blob: 4723e48cfe1882d5cd240cd50b790f617ca7c5bd [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/bits.h>
#include <linux/i2c.h>
#include <linux/i2c-mux.h>
#include <linux/mod_devicetable.h>
#include <linux/mfd/syscon.h>
#include <linux/mutex.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/unaligned.h>
enum rtl9300_bus_freq {
RTL9300_I2C_STD_FREQ,
RTL9300_I2C_FAST_FREQ,
};
struct rtl9300_i2c;
struct rtl9300_i2c_chan {
struct i2c_adapter adap;
struct rtl9300_i2c *i2c;
enum rtl9300_bus_freq bus_freq;
u8 sda_num;
};
enum rtl9300_i2c_reg_scope {
REG_SCOPE_GLOBAL,
REG_SCOPE_MASTER,
};
struct rtl9300_i2c_reg_field {
struct reg_field field;
enum rtl9300_i2c_reg_scope scope;
};
enum rtl9300_i2c_reg_fields {
F_DATA_WIDTH = 0,
F_DEV_ADDR,
F_I2C_FAIL,
F_I2C_TRIG,
F_MEM_ADDR,
F_MEM_ADDR_WIDTH,
F_RD_MODE,
F_RWOP,
F_SCL_FREQ,
F_SCL_SEL,
F_SDA_OUT_SEL,
F_SDA_SEL,
/* keep last */
F_NUM_FIELDS
};
struct rtl9300_i2c_drv_data {
struct rtl9300_i2c_reg_field field_desc[F_NUM_FIELDS];
int (*select_scl)(struct rtl9300_i2c *i2c, u8 scl);
u32 data_reg;
u8 max_nchan;
};
#define RTL9300_I2C_MUX_NCHAN 8
#define RTL9310_I2C_MUX_NCHAN 12
struct rtl9300_i2c {
struct regmap *regmap;
struct device *dev;
struct rtl9300_i2c_chan chans[RTL9310_I2C_MUX_NCHAN];
struct regmap_field *fields[F_NUM_FIELDS];
u32 reg_base;
u32 data_reg;
u8 scl_num;
u8 sda_num;
struct mutex lock;
};
DEFINE_GUARD(rtl9300_i2c, struct rtl9300_i2c *, mutex_lock(&_T->lock), mutex_unlock(&_T->lock))
enum rtl9300_i2c_xfer_type {
RTL9300_I2C_XFER_BYTE,
RTL9300_I2C_XFER_WORD,
RTL9300_I2C_XFER_BLOCK,
};
struct rtl9300_i2c_xfer {
enum rtl9300_i2c_xfer_type type;
u16 dev_addr;
u8 reg_addr;
u8 reg_addr_len;
u8 *data;
u8 data_len;
bool write;
};
#define RTL9300_I2C_MST_CTRL1 0x0
#define RTL9300_I2C_MST_CTRL2 0x4
#define RTL9300_I2C_MST_DATA_WORD0 0x8
#define RTL9300_I2C_MST_DATA_WORD1 0xc
#define RTL9300_I2C_MST_DATA_WORD2 0x10
#define RTL9300_I2C_MST_DATA_WORD3 0x14
#define RTL9300_I2C_MST_GLB_CTRL 0x384
#define RTL9310_I2C_MST_IF_CTRL 0x1004
#define RTL9310_I2C_MST_IF_SEL 0x1008
#define RTL9310_I2C_MST_CTRL 0x0
#define RTL9310_I2C_MST_MEMADDR_CTRL 0x4
#define RTL9310_I2C_MST_DATA_CTRL 0x8
static int rtl9300_i2c_reg_addr_set(struct rtl9300_i2c *i2c, u32 reg, u16 len)
{
int ret;
ret = regmap_field_write(i2c->fields[F_MEM_ADDR_WIDTH], len);
if (ret)
return ret;
return regmap_field_write(i2c->fields[F_MEM_ADDR], reg);
}
static int rtl9300_i2c_select_scl(struct rtl9300_i2c *i2c, u8 scl)
{
return regmap_field_write(i2c->fields[F_SCL_SEL], 1);
}
static int rtl9310_i2c_select_scl(struct rtl9300_i2c *i2c, u8 scl)
{
return regmap_field_update_bits(i2c->fields[F_SCL_SEL], BIT(scl), BIT(scl));
}
static int rtl9300_i2c_config_chan(struct rtl9300_i2c *i2c, struct rtl9300_i2c_chan *chan)
{
struct rtl9300_i2c_drv_data *drv_data;
int ret;
if (i2c->sda_num == chan->sda_num)
return 0;
ret = regmap_field_write(i2c->fields[F_SCL_FREQ], chan->bus_freq);
if (ret)
return ret;
drv_data = (struct rtl9300_i2c_drv_data *)device_get_match_data(i2c->dev);
ret = drv_data->select_scl(i2c, i2c->scl_num);
if (ret)
return ret;
ret = regmap_field_update_bits(i2c->fields[F_SDA_SEL], BIT(chan->sda_num),
BIT(chan->sda_num));
if (ret)
return ret;
ret = regmap_field_write(i2c->fields[F_SDA_OUT_SEL], chan->sda_num);
if (ret)
return ret;
i2c->sda_num = chan->sda_num;
return 0;
}
static int rtl9300_i2c_read(struct rtl9300_i2c *i2c, u8 *buf, u8 len)
{
u32 vals[4] = {};
int i, ret;
if (len > 16)
return -EIO;
ret = regmap_bulk_read(i2c->regmap, i2c->data_reg, vals, ARRAY_SIZE(vals));
if (ret)
return ret;
for (i = 0; i < len; i++) {
buf[i] = vals[i/4] & 0xff;
vals[i/4] >>= 8;
}
return 0;
}
static int rtl9300_i2c_write(struct rtl9300_i2c *i2c, u8 *buf, u8 len)
{
u32 vals[4] = {};
int i;
if (len > 16)
return -EIO;
for (i = 0; i < len; i++) {
unsigned int shift = (i % 4) * 8;
unsigned int reg = i / 4;
vals[reg] |= buf[i] << shift;
}
return regmap_bulk_write(i2c->regmap, i2c->data_reg, vals, ARRAY_SIZE(vals));
}
static int rtl9300_i2c_writel(struct rtl9300_i2c *i2c, u32 data)
{
return regmap_write(i2c->regmap, i2c->data_reg, data);
}
static int rtl9300_i2c_prepare_xfer(struct rtl9300_i2c *i2c, struct rtl9300_i2c_xfer *xfer)
{
int ret;
if (xfer->data_len < 1 || xfer->data_len > 16)
return -EINVAL;
ret = regmap_field_write(i2c->fields[F_DEV_ADDR], xfer->dev_addr);
if (ret)
return ret;
ret = rtl9300_i2c_reg_addr_set(i2c, xfer->reg_addr, xfer->reg_addr_len);
if (ret)
return ret;
ret = regmap_field_write(i2c->fields[F_RWOP], xfer->write);
if (ret)
return ret;
ret = regmap_field_write(i2c->fields[F_DATA_WIDTH], (xfer->data_len - 1) & 0xf);
if (ret)
return ret;
if (xfer->write) {
switch (xfer->type) {
case RTL9300_I2C_XFER_BYTE:
ret = rtl9300_i2c_writel(i2c, *xfer->data);
break;
case RTL9300_I2C_XFER_WORD:
ret = rtl9300_i2c_writel(i2c, get_unaligned((const u16 *)xfer->data));
break;
default:
ret = rtl9300_i2c_write(i2c, xfer->data, xfer->data_len);
break;
}
}
return ret;
}
static int rtl9300_i2c_do_xfer(struct rtl9300_i2c *i2c, struct rtl9300_i2c_xfer *xfer)
{
u32 val;
int ret;
ret = regmap_field_write(i2c->fields[F_I2C_TRIG], 1);
if (ret)
return ret;
ret = regmap_field_read_poll_timeout(i2c->fields[F_I2C_TRIG], val, !val, 100, 100000);
if (ret)
return ret;
ret = regmap_field_read(i2c->fields[F_I2C_FAIL], &val);
if (ret)
return ret;
if (val)
return -EIO;
if (!xfer->write) {
switch (xfer->type) {
case RTL9300_I2C_XFER_BYTE:
ret = regmap_read(i2c->regmap, i2c->data_reg, &val);
if (ret)
return ret;
*xfer->data = val & 0xff;
break;
case RTL9300_I2C_XFER_WORD:
ret = regmap_read(i2c->regmap, i2c->data_reg, &val);
if (ret)
return ret;
put_unaligned(val & 0xffff, (u16*)xfer->data);
break;
default:
ret = rtl9300_i2c_read(i2c, xfer->data, xfer->data_len);
if (ret)
return ret;
break;
}
}
return 0;
}
static int rtl9300_i2c_smbus_xfer(struct i2c_adapter *adap, u16 addr, unsigned short flags,
char read_write, u8 command, int size,
union i2c_smbus_data *data)
{
struct rtl9300_i2c_chan *chan = i2c_get_adapdata(adap);
struct rtl9300_i2c *i2c = chan->i2c;
struct rtl9300_i2c_xfer xfer = {0};
int ret;
if (addr > 0x7f)
return -EINVAL;
guard(rtl9300_i2c)(i2c);
ret = rtl9300_i2c_config_chan(i2c, chan);
if (ret)
return ret;
xfer.dev_addr = addr & 0x7f;
xfer.write = (read_write == I2C_SMBUS_WRITE);
xfer.reg_addr = command;
xfer.reg_addr_len = 1;
switch (size) {
case I2C_SMBUS_BYTE:
xfer.data = (read_write == I2C_SMBUS_READ) ? &data->byte : &command;
xfer.data_len = 1;
xfer.reg_addr = 0;
xfer.reg_addr_len = 0;
xfer.type = RTL9300_I2C_XFER_BYTE;
break;
case I2C_SMBUS_BYTE_DATA:
xfer.data = &data->byte;
xfer.data_len = 1;
xfer.type = RTL9300_I2C_XFER_BYTE;
break;
case I2C_SMBUS_WORD_DATA:
xfer.data = (u8 *)&data->word;
xfer.data_len = 2;
xfer.type = RTL9300_I2C_XFER_WORD;
break;
case I2C_SMBUS_BLOCK_DATA:
xfer.data = &data->block[0];
xfer.data_len = data->block[0] + 1;
xfer.type = RTL9300_I2C_XFER_BLOCK;
break;
case I2C_SMBUS_I2C_BLOCK_DATA:
xfer.data = &data->block[1];
xfer.data_len = data->block[0];
xfer.type = RTL9300_I2C_XFER_BLOCK;
break;
default:
dev_err(&adap->dev, "Unsupported transaction %d\n", size);
return -EOPNOTSUPP;
}
ret = rtl9300_i2c_prepare_xfer(i2c, &xfer);
if (ret)
return ret;
return rtl9300_i2c_do_xfer(i2c, &xfer);
}
static u32 rtl9300_i2c_func(struct i2c_adapter *a)
{
return I2C_FUNC_SMBUS_BYTE | I2C_FUNC_SMBUS_BYTE_DATA |
I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_BLOCK_DATA |
I2C_FUNC_SMBUS_I2C_BLOCK;
}
static const struct i2c_algorithm rtl9300_i2c_algo = {
.smbus_xfer = rtl9300_i2c_smbus_xfer,
.functionality = rtl9300_i2c_func,
};
static struct i2c_adapter_quirks rtl9300_i2c_quirks = {
.flags = I2C_AQ_NO_CLK_STRETCH | I2C_AQ_NO_ZERO_LEN,
.max_read_len = 16,
.max_write_len = 16,
};
static int rtl9300_i2c_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct rtl9300_i2c *i2c;
struct fwnode_handle *child;
struct rtl9300_i2c_drv_data *drv_data;
struct reg_field fields[F_NUM_FIELDS];
u32 clock_freq, scl_num, sda_num;
int ret, i = 0;
i2c = devm_kzalloc(dev, sizeof(*i2c), GFP_KERNEL);
if (!i2c)
return -ENOMEM;
i2c->regmap = syscon_node_to_regmap(dev->parent->of_node);
if (IS_ERR(i2c->regmap))
return PTR_ERR(i2c->regmap);
i2c->dev = dev;
mutex_init(&i2c->lock);
ret = device_property_read_u32(dev, "reg", &i2c->reg_base);
if (ret)
return ret;
ret = device_property_read_u32(dev, "realtek,scl", &scl_num);
if (ret || scl_num != 1)
scl_num = 0;
i2c->scl_num = (u8)scl_num;
platform_set_drvdata(pdev, i2c);
drv_data = (struct rtl9300_i2c_drv_data *)device_get_match_data(i2c->dev);
if (device_get_child_node_count(dev) > drv_data->max_nchan)
return dev_err_probe(dev, -EINVAL, "Too many channels\n");
i2c->data_reg = i2c->reg_base + drv_data->data_reg;
for (i = 0; i < F_NUM_FIELDS; i++) {
fields[i] = drv_data->field_desc[i].field;
if (drv_data->field_desc[i].scope == REG_SCOPE_MASTER)
fields[i].reg += i2c->reg_base;
}
ret = devm_regmap_field_bulk_alloc(dev, i2c->regmap, i2c->fields,
fields, F_NUM_FIELDS);
if (ret)
return ret;
i = 0;
device_for_each_child_node(dev, child) {
struct rtl9300_i2c_chan *chan = &i2c->chans[i];
struct i2c_adapter *adap = &chan->adap;
ret = fwnode_property_read_u32(child, "reg", &sda_num);
if (ret)
return ret;
ret = fwnode_property_read_u32(child, "clock-frequency", &clock_freq);
if (ret)
clock_freq = I2C_MAX_STANDARD_MODE_FREQ;
switch (clock_freq) {
case I2C_MAX_STANDARD_MODE_FREQ:
chan->bus_freq = RTL9300_I2C_STD_FREQ;
break;
case I2C_MAX_FAST_MODE_FREQ:
chan->bus_freq = RTL9300_I2C_FAST_FREQ;
break;
default:
dev_warn(i2c->dev, "SDA%d clock-frequency %d not supported using default\n",
sda_num, clock_freq);
break;
}
chan->sda_num = sda_num;
chan->i2c = i2c;
adap = &i2c->chans[i].adap;
adap->owner = THIS_MODULE;
adap->algo = &rtl9300_i2c_algo;
adap->quirks = &rtl9300_i2c_quirks;
adap->retries = 3;
adap->dev.parent = dev;
i2c_set_adapdata(adap, chan);
adap->dev.of_node = to_of_node(child);
snprintf(adap->name, sizeof(adap->name), "%s SDA%d\n", dev_name(dev), sda_num);
i++;
ret = devm_i2c_add_adapter(dev, adap);
if (ret)
return ret;
}
i2c->sda_num = 0xff;
/* only use standard read format */
ret = regmap_field_write(i2c->fields[F_RD_MODE], 0);
if (ret)
return ret;
return 0;
}
#define GLB_REG_FIELD(reg, msb, lsb) \
{ .field = REG_FIELD(reg, msb, lsb), .scope = REG_SCOPE_GLOBAL }
#define MST_REG_FIELD(reg, msb, lsb) \
{ .field = REG_FIELD(reg, msb, lsb), .scope = REG_SCOPE_MASTER }
static const struct rtl9300_i2c_drv_data rtl9300_i2c_drv_data = {
.field_desc = {
[F_MEM_ADDR] = MST_REG_FIELD(RTL9300_I2C_MST_CTRL1, 8, 31),
[F_SDA_OUT_SEL] = MST_REG_FIELD(RTL9300_I2C_MST_CTRL1, 4, 6),
[F_SCL_SEL] = MST_REG_FIELD(RTL9300_I2C_MST_CTRL1, 3, 3),
[F_RWOP] = MST_REG_FIELD(RTL9300_I2C_MST_CTRL1, 2, 2),
[F_I2C_FAIL] = MST_REG_FIELD(RTL9300_I2C_MST_CTRL1, 1, 1),
[F_I2C_TRIG] = MST_REG_FIELD(RTL9300_I2C_MST_CTRL1, 0, 0),
[F_RD_MODE] = MST_REG_FIELD(RTL9300_I2C_MST_CTRL2, 15, 15),
[F_DEV_ADDR] = MST_REG_FIELD(RTL9300_I2C_MST_CTRL2, 8, 14),
[F_DATA_WIDTH] = MST_REG_FIELD(RTL9300_I2C_MST_CTRL2, 4, 7),
[F_MEM_ADDR_WIDTH] = MST_REG_FIELD(RTL9300_I2C_MST_CTRL2, 2, 3),
[F_SCL_FREQ] = MST_REG_FIELD(RTL9300_I2C_MST_CTRL2, 0, 1),
[F_SDA_SEL] = GLB_REG_FIELD(RTL9300_I2C_MST_GLB_CTRL, 0, 7),
},
.select_scl = rtl9300_i2c_select_scl,
.data_reg = RTL9300_I2C_MST_DATA_WORD0,
.max_nchan = RTL9300_I2C_MUX_NCHAN,
};
static const struct rtl9300_i2c_drv_data rtl9310_i2c_drv_data = {
.field_desc = {
[F_SCL_SEL] = GLB_REG_FIELD(RTL9310_I2C_MST_IF_SEL, 12, 13),
[F_SDA_SEL] = GLB_REG_FIELD(RTL9310_I2C_MST_IF_SEL, 0, 11),
[F_SCL_FREQ] = MST_REG_FIELD(RTL9310_I2C_MST_CTRL, 30, 31),
[F_DEV_ADDR] = MST_REG_FIELD(RTL9310_I2C_MST_CTRL, 11, 17),
[F_SDA_OUT_SEL] = MST_REG_FIELD(RTL9310_I2C_MST_CTRL, 18, 21),
[F_MEM_ADDR_WIDTH] = MST_REG_FIELD(RTL9310_I2C_MST_CTRL, 9, 10),
[F_DATA_WIDTH] = MST_REG_FIELD(RTL9310_I2C_MST_CTRL, 5, 8),
[F_RD_MODE] = MST_REG_FIELD(RTL9310_I2C_MST_CTRL, 4, 4),
[F_RWOP] = MST_REG_FIELD(RTL9310_I2C_MST_CTRL, 2, 2),
[F_I2C_FAIL] = MST_REG_FIELD(RTL9310_I2C_MST_CTRL, 1, 1),
[F_I2C_TRIG] = MST_REG_FIELD(RTL9310_I2C_MST_CTRL, 0, 0),
[F_MEM_ADDR] = MST_REG_FIELD(RTL9310_I2C_MST_MEMADDR_CTRL, 0, 23),
},
.select_scl = rtl9310_i2c_select_scl,
.data_reg = RTL9310_I2C_MST_DATA_CTRL,
.max_nchan = RTL9310_I2C_MUX_NCHAN,
};
static const struct of_device_id i2c_rtl9300_dt_ids[] = {
{ .compatible = "realtek,rtl9301-i2c", .data = (void *) &rtl9300_i2c_drv_data },
{ .compatible = "realtek,rtl9302b-i2c", .data = (void *) &rtl9300_i2c_drv_data },
{ .compatible = "realtek,rtl9302c-i2c", .data = (void *) &rtl9300_i2c_drv_data },
{ .compatible = "realtek,rtl9303-i2c", .data = (void *) &rtl9300_i2c_drv_data },
{ .compatible = "realtek,rtl9310-i2c", .data = (void *) &rtl9310_i2c_drv_data },
{ .compatible = "realtek,rtl9311-i2c", .data = (void *) &rtl9310_i2c_drv_data },
{ .compatible = "realtek,rtl9312-i2c", .data = (void *) &rtl9310_i2c_drv_data },
{ .compatible = "realtek,rtl9313-i2c", .data = (void *) &rtl9310_i2c_drv_data },
{}
};
MODULE_DEVICE_TABLE(of, i2c_rtl9300_dt_ids);
static struct platform_driver rtl9300_i2c_driver = {
.probe = rtl9300_i2c_probe,
.driver = {
.name = "i2c-rtl9300",
.of_match_table = i2c_rtl9300_dt_ids,
},
};
module_platform_driver(rtl9300_i2c_driver);
MODULE_DESCRIPTION("RTL9300 I2C controller driver");
MODULE_LICENSE("GPL");