blob: 34f1db212824d18f7119c66cacc16ae9ec68a6b7 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/kernel.h>
#include <linux/kvm_host.h>
#include <asm/asm-prototypes.h>
#include <asm/dbell.h>
#include <asm/ppc-opcode.h>
#include "book3s_hv.h"
static void load_spr_state(struct kvm_vcpu *vcpu,
struct p9_host_os_sprs *host_os_sprs)
{
/* TAR is very fast */
mtspr(SPRN_TAR, vcpu->arch.tar);
#ifdef CONFIG_ALTIVEC
if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
current->thread.vrsave != vcpu->arch.vrsave)
mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
#endif
if (vcpu->arch.hfscr & HFSCR_EBB) {
if (current->thread.ebbhr != vcpu->arch.ebbhr)
mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
if (current->thread.ebbrr != vcpu->arch.ebbrr)
mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
if (current->thread.bescr != vcpu->arch.bescr)
mtspr(SPRN_BESCR, vcpu->arch.bescr);
}
if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
current->thread.tidr != vcpu->arch.tid)
mtspr(SPRN_TIDR, vcpu->arch.tid);
if (host_os_sprs->iamr != vcpu->arch.iamr)
mtspr(SPRN_IAMR, vcpu->arch.iamr);
if (host_os_sprs->amr != vcpu->arch.amr)
mtspr(SPRN_AMR, vcpu->arch.amr);
if (vcpu->arch.uamor != 0)
mtspr(SPRN_UAMOR, vcpu->arch.uamor);
if (current->thread.fscr != vcpu->arch.fscr)
mtspr(SPRN_FSCR, vcpu->arch.fscr);
if (current->thread.dscr != vcpu->arch.dscr)
mtspr(SPRN_DSCR, vcpu->arch.dscr);
if (vcpu->arch.pspb != 0)
mtspr(SPRN_PSPB, vcpu->arch.pspb);
/*
* DAR, DSISR, and for nested HV, SPRGs must be set with MSR[RI]
* clear (or hstate set appropriately to catch those registers
* being clobbered if we take a MCE or SRESET), so those are done
* later.
*/
if (!(vcpu->arch.ctrl & 1))
mtspr(SPRN_CTRLT, 0);
}
static void store_spr_state(struct kvm_vcpu *vcpu)
{
vcpu->arch.tar = mfspr(SPRN_TAR);
#ifdef CONFIG_ALTIVEC
if (cpu_has_feature(CPU_FTR_ALTIVEC))
vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
#endif
if (vcpu->arch.hfscr & HFSCR_EBB) {
vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
vcpu->arch.bescr = mfspr(SPRN_BESCR);
}
if (cpu_has_feature(CPU_FTR_P9_TIDR))
vcpu->arch.tid = mfspr(SPRN_TIDR);
vcpu->arch.iamr = mfspr(SPRN_IAMR);
vcpu->arch.amr = mfspr(SPRN_AMR);
vcpu->arch.uamor = mfspr(SPRN_UAMOR);
vcpu->arch.fscr = mfspr(SPRN_FSCR);
vcpu->arch.dscr = mfspr(SPRN_DSCR);
vcpu->arch.pspb = mfspr(SPRN_PSPB);
vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
}
/* Returns true if current MSR and/or guest MSR may have changed */
bool load_vcpu_state(struct kvm_vcpu *vcpu,
struct p9_host_os_sprs *host_os_sprs)
{
bool ret = false;
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
if (cpu_has_feature(CPU_FTR_TM) ||
cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) {
unsigned long guest_msr = vcpu->arch.shregs.msr;
if (MSR_TM_ACTIVE(guest_msr)) {
kvmppc_restore_tm_hv(vcpu, guest_msr, true);
ret = true;
} else if (vcpu->arch.hfscr & HFSCR_TM) {
mtspr(SPRN_TEXASR, vcpu->arch.texasr);
mtspr(SPRN_TFHAR, vcpu->arch.tfhar);
mtspr(SPRN_TFIAR, vcpu->arch.tfiar);
}
}
#endif
load_spr_state(vcpu, host_os_sprs);
load_fp_state(&vcpu->arch.fp);
#ifdef CONFIG_ALTIVEC
load_vr_state(&vcpu->arch.vr);
#endif
return ret;
}
EXPORT_SYMBOL_GPL(load_vcpu_state);
void store_vcpu_state(struct kvm_vcpu *vcpu)
{
store_spr_state(vcpu);
store_fp_state(&vcpu->arch.fp);
#ifdef CONFIG_ALTIVEC
store_vr_state(&vcpu->arch.vr);
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
if (cpu_has_feature(CPU_FTR_TM) ||
cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) {
unsigned long guest_msr = vcpu->arch.shregs.msr;
if (MSR_TM_ACTIVE(guest_msr)) {
kvmppc_save_tm_hv(vcpu, guest_msr, true);
} else if (vcpu->arch.hfscr & HFSCR_TM) {
vcpu->arch.texasr = mfspr(SPRN_TEXASR);
vcpu->arch.tfhar = mfspr(SPRN_TFHAR);
vcpu->arch.tfiar = mfspr(SPRN_TFIAR);
if (!vcpu->arch.nested) {
vcpu->arch.load_tm++; /* see load_ebb comment */
if (!vcpu->arch.load_tm)
vcpu->arch.hfscr &= ~HFSCR_TM;
}
}
}
#endif
}
EXPORT_SYMBOL_GPL(store_vcpu_state);
void save_p9_host_os_sprs(struct p9_host_os_sprs *host_os_sprs)
{
host_os_sprs->iamr = mfspr(SPRN_IAMR);
host_os_sprs->amr = mfspr(SPRN_AMR);
}
EXPORT_SYMBOL_GPL(save_p9_host_os_sprs);
/* vcpu guest regs must already be saved */
void restore_p9_host_os_sprs(struct kvm_vcpu *vcpu,
struct p9_host_os_sprs *host_os_sprs)
{
/*
* current->thread.xxx registers must all be restored to host
* values before a potential context switch, otherwise the context
* switch itself will overwrite current->thread.xxx with the values
* from the guest SPRs.
*/
mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso);
if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
current->thread.tidr != vcpu->arch.tid)
mtspr(SPRN_TIDR, current->thread.tidr);
if (host_os_sprs->iamr != vcpu->arch.iamr)
mtspr(SPRN_IAMR, host_os_sprs->iamr);
if (vcpu->arch.uamor != 0)
mtspr(SPRN_UAMOR, 0);
if (host_os_sprs->amr != vcpu->arch.amr)
mtspr(SPRN_AMR, host_os_sprs->amr);
if (current->thread.fscr != vcpu->arch.fscr)
mtspr(SPRN_FSCR, current->thread.fscr);
if (current->thread.dscr != vcpu->arch.dscr)
mtspr(SPRN_DSCR, current->thread.dscr);
if (vcpu->arch.pspb != 0)
mtspr(SPRN_PSPB, 0);
/* Save guest CTRL register, set runlatch to 1 */
if (!(vcpu->arch.ctrl & 1))
mtspr(SPRN_CTRLT, 1);
#ifdef CONFIG_ALTIVEC
if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
vcpu->arch.vrsave != current->thread.vrsave)
mtspr(SPRN_VRSAVE, current->thread.vrsave);
#endif
if (vcpu->arch.hfscr & HFSCR_EBB) {
if (vcpu->arch.bescr != current->thread.bescr)
mtspr(SPRN_BESCR, current->thread.bescr);
if (vcpu->arch.ebbhr != current->thread.ebbhr)
mtspr(SPRN_EBBHR, current->thread.ebbhr);
if (vcpu->arch.ebbrr != current->thread.ebbrr)
mtspr(SPRN_EBBRR, current->thread.ebbrr);
if (!vcpu->arch.nested) {
/*
* This is like load_fp in context switching, turn off
* the facility after it wraps the u8 to try avoiding
* saving and restoring the registers each partition
* switch.
*/
vcpu->arch.load_ebb++;
if (!vcpu->arch.load_ebb)
vcpu->arch.hfscr &= ~HFSCR_EBB;
}
}
if (vcpu->arch.tar != current->thread.tar)
mtspr(SPRN_TAR, current->thread.tar);
}
EXPORT_SYMBOL_GPL(restore_p9_host_os_sprs);
#ifdef CONFIG_KVM_BOOK3S_HV_P9_TIMING
void accumulate_time(struct kvm_vcpu *vcpu, struct kvmhv_tb_accumulator *next)
{
struct kvmppc_vcore *vc = vcpu->arch.vcore;
struct kvmhv_tb_accumulator *curr;
u64 tb = mftb() - vc->tb_offset_applied;
u64 prev_tb;
u64 delta;
u64 seq;
curr = vcpu->arch.cur_activity;
vcpu->arch.cur_activity = next;
prev_tb = vcpu->arch.cur_tb_start;
vcpu->arch.cur_tb_start = tb;
if (!curr)
return;
delta = tb - prev_tb;
seq = curr->seqcount;
curr->seqcount = seq + 1;
smp_wmb();
curr->tb_total += delta;
if (seq == 0 || delta < curr->tb_min)
curr->tb_min = delta;
if (delta > curr->tb_max)
curr->tb_max = delta;
smp_wmb();
curr->seqcount = seq + 2;
}
EXPORT_SYMBOL_GPL(accumulate_time);
#endif
static inline u64 mfslbv(unsigned int idx)
{
u64 slbev;
asm volatile("slbmfev %0,%1" : "=r" (slbev) : "r" (idx));
return slbev;
}
static inline u64 mfslbe(unsigned int idx)
{
u64 slbee;
asm volatile("slbmfee %0,%1" : "=r" (slbee) : "r" (idx));
return slbee;
}
static inline void mtslb(u64 slbee, u64 slbev)
{
asm volatile("slbmte %0,%1" :: "r" (slbev), "r" (slbee));
}
static inline void clear_slb_entry(unsigned int idx)
{
mtslb(idx, 0);
}
static inline void slb_clear_invalidate_partition(void)
{
clear_slb_entry(0);
asm volatile(PPC_SLBIA(6));
}
/*
* Malicious or buggy radix guests may have inserted SLB entries
* (only 0..3 because radix always runs with UPRT=1), so these must
* be cleared here to avoid side-channels. slbmte is used rather
* than slbia, as it won't clear cached translations.
*/
static void radix_clear_slb(void)
{
int i;
for (i = 0; i < 4; i++)
clear_slb_entry(i);
}
static void switch_mmu_to_guest_radix(struct kvm *kvm, struct kvm_vcpu *vcpu, u64 lpcr)
{
struct kvm_nested_guest *nested = vcpu->arch.nested;
u32 lpid;
u32 pid;
lpid = nested ? nested->shadow_lpid : kvm->arch.lpid;
pid = vcpu->arch.pid;
/*
* Prior memory accesses to host PID Q3 must be completed before we
* start switching, and stores must be drained to avoid not-my-LPAR
* logic (see switch_mmu_to_host).
*/
asm volatile("hwsync" ::: "memory");
isync();
mtspr(SPRN_LPID, lpid);
mtspr(SPRN_LPCR, lpcr);
mtspr(SPRN_PID, pid);
/*
* isync not required here because we are HRFID'ing to guest before
* any guest context access, which is context synchronising.
*/
}
static void switch_mmu_to_guest_hpt(struct kvm *kvm, struct kvm_vcpu *vcpu, u64 lpcr)
{
u32 lpid;
u32 pid;
int i;
lpid = kvm->arch.lpid;
pid = vcpu->arch.pid;
/*
* See switch_mmu_to_guest_radix. ptesync should not be required here
* even if the host is in HPT mode because speculative accesses would
* not cause RC updates (we are in real mode).
*/
asm volatile("hwsync" ::: "memory");
isync();
mtspr(SPRN_LPID, lpid);
mtspr(SPRN_LPCR, lpcr);
mtspr(SPRN_PID, pid);
for (i = 0; i < vcpu->arch.slb_max; i++)
mtslb(vcpu->arch.slb[i].orige, vcpu->arch.slb[i].origv);
/*
* isync not required here, see switch_mmu_to_guest_radix.
*/
}
static void switch_mmu_to_host(struct kvm *kvm, u32 pid)
{
u32 lpid = kvm->arch.host_lpid;
u64 lpcr = kvm->arch.host_lpcr;
/*
* The guest has exited, so guest MMU context is no longer being
* non-speculatively accessed, but a hwsync is needed before the
* mtLPIDR / mtPIDR switch, in order to ensure all stores are drained,
* so the not-my-LPAR tlbie logic does not overlook them.
*/
asm volatile("hwsync" ::: "memory");
isync();
mtspr(SPRN_PID, pid);
mtspr(SPRN_LPID, lpid);
mtspr(SPRN_LPCR, lpcr);
/*
* isync is not required after the switch, because mtmsrd with L=0
* is performed after this switch, which is context synchronising.
*/
if (!radix_enabled())
slb_restore_bolted_realmode();
}
static void save_clear_host_mmu(struct kvm *kvm)
{
if (!radix_enabled()) {
/*
* Hash host could save and restore host SLB entries to
* reduce SLB fault overheads of VM exits, but for now the
* existing code clears all entries and restores just the
* bolted ones when switching back to host.
*/
slb_clear_invalidate_partition();
}
}
static void save_clear_guest_mmu(struct kvm *kvm, struct kvm_vcpu *vcpu)
{
if (kvm_is_radix(kvm)) {
radix_clear_slb();
} else {
int i;
int nr = 0;
/*
* This must run before switching to host (radix host can't
* access all SLBs).
*/
for (i = 0; i < vcpu->arch.slb_nr; i++) {
u64 slbee, slbev;
slbee = mfslbe(i);
if (slbee & SLB_ESID_V) {
slbev = mfslbv(i);
vcpu->arch.slb[nr].orige = slbee | i;
vcpu->arch.slb[nr].origv = slbev;
nr++;
}
}
vcpu->arch.slb_max = nr;
slb_clear_invalidate_partition();
}
}
static void flush_guest_tlb(struct kvm *kvm)
{
unsigned long rb, set;
rb = PPC_BIT(52); /* IS = 2 */
if (kvm_is_radix(kvm)) {
/* R=1 PRS=1 RIC=2 */
asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
: : "r" (rb), "i" (1), "i" (1), "i" (2),
"r" (0) : "memory");
for (set = 1; set < kvm->arch.tlb_sets; ++set) {
rb += PPC_BIT(51); /* increment set number */
/* R=1 PRS=1 RIC=0 */
asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
: : "r" (rb), "i" (1), "i" (1), "i" (0),
"r" (0) : "memory");
}
asm volatile("ptesync": : :"memory");
// POWER9 congruence-class TLBIEL leaves ERAT. Flush it now.
asm volatile(PPC_RADIX_INVALIDATE_ERAT_GUEST : : :"memory");
} else {
for (set = 0; set < kvm->arch.tlb_sets; ++set) {
/* R=0 PRS=0 RIC=0 */
asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
: : "r" (rb), "i" (0), "i" (0), "i" (0),
"r" (0) : "memory");
rb += PPC_BIT(51); /* increment set number */
}
asm volatile("ptesync": : :"memory");
// POWER9 congruence-class TLBIEL leaves ERAT. Flush it now.
asm volatile(PPC_ISA_3_0_INVALIDATE_ERAT : : :"memory");
}
}
static void check_need_tlb_flush(struct kvm *kvm, int pcpu,
struct kvm_nested_guest *nested)
{
cpumask_t *need_tlb_flush;
bool all_set = true;
int i;
if (nested)
need_tlb_flush = &nested->need_tlb_flush;
else
need_tlb_flush = &kvm->arch.need_tlb_flush;
if (likely(!cpumask_test_cpu(pcpu, need_tlb_flush)))
return;
/*
* Individual threads can come in here, but the TLB is shared between
* the 4 threads in a core, hence invalidating on one thread
* invalidates for all, so only invalidate the first time (if all bits
* were set. The others must still execute a ptesync.
*
* If a race occurs and two threads do the TLB flush, that is not a
* problem, just sub-optimal.
*/
for (i = cpu_first_tlb_thread_sibling(pcpu);
i <= cpu_last_tlb_thread_sibling(pcpu);
i += cpu_tlb_thread_sibling_step()) {
if (!cpumask_test_cpu(i, need_tlb_flush)) {
all_set = false;
break;
}
}
if (all_set)
flush_guest_tlb(kvm);
else
asm volatile("ptesync" ::: "memory");
/* Clear the bit after the TLB flush */
cpumask_clear_cpu(pcpu, need_tlb_flush);
}
unsigned long kvmppc_msr_hard_disable_set_facilities(struct kvm_vcpu *vcpu, unsigned long msr)
{
unsigned long msr_needed = 0;
msr &= ~MSR_EE;
/* MSR bits may have been cleared by context switch so must recheck */
if (IS_ENABLED(CONFIG_PPC_FPU))
msr_needed |= MSR_FP;
if (cpu_has_feature(CPU_FTR_ALTIVEC))
msr_needed |= MSR_VEC;
if (cpu_has_feature(CPU_FTR_VSX))
msr_needed |= MSR_VSX;
if ((cpu_has_feature(CPU_FTR_TM) ||
cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) &&
(vcpu->arch.hfscr & HFSCR_TM))
msr_needed |= MSR_TM;
/*
* This could be combined with MSR[RI] clearing, but that expands
* the unrecoverable window. It would be better to cover unrecoverable
* with KVM bad interrupt handling rather than use MSR[RI] at all.
*
* Much more difficult and less worthwhile to combine with IR/DR
* disable.
*/
if ((msr & msr_needed) != msr_needed) {
msr |= msr_needed;
__mtmsrd(msr, 0);
} else {
__hard_irq_disable();
}
local_paca->irq_happened |= PACA_IRQ_HARD_DIS;
return msr;
}
EXPORT_SYMBOL_GPL(kvmppc_msr_hard_disable_set_facilities);
int kvmhv_vcpu_entry_p9(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb)
{
struct p9_host_os_sprs host_os_sprs;
struct kvm *kvm = vcpu->kvm;
struct kvm_nested_guest *nested = vcpu->arch.nested;
struct kvmppc_vcore *vc = vcpu->arch.vcore;
s64 hdec, dec;
u64 purr, spurr;
u64 *exsave;
int trap;
unsigned long msr;
unsigned long host_hfscr;
unsigned long host_ciabr;
unsigned long host_dawr0;
unsigned long host_dawrx0;
unsigned long host_psscr;
unsigned long host_hpsscr;
unsigned long host_pidr;
unsigned long host_dawr1;
unsigned long host_dawrx1;
unsigned long dpdes;
hdec = time_limit - *tb;
if (hdec < 0)
return BOOK3S_INTERRUPT_HV_DECREMENTER;
WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_HV);
WARN_ON_ONCE(!(vcpu->arch.shregs.msr & MSR_ME));
vcpu->arch.ceded = 0;
/* Save MSR for restore, with EE clear. */
msr = mfmsr() & ~MSR_EE;
host_hfscr = mfspr(SPRN_HFSCR);
host_ciabr = mfspr(SPRN_CIABR);
host_psscr = mfspr(SPRN_PSSCR_PR);
if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
host_hpsscr = mfspr(SPRN_PSSCR);
host_pidr = mfspr(SPRN_PID);
if (dawr_enabled()) {
host_dawr0 = mfspr(SPRN_DAWR0);
host_dawrx0 = mfspr(SPRN_DAWRX0);
if (cpu_has_feature(CPU_FTR_DAWR1)) {
host_dawr1 = mfspr(SPRN_DAWR1);
host_dawrx1 = mfspr(SPRN_DAWRX1);
}
}
local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
save_p9_host_os_sprs(&host_os_sprs);
msr = kvmppc_msr_hard_disable_set_facilities(vcpu, msr);
if (lazy_irq_pending()) {
trap = 0;
goto out;
}
if (unlikely(load_vcpu_state(vcpu, &host_os_sprs)))
msr = mfmsr(); /* MSR may have been updated */
if (vc->tb_offset) {
u64 new_tb = *tb + vc->tb_offset;
mtspr(SPRN_TBU40, new_tb);
if ((mftb() & 0xffffff) < (new_tb & 0xffffff)) {
new_tb += 0x1000000;
mtspr(SPRN_TBU40, new_tb);
}
*tb = new_tb;
vc->tb_offset_applied = vc->tb_offset;
}
mtspr(SPRN_VTB, vc->vtb);
mtspr(SPRN_PURR, vcpu->arch.purr);
mtspr(SPRN_SPURR, vcpu->arch.spurr);
if (vc->pcr)
mtspr(SPRN_PCR, vc->pcr | PCR_MASK);
if (vcpu->arch.doorbell_request) {
vcpu->arch.doorbell_request = 0;
mtspr(SPRN_DPDES, 1);
}
if (dawr_enabled()) {
if (vcpu->arch.dawr0 != host_dawr0)
mtspr(SPRN_DAWR0, vcpu->arch.dawr0);
if (vcpu->arch.dawrx0 != host_dawrx0)
mtspr(SPRN_DAWRX0, vcpu->arch.dawrx0);
if (cpu_has_feature(CPU_FTR_DAWR1)) {
if (vcpu->arch.dawr1 != host_dawr1)
mtspr(SPRN_DAWR1, vcpu->arch.dawr1);
if (vcpu->arch.dawrx1 != host_dawrx1)
mtspr(SPRN_DAWRX1, vcpu->arch.dawrx1);
}
}
if (vcpu->arch.ciabr != host_ciabr)
mtspr(SPRN_CIABR, vcpu->arch.ciabr);
if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) {
mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
(local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
} else {
if (vcpu->arch.psscr != host_psscr)
mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
}
mtspr(SPRN_HFSCR, vcpu->arch.hfscr);
mtspr(SPRN_HSRR0, vcpu->arch.regs.nip);
mtspr(SPRN_HSRR1, (vcpu->arch.shregs.msr & ~MSR_HV) | MSR_ME);
/*
* On POWER9 DD2.1 and below, sometimes on a Hypervisor Data Storage
* Interrupt (HDSI) the HDSISR is not be updated at all.
*
* To work around this we put a canary value into the HDSISR before
* returning to a guest and then check for this canary when we take a
* HDSI. If we find the canary on a HDSI, we know the hardware didn't
* update the HDSISR. In this case we return to the guest to retake the
* HDSI which should correctly update the HDSISR the second time HDSI
* entry.
*
* The "radix prefetch bug" test can be used to test for this bug, as
* it also exists fo DD2.1 and below.
*/
if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG))
mtspr(SPRN_HDSISR, HDSISR_CANARY);
mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);
/*
* It might be preferable to load_vcpu_state here, in order to get the
* GPR/FP register loads executing in parallel with the previous mtSPR
* instructions, but for now that can't be done because the TM handling
* in load_vcpu_state can change some SPRs and vcpu state (nip, msr).
* But TM could be split out if this would be a significant benefit.
*/
/*
* MSR[RI] does not need to be cleared (and is not, for radix guests
* with no prefetch bug), because in_guest is set. If we take a SRESET
* or MCE with in_guest set but still in HV mode, then
* kvmppc_p9_bad_interrupt handles the interrupt, which effectively
* clears MSR[RI] and doesn't return.
*/
WRITE_ONCE(local_paca->kvm_hstate.in_guest, KVM_GUEST_MODE_HV_P9);
barrier(); /* Open in_guest critical section */
/*
* Hash host, hash guest, or radix guest with prefetch bug, all have
* to disable the MMU before switching to guest MMU state.
*/
if (!radix_enabled() || !kvm_is_radix(kvm) ||
cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG))
__mtmsrd(msr & ~(MSR_IR|MSR_DR|MSR_RI), 0);
save_clear_host_mmu(kvm);
if (kvm_is_radix(kvm))
switch_mmu_to_guest_radix(kvm, vcpu, lpcr);
else
switch_mmu_to_guest_hpt(kvm, vcpu, lpcr);
/* TLBIEL uses LPID=LPIDR, so run this after setting guest LPID */
check_need_tlb_flush(kvm, vc->pcpu, nested);
/*
* P9 suppresses the HDEC exception when LPCR[HDICE] = 0,
* so set guest LPCR (with HDICE) before writing HDEC.
*/
mtspr(SPRN_HDEC, hdec);
mtspr(SPRN_DEC, vcpu->arch.dec_expires - *tb);
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
tm_return_to_guest:
#endif
mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);
switch_pmu_to_guest(vcpu, &host_os_sprs);
accumulate_time(vcpu, &vcpu->arch.in_guest);
kvmppc_p9_enter_guest(vcpu);
accumulate_time(vcpu, &vcpu->arch.guest_exit);
switch_pmu_to_host(vcpu, &host_os_sprs);
/* XXX: Could get these from r11/12 and paca exsave instead */
vcpu->arch.shregs.srr0 = mfspr(SPRN_SRR0);
vcpu->arch.shregs.srr1 = mfspr(SPRN_SRR1);
vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
/* 0x2 bit for HSRR is only used by PR and P7/8 HV paths, clear it */
trap = local_paca->kvm_hstate.scratch0 & ~0x2;
if (likely(trap > BOOK3S_INTERRUPT_MACHINE_CHECK))
exsave = local_paca->exgen;
else if (trap == BOOK3S_INTERRUPT_SYSTEM_RESET)
exsave = local_paca->exnmi;
else /* trap == 0x200 */
exsave = local_paca->exmc;
vcpu->arch.regs.gpr[1] = local_paca->kvm_hstate.scratch1;
vcpu->arch.regs.gpr[3] = local_paca->kvm_hstate.scratch2;
/*
* After reading machine check regs (DAR, DSISR, SRR0/1) and hstate
* scratch (which we need to move into exsave to make re-entrant vs
* SRESET/MCE), register state is protected from reentrancy. However
* timebase, MMU, among other state is still set to guest, so don't
* enable MSR[RI] here. It gets enabled at the end, after in_guest
* is cleared.
*
* It is possible an NMI could come in here, which is why it is
* important to save the above state early so it can be debugged.
*/
vcpu->arch.regs.gpr[9] = exsave[EX_R9/sizeof(u64)];
vcpu->arch.regs.gpr[10] = exsave[EX_R10/sizeof(u64)];
vcpu->arch.regs.gpr[11] = exsave[EX_R11/sizeof(u64)];
vcpu->arch.regs.gpr[12] = exsave[EX_R12/sizeof(u64)];
vcpu->arch.regs.gpr[13] = exsave[EX_R13/sizeof(u64)];
vcpu->arch.ppr = exsave[EX_PPR/sizeof(u64)];
vcpu->arch.cfar = exsave[EX_CFAR/sizeof(u64)];
vcpu->arch.regs.ctr = exsave[EX_CTR/sizeof(u64)];
vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
if (unlikely(trap == BOOK3S_INTERRUPT_MACHINE_CHECK)) {
vcpu->arch.fault_dar = exsave[EX_DAR/sizeof(u64)];
vcpu->arch.fault_dsisr = exsave[EX_DSISR/sizeof(u64)];
kvmppc_realmode_machine_check(vcpu);
} else if (unlikely(trap == BOOK3S_INTERRUPT_HMI)) {
kvmppc_p9_realmode_hmi_handler(vcpu);
} else if (trap == BOOK3S_INTERRUPT_H_EMUL_ASSIST) {
vcpu->arch.emul_inst = mfspr(SPRN_HEIR);
} else if (trap == BOOK3S_INTERRUPT_H_DATA_STORAGE) {
vcpu->arch.fault_dar = exsave[EX_DAR/sizeof(u64)];
vcpu->arch.fault_dsisr = exsave[EX_DSISR/sizeof(u64)];
vcpu->arch.fault_gpa = mfspr(SPRN_ASDR);
} else if (trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
vcpu->arch.fault_gpa = mfspr(SPRN_ASDR);
} else if (trap == BOOK3S_INTERRUPT_H_FAC_UNAVAIL) {
vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
/*
* Softpatch interrupt for transactional memory emulation cases
* on POWER9 DD2.2. This is early in the guest exit path - we
* haven't saved registers or done a treclaim yet.
*/
} else if (trap == BOOK3S_INTERRUPT_HV_SOFTPATCH) {
vcpu->arch.emul_inst = mfspr(SPRN_HEIR);
/*
* The cases we want to handle here are those where the guest
* is in real suspend mode and is trying to transition to
* transactional mode.
*/
if (!local_paca->kvm_hstate.fake_suspend &&
(vcpu->arch.shregs.msr & MSR_TS_S)) {
if (kvmhv_p9_tm_emulation_early(vcpu)) {
/*
* Go straight back into the guest with the
* new NIP/MSR as set by TM emulation.
*/
mtspr(SPRN_HSRR0, vcpu->arch.regs.nip);
mtspr(SPRN_HSRR1, vcpu->arch.shregs.msr);
goto tm_return_to_guest;
}
}
#endif
}
/* Advance host PURR/SPURR by the amount used by guest */
purr = mfspr(SPRN_PURR);
spurr = mfspr(SPRN_SPURR);
local_paca->kvm_hstate.host_purr += purr - vcpu->arch.purr;
local_paca->kvm_hstate.host_spurr += spurr - vcpu->arch.spurr;
vcpu->arch.purr = purr;
vcpu->arch.spurr = spurr;
vcpu->arch.ic = mfspr(SPRN_IC);
vcpu->arch.pid = mfspr(SPRN_PID);
vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);
dpdes = mfspr(SPRN_DPDES);
if (dpdes)
vcpu->arch.doorbell_request = 1;
vc->vtb = mfspr(SPRN_VTB);
dec = mfspr(SPRN_DEC);
if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
dec = (s32) dec;
*tb = mftb();
vcpu->arch.dec_expires = dec + *tb;
if (vc->tb_offset_applied) {
u64 new_tb = *tb - vc->tb_offset_applied;
mtspr(SPRN_TBU40, new_tb);
if ((mftb() & 0xffffff) < (new_tb & 0xffffff)) {
new_tb += 0x1000000;
mtspr(SPRN_TBU40, new_tb);
}
*tb = new_tb;
vc->tb_offset_applied = 0;
}
save_clear_guest_mmu(kvm, vcpu);
switch_mmu_to_host(kvm, host_pidr);
/*
* Enable MSR here in order to have facilities enabled to save
* guest registers. This enables MMU (if we were in realmode), so
* only switch MMU on after the MMU is switched to host, to avoid
* the P9_RADIX_PREFETCH_BUG or hash guest context.
*/
if (IS_ENABLED(CONFIG_PPC_TRANSACTIONAL_MEM) &&
vcpu->arch.shregs.msr & MSR_TS_MASK)
msr |= MSR_TS_S;
__mtmsrd(msr, 0);
store_vcpu_state(vcpu);
mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr);
mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr);
if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) {
/* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */
mtspr(SPRN_PSSCR, host_hpsscr |
(local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
}
mtspr(SPRN_HFSCR, host_hfscr);
if (vcpu->arch.ciabr != host_ciabr)
mtspr(SPRN_CIABR, host_ciabr);
if (dawr_enabled()) {
if (vcpu->arch.dawr0 != host_dawr0)
mtspr(SPRN_DAWR0, host_dawr0);
if (vcpu->arch.dawrx0 != host_dawrx0)
mtspr(SPRN_DAWRX0, host_dawrx0);
if (cpu_has_feature(CPU_FTR_DAWR1)) {
if (vcpu->arch.dawr1 != host_dawr1)
mtspr(SPRN_DAWR1, host_dawr1);
if (vcpu->arch.dawrx1 != host_dawrx1)
mtspr(SPRN_DAWRX1, host_dawrx1);
}
}
if (dpdes)
mtspr(SPRN_DPDES, 0);
if (vc->pcr)
mtspr(SPRN_PCR, PCR_MASK);
/* HDEC must be at least as large as DEC, so decrementer_max fits */
mtspr(SPRN_HDEC, decrementer_max);
timer_rearm_host_dec(*tb);
restore_p9_host_os_sprs(vcpu, &host_os_sprs);
barrier(); /* Close in_guest critical section */
WRITE_ONCE(local_paca->kvm_hstate.in_guest, KVM_GUEST_MODE_NONE);
/* Interrupts are recoverable at this point */
/*
* cp_abort is required if the processor supports local copy-paste
* to clear the copy buffer that was under control of the guest.
*/
if (cpu_has_feature(CPU_FTR_ARCH_31))
asm volatile(PPC_CP_ABORT);
out:
return trap;
}
EXPORT_SYMBOL_GPL(kvmhv_vcpu_entry_p9);