| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Key setup facility for FS encryption support. | 
 |  * | 
 |  * Copyright (C) 2015, Google, Inc. | 
 |  * | 
 |  * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar. | 
 |  * Heavily modified since then. | 
 |  */ | 
 |  | 
 | #include <crypto/skcipher.h> | 
 | #include <linux/export.h> | 
 | #include <linux/random.h> | 
 |  | 
 | #include "fscrypt_private.h" | 
 |  | 
 | struct fscrypt_mode fscrypt_modes[] = { | 
 | 	[FSCRYPT_MODE_AES_256_XTS] = { | 
 | 		.friendly_name = "AES-256-XTS", | 
 | 		.cipher_str = "xts(aes)", | 
 | 		.keysize = 64, | 
 | 		.security_strength = 32, | 
 | 		.ivsize = 16, | 
 | 		.blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_256_XTS, | 
 | 	}, | 
 | 	[FSCRYPT_MODE_AES_256_CTS] = { | 
 | 		.friendly_name = "AES-256-CBC-CTS", | 
 | 		.cipher_str = "cts(cbc(aes))", | 
 | 		.keysize = 32, | 
 | 		.security_strength = 32, | 
 | 		.ivsize = 16, | 
 | 	}, | 
 | 	[FSCRYPT_MODE_AES_128_CBC] = { | 
 | 		.friendly_name = "AES-128-CBC-ESSIV", | 
 | 		.cipher_str = "essiv(cbc(aes),sha256)", | 
 | 		.keysize = 16, | 
 | 		.security_strength = 16, | 
 | 		.ivsize = 16, | 
 | 		.blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV, | 
 | 	}, | 
 | 	[FSCRYPT_MODE_AES_128_CTS] = { | 
 | 		.friendly_name = "AES-128-CBC-CTS", | 
 | 		.cipher_str = "cts(cbc(aes))", | 
 | 		.keysize = 16, | 
 | 		.security_strength = 16, | 
 | 		.ivsize = 16, | 
 | 	}, | 
 | 	[FSCRYPT_MODE_SM4_XTS] = { | 
 | 		.friendly_name = "SM4-XTS", | 
 | 		.cipher_str = "xts(sm4)", | 
 | 		.keysize = 32, | 
 | 		.security_strength = 16, | 
 | 		.ivsize = 16, | 
 | 		.blk_crypto_mode = BLK_ENCRYPTION_MODE_SM4_XTS, | 
 | 	}, | 
 | 	[FSCRYPT_MODE_SM4_CTS] = { | 
 | 		.friendly_name = "SM4-CBC-CTS", | 
 | 		.cipher_str = "cts(cbc(sm4))", | 
 | 		.keysize = 16, | 
 | 		.security_strength = 16, | 
 | 		.ivsize = 16, | 
 | 	}, | 
 | 	[FSCRYPT_MODE_ADIANTUM] = { | 
 | 		.friendly_name = "Adiantum", | 
 | 		.cipher_str = "adiantum(xchacha12,aes)", | 
 | 		.keysize = 32, | 
 | 		.security_strength = 32, | 
 | 		.ivsize = 32, | 
 | 		.blk_crypto_mode = BLK_ENCRYPTION_MODE_ADIANTUM, | 
 | 	}, | 
 | 	[FSCRYPT_MODE_AES_256_HCTR2] = { | 
 | 		.friendly_name = "AES-256-HCTR2", | 
 | 		.cipher_str = "hctr2(aes)", | 
 | 		.keysize = 32, | 
 | 		.security_strength = 32, | 
 | 		.ivsize = 32, | 
 | 	}, | 
 | }; | 
 |  | 
 | static DEFINE_MUTEX(fscrypt_mode_key_setup_mutex); | 
 |  | 
 | static struct fscrypt_mode * | 
 | select_encryption_mode(const union fscrypt_policy *policy, | 
 | 		       const struct inode *inode) | 
 | { | 
 | 	BUILD_BUG_ON(ARRAY_SIZE(fscrypt_modes) != FSCRYPT_MODE_MAX + 1); | 
 |  | 
 | 	if (S_ISREG(inode->i_mode)) | 
 | 		return &fscrypt_modes[fscrypt_policy_contents_mode(policy)]; | 
 |  | 
 | 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) | 
 | 		return &fscrypt_modes[fscrypt_policy_fnames_mode(policy)]; | 
 |  | 
 | 	WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n", | 
 | 		  inode->i_ino, (inode->i_mode & S_IFMT)); | 
 | 	return ERR_PTR(-EINVAL); | 
 | } | 
 |  | 
 | /* Create a symmetric cipher object for the given encryption mode and key */ | 
 | static struct crypto_sync_skcipher * | 
 | fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key, | 
 | 			  const struct inode *inode) | 
 | { | 
 | 	struct crypto_sync_skcipher *tfm; | 
 | 	int err; | 
 |  | 
 | 	tfm = crypto_alloc_sync_skcipher(mode->cipher_str, 0, | 
 | 					 FSCRYPT_CRYPTOAPI_MASK); | 
 | 	if (IS_ERR(tfm)) { | 
 | 		if (PTR_ERR(tfm) == -ENOENT) { | 
 | 			fscrypt_warn(inode, | 
 | 				     "Missing crypto API support for %s (API name: \"%s\")", | 
 | 				     mode->friendly_name, mode->cipher_str); | 
 | 			return ERR_PTR(-ENOPKG); | 
 | 		} | 
 | 		fscrypt_err(inode, "Error allocating '%s' transform: %ld", | 
 | 			    mode->cipher_str, PTR_ERR(tfm)); | 
 | 		return tfm; | 
 | 	} | 
 | 	if (!xchg(&mode->logged_cryptoapi_impl, 1)) { | 
 | 		/* | 
 | 		 * fscrypt performance can vary greatly depending on which | 
 | 		 * crypto algorithm implementation is used.  Help people debug | 
 | 		 * performance problems by logging the ->cra_driver_name the | 
 | 		 * first time a mode is used. | 
 | 		 */ | 
 | 		pr_info("fscrypt: %s using implementation \"%s\"\n", | 
 | 			mode->friendly_name, | 
 | 			crypto_skcipher_driver_name(&tfm->base)); | 
 | 	} | 
 | 	if (WARN_ON_ONCE(crypto_sync_skcipher_ivsize(tfm) != mode->ivsize)) { | 
 | 		err = -EINVAL; | 
 | 		goto err_free_tfm; | 
 | 	} | 
 | 	crypto_sync_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); | 
 | 	err = crypto_sync_skcipher_setkey(tfm, raw_key, mode->keysize); | 
 | 	if (err) | 
 | 		goto err_free_tfm; | 
 |  | 
 | 	return tfm; | 
 |  | 
 | err_free_tfm: | 
 | 	crypto_free_sync_skcipher(tfm); | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | /* | 
 |  * Prepare the crypto transform object or blk-crypto key in @prep_key, given the | 
 |  * raw key, encryption mode (@ci->ci_mode), flag indicating which encryption | 
 |  * implementation (fs-layer or blk-crypto) will be used (@ci->ci_inlinecrypt), | 
 |  * and IV generation method (@ci->ci_policy.flags). | 
 |  */ | 
 | int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key, | 
 | 			const u8 *raw_key, const struct fscrypt_inode_info *ci) | 
 | { | 
 | 	struct crypto_sync_skcipher *tfm; | 
 |  | 
 | 	if (fscrypt_using_inline_encryption(ci)) | 
 | 		return fscrypt_prepare_inline_crypt_key(prep_key, raw_key, | 
 | 							ci->ci_mode->keysize, | 
 | 							false, ci); | 
 |  | 
 | 	tfm = fscrypt_allocate_skcipher(ci->ci_mode, raw_key, ci->ci_inode); | 
 | 	if (IS_ERR(tfm)) | 
 | 		return PTR_ERR(tfm); | 
 | 	/* | 
 | 	 * Pairs with the smp_load_acquire() in fscrypt_is_key_prepared(). | 
 | 	 * I.e., here we publish ->tfm with a RELEASE barrier so that | 
 | 	 * concurrent tasks can ACQUIRE it.  Note that this concurrency is only | 
 | 	 * possible for per-mode keys, not for per-file keys. | 
 | 	 */ | 
 | 	smp_store_release(&prep_key->tfm, tfm); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Destroy a crypto transform object and/or blk-crypto key. */ | 
 | void fscrypt_destroy_prepared_key(struct super_block *sb, | 
 | 				  struct fscrypt_prepared_key *prep_key) | 
 | { | 
 | 	crypto_free_sync_skcipher(prep_key->tfm); | 
 | 	fscrypt_destroy_inline_crypt_key(sb, prep_key); | 
 | 	memzero_explicit(prep_key, sizeof(*prep_key)); | 
 | } | 
 |  | 
 | /* Given a per-file encryption key, set up the file's crypto transform object */ | 
 | int fscrypt_set_per_file_enc_key(struct fscrypt_inode_info *ci, | 
 | 				 const u8 *raw_key) | 
 | { | 
 | 	ci->ci_owns_key = true; | 
 | 	return fscrypt_prepare_key(&ci->ci_enc_key, raw_key, ci); | 
 | } | 
 |  | 
 | static int setup_per_mode_enc_key(struct fscrypt_inode_info *ci, | 
 | 				  struct fscrypt_master_key *mk, | 
 | 				  struct fscrypt_prepared_key *keys, | 
 | 				  u8 hkdf_context, bool include_fs_uuid) | 
 | { | 
 | 	const struct inode *inode = ci->ci_inode; | 
 | 	const struct super_block *sb = inode->i_sb; | 
 | 	struct fscrypt_mode *mode = ci->ci_mode; | 
 | 	const u8 mode_num = mode - fscrypt_modes; | 
 | 	struct fscrypt_prepared_key *prep_key; | 
 | 	u8 mode_key[FSCRYPT_MAX_RAW_KEY_SIZE]; | 
 | 	u8 hkdf_info[sizeof(mode_num) + sizeof(sb->s_uuid)]; | 
 | 	unsigned int hkdf_infolen = 0; | 
 | 	bool use_hw_wrapped_key = false; | 
 | 	int err; | 
 |  | 
 | 	if (WARN_ON_ONCE(mode_num > FSCRYPT_MODE_MAX)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (mk->mk_secret.is_hw_wrapped && S_ISREG(inode->i_mode)) { | 
 | 		/* Using a hardware-wrapped key for file contents encryption */ | 
 | 		if (!fscrypt_using_inline_encryption(ci)) { | 
 | 			if (sb->s_flags & SB_INLINECRYPT) | 
 | 				fscrypt_warn(ci->ci_inode, | 
 | 					     "Hardware-wrapped key required, but no suitable inline encryption capabilities are available"); | 
 | 			else | 
 | 				fscrypt_warn(ci->ci_inode, | 
 | 					     "Hardware-wrapped keys require inline encryption (-o inlinecrypt)"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		use_hw_wrapped_key = true; | 
 | 	} | 
 |  | 
 | 	prep_key = &keys[mode_num]; | 
 | 	if (fscrypt_is_key_prepared(prep_key, ci)) { | 
 | 		ci->ci_enc_key = *prep_key; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	mutex_lock(&fscrypt_mode_key_setup_mutex); | 
 |  | 
 | 	if (fscrypt_is_key_prepared(prep_key, ci)) | 
 | 		goto done_unlock; | 
 |  | 
 | 	if (use_hw_wrapped_key) { | 
 | 		err = fscrypt_prepare_inline_crypt_key(prep_key, | 
 | 						       mk->mk_secret.bytes, | 
 | 						       mk->mk_secret.size, true, | 
 | 						       ci); | 
 | 		if (err) | 
 | 			goto out_unlock; | 
 | 		goto done_unlock; | 
 | 	} | 
 |  | 
 | 	BUILD_BUG_ON(sizeof(mode_num) != 1); | 
 | 	BUILD_BUG_ON(sizeof(sb->s_uuid) != 16); | 
 | 	BUILD_BUG_ON(sizeof(hkdf_info) != 17); | 
 | 	hkdf_info[hkdf_infolen++] = mode_num; | 
 | 	if (include_fs_uuid) { | 
 | 		memcpy(&hkdf_info[hkdf_infolen], &sb->s_uuid, | 
 | 		       sizeof(sb->s_uuid)); | 
 | 		hkdf_infolen += sizeof(sb->s_uuid); | 
 | 	} | 
 | 	fscrypt_hkdf_expand(&mk->mk_secret.hkdf, hkdf_context, hkdf_info, | 
 | 			    hkdf_infolen, mode_key, mode->keysize); | 
 | 	err = fscrypt_prepare_key(prep_key, mode_key, ci); | 
 | 	memzero_explicit(mode_key, mode->keysize); | 
 | 	if (err) | 
 | 		goto out_unlock; | 
 | done_unlock: | 
 | 	ci->ci_enc_key = *prep_key; | 
 | 	err = 0; | 
 | out_unlock: | 
 | 	mutex_unlock(&fscrypt_mode_key_setup_mutex); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * Derive a SipHash key from the given fscrypt master key and the given | 
 |  * application-specific information string. | 
 |  * | 
 |  * Note that the KDF produces a byte array, but the SipHash APIs expect the key | 
 |  * as a pair of 64-bit words.  Therefore, on big endian CPUs we have to do an | 
 |  * endianness swap in order to get the same results as on little endian CPUs. | 
 |  */ | 
 | static void fscrypt_derive_siphash_key(const struct fscrypt_master_key *mk, | 
 | 				       u8 context, const u8 *info, | 
 | 				       unsigned int infolen, siphash_key_t *key) | 
 | { | 
 | 	fscrypt_hkdf_expand(&mk->mk_secret.hkdf, context, info, infolen, | 
 | 			    (u8 *)key, sizeof(*key)); | 
 | 	BUILD_BUG_ON(sizeof(*key) != 16); | 
 | 	BUILD_BUG_ON(ARRAY_SIZE(key->key) != 2); | 
 | 	le64_to_cpus(&key->key[0]); | 
 | 	le64_to_cpus(&key->key[1]); | 
 | } | 
 |  | 
 | void fscrypt_derive_dirhash_key(struct fscrypt_inode_info *ci, | 
 | 				const struct fscrypt_master_key *mk) | 
 | { | 
 | 	fscrypt_derive_siphash_key(mk, HKDF_CONTEXT_DIRHASH_KEY, | 
 | 				   ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE, | 
 | 				   &ci->ci_dirhash_key); | 
 | 	ci->ci_dirhash_key_initialized = true; | 
 | } | 
 |  | 
 | void fscrypt_hash_inode_number(struct fscrypt_inode_info *ci, | 
 | 			       const struct fscrypt_master_key *mk) | 
 | { | 
 | 	WARN_ON_ONCE(ci->ci_inode->i_ino == 0); | 
 | 	WARN_ON_ONCE(!mk->mk_ino_hash_key_initialized); | 
 |  | 
 | 	ci->ci_hashed_ino = (u32)siphash_1u64(ci->ci_inode->i_ino, | 
 | 					      &mk->mk_ino_hash_key); | 
 | } | 
 |  | 
 | static int fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_inode_info *ci, | 
 | 					    struct fscrypt_master_key *mk) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_32_keys, | 
 | 				     HKDF_CONTEXT_IV_INO_LBLK_32_KEY, true); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	/* pairs with smp_store_release() below */ | 
 | 	if (!smp_load_acquire(&mk->mk_ino_hash_key_initialized)) { | 
 |  | 
 | 		mutex_lock(&fscrypt_mode_key_setup_mutex); | 
 |  | 
 | 		if (mk->mk_ino_hash_key_initialized) | 
 | 			goto unlock; | 
 |  | 
 | 		fscrypt_derive_siphash_key(mk, HKDF_CONTEXT_INODE_HASH_KEY, | 
 | 					   NULL, 0, &mk->mk_ino_hash_key); | 
 | 		/* pairs with smp_load_acquire() above */ | 
 | 		smp_store_release(&mk->mk_ino_hash_key_initialized, true); | 
 | unlock: | 
 | 		mutex_unlock(&fscrypt_mode_key_setup_mutex); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * New inodes may not have an inode number assigned yet. | 
 | 	 * Hashing their inode number is delayed until later. | 
 | 	 */ | 
 | 	if (ci->ci_inode->i_ino) | 
 | 		fscrypt_hash_inode_number(ci, mk); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int fscrypt_setup_v2_file_key(struct fscrypt_inode_info *ci, | 
 | 				     struct fscrypt_master_key *mk, | 
 | 				     bool need_dirhash_key) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (mk->mk_secret.is_hw_wrapped && | 
 | 	    !(ci->ci_policy.v2.flags & (FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64 | | 
 | 					FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32))) { | 
 | 		fscrypt_warn(ci->ci_inode, | 
 | 			     "Hardware-wrapped keys are only supported with IV_INO_LBLK policies"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) { | 
 | 		/* | 
 | 		 * DIRECT_KEY: instead of deriving per-file encryption keys, the | 
 | 		 * per-file nonce will be included in all the IVs.  But unlike | 
 | 		 * v1 policies, for v2 policies in this case we don't encrypt | 
 | 		 * with the master key directly but rather derive a per-mode | 
 | 		 * encryption key.  This ensures that the master key is | 
 | 		 * consistently used only for HKDF, avoiding key reuse issues. | 
 | 		 */ | 
 | 		err = setup_per_mode_enc_key(ci, mk, mk->mk_direct_keys, | 
 | 					     HKDF_CONTEXT_DIRECT_KEY, false); | 
 | 	} else if (ci->ci_policy.v2.flags & | 
 | 		   FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) { | 
 | 		/* | 
 | 		 * IV_INO_LBLK_64: encryption keys are derived from (master_key, | 
 | 		 * mode_num, filesystem_uuid), and inode number is included in | 
 | 		 * the IVs.  This format is optimized for use with inline | 
 | 		 * encryption hardware compliant with the UFS standard. | 
 | 		 */ | 
 | 		err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_64_keys, | 
 | 					     HKDF_CONTEXT_IV_INO_LBLK_64_KEY, | 
 | 					     true); | 
 | 	} else if (ci->ci_policy.v2.flags & | 
 | 		   FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) { | 
 | 		err = fscrypt_setup_iv_ino_lblk_32_key(ci, mk); | 
 | 	} else { | 
 | 		u8 derived_key[FSCRYPT_MAX_RAW_KEY_SIZE]; | 
 |  | 
 | 		fscrypt_hkdf_expand(&mk->mk_secret.hkdf, | 
 | 				    HKDF_CONTEXT_PER_FILE_ENC_KEY, | 
 | 				    ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE, | 
 | 				    derived_key, ci->ci_mode->keysize); | 
 | 		err = fscrypt_set_per_file_enc_key(ci, derived_key); | 
 | 		memzero_explicit(derived_key, ci->ci_mode->keysize); | 
 | 	} | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	/* Derive a secret dirhash key for directories that need it. */ | 
 | 	if (need_dirhash_key) | 
 | 		fscrypt_derive_dirhash_key(ci, mk); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Check whether the size of the given master key (@mk) is appropriate for the | 
 |  * encryption settings which a particular file will use (@ci). | 
 |  * | 
 |  * If the file uses a v1 encryption policy, then the master key must be at least | 
 |  * as long as the derived key, as this is a requirement of the v1 KDF. | 
 |  * | 
 |  * Otherwise, the KDF can accept any size key, so we enforce a slightly looser | 
 |  * requirement: we require that the size of the master key be at least the | 
 |  * maximum security strength of any algorithm whose key will be derived from it | 
 |  * (but in practice we only need to consider @ci->ci_mode, since any other | 
 |  * possible subkeys such as DIRHASH and INODE_HASH will never increase the | 
 |  * required key size over @ci->ci_mode).  This allows AES-256-XTS keys to be | 
 |  * derived from a 256-bit master key, which is cryptographically sufficient, | 
 |  * rather than requiring a 512-bit master key which is unnecessarily long.  (We | 
 |  * still allow 512-bit master keys if the user chooses to use them, though.) | 
 |  */ | 
 | static bool fscrypt_valid_master_key_size(const struct fscrypt_master_key *mk, | 
 | 					  const struct fscrypt_inode_info *ci) | 
 | { | 
 | 	unsigned int min_keysize; | 
 |  | 
 | 	if (ci->ci_policy.version == FSCRYPT_POLICY_V1) | 
 | 		min_keysize = ci->ci_mode->keysize; | 
 | 	else | 
 | 		min_keysize = ci->ci_mode->security_strength; | 
 |  | 
 | 	if (mk->mk_secret.size < min_keysize) { | 
 | 		fscrypt_warn(NULL, | 
 | 			     "key with %s %*phN is too short (got %u bytes, need %u+ bytes)", | 
 | 			     master_key_spec_type(&mk->mk_spec), | 
 | 			     master_key_spec_len(&mk->mk_spec), | 
 | 			     (u8 *)&mk->mk_spec.u, | 
 | 			     mk->mk_secret.size, min_keysize); | 
 | 		return false; | 
 | 	} | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Find the master key, then set up the inode's actual encryption key. | 
 |  * | 
 |  * If the master key is found in the filesystem-level keyring, then it is | 
 |  * returned in *mk_ret with its semaphore read-locked.  This is needed to ensure | 
 |  * that only one task links the fscrypt_inode_info into ->mk_decrypted_inodes | 
 |  * (as multiple tasks may race to create an fscrypt_inode_info for the same | 
 |  * inode), and to synchronize the master key being removed with a new inode | 
 |  * starting to use it. | 
 |  */ | 
 | static int setup_file_encryption_key(struct fscrypt_inode_info *ci, | 
 | 				     bool need_dirhash_key, | 
 | 				     struct fscrypt_master_key **mk_ret) | 
 | { | 
 | 	struct super_block *sb = ci->ci_inode->i_sb; | 
 | 	struct fscrypt_key_specifier mk_spec; | 
 | 	struct fscrypt_master_key *mk; | 
 | 	int err; | 
 |  | 
 | 	err = fscrypt_policy_to_key_spec(&ci->ci_policy, &mk_spec); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	mk = fscrypt_find_master_key(sb, &mk_spec); | 
 | 	if (unlikely(!mk)) { | 
 | 		const union fscrypt_policy *dummy_policy = | 
 | 			fscrypt_get_dummy_policy(sb); | 
 |  | 
 | 		/* | 
 | 		 * Add the test_dummy_encryption key on-demand.  In principle, | 
 | 		 * it should be added at mount time.  Do it here instead so that | 
 | 		 * the individual filesystems don't need to worry about adding | 
 | 		 * this key at mount time and cleaning up on mount failure. | 
 | 		 */ | 
 | 		if (dummy_policy && | 
 | 		    fscrypt_policies_equal(dummy_policy, &ci->ci_policy)) { | 
 | 			err = fscrypt_add_test_dummy_key(sb, &mk_spec); | 
 | 			if (err) | 
 | 				return err; | 
 | 			mk = fscrypt_find_master_key(sb, &mk_spec); | 
 | 		} | 
 | 	} | 
 | 	if (unlikely(!mk)) { | 
 | 		if (ci->ci_policy.version != FSCRYPT_POLICY_V1) | 
 | 			return -ENOKEY; | 
 |  | 
 | 		err = fscrypt_select_encryption_impl(ci, false); | 
 | 		if (err) | 
 | 			return err; | 
 |  | 
 | 		/* | 
 | 		 * As a legacy fallback for v1 policies, search for the key in | 
 | 		 * the current task's subscribed keyrings too.  Don't move this | 
 | 		 * to before the search of ->s_master_keys, since users | 
 | 		 * shouldn't be able to override filesystem-level keys. | 
 | 		 */ | 
 | 		return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci); | 
 | 	} | 
 | 	down_read(&mk->mk_sem); | 
 |  | 
 | 	if (!mk->mk_present) { | 
 | 		/* FS_IOC_REMOVE_ENCRYPTION_KEY has been executed on this key */ | 
 | 		err = -ENOKEY; | 
 | 		goto out_release_key; | 
 | 	} | 
 |  | 
 | 	if (!fscrypt_valid_master_key_size(mk, ci)) { | 
 | 		err = -ENOKEY; | 
 | 		goto out_release_key; | 
 | 	} | 
 |  | 
 | 	err = fscrypt_select_encryption_impl(ci, mk->mk_secret.is_hw_wrapped); | 
 | 	if (err) | 
 | 		goto out_release_key; | 
 |  | 
 | 	switch (ci->ci_policy.version) { | 
 | 	case FSCRYPT_POLICY_V1: | 
 | 		if (WARN_ON_ONCE(mk->mk_secret.is_hw_wrapped)) { | 
 | 			/* | 
 | 			 * This should never happen, as adding a v1 policy key | 
 | 			 * that is hardware-wrapped isn't allowed. | 
 | 			 */ | 
 | 			err = -EINVAL; | 
 | 			goto out_release_key; | 
 | 		} | 
 | 		err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.bytes); | 
 | 		break; | 
 | 	case FSCRYPT_POLICY_V2: | 
 | 		err = fscrypt_setup_v2_file_key(ci, mk, need_dirhash_key); | 
 | 		break; | 
 | 	default: | 
 | 		WARN_ON_ONCE(1); | 
 | 		err = -EINVAL; | 
 | 		break; | 
 | 	} | 
 | 	if (err) | 
 | 		goto out_release_key; | 
 |  | 
 | 	*mk_ret = mk; | 
 | 	return 0; | 
 |  | 
 | out_release_key: | 
 | 	up_read(&mk->mk_sem); | 
 | 	fscrypt_put_master_key(mk); | 
 | 	return err; | 
 | } | 
 |  | 
 | static void put_crypt_info(struct fscrypt_inode_info *ci) | 
 | { | 
 | 	struct fscrypt_master_key *mk; | 
 |  | 
 | 	if (!ci) | 
 | 		return; | 
 |  | 
 | 	if (ci->ci_direct_key) | 
 | 		fscrypt_put_direct_key(ci->ci_direct_key); | 
 | 	else if (ci->ci_owns_key) | 
 | 		fscrypt_destroy_prepared_key(ci->ci_inode->i_sb, | 
 | 					     &ci->ci_enc_key); | 
 |  | 
 | 	mk = ci->ci_master_key; | 
 | 	if (mk) { | 
 | 		/* | 
 | 		 * Remove this inode from the list of inodes that were unlocked | 
 | 		 * with the master key.  In addition, if we're removing the last | 
 | 		 * inode from an incompletely removed key, then complete the | 
 | 		 * full removal of the key. | 
 | 		 */ | 
 | 		spin_lock(&mk->mk_decrypted_inodes_lock); | 
 | 		list_del(&ci->ci_master_key_link); | 
 | 		spin_unlock(&mk->mk_decrypted_inodes_lock); | 
 | 		fscrypt_put_master_key_activeref(ci->ci_inode->i_sb, mk); | 
 | 	} | 
 | 	memzero_explicit(ci, sizeof(*ci)); | 
 | 	kmem_cache_free(fscrypt_inode_info_cachep, ci); | 
 | } | 
 |  | 
 | static int | 
 | fscrypt_setup_encryption_info(struct inode *inode, | 
 | 			      const union fscrypt_policy *policy, | 
 | 			      const u8 nonce[FSCRYPT_FILE_NONCE_SIZE], | 
 | 			      bool need_dirhash_key) | 
 | { | 
 | 	struct fscrypt_inode_info *crypt_info; | 
 | 	struct fscrypt_mode *mode; | 
 | 	struct fscrypt_master_key *mk = NULL; | 
 | 	int res; | 
 |  | 
 | 	res = fscrypt_initialize(inode->i_sb); | 
 | 	if (res) | 
 | 		return res; | 
 |  | 
 | 	crypt_info = kmem_cache_zalloc(fscrypt_inode_info_cachep, GFP_KERNEL); | 
 | 	if (!crypt_info) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	crypt_info->ci_inode = inode; | 
 | 	crypt_info->ci_policy = *policy; | 
 | 	memcpy(crypt_info->ci_nonce, nonce, FSCRYPT_FILE_NONCE_SIZE); | 
 |  | 
 | 	mode = select_encryption_mode(&crypt_info->ci_policy, inode); | 
 | 	if (IS_ERR(mode)) { | 
 | 		res = PTR_ERR(mode); | 
 | 		goto out; | 
 | 	} | 
 | 	WARN_ON_ONCE(mode->ivsize > FSCRYPT_MAX_IV_SIZE); | 
 | 	crypt_info->ci_mode = mode; | 
 |  | 
 | 	crypt_info->ci_data_unit_bits = | 
 | 		fscrypt_policy_du_bits(&crypt_info->ci_policy, inode); | 
 | 	crypt_info->ci_data_units_per_block_bits = | 
 | 		inode->i_blkbits - crypt_info->ci_data_unit_bits; | 
 |  | 
 | 	res = setup_file_encryption_key(crypt_info, need_dirhash_key, &mk); | 
 | 	if (res) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * For existing inodes, multiple tasks may race to set the inode's | 
 | 	 * fscrypt info pointer.  So use cmpxchg_release().  This pairs with the | 
 | 	 * smp_load_acquire() in fscrypt_get_inode_info().  I.e., publish the | 
 | 	 * pointer with a RELEASE barrier so that other tasks can ACQUIRE it. | 
 | 	 */ | 
 | 	if (cmpxchg_release(fscrypt_inode_info_addr(inode), NULL, crypt_info) == | 
 | 	    NULL) { | 
 | 		/* | 
 | 		 * We won the race and set the inode's fscrypt info to our | 
 | 		 * crypt_info.  Now link it into the master key's inode list. | 
 | 		 */ | 
 | 		if (mk) { | 
 | 			crypt_info->ci_master_key = mk; | 
 | 			refcount_inc(&mk->mk_active_refs); | 
 | 			spin_lock(&mk->mk_decrypted_inodes_lock); | 
 | 			list_add(&crypt_info->ci_master_key_link, | 
 | 				 &mk->mk_decrypted_inodes); | 
 | 			spin_unlock(&mk->mk_decrypted_inodes_lock); | 
 | 		} | 
 | 		crypt_info = NULL; | 
 | 	} | 
 | 	res = 0; | 
 | out: | 
 | 	if (mk) { | 
 | 		up_read(&mk->mk_sem); | 
 | 		fscrypt_put_master_key(mk); | 
 | 	} | 
 | 	put_crypt_info(crypt_info); | 
 | 	return res; | 
 | } | 
 |  | 
 | /** | 
 |  * fscrypt_get_encryption_info() - set up an inode's encryption key | 
 |  * @inode: the inode to set up the key for.  Must be encrypted. | 
 |  * @allow_unsupported: if %true, treat an unsupported encryption policy (or | 
 |  *		       unrecognized encryption context) the same way as the key | 
 |  *		       being unavailable, instead of returning an error.  Use | 
 |  *		       %false unless the operation being performed is needed in | 
 |  *		       order for files (or directories) to be deleted. | 
 |  * | 
 |  * Set up the inode's encryption key, if it hasn't already been done. | 
 |  * | 
 |  * Note: unless the key setup was already done, this isn't %GFP_NOFS-safe.  So | 
 |  * generally this shouldn't be called from within a filesystem transaction. | 
 |  * | 
 |  * Return: 0 if the key is now set up, *or* if it couldn't be set up because the | 
 |  *	   needed master key is absent.  (Use fscrypt_has_encryption_key() to | 
 |  *	   distinguish these cases.)  Also can return another -errno code. | 
 |  */ | 
 | int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported) | 
 | { | 
 | 	int res; | 
 | 	union fscrypt_context ctx; | 
 | 	union fscrypt_policy policy; | 
 |  | 
 | 	if (fscrypt_has_encryption_key(inode)) | 
 | 		return 0; | 
 |  | 
 | 	res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx)); | 
 | 	if (res < 0) { | 
 | 		if (res == -ERANGE && allow_unsupported) | 
 | 			return 0; | 
 | 		fscrypt_warn(inode, "Error %d getting encryption context", res); | 
 | 		return res; | 
 | 	} | 
 |  | 
 | 	res = fscrypt_policy_from_context(&policy, &ctx, res); | 
 | 	if (res) { | 
 | 		if (allow_unsupported) | 
 | 			return 0; | 
 | 		fscrypt_warn(inode, | 
 | 			     "Unrecognized or corrupt encryption context"); | 
 | 		return res; | 
 | 	} | 
 |  | 
 | 	if (!fscrypt_supported_policy(&policy, inode)) { | 
 | 		if (allow_unsupported) | 
 | 			return 0; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	res = fscrypt_setup_encryption_info(inode, &policy, | 
 | 					    fscrypt_context_nonce(&ctx), | 
 | 					    IS_CASEFOLDED(inode) && | 
 | 					    S_ISDIR(inode->i_mode)); | 
 |  | 
 | 	if (res == -ENOPKG && allow_unsupported) /* Algorithm unavailable? */ | 
 | 		res = 0; | 
 | 	if (res == -ENOKEY) | 
 | 		res = 0; | 
 | 	return res; | 
 | } | 
 |  | 
 | /** | 
 |  * fscrypt_prepare_new_inode() - prepare to create a new inode in a directory | 
 |  * @dir: a possibly-encrypted directory | 
 |  * @inode: the new inode.  ->i_mode and ->i_blkbits must be set already. | 
 |  *	   ->i_ino doesn't need to be set yet. | 
 |  * @encrypt_ret: (output) set to %true if the new inode will be encrypted | 
 |  * | 
 |  * If the directory is encrypted, set up its encryption key in preparation for | 
 |  * encrypting the name of the new file.  Also, if the new inode will be | 
 |  * encrypted, set up its encryption key too and set *encrypt_ret=true. | 
 |  * | 
 |  * This isn't %GFP_NOFS-safe, and therefore it should be called before starting | 
 |  * any filesystem transaction to create the inode.  For this reason, ->i_ino | 
 |  * isn't required to be set yet, as the filesystem may not have set it yet. | 
 |  * | 
 |  * This doesn't persist the new inode's encryption context.  That still needs to | 
 |  * be done later by calling fscrypt_set_context(). | 
 |  * | 
 |  * Return: 0 on success, -ENOKEY if a key needs to be set up for @dir or @inode | 
 |  *	   but the needed master key is absent, or another -errno code | 
 |  */ | 
 | int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode, | 
 | 			      bool *encrypt_ret) | 
 | { | 
 | 	const union fscrypt_policy *policy; | 
 | 	u8 nonce[FSCRYPT_FILE_NONCE_SIZE]; | 
 |  | 
 | 	policy = fscrypt_policy_to_inherit(dir); | 
 | 	if (policy == NULL) | 
 | 		return 0; | 
 | 	if (IS_ERR(policy)) | 
 | 		return PTR_ERR(policy); | 
 |  | 
 | 	if (WARN_ON_ONCE(inode->i_blkbits == 0)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (WARN_ON_ONCE(inode->i_mode == 0)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Only regular files, directories, and symlinks are encrypted. | 
 | 	 * Special files like device nodes and named pipes aren't. | 
 | 	 */ | 
 | 	if (!S_ISREG(inode->i_mode) && | 
 | 	    !S_ISDIR(inode->i_mode) && | 
 | 	    !S_ISLNK(inode->i_mode)) | 
 | 		return 0; | 
 |  | 
 | 	*encrypt_ret = true; | 
 |  | 
 | 	get_random_bytes(nonce, FSCRYPT_FILE_NONCE_SIZE); | 
 | 	return fscrypt_setup_encryption_info(inode, policy, nonce, | 
 | 					     IS_CASEFOLDED(dir) && | 
 | 					     S_ISDIR(inode->i_mode)); | 
 | } | 
 | EXPORT_SYMBOL_GPL(fscrypt_prepare_new_inode); | 
 |  | 
 | /** | 
 |  * fscrypt_put_encryption_info() - free most of an inode's fscrypt data | 
 |  * @inode: an inode being evicted | 
 |  * | 
 |  * Free the inode's fscrypt_inode_info.  Filesystems must call this when the | 
 |  * inode is being evicted.  An RCU grace period need not have elapsed yet. | 
 |  */ | 
 | void fscrypt_put_encryption_info(struct inode *inode) | 
 | { | 
 | 	/* | 
 | 	 * Ideally we'd start with a lightweight IS_ENCRYPTED() check here | 
 | 	 * before proceeding to retrieve and check the pointer.  However, during | 
 | 	 * inode creation, the fscrypt_inode_info is set before S_ENCRYPTED.  If | 
 | 	 * an error occurs, it needs to be cleaned up regardless. | 
 | 	 */ | 
 | 	struct fscrypt_inode_info **ci_addr = fscrypt_inode_info_addr(inode); | 
 |  | 
 | 	put_crypt_info(*ci_addr); | 
 | 	*ci_addr = NULL; | 
 | } | 
 | EXPORT_SYMBOL(fscrypt_put_encryption_info); | 
 |  | 
 | /** | 
 |  * fscrypt_free_inode() - free an inode's fscrypt data requiring RCU delay | 
 |  * @inode: an inode being freed | 
 |  * | 
 |  * Free the inode's cached decrypted symlink target, if any.  Filesystems must | 
 |  * call this after an RCU grace period, just before they free the inode. | 
 |  */ | 
 | void fscrypt_free_inode(struct inode *inode) | 
 | { | 
 | 	if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) { | 
 | 		kfree(inode->i_link); | 
 | 		inode->i_link = NULL; | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(fscrypt_free_inode); | 
 |  | 
 | /** | 
 |  * fscrypt_drop_inode() - check whether the inode's master key has been removed | 
 |  * @inode: an inode being considered for eviction | 
 |  * | 
 |  * Filesystems supporting fscrypt must call this from their ->drop_inode() | 
 |  * method so that encrypted inodes are evicted as soon as they're no longer in | 
 |  * use and their master key has been removed. | 
 |  * | 
 |  * Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0 | 
 |  */ | 
 | int fscrypt_drop_inode(struct inode *inode) | 
 | { | 
 | 	const struct fscrypt_inode_info *ci = fscrypt_get_inode_info(inode); | 
 |  | 
 | 	/* | 
 | 	 * If ci is NULL, then the inode doesn't have an encryption key set up | 
 | 	 * so it's irrelevant.  If ci_master_key is NULL, then the master key | 
 | 	 * was provided via the legacy mechanism of the process-subscribed | 
 | 	 * keyrings, so we don't know whether it's been removed or not. | 
 | 	 */ | 
 | 	if (!ci || !ci->ci_master_key) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * With proper, non-racy use of FS_IOC_REMOVE_ENCRYPTION_KEY, all inodes | 
 | 	 * protected by the key were cleaned by sync_filesystem().  But if | 
 | 	 * userspace is still using the files, inodes can be dirtied between | 
 | 	 * then and now.  We mustn't lose any writes, so skip dirty inodes here. | 
 | 	 */ | 
 | 	if (inode->i_state & I_DIRTY_ALL) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * We can't take ->mk_sem here, since this runs in atomic context. | 
 | 	 * Therefore, ->mk_present can change concurrently, and our result may | 
 | 	 * immediately become outdated.  But there's no correctness problem with | 
 | 	 * unnecessarily evicting.  Nor is there a correctness problem with not | 
 | 	 * evicting while iput() is racing with the key being removed, since | 
 | 	 * then the thread removing the key will either evict the inode itself | 
 | 	 * or will correctly detect that it wasn't evicted due to the race. | 
 | 	 */ | 
 | 	return !READ_ONCE(ci->ci_master_key->mk_present); | 
 | } | 
 | EXPORT_SYMBOL_GPL(fscrypt_drop_inode); |