blob: 4338d00e56a6e84f24220dd7b16769c086044070 [file] [log] [blame]
// SPDX-License-Identifier: (GPL-2.0-only OR MIT)
/*
* Copyright (C) 2025 Amlogic, Inc. All rights reserved
*
* Driver for the SPI Mode of Amlogic Flash Controller
* Authors:
* Liang Yang <liang.yang@amlogic.com>
* Feng Chen <feng.chen@amlogic.com>
* Xianwei Zhao <xianwei.zhao@amlogic.com>
*/
#include <linux/platform_device.h>
#include <linux/clk-provider.h>
#include <linux/dma-mapping.h>
#include <linux/bitfield.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/regmap.h>
#include <linux/mtd/spinand.h>
#include <linux/spi/spi-mem.h>
#define SFC_CMD 0x00
#define SFC_CFG 0x04
#define SFC_DADR 0x08
#define SFC_IADR 0x0c
#define SFC_BUF 0x10
#define SFC_INFO 0x14
#define SFC_DC 0x18
#define SFC_ADR 0x1c
#define SFC_DL 0x20
#define SFC_DH 0x24
#define SFC_CADR 0x28
#define SFC_SADR 0x2c
#define SFC_RX_IDX 0x34
#define SFC_RX_DAT 0x38
#define SFC_SPI_CFG 0x40
/* settings in SFC_CMD */
/* 4 bits support 4 chip select, high false, low select but spi support 2*/
#define CHIP_SELECT_MASK GENMASK(13, 10)
#define CS_NONE 0xf
#define CS_0 0xe
#define CS_1 0xd
#define CLE (0x5 << 14)
#define ALE (0x6 << 14)
#define DWR (0x4 << 14)
#define DRD (0x8 << 14)
#define DUMMY (0xb << 14)
#define IDLE (0xc << 14)
#define IDLE_CYCLE_MASK GENMASK(9, 0)
#define EXT_CYCLE_MASK GENMASK(9, 0)
#define OP_M2N ((0 << 17) | (2 << 20))
#define OP_N2M ((1 << 17) | (2 << 20))
#define OP_STS ((3 << 17) | (2 << 20))
#define OP_ADL ((0 << 16) | (3 << 20))
#define OP_ADH ((1 << 16) | (3 << 20))
#define OP_AIL ((2 << 16) | (3 << 20))
#define OP_AIH ((3 << 16) | (3 << 20))
#define OP_ASL ((4 << 16) | (3 << 20))
#define OP_ASH ((5 << 16) | (3 << 20))
#define OP_SEED ((8 << 16) | (3 << 20))
#define SEED_MASK GENMASK(14, 0)
#define ENABLE_RANDOM BIT(19)
#define CMD_COMMAND(cs_sel, cmd) (CLE | ((cs_sel) << 10) | (cmd))
#define CMD_ADDR(cs_sel, addr) (ALE | ((cs_sel) << 10) | (addr))
#define CMD_DUMMY(cs_sel, cyc) (DUMMY | ((cs_sel) << 10) | ((cyc) & EXT_CYCLE_MASK))
#define CMD_IDLE(cs_sel, cyc) (IDLE | ((cs_sel) << 10) | ((cyc) & IDLE_CYCLE_MASK))
#define CMD_MEM2NAND(bch, pages) (OP_M2N | ((bch) << 14) | (pages))
#define CMD_NAND2MEM(bch, pages) (OP_N2M | ((bch) << 14) | (pages))
#define CMD_DATA_ADDRL(addr) (OP_ADL | ((addr) & 0xffff))
#define CMD_DATA_ADDRH(addr) (OP_ADH | (((addr) >> 16) & 0xffff))
#define CMD_INFO_ADDRL(addr) (OP_AIL | ((addr) & 0xffff))
#define CMD_INFO_ADDRH(addr) (OP_AIH | (((addr) >> 16) & 0xffff))
#define CMD_SEED(seed) (OP_SEED | ((seed) & SEED_MASK))
#define GET_CMD_SIZE(x) (((x) >> 22) & GENMASK(4, 0))
#define DEFAULT_PULLUP_CYCLE 2
#define CS_SETUP_CYCLE 1
#define CS_HOLD_CYCLE 2
#define DEFAULT_BUS_CYCLE 4
#define RAW_SIZE GENMASK(13, 0)
#define RAW_SIZE_BW 14
#define DMA_ADDR_ALIGN 8
/* Bit fields in SFC_SPI_CFG */
#define SPI_MODE_EN BIT(31)
#define RAW_EXT_SIZE GENMASK(29, 18)
#define ADDR_LANE GENMASK(17, 16)
#define CPOL BIT(15)
#define CPHA BIT(14)
#define EN_HOLD BIT(13)
#define EN_WP BIT(12)
#define TXADJ GENMASK(11, 8)
#define RXADJ GENMASK(7, 4)
#define CMD_LANE GENMASK(3, 2)
#define DATA_LANE GENMASK(1, 0)
#define LANE_MAX 0x3
/* raw ext size[25:14] + raw size[13:0] */
#define RAW_MAX_RW_SIZE_MASK GENMASK(25, 0)
/* Ecc fields */
#define ECC_COMPLETE BIT(31)
#define ECC_UNCORRECTABLE 0x3f
#define ECC_ERR_CNT(x) (((x) >> 24) & 0x3f)
#define ECC_ZERO_CNT(x) (((x) >> 16) & 0x3f)
#define ECC_BCH8_512 1
#define ECC_BCH8_1K 2
#define ECC_BCH8_PARITY_BYTES 14
#define ECC_BCH8_USER_BYTES 2
#define ECC_BCH8_INFO_BYTES (ECC_BCH8_USER_BYTES + ECC_BCH8_PARITY_BYTES)
#define ECC_BCH8_STRENGTH 8
#define ECC_BCH8_DEFAULT_STEP 512
#define ECC_DEFAULT_BCH_MODE ECC_BCH8_512
#define ECC_PER_INFO_BYTE 8
#define ECC_PATTERN 0x5a
#define ECC_BCH_MAX_SECT_SIZE 63
/* soft flags for sfc */
#define SFC_HWECC BIT(0)
#define SFC_DATA_RANDOM BIT(1)
#define SFC_DATA_ONLY BIT(2)
#define SFC_OOB_ONLY BIT(3)
#define SFC_DATA_OOB BIT(4)
#define SFC_AUTO_OOB BIT(5)
#define SFC_RAW_RW BIT(6)
#define SFC_XFER_MDOE_MASK GENMASK(6, 2)
#define SFC_DATABUF_SIZE 8192
#define SFC_INFOBUF_SIZE 256
#define SFC_BUF_SIZE (SFC_DATABUF_SIZE + SFC_INFOBUF_SIZE)
/* !!! PCB and SPI-NAND chip limitations */
#define SFC_MAX_FREQUENCY (250 * 1000 * 1000)
#define SFC_MIN_FREQUENCY (4 * 1000 * 1000)
#define SFC_BUS_DEFAULT_CLK 40000000
#define SFC_MAX_CS_NUM 2
/* SPI-FLASH R/W operation cmd */
#define SPIFLASH_RD_OCTALIO 0xcb
#define SPIFLASH_RD_OCTAL 0x8b
#define SPIFLASH_RD_QUADIO 0xeb
#define SPIFLASH_RD_QUAD 0x6b
#define SPIFLASH_RD_DUALIO 0xbb
#define SPIFLASH_RD_DUAL 0x3b
#define SPIFLASH_RD_FAST 0x0b
#define SPIFLASH_RD 0x03
#define SPIFLASH_WR_OCTALIO 0xC2
#define SPIFLASH_WR_OCTAL 0x82
#define SPIFLASH_WR_QUAD 0x32
#define SPIFLASH_WR 0x02
#define SPIFLASH_UP_QUAD 0x34
#define SPIFLASH_UP 0x84
struct aml_sfc_ecc_cfg {
u32 stepsize;
u32 nsteps;
u32 strength;
u32 oobsize;
u32 bch;
};
struct aml_ecc_stats {
u32 corrected;
u32 bitflips;
u32 failed;
};
struct aml_sfc_caps {
struct aml_sfc_ecc_cfg *ecc_caps;
u32 num_ecc_caps;
};
struct aml_sfc {
struct device *dev;
struct clk *gate_clk;
struct clk *core_clk;
struct spi_controller *ctrl;
struct regmap *regmap_base;
const struct aml_sfc_caps *caps;
struct nand_ecc_engine ecc_eng;
struct aml_ecc_stats ecc_stats;
dma_addr_t daddr;
dma_addr_t iaddr;
u32 info_bytes;
u32 bus_rate;
u32 flags;
u32 rx_adj;
u32 cs_sel;
u8 *data_buf;
__le64 *info_buf;
u8 *priv;
};
#define AML_ECC_DATA(sz, s, b) { .stepsize = (sz), .strength = (s), .bch = (b) }
static struct aml_sfc_ecc_cfg aml_a113l2_ecc_caps[] = {
AML_ECC_DATA(512, 8, ECC_BCH8_512),
AML_ECC_DATA(1024, 8, ECC_BCH8_1K),
};
static const struct aml_sfc_caps aml_a113l2_sfc_caps = {
.ecc_caps = aml_a113l2_ecc_caps,
.num_ecc_caps = ARRAY_SIZE(aml_a113l2_ecc_caps)
};
static struct aml_sfc *nand_to_aml_sfc(struct nand_device *nand)
{
struct nand_ecc_engine *eng = nand->ecc.engine;
return container_of(eng, struct aml_sfc, ecc_eng);
}
static inline void *aml_sfc_to_ecc_ctx(struct aml_sfc *sfc)
{
return sfc->priv;
}
static int aml_sfc_wait_cmd_finish(struct aml_sfc *sfc, u64 timeout_ms)
{
u32 cmd_size = 0;
int ret;
/*
* The SPINAND flash controller employs a two-stage pipeline:
* 1) command prefetch; 2) command execution.
*
* All commands are stored in the FIFO, with one prefetched for execution.
*
* There are cases where the FIFO is detected as empty, yet a command may
* still be in execution and a prefetched command pending execution.
*
* So, send two idle commands to ensure all previous commands have
* been executed.
*/
regmap_write(sfc->regmap_base, SFC_CMD, CMD_IDLE(sfc->cs_sel, 0));
regmap_write(sfc->regmap_base, SFC_CMD, CMD_IDLE(sfc->cs_sel, 0));
/* Wait for the FIFO to empty. */
ret = regmap_read_poll_timeout(sfc->regmap_base, SFC_CMD, cmd_size,
!GET_CMD_SIZE(cmd_size),
10, timeout_ms * 1000);
if (ret)
dev_err(sfc->dev, "wait for empty CMD FIFO time out\n");
return ret;
}
static int aml_sfc_pre_transfer(struct aml_sfc *sfc, u32 idle_cycle, u32 cs2clk_cycle)
{
int ret;
ret = regmap_write(sfc->regmap_base, SFC_CMD, CMD_IDLE(CS_NONE, idle_cycle));
if (ret)
return ret;
return regmap_write(sfc->regmap_base, SFC_CMD, CMD_IDLE(sfc->cs_sel, cs2clk_cycle));
}
static int aml_sfc_end_transfer(struct aml_sfc *sfc, u32 clk2cs_cycle)
{
int ret;
ret = regmap_write(sfc->regmap_base, SFC_CMD, CMD_IDLE(sfc->cs_sel, clk2cs_cycle));
if (ret)
return ret;
return aml_sfc_wait_cmd_finish(sfc, 0);
}
static int aml_sfc_set_bus_width(struct aml_sfc *sfc, u8 buswidth, u32 mask)
{
int i;
u32 conf = 0;
for (i = 0; i <= LANE_MAX; i++) {
if (buswidth == 1 << i) {
conf = i << __bf_shf(mask);
return regmap_update_bits(sfc->regmap_base, SFC_SPI_CFG,
mask, conf);
}
}
return 0;
}
static int aml_sfc_send_cmd(struct aml_sfc *sfc, const struct spi_mem_op *op)
{
int i, ret;
u8 val;
ret = aml_sfc_set_bus_width(sfc, op->cmd.buswidth, CMD_LANE);
if (ret)
return ret;
for (i = 0; i < op->cmd.nbytes; i++) {
val = (op->cmd.opcode >> ((op->cmd.nbytes - i - 1) * 8)) & 0xff;
ret = regmap_write(sfc->regmap_base, SFC_CMD, CMD_COMMAND(sfc->cs_sel, val));
if (ret)
return ret;
}
return 0;
}
static int aml_sfc_send_addr(struct aml_sfc *sfc, const struct spi_mem_op *op)
{
int i, ret;
u8 val;
ret = aml_sfc_set_bus_width(sfc, op->addr.buswidth, ADDR_LANE);
if (ret)
return ret;
for (i = 0; i < op->addr.nbytes; i++) {
val = (op->addr.val >> ((op->addr.nbytes - i - 1) * 8)) & 0xff;
ret = regmap_write(sfc->regmap_base, SFC_CMD, CMD_ADDR(sfc->cs_sel, val));
if (ret)
return ret;
}
return 0;
}
static bool aml_sfc_is_xio_op(const struct spi_mem_op *op)
{
switch (op->cmd.opcode) {
case SPIFLASH_RD_OCTALIO:
case SPIFLASH_RD_QUADIO:
case SPIFLASH_RD_DUALIO:
return true;
default:
break;
}
return false;
}
static int aml_sfc_send_cmd_addr_dummy(struct aml_sfc *sfc, const struct spi_mem_op *op)
{
u32 dummy_cycle, cmd;
int ret;
ret = aml_sfc_send_cmd(sfc, op);
if (ret)
return ret;
ret = aml_sfc_send_addr(sfc, op);
if (ret)
return ret;
if (op->dummy.nbytes) {
/* Dummy buswidth configuration is not supported */
if (aml_sfc_is_xio_op(op))
dummy_cycle = op->dummy.nbytes * 8 / op->data.buswidth;
else
dummy_cycle = op->dummy.nbytes * 8;
cmd = CMD_DUMMY(sfc->cs_sel, dummy_cycle - 1);
return regmap_write(sfc->regmap_base, SFC_CMD, cmd);
}
return 0;
}
static bool aml_sfc_is_snand_hwecc_page_op(struct aml_sfc *sfc, const struct spi_mem_op *op)
{
switch (op->cmd.opcode) {
/* SPINAND read from cache cmd */
case SPIFLASH_RD_QUADIO:
case SPIFLASH_RD_QUAD:
case SPIFLASH_RD_DUALIO:
case SPIFLASH_RD_DUAL:
case SPIFLASH_RD_FAST:
case SPIFLASH_RD:
/* SPINAND write to cache cmd */
case SPIFLASH_WR_QUAD:
case SPIFLASH_WR:
case SPIFLASH_UP_QUAD:
case SPIFLASH_UP:
if (sfc->flags & SFC_HWECC)
return true;
else
return false;
default:
break;
}
return false;
}
static int aml_sfc_dma_buffer_setup(struct aml_sfc *sfc, void *databuf,
int datalen, void *infobuf, int infolen,
enum dma_data_direction dir)
{
u32 cmd = 0;
int ret;
sfc->daddr = dma_map_single(sfc->dev, databuf, datalen, dir);
ret = dma_mapping_error(sfc->dev, sfc->daddr);
if (ret) {
dev_err(sfc->dev, "DMA mapping error\n");
goto out_map_data;
}
cmd = CMD_DATA_ADDRL(sfc->daddr);
ret = regmap_write(sfc->regmap_base, SFC_CMD, cmd);
if (ret)
goto out_map_data;
cmd = CMD_DATA_ADDRH(sfc->daddr);
ret = regmap_write(sfc->regmap_base, SFC_CMD, cmd);
if (ret)
goto out_map_data;
if (infobuf) {
sfc->iaddr = dma_map_single(sfc->dev, infobuf, infolen, dir);
ret = dma_mapping_error(sfc->dev, sfc->iaddr);
if (ret) {
dev_err(sfc->dev, "DMA mapping error\n");
dma_unmap_single(sfc->dev, sfc->daddr, datalen, dir);
goto out_map_data;
}
sfc->info_bytes = infolen;
cmd = CMD_INFO_ADDRL(sfc->iaddr);
ret = regmap_write(sfc->regmap_base, SFC_CMD, cmd);
if (ret)
goto out_map_info;
cmd = CMD_INFO_ADDRH(sfc->iaddr);
ret = regmap_write(sfc->regmap_base, SFC_CMD, cmd);
if (ret)
goto out_map_info;
}
return 0;
out_map_info:
dma_unmap_single(sfc->dev, sfc->iaddr, datalen, dir);
out_map_data:
dma_unmap_single(sfc->dev, sfc->daddr, datalen, dir);
return ret;
}
static void aml_sfc_dma_buffer_release(struct aml_sfc *sfc,
int datalen, int infolen,
enum dma_data_direction dir)
{
dma_unmap_single(sfc->dev, sfc->daddr, datalen, dir);
if (infolen) {
dma_unmap_single(sfc->dev, sfc->iaddr, infolen, dir);
sfc->info_bytes = 0;
}
}
static bool aml_sfc_dma_buffer_is_safe(const void *buffer)
{
if ((uintptr_t)buffer % DMA_ADDR_ALIGN)
return false;
if (virt_addr_valid(buffer))
return true;
return false;
}
static void *aml_get_dma_safe_input_buf(const struct spi_mem_op *op)
{
if (aml_sfc_dma_buffer_is_safe(op->data.buf.in))
return op->data.buf.in;
return kzalloc(op->data.nbytes, GFP_KERNEL);
}
static void aml_sfc_put_dma_safe_input_buf(const struct spi_mem_op *op, void *buf)
{
if (WARN_ON(op->data.dir != SPI_MEM_DATA_IN) || WARN_ON(!buf))
return;
if (buf == op->data.buf.in)
return;
memcpy(op->data.buf.in, buf, op->data.nbytes);
kfree(buf);
}
static void *aml_sfc_get_dma_safe_output_buf(const struct spi_mem_op *op)
{
if (aml_sfc_dma_buffer_is_safe(op->data.buf.out))
return (void *)op->data.buf.out;
return kmemdup(op->data.buf.out, op->data.nbytes, GFP_KERNEL);
}
static void aml_sfc_put_dma_safe_output_buf(const struct spi_mem_op *op, const void *buf)
{
if (WARN_ON(op->data.dir != SPI_MEM_DATA_OUT) || WARN_ON(!buf))
return;
if (buf != op->data.buf.out)
kfree(buf);
}
static u64 aml_sfc_cal_timeout_cycle(struct aml_sfc *sfc, const struct spi_mem_op *op)
{
u64 ms;
/* For each byte we wait for (8 cycles / buswidth) of the SPI clock. */
ms = 8 * MSEC_PER_SEC * op->data.nbytes / op->data.buswidth;
do_div(ms, sfc->bus_rate / DEFAULT_BUS_CYCLE);
/*
* Double the value and add a 200 ms tolerance to compensate for
* the impact of specific CS hold time, CS setup time sequences,
* controller burst gaps, and other related timing variations.
*/
ms += ms + 200;
if (ms > UINT_MAX)
ms = UINT_MAX;
return ms;
}
static void aml_sfc_check_ecc_pages_valid(struct aml_sfc *sfc, bool raw)
{
struct aml_sfc_ecc_cfg *ecc_cfg;
__le64 *info;
int ret;
info = sfc->info_buf;
ecc_cfg = aml_sfc_to_ecc_ctx(sfc);
info += raw ? 0 : ecc_cfg->nsteps - 1;
do {
usleep_range(10, 15);
/* info is updated by nfc dma engine*/
smp_rmb();
dma_sync_single_for_cpu(sfc->dev, sfc->iaddr, sfc->info_bytes,
DMA_FROM_DEVICE);
ret = le64_to_cpu(*info) & ECC_COMPLETE;
} while (!ret);
}
static int aml_sfc_raw_io_op(struct aml_sfc *sfc, const struct spi_mem_op *op)
{
void *buf = NULL;
int ret;
bool is_datain = false;
u32 cmd = 0, conf;
u64 timeout_ms;
if (!op->data.nbytes)
goto end_xfer;
conf = (op->data.nbytes >> RAW_SIZE_BW) << __bf_shf(RAW_EXT_SIZE);
ret = regmap_update_bits(sfc->regmap_base, SFC_SPI_CFG, RAW_EXT_SIZE, conf);
if (ret)
goto err_out;
if (op->data.dir == SPI_MEM_DATA_IN) {
is_datain = true;
buf = aml_get_dma_safe_input_buf(op);
if (!buf) {
ret = -ENOMEM;
goto err_out;
}
cmd |= CMD_NAND2MEM(0, (op->data.nbytes & RAW_SIZE));
} else if (op->data.dir == SPI_MEM_DATA_OUT) {
is_datain = false;
buf = aml_sfc_get_dma_safe_output_buf(op);
if (!buf) {
ret = -ENOMEM;
goto err_out;
}
cmd |= CMD_MEM2NAND(0, (op->data.nbytes & RAW_SIZE));
} else {
goto end_xfer;
}
ret = aml_sfc_dma_buffer_setup(sfc, buf, op->data.nbytes,
is_datain ? sfc->info_buf : NULL,
is_datain ? ECC_PER_INFO_BYTE : 0,
is_datain ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
if (ret)
goto err_out;
ret = regmap_write(sfc->regmap_base, SFC_CMD, cmd);
if (ret)
goto err_out;
timeout_ms = aml_sfc_cal_timeout_cycle(sfc, op);
ret = aml_sfc_wait_cmd_finish(sfc, timeout_ms);
if (ret)
goto err_out;
if (is_datain)
aml_sfc_check_ecc_pages_valid(sfc, 1);
if (op->data.dir == SPI_MEM_DATA_IN)
aml_sfc_put_dma_safe_input_buf(op, buf);
else if (op->data.dir == SPI_MEM_DATA_OUT)
aml_sfc_put_dma_safe_output_buf(op, buf);
aml_sfc_dma_buffer_release(sfc, op->data.nbytes,
is_datain ? ECC_PER_INFO_BYTE : 0,
is_datain ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
end_xfer:
return aml_sfc_end_transfer(sfc, CS_HOLD_CYCLE);
err_out:
return ret;
}
static void aml_sfc_set_user_byte(struct aml_sfc *sfc, __le64 *info_buf, u8 *oob_buf, bool auto_oob)
{
struct aml_sfc_ecc_cfg *ecc_cfg;
__le64 *info;
int i, count, step_size;
ecc_cfg = aml_sfc_to_ecc_ctx(sfc);
step_size = auto_oob ? ECC_BCH8_INFO_BYTES : ECC_BCH8_USER_BYTES;
for (i = 0, count = 0; i < ecc_cfg->nsteps; i++, count += step_size) {
info = &info_buf[i];
*info &= cpu_to_le64(~0xffff);
*info |= cpu_to_le64((oob_buf[count + 1] << 8) + oob_buf[count]);
}
}
static void aml_sfc_get_user_byte(struct aml_sfc *sfc, __le64 *info_buf, u8 *oob_buf)
{
struct aml_sfc_ecc_cfg *ecc_cfg;
__le64 *info;
int i, count;
ecc_cfg = aml_sfc_to_ecc_ctx(sfc);
for (i = 0, count = 0; i < ecc_cfg->nsteps; i++, count += ECC_BCH8_INFO_BYTES) {
info = &info_buf[i];
oob_buf[count] = le64_to_cpu(*info);
oob_buf[count + 1] = le64_to_cpu(*info) >> 8;
}
}
static int aml_sfc_check_hwecc_status(struct aml_sfc *sfc, __le64 *info_buf)
{
struct aml_sfc_ecc_cfg *ecc_cfg;
__le64 *info;
u32 i, max_bitflips = 0, per_sector_bitflips = 0;
ecc_cfg = aml_sfc_to_ecc_ctx(sfc);
sfc->ecc_stats.failed = 0;
sfc->ecc_stats.bitflips = 0;
sfc->ecc_stats.corrected = 0;
for (i = 0, info = info_buf; i < ecc_cfg->nsteps; i++, info++) {
if (ECC_ERR_CNT(le64_to_cpu(*info)) != ECC_UNCORRECTABLE) {
per_sector_bitflips = ECC_ERR_CNT(le64_to_cpu(*info));
max_bitflips = max_t(u32, max_bitflips, per_sector_bitflips);
sfc->ecc_stats.corrected += per_sector_bitflips;
continue;
}
return -EBADMSG;
}
return max_bitflips;
}
static int aml_sfc_read_page_hwecc(struct aml_sfc *sfc, const struct spi_mem_op *op)
{
struct aml_sfc_ecc_cfg *ecc_cfg;
int ret, data_len, info_len;
u32 page_size, cmd = 0;
u64 timeout_ms;
ecc_cfg = aml_sfc_to_ecc_ctx(sfc);
page_size = ecc_cfg->stepsize * ecc_cfg->nsteps;
data_len = page_size + ecc_cfg->oobsize;
info_len = ecc_cfg->nsteps * ECC_PER_INFO_BYTE;
ret = aml_sfc_dma_buffer_setup(sfc, sfc->data_buf, data_len,
sfc->info_buf, info_len, DMA_FROM_DEVICE);
if (ret)
goto err_out;
cmd |= CMD_NAND2MEM(ecc_cfg->bch, ecc_cfg->nsteps);
ret = regmap_write(sfc->regmap_base, SFC_CMD, cmd);
if (ret)
goto err_out;
timeout_ms = aml_sfc_cal_timeout_cycle(sfc, op);
ret = aml_sfc_wait_cmd_finish(sfc, timeout_ms);
if (ret)
goto err_out;
aml_sfc_check_ecc_pages_valid(sfc, 0);
aml_sfc_dma_buffer_release(sfc, data_len, info_len, DMA_FROM_DEVICE);
/* check ecc status here */
ret = aml_sfc_check_hwecc_status(sfc, sfc->info_buf);
if (ret < 0)
sfc->ecc_stats.failed++;
else
sfc->ecc_stats.bitflips = ret;
if (sfc->flags & SFC_DATA_ONLY) {
memcpy(op->data.buf.in, sfc->data_buf, page_size);
} else if (sfc->flags & SFC_OOB_ONLY) {
aml_sfc_get_user_byte(sfc, sfc->info_buf, op->data.buf.in);
} else if (sfc->flags & SFC_DATA_OOB) {
memcpy(op->data.buf.in, sfc->data_buf, page_size);
aml_sfc_get_user_byte(sfc, sfc->info_buf, op->data.buf.in + page_size);
}
return aml_sfc_end_transfer(sfc, CS_HOLD_CYCLE);
err_out:
return ret;
}
static int aml_sfc_write_page_hwecc(struct aml_sfc *sfc, const struct spi_mem_op *op)
{
struct aml_sfc_ecc_cfg *ecc_cfg;
int ret, data_len, info_len;
u32 page_size, cmd = 0;
u64 timeout_ms;
ecc_cfg = aml_sfc_to_ecc_ctx(sfc);
page_size = ecc_cfg->stepsize * ecc_cfg->nsteps;
data_len = page_size + ecc_cfg->oobsize;
info_len = ecc_cfg->nsteps * ECC_PER_INFO_BYTE;
memset(sfc->info_buf, ECC_PATTERN, ecc_cfg->oobsize);
memcpy(sfc->data_buf, op->data.buf.out, page_size);
if (!(sfc->flags & SFC_DATA_ONLY)) {
if (sfc->flags & SFC_AUTO_OOB)
aml_sfc_set_user_byte(sfc, sfc->info_buf,
(u8 *)op->data.buf.out + page_size, 1);
else
aml_sfc_set_user_byte(sfc, sfc->info_buf,
(u8 *)op->data.buf.out + page_size, 0);
}
ret = aml_sfc_dma_buffer_setup(sfc, sfc->data_buf, data_len,
sfc->info_buf, info_len, DMA_TO_DEVICE);
if (ret)
goto err_out;
cmd |= CMD_MEM2NAND(ecc_cfg->bch, ecc_cfg->nsteps);
ret = regmap_write(sfc->regmap_base, SFC_CMD, cmd);
if (ret)
goto err_out;
timeout_ms = aml_sfc_cal_timeout_cycle(sfc, op);
ret = aml_sfc_wait_cmd_finish(sfc, timeout_ms);
if (ret)
goto err_out;
aml_sfc_dma_buffer_release(sfc, data_len, info_len, DMA_TO_DEVICE);
return aml_sfc_end_transfer(sfc, CS_HOLD_CYCLE);
err_out:
return ret;
}
static int aml_sfc_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
struct aml_sfc *sfc;
struct spi_device *spi;
struct aml_sfc_ecc_cfg *ecc_cfg;
int ret;
sfc = spi_controller_get_devdata(mem->spi->controller);
ecc_cfg = aml_sfc_to_ecc_ctx(sfc);
spi = mem->spi;
sfc->cs_sel = spi->chip_select[0] ? CS_1 : CS_0;
dev_dbg(sfc->dev, "cmd:0x%02x - addr:%08llX@%d:%u - dummy:%d:%u - data:%d:%u",
op->cmd.opcode, op->addr.val, op->addr.buswidth, op->addr.nbytes,
op->dummy.buswidth, op->dummy.nbytes, op->data.buswidth, op->data.nbytes);
ret = aml_sfc_pre_transfer(sfc, DEFAULT_PULLUP_CYCLE, CS_SETUP_CYCLE);
if (ret)
return ret;
ret = aml_sfc_send_cmd_addr_dummy(sfc, op);
if (ret)
return ret;
ret = aml_sfc_set_bus_width(sfc, op->data.buswidth, DATA_LANE);
if (ret)
return ret;
if (aml_sfc_is_snand_hwecc_page_op(sfc, op) &&
ecc_cfg && !(sfc->flags & SFC_RAW_RW)) {
if (op->data.dir == SPI_MEM_DATA_IN)
return aml_sfc_read_page_hwecc(sfc, op);
else
return aml_sfc_write_page_hwecc(sfc, op);
}
return aml_sfc_raw_io_op(sfc, op);
}
static int aml_sfc_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
{
struct aml_sfc *sfc;
struct aml_sfc_ecc_cfg *ecc_cfg;
sfc = spi_controller_get_devdata(mem->spi->controller);
ecc_cfg = aml_sfc_to_ecc_ctx(sfc);
if (aml_sfc_is_snand_hwecc_page_op(sfc, op) && ecc_cfg) {
if (op->data.nbytes > ecc_cfg->stepsize * ECC_BCH_MAX_SECT_SIZE)
return -EOPNOTSUPP;
} else if (op->data.nbytes & ~RAW_MAX_RW_SIZE_MASK) {
return -EOPNOTSUPP;
}
return 0;
}
static const struct spi_controller_mem_ops aml_sfc_mem_ops = {
.adjust_op_size = aml_sfc_adjust_op_size,
.exec_op = aml_sfc_exec_op,
};
static int aml_sfc_layout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_device *nand = mtd_to_nanddev(mtd);
if (section >= nand->ecc.ctx.nsteps)
return -ERANGE;
oobregion->offset = ECC_BCH8_USER_BYTES + (section * ECC_BCH8_INFO_BYTES);
oobregion->length = ECC_BCH8_PARITY_BYTES;
return 0;
}
static int aml_sfc_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_device *nand = mtd_to_nanddev(mtd);
if (section >= nand->ecc.ctx.nsteps)
return -ERANGE;
oobregion->offset = section * ECC_BCH8_INFO_BYTES;
oobregion->length = ECC_BCH8_USER_BYTES;
return 0;
}
static const struct mtd_ooblayout_ops aml_sfc_ooblayout_ops = {
.ecc = aml_sfc_layout_ecc,
.free = aml_sfc_ooblayout_free,
};
static int aml_spi_settings(struct aml_sfc *sfc, struct spi_device *spi)
{
u32 conf = 0;
if (spi->mode & SPI_CPHA)
conf |= CPHA;
if (spi->mode & SPI_CPOL)
conf |= CPOL;
conf |= FIELD_PREP(RXADJ, sfc->rx_adj);
conf |= EN_HOLD | EN_WP;
return regmap_update_bits(sfc->regmap_base, SFC_SPI_CFG,
CPHA | CPOL | RXADJ |
EN_HOLD | EN_WP, conf);
}
static int aml_set_spi_clk(struct aml_sfc *sfc, struct spi_device *spi)
{
u32 speed_hz;
int ret;
if (spi->max_speed_hz > SFC_MAX_FREQUENCY)
speed_hz = SFC_MAX_FREQUENCY;
else if (!spi->max_speed_hz)
speed_hz = SFC_BUS_DEFAULT_CLK;
else if (spi->max_speed_hz < SFC_MIN_FREQUENCY)
speed_hz = SFC_MIN_FREQUENCY;
else
speed_hz = spi->max_speed_hz;
/* The SPI clock is generated by dividing the bus clock by four by default. */
ret = regmap_write(sfc->regmap_base, SFC_CFG, (DEFAULT_BUS_CYCLE - 1));
if (ret) {
dev_err(sfc->dev, "failed to set bus cycle\n");
return ret;
}
return clk_set_rate(sfc->core_clk, speed_hz * DEFAULT_BUS_CYCLE);
}
static int aml_sfc_setup(struct spi_device *spi)
{
struct aml_sfc *sfc;
int ret;
sfc = spi_controller_get_devdata(spi->controller);
ret = aml_spi_settings(sfc, spi);
if (ret)
return ret;
ret = aml_set_spi_clk(sfc, spi);
if (ret)
return ret;
sfc->bus_rate = clk_get_rate(sfc->core_clk);
return 0;
}
static int aml_sfc_ecc_init_ctx(struct nand_device *nand)
{
struct mtd_info *mtd = nanddev_to_mtd(nand);
struct aml_sfc *sfc = nand_to_aml_sfc(nand);
struct aml_sfc_ecc_cfg *ecc_cfg;
const struct aml_sfc_caps *caps = sfc->caps;
struct aml_sfc_ecc_cfg *ecc_caps = caps->ecc_caps;
int i, ecc_strength, ecc_step_size;
ecc_step_size = nand->ecc.user_conf.step_size;
ecc_strength = nand->ecc.user_conf.strength;
for (i = 0; i < caps->num_ecc_caps; i++) {
if (ecc_caps[i].stepsize == ecc_step_size) {
nand->ecc.ctx.conf.step_size = ecc_step_size;
nand->ecc.ctx.conf.flags |= BIT(ecc_caps[i].bch);
}
if (ecc_caps[i].strength == ecc_strength)
nand->ecc.ctx.conf.strength = ecc_strength;
}
if (!nand->ecc.ctx.conf.step_size) {
nand->ecc.ctx.conf.step_size = ECC_BCH8_DEFAULT_STEP;
nand->ecc.ctx.conf.flags |= BIT(ECC_DEFAULT_BCH_MODE);
}
if (!nand->ecc.ctx.conf.strength)
nand->ecc.ctx.conf.strength = ECC_BCH8_STRENGTH;
nand->ecc.ctx.nsteps = nand->memorg.pagesize / nand->ecc.ctx.conf.step_size;
nand->ecc.ctx.total = nand->ecc.ctx.nsteps * ECC_BCH8_PARITY_BYTES;
/* Verify the page size and OOB size against the SFC requirements. */
if ((nand->memorg.pagesize % nand->ecc.ctx.conf.step_size) ||
(nand->memorg.oobsize < (nand->ecc.ctx.total +
nand->ecc.ctx.nsteps * ECC_BCH8_USER_BYTES)))
return -EOPNOTSUPP;
nand->ecc.ctx.conf.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
ecc_cfg = kzalloc(sizeof(*ecc_cfg), GFP_KERNEL);
if (!ecc_cfg)
return -ENOMEM;
ecc_cfg->stepsize = nand->ecc.ctx.conf.step_size;
ecc_cfg->nsteps = nand->ecc.ctx.nsteps;
ecc_cfg->strength = nand->ecc.ctx.conf.strength;
ecc_cfg->oobsize = nand->memorg.oobsize;
ecc_cfg->bch = nand->ecc.ctx.conf.flags & BIT(ECC_DEFAULT_BCH_MODE) ? 1 : 2;
nand->ecc.ctx.priv = ecc_cfg;
sfc->priv = (void *)ecc_cfg;
mtd_set_ooblayout(mtd, &aml_sfc_ooblayout_ops);
sfc->flags |= SFC_HWECC;
return 0;
}
static void aml_sfc_ecc_cleanup_ctx(struct nand_device *nand)
{
struct aml_sfc *sfc = nand_to_aml_sfc(nand);
sfc->flags &= ~(SFC_HWECC);
kfree(nand->ecc.ctx.priv);
sfc->priv = NULL;
}
static int aml_sfc_ecc_prepare_io_req(struct nand_device *nand,
struct nand_page_io_req *req)
{
struct aml_sfc *sfc = nand_to_aml_sfc(nand);
struct spinand_device *spinand = nand_to_spinand(nand);
sfc->flags &= ~SFC_XFER_MDOE_MASK;
if (req->datalen && !req->ooblen)
sfc->flags |= SFC_DATA_ONLY;
else if (!req->datalen && req->ooblen)
sfc->flags |= SFC_OOB_ONLY;
else if (req->datalen && req->ooblen)
sfc->flags |= SFC_DATA_OOB;
if (req->mode == MTD_OPS_RAW)
sfc->flags |= SFC_RAW_RW;
else if (req->mode == MTD_OPS_AUTO_OOB)
sfc->flags |= SFC_AUTO_OOB;
memset(spinand->oobbuf, 0xff, nanddev_per_page_oobsize(nand));
return 0;
}
static int aml_sfc_ecc_finish_io_req(struct nand_device *nand,
struct nand_page_io_req *req)
{
struct aml_sfc *sfc = nand_to_aml_sfc(nand);
struct mtd_info *mtd = nanddev_to_mtd(nand);
if (req->mode == MTD_OPS_RAW || req->type == NAND_PAGE_WRITE)
return 0;
if (sfc->ecc_stats.failed)
mtd->ecc_stats.failed++;
mtd->ecc_stats.corrected += sfc->ecc_stats.corrected;
return sfc->ecc_stats.failed ? -EBADMSG : sfc->ecc_stats.bitflips;
}
static const struct spi_controller_mem_caps aml_sfc_mem_caps = {
.ecc = true,
};
static const struct nand_ecc_engine_ops aml_sfc_ecc_engine_ops = {
.init_ctx = aml_sfc_ecc_init_ctx,
.cleanup_ctx = aml_sfc_ecc_cleanup_ctx,
.prepare_io_req = aml_sfc_ecc_prepare_io_req,
.finish_io_req = aml_sfc_ecc_finish_io_req,
};
static int aml_sfc_clk_init(struct aml_sfc *sfc)
{
sfc->gate_clk = devm_clk_get_enabled(sfc->dev, "gate");
if (IS_ERR(sfc->gate_clk)) {
dev_err(sfc->dev, "unable to enable gate clk\n");
return PTR_ERR(sfc->gate_clk);
}
sfc->core_clk = devm_clk_get_enabled(sfc->dev, "core");
if (IS_ERR(sfc->core_clk)) {
dev_err(sfc->dev, "unable to enable core clk\n");
return PTR_ERR(sfc->core_clk);
}
return clk_set_rate(sfc->core_clk, SFC_BUS_DEFAULT_CLK);
}
static int aml_sfc_disable_clk(struct aml_sfc *sfc)
{
clk_disable_unprepare(sfc->core_clk);
clk_disable_unprepare(sfc->gate_clk);
return 0;
}
static int aml_sfc_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct device *dev = &pdev->dev;
struct spi_controller *ctrl;
struct aml_sfc *sfc;
void __iomem *reg_base;
int ret;
u32 val = 0;
const struct regmap_config core_config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.max_register = SFC_SPI_CFG,
};
ctrl = devm_spi_alloc_host(dev, sizeof(*sfc));
if (!ctrl)
return -ENOMEM;
platform_set_drvdata(pdev, ctrl);
sfc = spi_controller_get_devdata(ctrl);
sfc->dev = dev;
sfc->ctrl = ctrl;
sfc->caps = of_device_get_match_data(dev);
if (!sfc->caps)
return dev_err_probe(dev, -ENODEV, "failed to get device data\n");
reg_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(reg_base))
return PTR_ERR(reg_base);
sfc->regmap_base = devm_regmap_init_mmio(dev, reg_base, &core_config);
if (IS_ERR(sfc->regmap_base))
return dev_err_probe(dev, PTR_ERR(sfc->regmap_base),
"failed to init sfc base regmap\n");
sfc->data_buf = devm_kzalloc(dev, SFC_BUF_SIZE, GFP_KERNEL);
if (!sfc->data_buf)
return -ENOMEM;
sfc->info_buf = (__le64 *)(sfc->data_buf + SFC_DATABUF_SIZE);
ret = aml_sfc_clk_init(sfc);
if (ret)
return dev_err_probe(dev, ret, "failed to initialize SFC clock\n");
/* Enable Amlogic flash controller spi mode */
ret = regmap_write(sfc->regmap_base, SFC_SPI_CFG, SPI_MODE_EN);
if (ret) {
dev_err(dev, "failed to enable SPI mode\n");
goto err_out;
}
ret = dma_set_mask(sfc->dev, DMA_BIT_MASK(32));
if (ret) {
dev_err(sfc->dev, "failed to set dma mask\n");
goto err_out;
}
sfc->ecc_eng.dev = &pdev->dev;
sfc->ecc_eng.integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED;
sfc->ecc_eng.ops = &aml_sfc_ecc_engine_ops;
sfc->ecc_eng.priv = sfc;
ret = nand_ecc_register_on_host_hw_engine(&sfc->ecc_eng);
if (ret) {
dev_err(&pdev->dev, "failed to register Aml host ecc engine.\n");
goto err_out;
}
ret = of_property_read_u32(np, "amlogic,rx-adj", &val);
if (!ret)
sfc->rx_adj = val;
ctrl->dev.of_node = np;
ctrl->mem_ops = &aml_sfc_mem_ops;
ctrl->mem_caps = &aml_sfc_mem_caps;
ctrl->setup = aml_sfc_setup;
ctrl->mode_bits = SPI_TX_QUAD | SPI_TX_DUAL | SPI_RX_QUAD |
SPI_RX_DUAL | SPI_TX_OCTAL | SPI_RX_OCTAL;
ctrl->max_speed_hz = SFC_MAX_FREQUENCY;
ctrl->min_speed_hz = SFC_MIN_FREQUENCY;
ctrl->num_chipselect = SFC_MAX_CS_NUM;
ret = devm_spi_register_controller(dev, ctrl);
if (ret)
goto err_out;
return 0;
err_out:
aml_sfc_disable_clk(sfc);
return ret;
}
static void aml_sfc_remove(struct platform_device *pdev)
{
struct spi_controller *ctlr = platform_get_drvdata(pdev);
struct aml_sfc *sfc = spi_controller_get_devdata(ctlr);
aml_sfc_disable_clk(sfc);
}
static const struct of_device_id aml_sfc_of_match[] = {
{
.compatible = "amlogic,a4-spifc",
.data = &aml_a113l2_sfc_caps
},
{},
};
MODULE_DEVICE_TABLE(of, aml_sfc_of_match);
static struct platform_driver aml_sfc_driver = {
.driver = {
.name = "aml_sfc",
.of_match_table = aml_sfc_of_match,
},
.probe = aml_sfc_probe,
.remove = aml_sfc_remove,
};
module_platform_driver(aml_sfc_driver);
MODULE_DESCRIPTION("Amlogic SPI Flash Controller driver");
MODULE_AUTHOR("Feng Chen <feng.chen@amlogic.com>");
MODULE_LICENSE("Dual MIT/GPL");