blob: e72eec56bf5772ada09239f47748cd649212d8b0 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
//! Maple trees.
//!
//! C header: [`include/linux/maple_tree.h`](srctree/include/linux/maple_tree.h)
//!
//! Reference: <https://docs.kernel.org/core-api/maple_tree.html>
use core::{
marker::PhantomData,
ops::{Bound, RangeBounds},
ptr,
};
use kernel::{
alloc::Flags,
error::to_result,
prelude::*,
types::{ForeignOwnable, Opaque},
};
/// A maple tree optimized for storing non-overlapping ranges.
///
/// # Invariants
///
/// Each range in the maple tree owns an instance of `T`.
#[pin_data(PinnedDrop)]
#[repr(transparent)]
pub struct MapleTree<T: ForeignOwnable> {
#[pin]
tree: Opaque<bindings::maple_tree>,
_p: PhantomData<T>,
}
/// A maple tree with `MT_FLAGS_ALLOC_RANGE` set.
///
/// All methods on [`MapleTree`] are also accessible on this type.
#[pin_data]
#[repr(transparent)]
pub struct MapleTreeAlloc<T: ForeignOwnable> {
#[pin]
tree: MapleTree<T>,
}
// Make MapleTree methods usable on MapleTreeAlloc.
impl<T: ForeignOwnable> core::ops::Deref for MapleTreeAlloc<T> {
type Target = MapleTree<T>;
#[inline]
fn deref(&self) -> &MapleTree<T> {
&self.tree
}
}
#[inline]
fn to_maple_range(range: impl RangeBounds<usize>) -> Option<(usize, usize)> {
let first = match range.start_bound() {
Bound::Included(start) => *start,
Bound::Excluded(start) => start.checked_add(1)?,
Bound::Unbounded => 0,
};
let last = match range.end_bound() {
Bound::Included(end) => *end,
Bound::Excluded(end) => end.checked_sub(1)?,
Bound::Unbounded => usize::MAX,
};
if last < first {
return None;
}
Some((first, last))
}
impl<T: ForeignOwnable> MapleTree<T> {
/// Create a new maple tree.
///
/// The tree will use the regular implementation with a higher branching factor, rather than
/// the allocation tree.
#[inline]
pub fn new() -> impl PinInit<Self> {
pin_init!(MapleTree {
// SAFETY: This initializes a maple tree into a pinned slot. The maple tree will be
// destroyed in Drop before the memory location becomes invalid.
tree <- Opaque::ffi_init(|slot| unsafe { bindings::mt_init_flags(slot, 0) }),
_p: PhantomData,
})
}
/// Insert the value at the given index.
///
/// # Errors
///
/// If the maple tree already contains a range using the given index, then this call will
/// return an [`InsertErrorKind::Occupied`]. It may also fail if memory allocation fails.
///
/// # Examples
///
/// ```
/// use kernel::maple_tree::{InsertErrorKind, MapleTree};
///
/// let tree = KBox::pin_init(MapleTree::<KBox<i32>>::new(), GFP_KERNEL)?;
///
/// let ten = KBox::new(10, GFP_KERNEL)?;
/// let twenty = KBox::new(20, GFP_KERNEL)?;
/// let the_answer = KBox::new(42, GFP_KERNEL)?;
///
/// // These calls will succeed.
/// tree.insert(100, ten, GFP_KERNEL)?;
/// tree.insert(101, twenty, GFP_KERNEL)?;
///
/// // This will fail because the index is already in use.
/// assert_eq!(
/// tree.insert(100, the_answer, GFP_KERNEL).unwrap_err().cause,
/// InsertErrorKind::Occupied,
/// );
/// # Ok::<_, Error>(())
/// ```
#[inline]
pub fn insert(&self, index: usize, value: T, gfp: Flags) -> Result<(), InsertError<T>> {
self.insert_range(index..=index, value, gfp)
}
/// Insert a value to the specified range, failing on overlap.
///
/// This accepts the usual types of Rust ranges using the `..` and `..=` syntax for exclusive
/// and inclusive ranges respectively. The range must not be empty, and must not overlap with
/// any existing range.
///
/// # Errors
///
/// If the maple tree already contains an overlapping range, then this call will return an
/// [`InsertErrorKind::Occupied`]. It may also fail if memory allocation fails or if the
/// requested range is invalid (e.g. empty).
///
/// # Examples
///
/// ```
/// use kernel::maple_tree::{InsertErrorKind, MapleTree};
///
/// let tree = KBox::pin_init(MapleTree::<KBox<i32>>::new(), GFP_KERNEL)?;
///
/// let ten = KBox::new(10, GFP_KERNEL)?;
/// let twenty = KBox::new(20, GFP_KERNEL)?;
/// let the_answer = KBox::new(42, GFP_KERNEL)?;
/// let hundred = KBox::new(100, GFP_KERNEL)?;
///
/// // Insert the value 10 at the indices 100 to 499.
/// tree.insert_range(100..500, ten, GFP_KERNEL)?;
///
/// // Insert the value 20 at the indices 500 to 1000.
/// tree.insert_range(500..=1000, twenty, GFP_KERNEL)?;
///
/// // This will fail due to overlap with the previous range on index 1000.
/// assert_eq!(
/// tree.insert_range(1000..1200, the_answer, GFP_KERNEL).unwrap_err().cause,
/// InsertErrorKind::Occupied,
/// );
///
/// // When using .. to specify the range, you must be careful to ensure that the range is
/// // non-empty.
/// assert_eq!(
/// tree.insert_range(72..72, hundred, GFP_KERNEL).unwrap_err().cause,
/// InsertErrorKind::InvalidRequest,
/// );
/// # Ok::<_, Error>(())
/// ```
pub fn insert_range<R>(&self, range: R, value: T, gfp: Flags) -> Result<(), InsertError<T>>
where
R: RangeBounds<usize>,
{
let Some((first, last)) = to_maple_range(range) else {
return Err(InsertError {
value,
cause: InsertErrorKind::InvalidRequest,
});
};
let ptr = T::into_foreign(value);
// SAFETY: The tree is valid, and we are passing a pointer to an owned instance of `T`.
let res = to_result(unsafe {
bindings::mtree_insert_range(self.tree.get(), first, last, ptr, gfp.as_raw())
});
if let Err(err) = res {
// SAFETY: As `mtree_insert_range` failed, it is safe to take back ownership.
let value = unsafe { T::from_foreign(ptr) };
let cause = if err == ENOMEM {
InsertErrorKind::AllocError(kernel::alloc::AllocError)
} else if err == EEXIST {
InsertErrorKind::Occupied
} else {
InsertErrorKind::InvalidRequest
};
Err(InsertError { value, cause })
} else {
Ok(())
}
}
/// Erase the range containing the given index.
///
/// # Examples
///
/// ```
/// use kernel::maple_tree::MapleTree;
///
/// let tree = KBox::pin_init(MapleTree::<KBox<i32>>::new(), GFP_KERNEL)?;
///
/// let ten = KBox::new(10, GFP_KERNEL)?;
/// let twenty = KBox::new(20, GFP_KERNEL)?;
///
/// tree.insert_range(100..500, ten, GFP_KERNEL)?;
/// tree.insert(67, twenty, GFP_KERNEL)?;
///
/// assert_eq!(tree.erase(67).map(|v| *v), Some(20));
/// assert_eq!(tree.erase(275).map(|v| *v), Some(10));
///
/// // The previous call erased the entire range, not just index 275.
/// assert!(tree.erase(127).is_none());
/// # Ok::<_, Error>(())
/// ```
#[inline]
pub fn erase(&self, index: usize) -> Option<T> {
// SAFETY: `self.tree` contains a valid maple tree.
let ret = unsafe { bindings::mtree_erase(self.tree.get(), index) };
// SAFETY: If the pointer is not null, then we took ownership of a valid instance of `T`
// from the tree.
unsafe { T::try_from_foreign(ret) }
}
/// Lock the internal spinlock.
#[inline]
pub fn lock(&self) -> MapleGuard<'_, T> {
// SAFETY: It's safe to lock the spinlock in a maple tree.
unsafe { bindings::spin_lock(self.ma_lock()) };
// INVARIANT: We just took the spinlock.
MapleGuard(self)
}
#[inline]
fn ma_lock(&self) -> *mut bindings::spinlock_t {
// SAFETY: This pointer offset operation stays in-bounds.
let lock_ptr = unsafe { &raw mut (*self.tree.get()).__bindgen_anon_1.ma_lock };
lock_ptr.cast()
}
/// Free all `T` instances in this tree.
///
/// # Safety
///
/// This frees Rust data referenced by the maple tree without removing it from the maple tree,
/// leaving it in an invalid state. The caller must ensure that this invalid state cannot be
/// observed by the end-user.
unsafe fn free_all_entries(self: Pin<&mut Self>) {
// SAFETY: The caller provides exclusive access to the entire maple tree, so we have
// exclusive access to the entire maple tree despite not holding the lock.
let mut ma_state = unsafe { MaState::new_raw(self.into_ref().get_ref(), 0, usize::MAX) };
loop {
// This uses the raw accessor because we're destroying pointers without removing them
// from the maple tree, which is only valid because this is the destructor.
let ptr = ma_state.mas_find_raw(usize::MAX);
if ptr.is_null() {
break;
}
// SAFETY: By the type invariants, this pointer references a valid value of type `T`.
// By the safety requirements, it is okay to free it without removing it from the maple
// tree.
drop(unsafe { T::from_foreign(ptr) });
}
}
}
#[pinned_drop]
impl<T: ForeignOwnable> PinnedDrop for MapleTree<T> {
#[inline]
fn drop(mut self: Pin<&mut Self>) {
// We only iterate the tree if the Rust value has a destructor.
if core::mem::needs_drop::<T>() {
// SAFETY: Other than the below `mtree_destroy` call, the tree will not be accessed
// after this call.
unsafe { self.as_mut().free_all_entries() };
}
// SAFETY: The tree is valid, and will not be accessed after this call.
unsafe { bindings::mtree_destroy(self.tree.get()) };
}
}
/// A reference to a [`MapleTree`] that owns the inner lock.
///
/// # Invariants
///
/// This guard owns the inner spinlock.
#[must_use = "if unused, the lock will be immediately unlocked"]
pub struct MapleGuard<'tree, T: ForeignOwnable>(&'tree MapleTree<T>);
impl<'tree, T: ForeignOwnable> Drop for MapleGuard<'tree, T> {
#[inline]
fn drop(&mut self) {
// SAFETY: By the type invariants, we hold this spinlock.
unsafe { bindings::spin_unlock(self.0.ma_lock()) };
}
}
impl<'tree, T: ForeignOwnable> MapleGuard<'tree, T> {
/// Create a [`MaState`] protected by this lock guard.
pub fn ma_state(&mut self, first: usize, end: usize) -> MaState<'_, T> {
// SAFETY: The `MaState` borrows this `MapleGuard`, so it can also borrow the `MapleGuard`s
// read/write permissions to the maple tree.
unsafe { MaState::new_raw(self.0, first, end) }
}
/// Load the value at the given index.
///
/// # Examples
///
/// Read the value while holding the spinlock.
///
/// ```
/// use kernel::maple_tree::MapleTree;
///
/// let tree = KBox::pin_init(MapleTree::<KBox<i32>>::new(), GFP_KERNEL)?;
///
/// let ten = KBox::new(10, GFP_KERNEL)?;
/// let twenty = KBox::new(20, GFP_KERNEL)?;
/// tree.insert(100, ten, GFP_KERNEL)?;
/// tree.insert(200, twenty, GFP_KERNEL)?;
///
/// let mut lock = tree.lock();
/// assert_eq!(lock.load(100).map(|v| *v), Some(10));
/// assert_eq!(lock.load(200).map(|v| *v), Some(20));
/// assert_eq!(lock.load(300).map(|v| *v), None);
/// # Ok::<_, Error>(())
/// ```
///
/// Increment refcount under the lock, to keep value alive afterwards.
///
/// ```
/// use kernel::maple_tree::MapleTree;
/// use kernel::sync::Arc;
///
/// let tree = KBox::pin_init(MapleTree::<Arc<i32>>::new(), GFP_KERNEL)?;
///
/// let ten = Arc::new(10, GFP_KERNEL)?;
/// let twenty = Arc::new(20, GFP_KERNEL)?;
/// tree.insert(100, ten, GFP_KERNEL)?;
/// tree.insert(200, twenty, GFP_KERNEL)?;
///
/// // Briefly take the lock to increment the refcount.
/// let value = tree.lock().load(100).map(Arc::from);
///
/// // At this point, another thread might remove the value.
/// tree.erase(100);
///
/// // But we can still access it because we took a refcount.
/// assert_eq!(value.map(|v| *v), Some(10));
/// # Ok::<_, Error>(())
/// ```
#[inline]
pub fn load(&mut self, index: usize) -> Option<T::BorrowedMut<'_>> {
// SAFETY: `self.tree` contains a valid maple tree.
let ret = unsafe { bindings::mtree_load(self.0.tree.get(), index) };
if ret.is_null() {
return None;
}
// SAFETY: If the pointer is not null, then it references a valid instance of `T`. It is
// safe to borrow the instance mutably because the signature of this function enforces that
// the mutable borrow is not used after the spinlock is dropped.
Some(unsafe { T::borrow_mut(ret) })
}
}
impl<T: ForeignOwnable> MapleTreeAlloc<T> {
/// Create a new allocation tree.
pub fn new() -> impl PinInit<Self> {
let tree = pin_init!(MapleTree {
// SAFETY: This initializes a maple tree into a pinned slot. The maple tree will be
// destroyed in Drop before the memory location becomes invalid.
tree <- Opaque::ffi_init(|slot| unsafe {
bindings::mt_init_flags(slot, bindings::MT_FLAGS_ALLOC_RANGE)
}),
_p: PhantomData,
});
pin_init!(MapleTreeAlloc { tree <- tree })
}
/// Insert an entry with the given size somewhere in the given range.
///
/// The maple tree will search for a location in the given range where there is space to insert
/// the new range. If there is not enough available space, then an error will be returned.
///
/// The index of the new range is returned.
///
/// # Examples
///
/// ```
/// use kernel::maple_tree::{MapleTreeAlloc, AllocErrorKind};
///
/// let tree = KBox::pin_init(MapleTreeAlloc::<KBox<i32>>::new(), GFP_KERNEL)?;
///
/// let ten = KBox::new(10, GFP_KERNEL)?;
/// let twenty = KBox::new(20, GFP_KERNEL)?;
/// let thirty = KBox::new(30, GFP_KERNEL)?;
/// let hundred = KBox::new(100, GFP_KERNEL)?;
///
/// // Allocate three ranges.
/// let idx1 = tree.alloc_range(100, ten, ..1000, GFP_KERNEL)?;
/// let idx2 = tree.alloc_range(100, twenty, ..1000, GFP_KERNEL)?;
/// let idx3 = tree.alloc_range(100, thirty, ..1000, GFP_KERNEL)?;
///
/// assert_eq!(idx1, 0);
/// assert_eq!(idx2, 100);
/// assert_eq!(idx3, 200);
///
/// // This will fail because the remaining space is too small.
/// assert_eq!(
/// tree.alloc_range(800, hundred, ..1000, GFP_KERNEL).unwrap_err().cause,
/// AllocErrorKind::Busy,
/// );
/// # Ok::<_, Error>(())
/// ```
pub fn alloc_range<R>(
&self,
size: usize,
value: T,
range: R,
gfp: Flags,
) -> Result<usize, AllocError<T>>
where
R: RangeBounds<usize>,
{
let Some((min, max)) = to_maple_range(range) else {
return Err(AllocError {
value,
cause: AllocErrorKind::InvalidRequest,
});
};
let ptr = T::into_foreign(value);
let mut index = 0;
// SAFETY: The tree is valid, and we are passing a pointer to an owned instance of `T`.
let res = to_result(unsafe {
bindings::mtree_alloc_range(
self.tree.tree.get(),
&mut index,
ptr,
size,
min,
max,
gfp.as_raw(),
)
});
if let Err(err) = res {
// SAFETY: As `mtree_alloc_range` failed, it is safe to take back ownership.
let value = unsafe { T::from_foreign(ptr) };
let cause = if err == ENOMEM {
AllocErrorKind::AllocError(kernel::alloc::AllocError)
} else if err == EBUSY {
AllocErrorKind::Busy
} else {
AllocErrorKind::InvalidRequest
};
Err(AllocError { value, cause })
} else {
Ok(index)
}
}
}
/// A helper type used for navigating a [`MapleTree`].
///
/// # Invariants
///
/// For the duration of `'tree`:
///
/// * The `ma_state` references a valid `MapleTree<T>`.
/// * The `ma_state` has read/write access to the tree.
pub struct MaState<'tree, T: ForeignOwnable> {
state: bindings::ma_state,
_phantom: PhantomData<&'tree mut MapleTree<T>>,
}
impl<'tree, T: ForeignOwnable> MaState<'tree, T> {
/// Initialize a new `MaState` with the given tree.
///
/// # Safety
///
/// The caller must ensure that this `MaState` has read/write access to the maple tree.
#[inline]
unsafe fn new_raw(mt: &'tree MapleTree<T>, first: usize, end: usize) -> Self {
// INVARIANT:
// * Having a reference ensures that the `MapleTree<T>` is valid for `'tree`.
// * The caller ensures that we have read/write access.
Self {
state: bindings::ma_state {
tree: mt.tree.get(),
index: first,
last: end,
node: ptr::null_mut(),
status: bindings::maple_status_ma_start,
min: 0,
max: usize::MAX,
alloc: ptr::null_mut(),
mas_flags: 0,
store_type: bindings::store_type_wr_invalid,
..Default::default()
},
_phantom: PhantomData,
}
}
#[inline]
fn as_raw(&mut self) -> *mut bindings::ma_state {
&raw mut self.state
}
#[inline]
fn mas_find_raw(&mut self, max: usize) -> *mut c_void {
// SAFETY: By the type invariants, the `ma_state` is active and we have read/write access
// to the tree.
unsafe { bindings::mas_find(self.as_raw(), max) }
}
/// Find the next entry in the maple tree.
///
/// # Examples
///
/// Iterate the maple tree.
///
/// ```
/// use kernel::maple_tree::MapleTree;
/// use kernel::sync::Arc;
///
/// let tree = KBox::pin_init(MapleTree::<Arc<i32>>::new(), GFP_KERNEL)?;
///
/// let ten = Arc::new(10, GFP_KERNEL)?;
/// let twenty = Arc::new(20, GFP_KERNEL)?;
/// tree.insert(100, ten, GFP_KERNEL)?;
/// tree.insert(200, twenty, GFP_KERNEL)?;
///
/// let mut ma_lock = tree.lock();
/// let mut iter = ma_lock.ma_state(0, usize::MAX);
///
/// assert_eq!(iter.find(usize::MAX).map(|v| *v), Some(10));
/// assert_eq!(iter.find(usize::MAX).map(|v| *v), Some(20));
/// assert!(iter.find(usize::MAX).is_none());
/// # Ok::<_, Error>(())
/// ```
#[inline]
pub fn find(&mut self, max: usize) -> Option<T::BorrowedMut<'_>> {
let ret = self.mas_find_raw(max);
if ret.is_null() {
return None;
}
// SAFETY: If the pointer is not null, then it references a valid instance of `T`. It's
// safe to access it mutably as the returned reference borrows this `MaState`, and the
// `MaState` has read/write access to the maple tree.
Some(unsafe { T::borrow_mut(ret) })
}
}
/// Error type for failure to insert a new value.
pub struct InsertError<T> {
/// The value that could not be inserted.
pub value: T,
/// The reason for the failure to insert.
pub cause: InsertErrorKind,
}
/// The reason for the failure to insert.
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
pub enum InsertErrorKind {
/// There is already a value in the requested range.
Occupied,
/// Failure to allocate memory.
AllocError(kernel::alloc::AllocError),
/// The insertion request was invalid.
InvalidRequest,
}
impl From<InsertErrorKind> for Error {
#[inline]
fn from(kind: InsertErrorKind) -> Error {
match kind {
InsertErrorKind::Occupied => EEXIST,
InsertErrorKind::AllocError(kernel::alloc::AllocError) => ENOMEM,
InsertErrorKind::InvalidRequest => EINVAL,
}
}
}
impl<T> From<InsertError<T>> for Error {
#[inline]
fn from(insert_err: InsertError<T>) -> Error {
Error::from(insert_err.cause)
}
}
/// Error type for failure to insert a new value.
pub struct AllocError<T> {
/// The value that could not be inserted.
pub value: T,
/// The reason for the failure to insert.
pub cause: AllocErrorKind,
}
/// The reason for the failure to insert.
#[derive(PartialEq, Eq, Copy, Clone)]
pub enum AllocErrorKind {
/// There is not enough space for the requested allocation.
Busy,
/// Failure to allocate memory.
AllocError(kernel::alloc::AllocError),
/// The insertion request was invalid.
InvalidRequest,
}
impl From<AllocErrorKind> for Error {
#[inline]
fn from(kind: AllocErrorKind) -> Error {
match kind {
AllocErrorKind::Busy => EBUSY,
AllocErrorKind::AllocError(kernel::alloc::AllocError) => ENOMEM,
AllocErrorKind::InvalidRequest => EINVAL,
}
}
}
impl<T> From<AllocError<T>> for Error {
#[inline]
fn from(insert_err: AllocError<T>) -> Error {
Error::from(insert_err.cause)
}
}