blob: 1131c6d73f6cdd2bbfe30a18107428148f34054e [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dcn314_clk_mgr.h"
#include "dccg.h"
#include "clk_mgr_internal.h"
// For dce12_get_dp_ref_freq_khz
#include "dce100/dce_clk_mgr.h"
// For dcn20_update_clocks_update_dpp_dto
#include "dcn20/dcn20_clk_mgr.h"
#include "reg_helper.h"
#include "core_types.h"
#include "dm_helpers.h"
/* TODO: remove this include once we ported over remaining clk mgr functions*/
#include "dcn30/dcn30_clk_mgr.h"
#include "dcn31/dcn31_clk_mgr.h"
#include "dc_dmub_srv.h"
#include "dc_link_dp.h"
#include "dcn314_smu.h"
#include "logger_types.h"
#undef DC_LOGGER
#define DC_LOGGER \
clk_mgr->base.base.ctx->logger
#define MAX_INSTANCE 7
#define MAX_SEGMENT 8
struct IP_BASE_INSTANCE {
unsigned int segment[MAX_SEGMENT];
};
struct IP_BASE {
struct IP_BASE_INSTANCE instance[MAX_INSTANCE];
};
static const struct IP_BASE CLK_BASE = { { { { 0x00016C00, 0x02401800, 0, 0, 0, 0, 0, 0 } },
{ { 0x00016E00, 0x02401C00, 0, 0, 0, 0, 0, 0 } },
{ { 0x00017000, 0x02402000, 0, 0, 0, 0, 0, 0 } },
{ { 0x00017200, 0x02402400, 0, 0, 0, 0, 0, 0 } },
{ { 0x0001B000, 0x0242D800, 0, 0, 0, 0, 0, 0 } },
{ { 0x0001B200, 0x0242DC00, 0, 0, 0, 0, 0, 0 } },
{ { 0x0001B400, 0x0242E000, 0, 0, 0, 0, 0, 0 } } } };
#define regCLK1_CLK_PLL_REQ 0x0237
#define regCLK1_CLK_PLL_REQ_BASE_IDX 0
#define CLK1_CLK_PLL_REQ__FbMult_int__SHIFT 0x0
#define CLK1_CLK_PLL_REQ__PllSpineDiv__SHIFT 0xc
#define CLK1_CLK_PLL_REQ__FbMult_frac__SHIFT 0x10
#define CLK1_CLK_PLL_REQ__FbMult_int_MASK 0x000001FFL
#define CLK1_CLK_PLL_REQ__PllSpineDiv_MASK 0x0000F000L
#define CLK1_CLK_PLL_REQ__FbMult_frac_MASK 0xFFFF0000L
#define REG(reg_name) \
(CLK_BASE.instance[0].segment[reg ## reg_name ## _BASE_IDX] + reg ## reg_name)
#define TO_CLK_MGR_DCN314(clk_mgr)\
container_of(clk_mgr, struct clk_mgr_dcn314, base)
static int dcn314_get_active_display_cnt_wa(
struct dc *dc,
struct dc_state *context)
{
int i, display_count;
bool tmds_present = false;
display_count = 0;
for (i = 0; i < context->stream_count; i++) {
const struct dc_stream_state *stream = context->streams[i];
if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A ||
stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK ||
stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK)
tmds_present = true;
}
for (i = 0; i < dc->link_count; i++) {
const struct dc_link *link = dc->links[i];
/* abusing the fact that the dig and phy are coupled to see if the phy is enabled */
if (link->link_enc && link->link_enc->funcs->is_dig_enabled &&
link->link_enc->funcs->is_dig_enabled(link->link_enc))
display_count++;
}
/* WA for hang on HDMI after display off back on*/
if (display_count == 0 && tmds_present)
display_count = 1;
return display_count;
}
static void dcn314_disable_otg_wa(struct clk_mgr *clk_mgr_base, struct dc_state *context, bool disable)
{
struct dc *dc = clk_mgr_base->ctx->dc;
int i;
for (i = 0; i < dc->res_pool->pipe_count; ++i) {
struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
if (pipe->top_pipe || pipe->prev_odm_pipe)
continue;
if (pipe->stream && (pipe->stream->dpms_off || dc_is_virtual_signal(pipe->stream->signal))) {
struct stream_encoder *stream_enc = pipe->stream_res.stream_enc;
if (disable) {
if (stream_enc && stream_enc->funcs->disable_fifo)
pipe->stream_res.stream_enc->funcs->disable_fifo(stream_enc);
pipe->stream_res.tg->funcs->immediate_disable_crtc(pipe->stream_res.tg);
reset_sync_context_for_pipe(dc, context, i);
} else {
pipe->stream_res.tg->funcs->enable_crtc(pipe->stream_res.tg);
if (stream_enc && stream_enc->funcs->enable_fifo)
pipe->stream_res.stream_enc->funcs->enable_fifo(stream_enc);
}
}
}
}
void dcn314_update_clocks(struct clk_mgr *clk_mgr_base,
struct dc_state *context,
bool safe_to_lower)
{
union dmub_rb_cmd cmd;
struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
struct dc *dc = clk_mgr_base->ctx->dc;
int display_count;
bool update_dppclk = false;
bool update_dispclk = false;
bool dpp_clock_lowered = false;
if (dc->work_arounds.skip_clock_update)
return;
/*
* if it is safe to lower, but we are already in the lower state, we don't have to do anything
* also if safe to lower is false, we just go in the higher state
*/
if (safe_to_lower) {
if (new_clocks->zstate_support != DCN_ZSTATE_SUPPORT_DISALLOW &&
new_clocks->zstate_support != clk_mgr_base->clks.zstate_support) {
dcn314_smu_set_zstate_support(clk_mgr, new_clocks->zstate_support);
dm_helpers_enable_periodic_detection(clk_mgr_base->ctx, true);
clk_mgr_base->clks.zstate_support = new_clocks->zstate_support;
}
if (clk_mgr_base->clks.dtbclk_en && !new_clocks->dtbclk_en) {
dcn314_smu_set_dtbclk(clk_mgr, false);
clk_mgr_base->clks.dtbclk_en = new_clocks->dtbclk_en;
}
/* check that we're not already in lower */
if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
display_count = dcn314_get_active_display_cnt_wa(dc, context);
/* if we can go lower, go lower */
if (display_count == 0) {
union display_idle_optimization_u idle_info = { 0 };
idle_info.idle_info.df_request_disabled = 1;
idle_info.idle_info.phy_ref_clk_off = 1;
idle_info.idle_info.s0i2_rdy = 1;
dcn314_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
/* update power state */
clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
}
}
} else {
if (new_clocks->zstate_support == DCN_ZSTATE_SUPPORT_DISALLOW &&
new_clocks->zstate_support != clk_mgr_base->clks.zstate_support) {
dcn314_smu_set_zstate_support(clk_mgr, DCN_ZSTATE_SUPPORT_DISALLOW);
dm_helpers_enable_periodic_detection(clk_mgr_base->ctx, false);
clk_mgr_base->clks.zstate_support = new_clocks->zstate_support;
}
if (!clk_mgr_base->clks.dtbclk_en && new_clocks->dtbclk_en) {
dcn314_smu_set_dtbclk(clk_mgr, true);
clk_mgr_base->clks.dtbclk_en = new_clocks->dtbclk_en;
}
/* check that we're not already in D0 */
if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) {
union display_idle_optimization_u idle_info = { 0 };
dcn314_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
/* update power state */
clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE;
}
}
if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz)) {
clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz;
dcn314_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz);
}
if (should_set_clock(safe_to_lower,
new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz)) {
clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
dcn314_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz);
}
// workaround: Limit dppclk to 100Mhz to avoid lower eDP panel switch to plus 4K monitor underflow.
if (!IS_DIAG_DC(dc->ctx->dce_environment)) {
if (new_clocks->dppclk_khz < 100000)
new_clocks->dppclk_khz = 100000;
}
if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr->base.clks.dppclk_khz)) {
if (clk_mgr->base.clks.dppclk_khz > new_clocks->dppclk_khz)
dpp_clock_lowered = true;
clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz;
update_dppclk = true;
}
if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) {
dcn314_disable_otg_wa(clk_mgr_base, context, true);
clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz;
dcn314_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz);
dcn314_disable_otg_wa(clk_mgr_base, context, false);
update_dispclk = true;
}
if (dpp_clock_lowered) {
// increase per DPP DTO before lowering global dppclk
dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
dcn314_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
} else {
// increase global DPPCLK before lowering per DPP DTO
if (update_dppclk || update_dispclk)
dcn314_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
// always update dtos unless clock is lowered and not safe to lower
if (new_clocks->dppclk_khz >= dc->current_state->bw_ctx.bw.dcn.clk.dppclk_khz)
dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
}
// notify DMCUB of latest clocks
memset(&cmd, 0, sizeof(cmd));
cmd.notify_clocks.header.type = DMUB_CMD__CLK_MGR;
cmd.notify_clocks.header.sub_type = DMUB_CMD__CLK_MGR_NOTIFY_CLOCKS;
cmd.notify_clocks.clocks.dcfclk_khz = clk_mgr_base->clks.dcfclk_khz;
cmd.notify_clocks.clocks.dcfclk_deep_sleep_khz =
clk_mgr_base->clks.dcfclk_deep_sleep_khz;
cmd.notify_clocks.clocks.dispclk_khz = clk_mgr_base->clks.dispclk_khz;
cmd.notify_clocks.clocks.dppclk_khz = clk_mgr_base->clks.dppclk_khz;
dc_dmub_srv_cmd_queue(dc->ctx->dmub_srv, &cmd);
dc_dmub_srv_cmd_execute(dc->ctx->dmub_srv);
dc_dmub_srv_wait_idle(dc->ctx->dmub_srv);
}
static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr)
{
/* get FbMult value */
struct fixed31_32 pll_req;
unsigned int fbmult_frac_val = 0;
unsigned int fbmult_int_val = 0;
/*
* Register value of fbmult is in 8.16 format, we are converting to 314.32
* to leverage the fix point operations available in driver
*/
REG_GET(CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/
REG_GET(CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */
pll_req = dc_fixpt_from_int(fbmult_int_val);
/*
* since fractional part is only 16 bit in register definition but is 32 bit
* in our fix point definiton, need to shift left by 16 to obtain correct value
*/
pll_req.value |= fbmult_frac_val << 16;
/* multiply by REFCLK period */
pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz);
/* integer part is now VCO frequency in kHz */
return dc_fixpt_floor(pll_req);
}
static void dcn314_enable_pme_wa(struct clk_mgr *clk_mgr_base)
{
struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
dcn314_smu_enable_pme_wa(clk_mgr);
}
bool dcn314_are_clock_states_equal(struct dc_clocks *a,
struct dc_clocks *b)
{
if (a->dispclk_khz != b->dispclk_khz)
return false;
else if (a->dppclk_khz != b->dppclk_khz)
return false;
else if (a->dcfclk_khz != b->dcfclk_khz)
return false;
else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz)
return false;
else if (a->zstate_support != b->zstate_support)
return false;
else if (a->dtbclk_en != b->dtbclk_en)
return false;
return true;
}
static void dcn314_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass,
struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info)
{
return;
}
static struct clk_bw_params dcn314_bw_params = {
.vram_type = Ddr4MemType,
.num_channels = 1,
.clk_table = {
.num_entries = 4,
},
};
static struct wm_table ddr5_wm_table = {
.entries = {
{
.wm_inst = WM_A,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 11.72,
.sr_exit_time_us = 9,
.sr_enter_plus_exit_time_us = 11,
.valid = true,
},
{
.wm_inst = WM_B,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 11.72,
.sr_exit_time_us = 9,
.sr_enter_plus_exit_time_us = 11,
.valid = true,
},
{
.wm_inst = WM_C,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 11.72,
.sr_exit_time_us = 9,
.sr_enter_plus_exit_time_us = 11,
.valid = true,
},
{
.wm_inst = WM_D,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 11.72,
.sr_exit_time_us = 9,
.sr_enter_plus_exit_time_us = 11,
.valid = true,
},
}
};
static struct wm_table lpddr5_wm_table = {
.entries = {
{
.wm_inst = WM_A,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 11.65333,
.sr_exit_time_us = 11.5,
.sr_enter_plus_exit_time_us = 14.5,
.valid = true,
},
{
.wm_inst = WM_B,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 11.65333,
.sr_exit_time_us = 11.5,
.sr_enter_plus_exit_time_us = 14.5,
.valid = true,
},
{
.wm_inst = WM_C,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 11.65333,
.sr_exit_time_us = 11.5,
.sr_enter_plus_exit_time_us = 14.5,
.valid = true,
},
{
.wm_inst = WM_D,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 11.65333,
.sr_exit_time_us = 11.5,
.sr_enter_plus_exit_time_us = 14.5,
.valid = true,
},
}
};
static DpmClocks314_t dummy_clocks;
static struct dcn314_watermarks dummy_wms = { 0 };
static void dcn314_build_watermark_ranges(struct clk_bw_params *bw_params, struct dcn314_watermarks *table)
{
int i, num_valid_sets;
num_valid_sets = 0;
for (i = 0; i < WM_SET_COUNT; i++) {
/* skip empty entries, the smu array has no holes*/
if (!bw_params->wm_table.entries[i].valid)
continue;
table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmSetting = bw_params->wm_table.entries[i].wm_inst;
table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType = bw_params->wm_table.entries[i].wm_type;
/* We will not select WM based on fclk, so leave it as unconstrained */
table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0;
table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF;
if (table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType == WM_TYPE_PSTATE_CHG) {
if (i == 0)
table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk = 0;
else {
/* add 1 to make it non-overlapping with next lvl */
table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk =
bw_params->clk_table.entries[i - 1].dcfclk_mhz + 1;
}
table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxMclk =
bw_params->clk_table.entries[i].dcfclk_mhz;
} else {
/* unconstrained for memory retraining */
table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0;
table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF;
/* Modify previous watermark range to cover up to max */
table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF;
}
num_valid_sets++;
}
ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */
/* modify the min and max to make sure we cover the whole range*/
table->WatermarkRow[WM_DCFCLK][0].MinMclk = 0;
table->WatermarkRow[WM_DCFCLK][0].MinClock = 0;
table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxMclk = 0xFFFF;
table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF;
/* This is for writeback only, does not matter currently as no writeback support*/
table->WatermarkRow[WM_SOCCLK][0].WmSetting = WM_A;
table->WatermarkRow[WM_SOCCLK][0].MinClock = 0;
table->WatermarkRow[WM_SOCCLK][0].MaxClock = 0xFFFF;
table->WatermarkRow[WM_SOCCLK][0].MinMclk = 0;
table->WatermarkRow[WM_SOCCLK][0].MaxMclk = 0xFFFF;
}
static void dcn314_notify_wm_ranges(struct clk_mgr *clk_mgr_base)
{
struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
struct clk_mgr_dcn314 *clk_mgr_dcn314 = TO_CLK_MGR_DCN314(clk_mgr);
struct dcn314_watermarks *table = clk_mgr_dcn314->smu_wm_set.wm_set;
if (!clk_mgr->smu_ver)
return;
if (!table || clk_mgr_dcn314->smu_wm_set.mc_address.quad_part == 0)
return;
memset(table, 0, sizeof(*table));
dcn314_build_watermark_ranges(clk_mgr_base->bw_params, table);
dcn314_smu_set_dram_addr_high(clk_mgr,
clk_mgr_dcn314->smu_wm_set.mc_address.high_part);
dcn314_smu_set_dram_addr_low(clk_mgr,
clk_mgr_dcn314->smu_wm_set.mc_address.low_part);
dcn314_smu_transfer_wm_table_dram_2_smu(clk_mgr);
}
static void dcn314_get_dpm_table_from_smu(struct clk_mgr_internal *clk_mgr,
struct dcn314_smu_dpm_clks *smu_dpm_clks)
{
DpmClocks314_t *table = smu_dpm_clks->dpm_clks;
if (!clk_mgr->smu_ver)
return;
if (!table || smu_dpm_clks->mc_address.quad_part == 0)
return;
memset(table, 0, sizeof(*table));
dcn314_smu_set_dram_addr_high(clk_mgr,
smu_dpm_clks->mc_address.high_part);
dcn314_smu_set_dram_addr_low(clk_mgr,
smu_dpm_clks->mc_address.low_part);
dcn314_smu_transfer_dpm_table_smu_2_dram(clk_mgr);
}
static inline bool is_valid_clock_value(uint32_t clock_value)
{
return clock_value > 1 && clock_value < 100000;
}
static unsigned int convert_wck_ratio(uint8_t wck_ratio)
{
switch (wck_ratio) {
case WCK_RATIO_1_2:
return 2;
case WCK_RATIO_1_4:
return 4;
default:
break;
}
return 1;
}
static uint32_t find_max_clk_value(const uint32_t clocks[], uint32_t num_clocks)
{
uint32_t max = 0;
int i;
for (i = 0; i < num_clocks; ++i) {
if (clocks[i] > max)
max = clocks[i];
}
return max;
}
static void dcn314_clk_mgr_helper_populate_bw_params(struct clk_mgr_internal *clk_mgr,
struct integrated_info *bios_info,
const DpmClocks314_t *clock_table)
{
struct clk_bw_params *bw_params = clk_mgr->base.bw_params;
struct clk_limit_table_entry def_max = bw_params->clk_table.entries[bw_params->clk_table.num_entries - 1];
uint32_t max_pstate = 0, max_fclk = 0, min_pstate = 0, max_dispclk = 0, max_dppclk = 0;
int i;
/* Find highest valid fclk pstate */
for (i = 0; i < clock_table->NumDfPstatesEnabled; i++) {
if (is_valid_clock_value(clock_table->DfPstateTable[i].FClk) &&
clock_table->DfPstateTable[i].FClk > max_fclk) {
max_fclk = clock_table->DfPstateTable[i].FClk;
max_pstate = i;
}
}
/* We expect the table to contain at least one valid fclk entry. */
ASSERT(is_valid_clock_value(max_fclk));
/* Dispclk and dppclk can be max at any voltage, same number of levels for both */
if (clock_table->NumDispClkLevelsEnabled <= NUM_DISPCLK_DPM_LEVELS &&
clock_table->NumDispClkLevelsEnabled <= NUM_DPPCLK_DPM_LEVELS) {
max_dispclk = find_max_clk_value(clock_table->DispClocks, clock_table->NumDispClkLevelsEnabled);
max_dppclk = find_max_clk_value(clock_table->DppClocks, clock_table->NumDispClkLevelsEnabled);
} else {
/* Invalid number of entries in the table from PMFW. */
ASSERT(0);
}
/* Base the clock table on dcfclk, need at least one entry regardless of pmfw table */
for (i = 0; i < clock_table->NumDcfClkLevelsEnabled; i++) {
uint32_t min_fclk = clock_table->DfPstateTable[0].FClk;
int j;
for (j = 1; j < clock_table->NumDfPstatesEnabled; j++) {
if (is_valid_clock_value(clock_table->DfPstateTable[j].FClk) &&
clock_table->DfPstateTable[j].FClk < min_fclk &&
clock_table->DfPstateTable[j].Voltage <= clock_table->SocVoltage[i]) {
min_fclk = clock_table->DfPstateTable[j].FClk;
min_pstate = j;
}
}
/* First search defaults for the clocks we don't read using closest lower or equal default dcfclk */
for (j = bw_params->clk_table.num_entries - 1; j > 0; j--)
if (bw_params->clk_table.entries[j].dcfclk_mhz <= clock_table->DcfClocks[i])
break;
bw_params->clk_table.entries[i].phyclk_mhz = bw_params->clk_table.entries[j].phyclk_mhz;
bw_params->clk_table.entries[i].phyclk_d18_mhz = bw_params->clk_table.entries[j].phyclk_d18_mhz;
bw_params->clk_table.entries[i].dtbclk_mhz = bw_params->clk_table.entries[j].dtbclk_mhz;
/* Now update clocks we do read */
bw_params->clk_table.entries[i].fclk_mhz = min_fclk;
bw_params->clk_table.entries[i].memclk_mhz = clock_table->DfPstateTable[min_pstate].MemClk;
bw_params->clk_table.entries[i].voltage = clock_table->DfPstateTable[min_pstate].Voltage;
bw_params->clk_table.entries[i].dcfclk_mhz = clock_table->DcfClocks[i];
bw_params->clk_table.entries[i].socclk_mhz = clock_table->SocClocks[i];
bw_params->clk_table.entries[i].dispclk_mhz = max_dispclk;
bw_params->clk_table.entries[i].dppclk_mhz = max_dppclk;
bw_params->clk_table.entries[i].wck_ratio = convert_wck_ratio(
clock_table->DfPstateTable[min_pstate].WckRatio);
}
/* Make sure to include at least one entry at highest pstate */
if (max_pstate != min_pstate || i == 0) {
if (i > MAX_NUM_DPM_LVL - 1)
i = MAX_NUM_DPM_LVL - 1;
bw_params->clk_table.entries[i].fclk_mhz = max_fclk;
bw_params->clk_table.entries[i].memclk_mhz = clock_table->DfPstateTable[max_pstate].MemClk;
bw_params->clk_table.entries[i].voltage = clock_table->DfPstateTable[max_pstate].Voltage;
bw_params->clk_table.entries[i].dcfclk_mhz = find_max_clk_value(clock_table->DcfClocks, NUM_DCFCLK_DPM_LEVELS);
bw_params->clk_table.entries[i].socclk_mhz = find_max_clk_value(clock_table->SocClocks, NUM_SOCCLK_DPM_LEVELS);
bw_params->clk_table.entries[i].dispclk_mhz = max_dispclk;
bw_params->clk_table.entries[i].dppclk_mhz = max_dppclk;
bw_params->clk_table.entries[i].wck_ratio = convert_wck_ratio(
clock_table->DfPstateTable[max_pstate].WckRatio);
i++;
}
bw_params->clk_table.num_entries = i--;
/* Make sure all highest clocks are included*/
bw_params->clk_table.entries[i].socclk_mhz = find_max_clk_value(clock_table->SocClocks, NUM_SOCCLK_DPM_LEVELS);
bw_params->clk_table.entries[i].dispclk_mhz = find_max_clk_value(clock_table->DispClocks, NUM_DISPCLK_DPM_LEVELS);
bw_params->clk_table.entries[i].dppclk_mhz = find_max_clk_value(clock_table->DppClocks, NUM_DPPCLK_DPM_LEVELS);
ASSERT(clock_table->DcfClocks[i] == find_max_clk_value(clock_table->DcfClocks, NUM_DCFCLK_DPM_LEVELS));
bw_params->clk_table.entries[i].phyclk_mhz = def_max.phyclk_mhz;
bw_params->clk_table.entries[i].phyclk_d18_mhz = def_max.phyclk_d18_mhz;
bw_params->clk_table.entries[i].dtbclk_mhz = def_max.dtbclk_mhz;
/*
* Set any 0 clocks to max default setting. Not an issue for
* power since we aren't doing switching in such case anyway
*/
for (i = 0; i < bw_params->clk_table.num_entries; i++) {
if (!bw_params->clk_table.entries[i].fclk_mhz) {
bw_params->clk_table.entries[i].fclk_mhz = def_max.fclk_mhz;
bw_params->clk_table.entries[i].memclk_mhz = def_max.memclk_mhz;
bw_params->clk_table.entries[i].voltage = def_max.voltage;
}
if (!bw_params->clk_table.entries[i].dcfclk_mhz)
bw_params->clk_table.entries[i].dcfclk_mhz = def_max.dcfclk_mhz;
if (!bw_params->clk_table.entries[i].socclk_mhz)
bw_params->clk_table.entries[i].socclk_mhz = def_max.socclk_mhz;
if (!bw_params->clk_table.entries[i].dispclk_mhz)
bw_params->clk_table.entries[i].dispclk_mhz = def_max.dispclk_mhz;
if (!bw_params->clk_table.entries[i].dppclk_mhz)
bw_params->clk_table.entries[i].dppclk_mhz = def_max.dppclk_mhz;
if (!bw_params->clk_table.entries[i].phyclk_mhz)
bw_params->clk_table.entries[i].phyclk_mhz = def_max.phyclk_mhz;
if (!bw_params->clk_table.entries[i].phyclk_d18_mhz)
bw_params->clk_table.entries[i].phyclk_d18_mhz = def_max.phyclk_d18_mhz;
if (!bw_params->clk_table.entries[i].dtbclk_mhz)
bw_params->clk_table.entries[i].dtbclk_mhz = def_max.dtbclk_mhz;
}
ASSERT(bw_params->clk_table.entries[i-1].dcfclk_mhz);
bw_params->vram_type = bios_info->memory_type;
bw_params->dram_channel_width_bytes = bios_info->memory_type == 0x22 ? 8 : 4;
bw_params->num_channels = bios_info->ma_channel_number ? bios_info->ma_channel_number : 4;
for (i = 0; i < WM_SET_COUNT; i++) {
bw_params->wm_table.entries[i].wm_inst = i;
if (i >= bw_params->clk_table.num_entries) {
bw_params->wm_table.entries[i].valid = false;
continue;
}
bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG;
bw_params->wm_table.entries[i].valid = true;
}
}
static struct clk_mgr_funcs dcn314_funcs = {
.get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
.get_dtb_ref_clk_frequency = dcn31_get_dtb_ref_freq_khz,
.update_clocks = dcn314_update_clocks,
.init_clocks = dcn31_init_clocks,
.enable_pme_wa = dcn314_enable_pme_wa,
.are_clock_states_equal = dcn314_are_clock_states_equal,
.notify_wm_ranges = dcn314_notify_wm_ranges
};
extern struct clk_mgr_funcs dcn3_fpga_funcs;
void dcn314_clk_mgr_construct(
struct dc_context *ctx,
struct clk_mgr_dcn314 *clk_mgr,
struct pp_smu_funcs *pp_smu,
struct dccg *dccg)
{
struct dcn314_smu_dpm_clks smu_dpm_clks = { 0 };
clk_mgr->base.base.ctx = ctx;
clk_mgr->base.base.funcs = &dcn314_funcs;
clk_mgr->base.pp_smu = pp_smu;
clk_mgr->base.dccg = dccg;
clk_mgr->base.dfs_bypass_disp_clk = 0;
clk_mgr->base.dprefclk_ss_percentage = 0;
clk_mgr->base.dprefclk_ss_divider = 1000;
clk_mgr->base.ss_on_dprefclk = false;
clk_mgr->base.dfs_ref_freq_khz = 48000;
clk_mgr->smu_wm_set.wm_set = (struct dcn314_watermarks *)dm_helpers_allocate_gpu_mem(
clk_mgr->base.base.ctx,
DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
sizeof(struct dcn314_watermarks),
&clk_mgr->smu_wm_set.mc_address.quad_part);
if (!clk_mgr->smu_wm_set.wm_set) {
clk_mgr->smu_wm_set.wm_set = &dummy_wms;
clk_mgr->smu_wm_set.mc_address.quad_part = 0;
}
ASSERT(clk_mgr->smu_wm_set.wm_set);
smu_dpm_clks.dpm_clks = (DpmClocks314_t *)dm_helpers_allocate_gpu_mem(
clk_mgr->base.base.ctx,
DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
sizeof(DpmClocks314_t),
&smu_dpm_clks.mc_address.quad_part);
if (smu_dpm_clks.dpm_clks == NULL) {
smu_dpm_clks.dpm_clks = &dummy_clocks;
smu_dpm_clks.mc_address.quad_part = 0;
}
ASSERT(smu_dpm_clks.dpm_clks);
if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment)) {
clk_mgr->base.base.funcs = &dcn3_fpga_funcs;
} else {
struct clk_log_info log_info = {0};
clk_mgr->base.smu_ver = dcn314_smu_get_smu_version(&clk_mgr->base);
if (clk_mgr->base.smu_ver)
clk_mgr->base.smu_present = true;
/* TODO: Check we get what we expect during bringup */
clk_mgr->base.base.dentist_vco_freq_khz = get_vco_frequency_from_reg(&clk_mgr->base);
if (ctx->dc_bios->integrated_info->memory_type == LpDdr5MemType)
dcn314_bw_params.wm_table = lpddr5_wm_table;
else
dcn314_bw_params.wm_table = ddr5_wm_table;
/* Saved clocks configured at boot for debug purposes */
dcn314_dump_clk_registers(&clk_mgr->base.base.boot_snapshot,
&clk_mgr->base.base, &log_info);
}
clk_mgr->base.base.dprefclk_khz = 600000;
clk_mgr->base.base.clks.ref_dtbclk_khz = 600000;
dce_clock_read_ss_info(&clk_mgr->base);
/*if bios enabled SS, driver needs to adjust dtb clock, only enable with correct bios*/
//clk_mgr->base.dccg->ref_dtbclk_khz = dce_adjust_dp_ref_freq_for_ss(clk_mgr_internal, clk_mgr->base.base.dprefclk_khz);
clk_mgr->base.base.bw_params = &dcn314_bw_params;
if (clk_mgr->base.base.ctx->dc->debug.pstate_enabled) {
int i;
dcn314_get_dpm_table_from_smu(&clk_mgr->base, &smu_dpm_clks);
DC_LOG_SMU("NumDcfClkLevelsEnabled: %d\n"
"NumDispClkLevelsEnabled: %d\n"
"NumSocClkLevelsEnabled: %d\n"
"VcnClkLevelsEnabled: %d\n"
"NumDfPst atesEnabled: %d\n"
"MinGfxClk: %d\n"
"MaxGfxClk: %d\n",
smu_dpm_clks.dpm_clks->NumDcfClkLevelsEnabled,
smu_dpm_clks.dpm_clks->NumDispClkLevelsEnabled,
smu_dpm_clks.dpm_clks->NumSocClkLevelsEnabled,
smu_dpm_clks.dpm_clks->VcnClkLevelsEnabled,
smu_dpm_clks.dpm_clks->NumDfPstatesEnabled,
smu_dpm_clks.dpm_clks->MinGfxClk,
smu_dpm_clks.dpm_clks->MaxGfxClk);
for (i = 0; i < smu_dpm_clks.dpm_clks->NumDcfClkLevelsEnabled; i++) {
DC_LOG_SMU("smu_dpm_clks.dpm_clks->DcfClocks[%d] = %d\n",
i,
smu_dpm_clks.dpm_clks->DcfClocks[i]);
}
for (i = 0; i < smu_dpm_clks.dpm_clks->NumDispClkLevelsEnabled; i++) {
DC_LOG_SMU("smu_dpm_clks.dpm_clks->DispClocks[%d] = %d\n",
i, smu_dpm_clks.dpm_clks->DispClocks[i]);
}
for (i = 0; i < smu_dpm_clks.dpm_clks->NumSocClkLevelsEnabled; i++) {
DC_LOG_SMU("smu_dpm_clks.dpm_clks->SocClocks[%d] = %d\n",
i, smu_dpm_clks.dpm_clks->SocClocks[i]);
}
for (i = 0; i < NUM_SOC_VOLTAGE_LEVELS; i++)
DC_LOG_SMU("smu_dpm_clks.dpm_clks->SocVoltage[%d] = %d\n",
i, smu_dpm_clks.dpm_clks->SocVoltage[i]);
for (i = 0; i < NUM_DF_PSTATE_LEVELS; i++) {
DC_LOG_SMU("smu_dpm_clks.dpm_clks.DfPstateTable[%d].FClk = %d\n"
"smu_dpm_clks.dpm_clks->DfPstateTable[%d].MemClk= %d\n"
"smu_dpm_clks.dpm_clks->DfPstateTable[%d].Voltage = %d\n",
i, smu_dpm_clks.dpm_clks->DfPstateTable[i].FClk,
i, smu_dpm_clks.dpm_clks->DfPstateTable[i].MemClk,
i, smu_dpm_clks.dpm_clks->DfPstateTable[i].Voltage);
}
if (ctx->dc_bios && ctx->dc_bios->integrated_info && ctx->dc->config.use_default_clock_table == false) {
dcn314_clk_mgr_helper_populate_bw_params(
&clk_mgr->base,
ctx->dc_bios->integrated_info,
smu_dpm_clks.dpm_clks);
}
}
if (smu_dpm_clks.dpm_clks && smu_dpm_clks.mc_address.quad_part != 0)
dm_helpers_free_gpu_mem(clk_mgr->base.base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
smu_dpm_clks.dpm_clks);
}
void dcn314_clk_mgr_destroy(struct clk_mgr_internal *clk_mgr_int)
{
struct clk_mgr_dcn314 *clk_mgr = TO_CLK_MGR_DCN314(clk_mgr_int);
if (clk_mgr->smu_wm_set.wm_set && clk_mgr->smu_wm_set.mc_address.quad_part != 0)
dm_helpers_free_gpu_mem(clk_mgr_int->base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
clk_mgr->smu_wm_set.wm_set);
}