blob: ef00d6163061fab6740a1c14995ee53da56e521c [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2022 Meta Platforms Inc.
* Copyright (C) 2022 Jonathan Lemon <jonathan.lemon@gmail.com>
*/
#include <asm/unaligned.h>
#include <linux/mii.h>
#include <linux/phy.h>
#include <linux/ptp_classify.h>
#include <linux/ptp_clock_kernel.h>
#include <linux/net_tstamp.h>
#include <linux/netdevice.h>
#include <linux/workqueue.h>
#include "bcm-phy-lib.h"
/* IEEE 1588 Expansion registers */
#define SLICE_CTRL 0x0810
#define SLICE_TX_EN BIT(0)
#define SLICE_RX_EN BIT(8)
#define TX_EVENT_MODE 0x0811
#define MODE_TX_UPDATE_CF BIT(0)
#define MODE_TX_REPLACE_TS_CF BIT(1)
#define MODE_TX_REPLACE_TS GENMASK(1, 0)
#define RX_EVENT_MODE 0x0819
#define MODE_RX_UPDATE_CF BIT(0)
#define MODE_RX_INSERT_TS_48 BIT(1)
#define MODE_RX_INSERT_TS_64 GENMASK(1, 0)
#define MODE_EVT_SHIFT_SYNC 0
#define MODE_EVT_SHIFT_DELAY_REQ 2
#define MODE_EVT_SHIFT_PDELAY_REQ 4
#define MODE_EVT_SHIFT_PDELAY_RESP 6
#define MODE_SEL_SHIFT_PORT 0
#define MODE_SEL_SHIFT_CPU 8
#define RX_MODE_SEL(sel, evt, act) \
(((MODE_RX_##act) << (MODE_EVT_SHIFT_##evt)) << (MODE_SEL_SHIFT_##sel))
#define TX_MODE_SEL(sel, evt, act) \
(((MODE_TX_##act) << (MODE_EVT_SHIFT_##evt)) << (MODE_SEL_SHIFT_##sel))
/* needs global TS capture first */
#define TX_TS_CAPTURE 0x0821
#define TX_TS_CAP_EN BIT(0)
#define RX_TS_CAPTURE 0x0822
#define RX_TS_CAP_EN BIT(0)
#define TIME_CODE_0 0x0854
#define TIME_CODE_1 0x0855
#define TIME_CODE_2 0x0856
#define TIME_CODE_3 0x0857
#define TIME_CODE_4 0x0858
#define DPLL_SELECT 0x085b
#define DPLL_HB_MODE2 BIT(6)
#define SHADOW_CTRL 0x085c
#define SHADOW_LOAD 0x085d
#define TIME_CODE_LOAD BIT(10)
#define SYNC_OUT_LOAD BIT(9)
#define NCO_TIME_LOAD BIT(7)
#define FREQ_LOAD BIT(6)
#define INTR_MASK 0x085e
#define INTR_STATUS 0x085f
#define INTC_FSYNC BIT(0)
#define INTC_SOP BIT(1)
#define NCO_FREQ_LSB 0x0873
#define NCO_FREQ_MSB 0x0874
#define NCO_TIME_0 0x0875
#define NCO_TIME_1 0x0876
#define NCO_TIME_2_CTRL 0x0877
#define FREQ_MDIO_SEL BIT(14)
#define SYNC_OUT_0 0x0878
#define SYNC_OUT_1 0x0879
#define SYNC_OUT_2 0x087a
#define SYNC_IN_DIVIDER 0x087b
#define SYNOUT_TS_0 0x087c
#define SYNOUT_TS_1 0x087d
#define SYNOUT_TS_2 0x087e
#define NSE_CTRL 0x087f
#define NSE_GMODE_EN GENMASK(15, 14)
#define NSE_CAPTURE_EN BIT(13)
#define NSE_INIT BIT(12)
#define NSE_CPU_FRAMESYNC BIT(5)
#define NSE_SYNC1_FRAMESYNC BIT(3)
#define NSE_FRAMESYNC_MASK GENMASK(5, 2)
#define NSE_PEROUT_EN BIT(1)
#define NSE_ONESHOT_EN BIT(0)
#define NSE_SYNC_OUT_MASK GENMASK(1, 0)
#define TS_READ_CTRL 0x0885
#define TS_READ_START BIT(0)
#define TS_READ_END BIT(1)
#define HB_REG_0 0x0886
#define HB_REG_1 0x0887
#define HB_REG_2 0x0888
#define HB_REG_3 0x08ec
#define HB_REG_4 0x08ed
#define HB_STAT_CTRL 0x088e
#define HB_READ_START BIT(10)
#define HB_READ_END BIT(11)
#define HB_READ_MASK GENMASK(11, 10)
#define TS_REG_0 0x0889
#define TS_REG_1 0x088a
#define TS_REG_2 0x088b
#define TS_REG_3 0x08c4
#define TS_INFO_0 0x088c
#define TS_INFO_1 0x088d
#define TIMECODE_CTRL 0x08c3
#define TX_TIMECODE_SEL GENMASK(7, 0)
#define RX_TIMECODE_SEL GENMASK(15, 8)
#define TIME_SYNC 0x0ff5
#define TIME_SYNC_EN BIT(0)
struct bcm_ptp_private {
struct phy_device *phydev;
struct mii_timestamper mii_ts;
struct ptp_clock *ptp_clock;
struct ptp_clock_info ptp_info;
struct ptp_pin_desc pin;
struct mutex mutex;
struct sk_buff_head tx_queue;
int tx_type;
bool hwts_rx;
u16 nse_ctrl;
bool pin_active;
struct delayed_work pin_work;
};
struct bcm_ptp_skb_cb {
unsigned long timeout;
u16 seq_id;
u8 msgtype;
bool discard;
};
struct bcm_ptp_capture {
ktime_t hwtstamp;
u16 seq_id;
u8 msgtype;
bool tx_dir;
};
#define BCM_SKB_CB(skb) ((struct bcm_ptp_skb_cb *)(skb)->cb)
#define SKB_TS_TIMEOUT 10 /* jiffies */
#define BCM_MAX_PULSE_8NS ((1U << 9) - 1)
#define BCM_MAX_PERIOD_8NS ((1U << 30) - 1)
#define BRCM_PHY_MODEL(phydev) \
((phydev)->drv->phy_id & (phydev)->drv->phy_id_mask)
static struct bcm_ptp_private *mii2priv(struct mii_timestamper *mii_ts)
{
return container_of(mii_ts, struct bcm_ptp_private, mii_ts);
}
static struct bcm_ptp_private *ptp2priv(struct ptp_clock_info *info)
{
return container_of(info, struct bcm_ptp_private, ptp_info);
}
static void bcm_ptp_get_framesync_ts(struct phy_device *phydev,
struct timespec64 *ts)
{
u16 hb[4];
bcm_phy_write_exp(phydev, HB_STAT_CTRL, HB_READ_START);
hb[0] = bcm_phy_read_exp(phydev, HB_REG_0);
hb[1] = bcm_phy_read_exp(phydev, HB_REG_1);
hb[2] = bcm_phy_read_exp(phydev, HB_REG_2);
hb[3] = bcm_phy_read_exp(phydev, HB_REG_3);
bcm_phy_write_exp(phydev, HB_STAT_CTRL, HB_READ_END);
bcm_phy_write_exp(phydev, HB_STAT_CTRL, 0);
ts->tv_sec = (hb[3] << 16) | hb[2];
ts->tv_nsec = (hb[1] << 16) | hb[0];
}
static u16 bcm_ptp_framesync_disable(struct phy_device *phydev, u16 orig_ctrl)
{
u16 ctrl = orig_ctrl & ~(NSE_FRAMESYNC_MASK | NSE_CAPTURE_EN);
bcm_phy_write_exp(phydev, NSE_CTRL, ctrl);
return ctrl;
}
static void bcm_ptp_framesync_restore(struct phy_device *phydev, u16 orig_ctrl)
{
if (orig_ctrl & NSE_FRAMESYNC_MASK)
bcm_phy_write_exp(phydev, NSE_CTRL, orig_ctrl);
}
static void bcm_ptp_framesync(struct phy_device *phydev, u16 ctrl)
{
/* trigger framesync - must have 0->1 transition. */
bcm_phy_write_exp(phydev, NSE_CTRL, ctrl | NSE_CPU_FRAMESYNC);
}
static int bcm_ptp_framesync_ts(struct phy_device *phydev,
struct ptp_system_timestamp *sts,
struct timespec64 *ts,
u16 orig_ctrl)
{
u16 ctrl, reg;
int i;
ctrl = bcm_ptp_framesync_disable(phydev, orig_ctrl);
ptp_read_system_prets(sts);
/* trigger framesync + capture */
bcm_ptp_framesync(phydev, ctrl | NSE_CAPTURE_EN);
ptp_read_system_postts(sts);
/* poll for FSYNC interrupt from TS capture */
for (i = 0; i < 10; i++) {
reg = bcm_phy_read_exp(phydev, INTR_STATUS);
if (reg & INTC_FSYNC) {
bcm_ptp_get_framesync_ts(phydev, ts);
break;
}
}
bcm_ptp_framesync_restore(phydev, orig_ctrl);
return reg & INTC_FSYNC ? 0 : -ETIMEDOUT;
}
static int bcm_ptp_gettimex(struct ptp_clock_info *info,
struct timespec64 *ts,
struct ptp_system_timestamp *sts)
{
struct bcm_ptp_private *priv = ptp2priv(info);
int err;
mutex_lock(&priv->mutex);
err = bcm_ptp_framesync_ts(priv->phydev, sts, ts, priv->nse_ctrl);
mutex_unlock(&priv->mutex);
return err;
}
static int bcm_ptp_settime_locked(struct bcm_ptp_private *priv,
const struct timespec64 *ts)
{
struct phy_device *phydev = priv->phydev;
u16 ctrl;
u64 ns;
ctrl = bcm_ptp_framesync_disable(phydev, priv->nse_ctrl);
/* set up time code */
bcm_phy_write_exp(phydev, TIME_CODE_0, ts->tv_nsec);
bcm_phy_write_exp(phydev, TIME_CODE_1, ts->tv_nsec >> 16);
bcm_phy_write_exp(phydev, TIME_CODE_2, ts->tv_sec);
bcm_phy_write_exp(phydev, TIME_CODE_3, ts->tv_sec >> 16);
bcm_phy_write_exp(phydev, TIME_CODE_4, ts->tv_sec >> 32);
/* set NCO counter to match */
ns = timespec64_to_ns(ts);
bcm_phy_write_exp(phydev, NCO_TIME_0, ns >> 4);
bcm_phy_write_exp(phydev, NCO_TIME_1, ns >> 20);
bcm_phy_write_exp(phydev, NCO_TIME_2_CTRL, (ns >> 36) & 0xfff);
/* set up load on next frame sync (auto-clears due to NSE_INIT) */
bcm_phy_write_exp(phydev, SHADOW_LOAD, TIME_CODE_LOAD | NCO_TIME_LOAD);
/* must have NSE_INIT in order to write time code */
bcm_ptp_framesync(phydev, ctrl | NSE_INIT);
bcm_ptp_framesync_restore(phydev, priv->nse_ctrl);
return 0;
}
static int bcm_ptp_settime(struct ptp_clock_info *info,
const struct timespec64 *ts)
{
struct bcm_ptp_private *priv = ptp2priv(info);
int err;
mutex_lock(&priv->mutex);
err = bcm_ptp_settime_locked(priv, ts);
mutex_unlock(&priv->mutex);
return err;
}
static int bcm_ptp_adjtime_locked(struct bcm_ptp_private *priv,
s64 delta_ns)
{
struct timespec64 ts;
int err;
s64 ns;
err = bcm_ptp_framesync_ts(priv->phydev, NULL, &ts, priv->nse_ctrl);
if (!err) {
ns = timespec64_to_ns(&ts) + delta_ns;
ts = ns_to_timespec64(ns);
err = bcm_ptp_settime_locked(priv, &ts);
}
return err;
}
static int bcm_ptp_adjtime(struct ptp_clock_info *info, s64 delta_ns)
{
struct bcm_ptp_private *priv = ptp2priv(info);
int err;
mutex_lock(&priv->mutex);
err = bcm_ptp_adjtime_locked(priv, delta_ns);
mutex_unlock(&priv->mutex);
return err;
}
/* A 125Mhz clock should adjust 8ns per pulse.
* The frequency adjustment base is 0x8000 0000, or 8*2^28.
*
* Frequency adjustment is
* adj = scaled_ppm * 8*2^28 / (10^6 * 2^16)
* which simplifies to:
* adj = scaled_ppm * 2^9 / 5^6
*/
static int bcm_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
{
struct bcm_ptp_private *priv = ptp2priv(info);
int neg_adj = 0;
u32 diff, freq;
u16 ctrl;
u64 adj;
if (scaled_ppm < 0) {
neg_adj = 1;
scaled_ppm = -scaled_ppm;
}
adj = scaled_ppm << 9;
diff = div_u64(adj, 15625);
freq = (8 << 28) + (neg_adj ? -diff : diff);
mutex_lock(&priv->mutex);
ctrl = bcm_ptp_framesync_disable(priv->phydev, priv->nse_ctrl);
bcm_phy_write_exp(priv->phydev, NCO_FREQ_LSB, freq);
bcm_phy_write_exp(priv->phydev, NCO_FREQ_MSB, freq >> 16);
bcm_phy_write_exp(priv->phydev, NCO_TIME_2_CTRL, FREQ_MDIO_SEL);
/* load on next framesync */
bcm_phy_write_exp(priv->phydev, SHADOW_LOAD, FREQ_LOAD);
bcm_ptp_framesync(priv->phydev, ctrl);
/* clear load */
bcm_phy_write_exp(priv->phydev, SHADOW_LOAD, 0);
bcm_ptp_framesync_restore(priv->phydev, priv->nse_ctrl);
mutex_unlock(&priv->mutex);
return 0;
}
static bool bcm_ptp_rxtstamp(struct mii_timestamper *mii_ts,
struct sk_buff *skb, int type)
{
struct bcm_ptp_private *priv = mii2priv(mii_ts);
struct skb_shared_hwtstamps *hwts;
struct ptp_header *header;
u32 sec, nsec;
u8 *data;
int off;
if (!priv->hwts_rx)
return false;
header = ptp_parse_header(skb, type);
if (!header)
return false;
data = (u8 *)(header + 1);
sec = get_unaligned_be32(data);
nsec = get_unaligned_be32(data + 4);
hwts = skb_hwtstamps(skb);
hwts->hwtstamp = ktime_set(sec, nsec);
off = data - skb->data + 8;
if (off < skb->len) {
memmove(data, data + 8, skb->len - off);
__pskb_trim(skb, skb->len - 8);
}
return false;
}
static bool bcm_ptp_get_tstamp(struct bcm_ptp_private *priv,
struct bcm_ptp_capture *capts)
{
struct phy_device *phydev = priv->phydev;
u16 ts[4], reg;
u32 sec, nsec;
mutex_lock(&priv->mutex);
reg = bcm_phy_read_exp(phydev, INTR_STATUS);
if ((reg & INTC_SOP) == 0) {
mutex_unlock(&priv->mutex);
return false;
}
bcm_phy_write_exp(phydev, TS_READ_CTRL, TS_READ_START);
ts[0] = bcm_phy_read_exp(phydev, TS_REG_0);
ts[1] = bcm_phy_read_exp(phydev, TS_REG_1);
ts[2] = bcm_phy_read_exp(phydev, TS_REG_2);
ts[3] = bcm_phy_read_exp(phydev, TS_REG_3);
/* not in be32 format for some reason */
capts->seq_id = bcm_phy_read_exp(priv->phydev, TS_INFO_0);
reg = bcm_phy_read_exp(phydev, TS_INFO_1);
capts->msgtype = reg >> 12;
capts->tx_dir = !!(reg & BIT(11));
bcm_phy_write_exp(phydev, TS_READ_CTRL, TS_READ_END);
bcm_phy_write_exp(phydev, TS_READ_CTRL, 0);
mutex_unlock(&priv->mutex);
sec = (ts[3] << 16) | ts[2];
nsec = (ts[1] << 16) | ts[0];
capts->hwtstamp = ktime_set(sec, nsec);
return true;
}
static void bcm_ptp_match_tstamp(struct bcm_ptp_private *priv,
struct bcm_ptp_capture *capts)
{
struct skb_shared_hwtstamps hwts;
struct sk_buff *skb, *ts_skb;
unsigned long flags;
bool first = false;
ts_skb = NULL;
spin_lock_irqsave(&priv->tx_queue.lock, flags);
skb_queue_walk(&priv->tx_queue, skb) {
if (BCM_SKB_CB(skb)->seq_id == capts->seq_id &&
BCM_SKB_CB(skb)->msgtype == capts->msgtype) {
first = skb_queue_is_first(&priv->tx_queue, skb);
__skb_unlink(skb, &priv->tx_queue);
ts_skb = skb;
break;
}
}
spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
/* TX captures one-step packets, discard them if needed. */
if (ts_skb) {
if (BCM_SKB_CB(ts_skb)->discard) {
kfree_skb(ts_skb);
} else {
memset(&hwts, 0, sizeof(hwts));
hwts.hwtstamp = capts->hwtstamp;
skb_complete_tx_timestamp(ts_skb, &hwts);
}
}
/* not first match, try and expire entries */
if (!first) {
while ((skb = skb_dequeue(&priv->tx_queue))) {
if (!time_after(jiffies, BCM_SKB_CB(skb)->timeout)) {
skb_queue_head(&priv->tx_queue, skb);
break;
}
kfree_skb(skb);
}
}
}
static long bcm_ptp_do_aux_work(struct ptp_clock_info *info)
{
struct bcm_ptp_private *priv = ptp2priv(info);
struct bcm_ptp_capture capts;
bool reschedule = false;
while (!skb_queue_empty_lockless(&priv->tx_queue)) {
if (!bcm_ptp_get_tstamp(priv, &capts)) {
reschedule = true;
break;
}
bcm_ptp_match_tstamp(priv, &capts);
}
return reschedule ? 1 : -1;
}
static int bcm_ptp_cancel_func(struct bcm_ptp_private *priv)
{
if (!priv->pin_active)
return 0;
priv->pin_active = false;
priv->nse_ctrl &= ~(NSE_SYNC_OUT_MASK | NSE_SYNC1_FRAMESYNC |
NSE_CAPTURE_EN);
bcm_phy_write_exp(priv->phydev, NSE_CTRL, priv->nse_ctrl);
cancel_delayed_work_sync(&priv->pin_work);
return 0;
}
static void bcm_ptp_perout_work(struct work_struct *pin_work)
{
struct bcm_ptp_private *priv =
container_of(pin_work, struct bcm_ptp_private, pin_work.work);
struct phy_device *phydev = priv->phydev;
struct timespec64 ts;
u64 ns, next;
u16 ctrl;
mutex_lock(&priv->mutex);
/* no longer running */
if (!priv->pin_active) {
mutex_unlock(&priv->mutex);
return;
}
bcm_ptp_framesync_ts(phydev, NULL, &ts, priv->nse_ctrl);
/* this is 1PPS only */
next = NSEC_PER_SEC - ts.tv_nsec;
ts.tv_sec += next < NSEC_PER_MSEC ? 2 : 1;
ts.tv_nsec = 0;
ns = timespec64_to_ns(&ts);
/* force 0->1 transition for ONESHOT */
ctrl = bcm_ptp_framesync_disable(phydev,
priv->nse_ctrl & ~NSE_ONESHOT_EN);
bcm_phy_write_exp(phydev, SYNOUT_TS_0, ns & 0xfff0);
bcm_phy_write_exp(phydev, SYNOUT_TS_1, ns >> 16);
bcm_phy_write_exp(phydev, SYNOUT_TS_2, ns >> 32);
/* load values on next framesync */
bcm_phy_write_exp(phydev, SHADOW_LOAD, SYNC_OUT_LOAD);
bcm_ptp_framesync(phydev, ctrl | NSE_ONESHOT_EN | NSE_INIT);
priv->nse_ctrl |= NSE_ONESHOT_EN;
bcm_ptp_framesync_restore(phydev, priv->nse_ctrl);
mutex_unlock(&priv->mutex);
next = next + NSEC_PER_MSEC;
schedule_delayed_work(&priv->pin_work, nsecs_to_jiffies(next));
}
static int bcm_ptp_perout_locked(struct bcm_ptp_private *priv,
struct ptp_perout_request *req, int on)
{
struct phy_device *phydev = priv->phydev;
u64 period, pulse;
u16 val;
if (!on)
return bcm_ptp_cancel_func(priv);
/* 1PPS */
if (req->period.sec != 1 || req->period.nsec != 0)
return -EINVAL;
period = BCM_MAX_PERIOD_8NS; /* write nonzero value */
if (req->flags & PTP_PEROUT_PHASE)
return -EOPNOTSUPP;
if (req->flags & PTP_PEROUT_DUTY_CYCLE)
pulse = ktime_to_ns(ktime_set(req->on.sec, req->on.nsec));
else
pulse = (u64)BCM_MAX_PULSE_8NS << 3;
/* convert to 8ns units */
pulse >>= 3;
if (!pulse || pulse > period || pulse > BCM_MAX_PULSE_8NS)
return -EINVAL;
bcm_phy_write_exp(phydev, SYNC_OUT_0, period);
val = ((pulse & 0x3) << 14) | ((period >> 16) & 0x3fff);
bcm_phy_write_exp(phydev, SYNC_OUT_1, val);
val = ((pulse >> 2) & 0x7f) | (pulse << 7);
bcm_phy_write_exp(phydev, SYNC_OUT_2, val);
if (priv->pin_active)
cancel_delayed_work_sync(&priv->pin_work);
priv->pin_active = true;
INIT_DELAYED_WORK(&priv->pin_work, bcm_ptp_perout_work);
schedule_delayed_work(&priv->pin_work, 0);
return 0;
}
static void bcm_ptp_extts_work(struct work_struct *pin_work)
{
struct bcm_ptp_private *priv =
container_of(pin_work, struct bcm_ptp_private, pin_work.work);
struct phy_device *phydev = priv->phydev;
struct ptp_clock_event event;
struct timespec64 ts;
u16 reg;
mutex_lock(&priv->mutex);
/* no longer running */
if (!priv->pin_active) {
mutex_unlock(&priv->mutex);
return;
}
reg = bcm_phy_read_exp(phydev, INTR_STATUS);
if ((reg & INTC_FSYNC) == 0)
goto out;
bcm_ptp_get_framesync_ts(phydev, &ts);
event.index = 0;
event.type = PTP_CLOCK_EXTTS;
event.timestamp = timespec64_to_ns(&ts);
ptp_clock_event(priv->ptp_clock, &event);
out:
mutex_unlock(&priv->mutex);
schedule_delayed_work(&priv->pin_work, HZ / 4);
}
static int bcm_ptp_extts_locked(struct bcm_ptp_private *priv, int on)
{
struct phy_device *phydev = priv->phydev;
if (!on)
return bcm_ptp_cancel_func(priv);
if (priv->pin_active)
cancel_delayed_work_sync(&priv->pin_work);
bcm_ptp_framesync_disable(phydev, priv->nse_ctrl);
priv->nse_ctrl |= NSE_SYNC1_FRAMESYNC | NSE_CAPTURE_EN;
bcm_ptp_framesync_restore(phydev, priv->nse_ctrl);
priv->pin_active = true;
INIT_DELAYED_WORK(&priv->pin_work, bcm_ptp_extts_work);
schedule_delayed_work(&priv->pin_work, 0);
return 0;
}
static int bcm_ptp_enable(struct ptp_clock_info *info,
struct ptp_clock_request *rq, int on)
{
struct bcm_ptp_private *priv = ptp2priv(info);
int err = -EBUSY;
mutex_lock(&priv->mutex);
switch (rq->type) {
case PTP_CLK_REQ_PEROUT:
if (priv->pin.func == PTP_PF_PEROUT)
err = bcm_ptp_perout_locked(priv, &rq->perout, on);
break;
case PTP_CLK_REQ_EXTTS:
if (priv->pin.func == PTP_PF_EXTTS)
err = bcm_ptp_extts_locked(priv, on);
break;
default:
err = -EOPNOTSUPP;
break;
}
mutex_unlock(&priv->mutex);
return err;
}
static int bcm_ptp_verify(struct ptp_clock_info *info, unsigned int pin,
enum ptp_pin_function func, unsigned int chan)
{
switch (func) {
case PTP_PF_NONE:
case PTP_PF_EXTTS:
case PTP_PF_PEROUT:
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static const struct ptp_clock_info bcm_ptp_clock_info = {
.owner = THIS_MODULE,
.name = KBUILD_MODNAME,
.max_adj = 100000000,
.gettimex64 = bcm_ptp_gettimex,
.settime64 = bcm_ptp_settime,
.adjtime = bcm_ptp_adjtime,
.adjfine = bcm_ptp_adjfine,
.enable = bcm_ptp_enable,
.verify = bcm_ptp_verify,
.do_aux_work = bcm_ptp_do_aux_work,
.n_pins = 1,
.n_per_out = 1,
.n_ext_ts = 1,
};
static void bcm_ptp_txtstamp(struct mii_timestamper *mii_ts,
struct sk_buff *skb, int type)
{
struct bcm_ptp_private *priv = mii2priv(mii_ts);
struct ptp_header *hdr;
bool discard = false;
int msgtype;
hdr = ptp_parse_header(skb, type);
if (!hdr)
goto out;
msgtype = ptp_get_msgtype(hdr, type);
switch (priv->tx_type) {
case HWTSTAMP_TX_ONESTEP_P2P:
if (msgtype == PTP_MSGTYPE_PDELAY_RESP)
discard = true;
fallthrough;
case HWTSTAMP_TX_ONESTEP_SYNC:
if (msgtype == PTP_MSGTYPE_SYNC)
discard = true;
fallthrough;
case HWTSTAMP_TX_ON:
BCM_SKB_CB(skb)->timeout = jiffies + SKB_TS_TIMEOUT;
BCM_SKB_CB(skb)->seq_id = be16_to_cpu(hdr->sequence_id);
BCM_SKB_CB(skb)->msgtype = msgtype;
BCM_SKB_CB(skb)->discard = discard;
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
skb_queue_tail(&priv->tx_queue, skb);
ptp_schedule_worker(priv->ptp_clock, 0);
return;
default:
break;
}
out:
kfree_skb(skb);
}
static int bcm_ptp_hwtstamp(struct mii_timestamper *mii_ts,
struct ifreq *ifr)
{
struct bcm_ptp_private *priv = mii2priv(mii_ts);
struct hwtstamp_config cfg;
u16 mode, ctrl;
if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
return -EFAULT;
switch (cfg.rx_filter) {
case HWTSTAMP_FILTER_NONE:
priv->hwts_rx = false;
break;
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
priv->hwts_rx = true;
break;
default:
return -ERANGE;
}
priv->tx_type = cfg.tx_type;
ctrl = priv->hwts_rx ? SLICE_RX_EN : 0;
ctrl |= priv->tx_type != HWTSTAMP_TX_OFF ? SLICE_TX_EN : 0;
mode = TX_MODE_SEL(PORT, SYNC, REPLACE_TS) |
TX_MODE_SEL(PORT, DELAY_REQ, REPLACE_TS) |
TX_MODE_SEL(PORT, PDELAY_REQ, REPLACE_TS) |
TX_MODE_SEL(PORT, PDELAY_RESP, REPLACE_TS);
bcm_phy_write_exp(priv->phydev, TX_EVENT_MODE, mode);
mode = RX_MODE_SEL(PORT, SYNC, INSERT_TS_64) |
RX_MODE_SEL(PORT, DELAY_REQ, INSERT_TS_64) |
RX_MODE_SEL(PORT, PDELAY_REQ, INSERT_TS_64) |
RX_MODE_SEL(PORT, PDELAY_RESP, INSERT_TS_64);
bcm_phy_write_exp(priv->phydev, RX_EVENT_MODE, mode);
bcm_phy_write_exp(priv->phydev, SLICE_CTRL, ctrl);
if (ctrl & SLICE_TX_EN)
bcm_phy_write_exp(priv->phydev, TX_TS_CAPTURE, TX_TS_CAP_EN);
else
ptp_cancel_worker_sync(priv->ptp_clock);
/* purge existing data */
skb_queue_purge(&priv->tx_queue);
return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}
static int bcm_ptp_ts_info(struct mii_timestamper *mii_ts,
struct ethtool_ts_info *ts_info)
{
struct bcm_ptp_private *priv = mii2priv(mii_ts);
ts_info->phc_index = ptp_clock_index(priv->ptp_clock);
ts_info->so_timestamping =
SOF_TIMESTAMPING_TX_HARDWARE |
SOF_TIMESTAMPING_RX_HARDWARE |
SOF_TIMESTAMPING_RAW_HARDWARE;
ts_info->tx_types =
BIT(HWTSTAMP_TX_ON) |
BIT(HWTSTAMP_TX_OFF) |
BIT(HWTSTAMP_TX_ONESTEP_SYNC) |
BIT(HWTSTAMP_TX_ONESTEP_P2P);
ts_info->rx_filters =
BIT(HWTSTAMP_FILTER_NONE) |
BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
return 0;
}
void bcm_ptp_stop(struct bcm_ptp_private *priv)
{
ptp_cancel_worker_sync(priv->ptp_clock);
bcm_ptp_cancel_func(priv);
}
EXPORT_SYMBOL_GPL(bcm_ptp_stop);
void bcm_ptp_config_init(struct phy_device *phydev)
{
/* init network sync engine */
bcm_phy_write_exp(phydev, NSE_CTRL, NSE_GMODE_EN | NSE_INIT);
/* enable time sync (TX/RX SOP capture) */
bcm_phy_write_exp(phydev, TIME_SYNC, TIME_SYNC_EN);
/* use sec.nsec heartbeat capture */
bcm_phy_write_exp(phydev, DPLL_SELECT, DPLL_HB_MODE2);
/* use 64 bit timecode for TX */
bcm_phy_write_exp(phydev, TIMECODE_CTRL, TX_TIMECODE_SEL);
/* always allow FREQ_LOAD on framesync */
bcm_phy_write_exp(phydev, SHADOW_CTRL, FREQ_LOAD);
bcm_phy_write_exp(phydev, SYNC_IN_DIVIDER, 1);
}
EXPORT_SYMBOL_GPL(bcm_ptp_config_init);
static void bcm_ptp_init(struct bcm_ptp_private *priv)
{
priv->nse_ctrl = NSE_GMODE_EN;
mutex_init(&priv->mutex);
skb_queue_head_init(&priv->tx_queue);
priv->mii_ts.rxtstamp = bcm_ptp_rxtstamp;
priv->mii_ts.txtstamp = bcm_ptp_txtstamp;
priv->mii_ts.hwtstamp = bcm_ptp_hwtstamp;
priv->mii_ts.ts_info = bcm_ptp_ts_info;
priv->phydev->mii_ts = &priv->mii_ts;
}
struct bcm_ptp_private *bcm_ptp_probe(struct phy_device *phydev)
{
struct bcm_ptp_private *priv;
struct ptp_clock *clock;
switch (BRCM_PHY_MODEL(phydev)) {
case PHY_ID_BCM54210E:
break;
default:
return NULL;
}
priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return ERR_PTR(-ENOMEM);
priv->ptp_info = bcm_ptp_clock_info;
snprintf(priv->pin.name, sizeof(priv->pin.name), "SYNC_OUT");
priv->ptp_info.pin_config = &priv->pin;
clock = ptp_clock_register(&priv->ptp_info, &phydev->mdio.dev);
if (IS_ERR(clock))
return ERR_CAST(clock);
priv->ptp_clock = clock;
priv->phydev = phydev;
bcm_ptp_init(priv);
return priv;
}
EXPORT_SYMBOL_GPL(bcm_ptp_probe);
MODULE_LICENSE("GPL");