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | void *__kmalloc_node_track_caller(size_t size, gfp_t gfp, | 
|  | int node, unsigned long caller) | 
|  | { | 
|  | return __do_kmalloc_node(size, gfp, node, caller); | 
|  | } | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | void kfree(const void *block) | 
|  | { | 
|  | struct page *sp; | 
|  |  | 
|  | trace_kfree(_RET_IP_, block); | 
|  |  | 
|  | if (unlikely(ZERO_OR_NULL_PTR(block))) | 
|  | return; | 
|  | kmemleak_free(block); | 
|  |  | 
|  | sp = virt_to_page(block); | 
|  | if (PageSlab(sp)) { | 
|  | int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); | 
|  | unsigned int *m = (unsigned int *)(block - align); | 
|  | slob_free(m, *m + align); | 
|  | } else | 
|  | __free_pages(sp, compound_order(sp)); | 
|  | } | 
|  | EXPORT_SYMBOL(kfree); | 
|  |  | 
|  | /* can't use ksize for kmem_cache_alloc memory, only kmalloc */ | 
|  | size_t ksize(const void *block) | 
|  | { | 
|  | struct page *sp; | 
|  | int align; | 
|  | unsigned int *m; | 
|  |  | 
|  | BUG_ON(!block); | 
|  | if (unlikely(block == ZERO_SIZE_PTR)) | 
|  | return 0; | 
|  |  | 
|  | sp = virt_to_page(block); | 
|  | if (unlikely(!PageSlab(sp))) | 
|  | return PAGE_SIZE << compound_order(sp); | 
|  |  | 
|  | align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); | 
|  | m = (unsigned int *)(block - align); | 
|  | return SLOB_UNITS(*m) * SLOB_UNIT; | 
|  | } | 
|  | EXPORT_SYMBOL(ksize); | 
|  |  | 
|  | int __kmem_cache_create(struct kmem_cache *c, unsigned long flags) | 
|  | { | 
|  | if (flags & SLAB_DESTROY_BY_RCU) { | 
|  | /* leave room for rcu footer at the end of object */ | 
|  | c->size += sizeof(struct slob_rcu); | 
|  | } | 
|  | c->flags = flags; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node) | 
|  | { | 
|  | void *b; | 
|  |  | 
|  | flags &= gfp_allowed_mask; | 
|  |  | 
|  | lockdep_trace_alloc(flags); | 
|  |  | 
|  | if (c->size < PAGE_SIZE) { | 
|  | b = slob_alloc(c->size, flags, c->align, node); | 
|  | trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size, | 
|  | SLOB_UNITS(c->size) * SLOB_UNIT, | 
|  | flags, node); | 
|  | } else { | 
|  | b = slob_new_pages(flags, get_order(c->size), node); | 
|  | trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size, | 
|  | PAGE_SIZE << get_order(c->size), | 
|  | flags, node); | 
|  | } | 
|  |  | 
|  | if (c->ctor) | 
|  | c->ctor(b); | 
|  |  | 
|  | kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags); | 
|  | return b; | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_alloc_node); | 
|  |  | 
|  | static void __kmem_cache_free(void *b, int size) | 
|  | { | 
|  | if (size < PAGE_SIZE) | 
|  | slob_free(b, size); | 
|  | else | 
|  | slob_free_pages(b, get_order(size)); | 
|  | } | 
|  |  | 
|  | static void kmem_rcu_free(struct rcu_head *head) | 
|  | { | 
|  | struct slob_rcu *slob_rcu = (struct slob_rcu *)head; | 
|  | void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu)); | 
|  |  | 
|  | __kmem_cache_free(b, slob_rcu->size); | 
|  | } | 
|  |  | 
|  | void kmem_cache_free(struct kmem_cache *c, void *b) | 
|  | { | 
|  | kmemleak_free_recursive(b, c->flags); | 
|  | if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) { | 
|  | struct slob_rcu *slob_rcu; | 
|  | slob_rcu = b + (c->size - sizeof(struct slob_rcu)); | 
|  | slob_rcu->size = c->size; | 
|  | call_rcu(&slob_rcu->head, kmem_rcu_free); | 
|  | } else { | 
|  | __kmem_cache_free(b, c->size); | 
|  | } | 
|  |  | 
|  | trace_kmem_cache_free(_RET_IP_, b); | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_free); | 
|  |  | 
|  | int __kmem_cache_shutdown(struct kmem_cache *c) | 
|  | { | 
|  | /* No way to check for remaining objects */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kmem_cache_shrink(struct kmem_cache *d) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_shrink); | 
|  |  | 
|  | struct kmem_cache kmem_cache_boot = { | 
|  | .name = "kmem_cache", | 
|  | .size = sizeof(struct kmem_cache), | 
|  | .flags = SLAB_PANIC, | 
|  | .align = ARCH_KMALLOC_MINALIGN, | 
|  | }; | 
|  |  | 
|  | void __init kmem_cache_init(void) | 
|  | { | 
|  | kmem_cache = &kmem_cache_boot; | 
|  | slab_state = UP; | 
|  | } | 
|  |  | 
|  | void __init kmem_cache_init_late(void) | 
|  | { | 
|  | slab_state = FULL; | 
|  | } |