blob: 6fae161cbcb822614a8f36935559f364ee0a7dc8 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019 - 2022 Beijing WangXun Technology Co., Ltd. */
#include <linux/etherdevice.h>
#include <net/ip6_checksum.h>
#include <net/page_pool/helpers.h>
#include <net/inet_ecn.h>
#include <linux/iopoll.h>
#include <linux/sctp.h>
#include <linux/pci.h>
#include <net/tcp.h>
#include <net/ip.h>
#include "wx_type.h"
#include "wx_lib.h"
#include "wx_hw.h"
/* Lookup table mapping the HW PTYPE to the bit field for decoding */
static struct wx_dec_ptype wx_ptype_lookup[256] = {
/* L2: mac */
[0x11] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
[0x12] = WX_PTT(L2, NONE, NONE, NONE, TS, PAY2),
[0x13] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
[0x14] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
[0x15] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
[0x16] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
[0x17] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
/* L2: ethertype filter */
[0x18 ... 0x1F] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
/* L3: ip non-tunnel */
[0x21] = WX_PTT(IP, FGV4, NONE, NONE, NONE, PAY3),
[0x22] = WX_PTT(IP, IPV4, NONE, NONE, NONE, PAY3),
[0x23] = WX_PTT(IP, IPV4, NONE, NONE, UDP, PAY4),
[0x24] = WX_PTT(IP, IPV4, NONE, NONE, TCP, PAY4),
[0x25] = WX_PTT(IP, IPV4, NONE, NONE, SCTP, PAY4),
[0x29] = WX_PTT(IP, FGV6, NONE, NONE, NONE, PAY3),
[0x2A] = WX_PTT(IP, IPV6, NONE, NONE, NONE, PAY3),
[0x2B] = WX_PTT(IP, IPV6, NONE, NONE, UDP, PAY3),
[0x2C] = WX_PTT(IP, IPV6, NONE, NONE, TCP, PAY4),
[0x2D] = WX_PTT(IP, IPV6, NONE, NONE, SCTP, PAY4),
/* L2: fcoe */
[0x30 ... 0x34] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3),
[0x38 ... 0x3C] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3),
/* IPv4 --> IPv4/IPv6 */
[0x81] = WX_PTT(IP, IPV4, IPIP, FGV4, NONE, PAY3),
[0x82] = WX_PTT(IP, IPV4, IPIP, IPV4, NONE, PAY3),
[0x83] = WX_PTT(IP, IPV4, IPIP, IPV4, UDP, PAY4),
[0x84] = WX_PTT(IP, IPV4, IPIP, IPV4, TCP, PAY4),
[0x85] = WX_PTT(IP, IPV4, IPIP, IPV4, SCTP, PAY4),
[0x89] = WX_PTT(IP, IPV4, IPIP, FGV6, NONE, PAY3),
[0x8A] = WX_PTT(IP, IPV4, IPIP, IPV6, NONE, PAY3),
[0x8B] = WX_PTT(IP, IPV4, IPIP, IPV6, UDP, PAY4),
[0x8C] = WX_PTT(IP, IPV4, IPIP, IPV6, TCP, PAY4),
[0x8D] = WX_PTT(IP, IPV4, IPIP, IPV6, SCTP, PAY4),
/* IPv4 --> GRE/NAT --> NONE/IPv4/IPv6 */
[0x90] = WX_PTT(IP, IPV4, IG, NONE, NONE, PAY3),
[0x91] = WX_PTT(IP, IPV4, IG, FGV4, NONE, PAY3),
[0x92] = WX_PTT(IP, IPV4, IG, IPV4, NONE, PAY3),
[0x93] = WX_PTT(IP, IPV4, IG, IPV4, UDP, PAY4),
[0x94] = WX_PTT(IP, IPV4, IG, IPV4, TCP, PAY4),
[0x95] = WX_PTT(IP, IPV4, IG, IPV4, SCTP, PAY4),
[0x99] = WX_PTT(IP, IPV4, IG, FGV6, NONE, PAY3),
[0x9A] = WX_PTT(IP, IPV4, IG, IPV6, NONE, PAY3),
[0x9B] = WX_PTT(IP, IPV4, IG, IPV6, UDP, PAY4),
[0x9C] = WX_PTT(IP, IPV4, IG, IPV6, TCP, PAY4),
[0x9D] = WX_PTT(IP, IPV4, IG, IPV6, SCTP, PAY4),
/* IPv4 --> GRE/NAT --> MAC --> NONE/IPv4/IPv6 */
[0xA0] = WX_PTT(IP, IPV4, IGM, NONE, NONE, PAY3),
[0xA1] = WX_PTT(IP, IPV4, IGM, FGV4, NONE, PAY3),
[0xA2] = WX_PTT(IP, IPV4, IGM, IPV4, NONE, PAY3),
[0xA3] = WX_PTT(IP, IPV4, IGM, IPV4, UDP, PAY4),
[0xA4] = WX_PTT(IP, IPV4, IGM, IPV4, TCP, PAY4),
[0xA5] = WX_PTT(IP, IPV4, IGM, IPV4, SCTP, PAY4),
[0xA9] = WX_PTT(IP, IPV4, IGM, FGV6, NONE, PAY3),
[0xAA] = WX_PTT(IP, IPV4, IGM, IPV6, NONE, PAY3),
[0xAB] = WX_PTT(IP, IPV4, IGM, IPV6, UDP, PAY4),
[0xAC] = WX_PTT(IP, IPV4, IGM, IPV6, TCP, PAY4),
[0xAD] = WX_PTT(IP, IPV4, IGM, IPV6, SCTP, PAY4),
/* IPv4 --> GRE/NAT --> MAC+VLAN --> NONE/IPv4/IPv6 */
[0xB0] = WX_PTT(IP, IPV4, IGMV, NONE, NONE, PAY3),
[0xB1] = WX_PTT(IP, IPV4, IGMV, FGV4, NONE, PAY3),
[0xB2] = WX_PTT(IP, IPV4, IGMV, IPV4, NONE, PAY3),
[0xB3] = WX_PTT(IP, IPV4, IGMV, IPV4, UDP, PAY4),
[0xB4] = WX_PTT(IP, IPV4, IGMV, IPV4, TCP, PAY4),
[0xB5] = WX_PTT(IP, IPV4, IGMV, IPV4, SCTP, PAY4),
[0xB9] = WX_PTT(IP, IPV4, IGMV, FGV6, NONE, PAY3),
[0xBA] = WX_PTT(IP, IPV4, IGMV, IPV6, NONE, PAY3),
[0xBB] = WX_PTT(IP, IPV4, IGMV, IPV6, UDP, PAY4),
[0xBC] = WX_PTT(IP, IPV4, IGMV, IPV6, TCP, PAY4),
[0xBD] = WX_PTT(IP, IPV4, IGMV, IPV6, SCTP, PAY4),
/* IPv6 --> IPv4/IPv6 */
[0xC1] = WX_PTT(IP, IPV6, IPIP, FGV4, NONE, PAY3),
[0xC2] = WX_PTT(IP, IPV6, IPIP, IPV4, NONE, PAY3),
[0xC3] = WX_PTT(IP, IPV6, IPIP, IPV4, UDP, PAY4),
[0xC4] = WX_PTT(IP, IPV6, IPIP, IPV4, TCP, PAY4),
[0xC5] = WX_PTT(IP, IPV6, IPIP, IPV4, SCTP, PAY4),
[0xC9] = WX_PTT(IP, IPV6, IPIP, FGV6, NONE, PAY3),
[0xCA] = WX_PTT(IP, IPV6, IPIP, IPV6, NONE, PAY3),
[0xCB] = WX_PTT(IP, IPV6, IPIP, IPV6, UDP, PAY4),
[0xCC] = WX_PTT(IP, IPV6, IPIP, IPV6, TCP, PAY4),
[0xCD] = WX_PTT(IP, IPV6, IPIP, IPV6, SCTP, PAY4),
/* IPv6 --> GRE/NAT -> NONE/IPv4/IPv6 */
[0xD0] = WX_PTT(IP, IPV6, IG, NONE, NONE, PAY3),
[0xD1] = WX_PTT(IP, IPV6, IG, FGV4, NONE, PAY3),
[0xD2] = WX_PTT(IP, IPV6, IG, IPV4, NONE, PAY3),
[0xD3] = WX_PTT(IP, IPV6, IG, IPV4, UDP, PAY4),
[0xD4] = WX_PTT(IP, IPV6, IG, IPV4, TCP, PAY4),
[0xD5] = WX_PTT(IP, IPV6, IG, IPV4, SCTP, PAY4),
[0xD9] = WX_PTT(IP, IPV6, IG, FGV6, NONE, PAY3),
[0xDA] = WX_PTT(IP, IPV6, IG, IPV6, NONE, PAY3),
[0xDB] = WX_PTT(IP, IPV6, IG, IPV6, UDP, PAY4),
[0xDC] = WX_PTT(IP, IPV6, IG, IPV6, TCP, PAY4),
[0xDD] = WX_PTT(IP, IPV6, IG, IPV6, SCTP, PAY4),
/* IPv6 --> GRE/NAT -> MAC -> NONE/IPv4/IPv6 */
[0xE0] = WX_PTT(IP, IPV6, IGM, NONE, NONE, PAY3),
[0xE1] = WX_PTT(IP, IPV6, IGM, FGV4, NONE, PAY3),
[0xE2] = WX_PTT(IP, IPV6, IGM, IPV4, NONE, PAY3),
[0xE3] = WX_PTT(IP, IPV6, IGM, IPV4, UDP, PAY4),
[0xE4] = WX_PTT(IP, IPV6, IGM, IPV4, TCP, PAY4),
[0xE5] = WX_PTT(IP, IPV6, IGM, IPV4, SCTP, PAY4),
[0xE9] = WX_PTT(IP, IPV6, IGM, FGV6, NONE, PAY3),
[0xEA] = WX_PTT(IP, IPV6, IGM, IPV6, NONE, PAY3),
[0xEB] = WX_PTT(IP, IPV6, IGM, IPV6, UDP, PAY4),
[0xEC] = WX_PTT(IP, IPV6, IGM, IPV6, TCP, PAY4),
[0xED] = WX_PTT(IP, IPV6, IGM, IPV6, SCTP, PAY4),
/* IPv6 --> GRE/NAT -> MAC--> NONE/IPv */
[0xF0] = WX_PTT(IP, IPV6, IGMV, NONE, NONE, PAY3),
[0xF1] = WX_PTT(IP, IPV6, IGMV, FGV4, NONE, PAY3),
[0xF2] = WX_PTT(IP, IPV6, IGMV, IPV4, NONE, PAY3),
[0xF3] = WX_PTT(IP, IPV6, IGMV, IPV4, UDP, PAY4),
[0xF4] = WX_PTT(IP, IPV6, IGMV, IPV4, TCP, PAY4),
[0xF5] = WX_PTT(IP, IPV6, IGMV, IPV4, SCTP, PAY4),
[0xF9] = WX_PTT(IP, IPV6, IGMV, FGV6, NONE, PAY3),
[0xFA] = WX_PTT(IP, IPV6, IGMV, IPV6, NONE, PAY3),
[0xFB] = WX_PTT(IP, IPV6, IGMV, IPV6, UDP, PAY4),
[0xFC] = WX_PTT(IP, IPV6, IGMV, IPV6, TCP, PAY4),
[0xFD] = WX_PTT(IP, IPV6, IGMV, IPV6, SCTP, PAY4),
};
static struct wx_dec_ptype wx_decode_ptype(const u8 ptype)
{
return wx_ptype_lookup[ptype];
}
/* wx_test_staterr - tests bits in Rx descriptor status and error fields */
static __le32 wx_test_staterr(union wx_rx_desc *rx_desc,
const u32 stat_err_bits)
{
return rx_desc->wb.upper.status_error & cpu_to_le32(stat_err_bits);
}
static void wx_dma_sync_frag(struct wx_ring *rx_ring,
struct wx_rx_buffer *rx_buffer)
{
struct sk_buff *skb = rx_buffer->skb;
skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
dma_sync_single_range_for_cpu(rx_ring->dev,
WX_CB(skb)->dma,
skb_frag_off(frag),
skb_frag_size(frag),
DMA_FROM_DEVICE);
/* If the page was released, just unmap it. */
if (unlikely(WX_CB(skb)->page_released))
page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
}
static struct wx_rx_buffer *wx_get_rx_buffer(struct wx_ring *rx_ring,
union wx_rx_desc *rx_desc,
struct sk_buff **skb,
int *rx_buffer_pgcnt)
{
struct wx_rx_buffer *rx_buffer;
unsigned int size;
rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
size = le16_to_cpu(rx_desc->wb.upper.length);
#if (PAGE_SIZE < 8192)
*rx_buffer_pgcnt = page_count(rx_buffer->page);
#else
*rx_buffer_pgcnt = 0;
#endif
prefetchw(rx_buffer->page);
*skb = rx_buffer->skb;
/* Delay unmapping of the first packet. It carries the header
* information, HW may still access the header after the writeback.
* Only unmap it when EOP is reached
*/
if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)) {
if (!*skb)
goto skip_sync;
} else {
if (*skb)
wx_dma_sync_frag(rx_ring, rx_buffer);
}
/* we are reusing so sync this buffer for CPU use */
dma_sync_single_range_for_cpu(rx_ring->dev,
rx_buffer->dma,
rx_buffer->page_offset,
size,
DMA_FROM_DEVICE);
skip_sync:
return rx_buffer;
}
static void wx_put_rx_buffer(struct wx_ring *rx_ring,
struct wx_rx_buffer *rx_buffer,
struct sk_buff *skb,
int rx_buffer_pgcnt)
{
if (!IS_ERR(skb) && WX_CB(skb)->dma == rx_buffer->dma)
/* the page has been released from the ring */
WX_CB(skb)->page_released = true;
/* clear contents of rx_buffer */
rx_buffer->page = NULL;
rx_buffer->skb = NULL;
}
static struct sk_buff *wx_build_skb(struct wx_ring *rx_ring,
struct wx_rx_buffer *rx_buffer,
union wx_rx_desc *rx_desc)
{
unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
#if (PAGE_SIZE < 8192)
unsigned int truesize = WX_RX_BUFSZ;
#else
unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
#endif
struct sk_buff *skb = rx_buffer->skb;
if (!skb) {
void *page_addr = page_address(rx_buffer->page) +
rx_buffer->page_offset;
/* prefetch first cache line of first page */
prefetch(page_addr);
#if L1_CACHE_BYTES < 128
prefetch(page_addr + L1_CACHE_BYTES);
#endif
/* allocate a skb to store the frags */
skb = napi_alloc_skb(&rx_ring->q_vector->napi, WX_RXBUFFER_256);
if (unlikely(!skb))
return NULL;
/* we will be copying header into skb->data in
* pskb_may_pull so it is in our interest to prefetch
* it now to avoid a possible cache miss
*/
prefetchw(skb->data);
if (size <= WX_RXBUFFER_256) {
memcpy(__skb_put(skb, size), page_addr,
ALIGN(size, sizeof(long)));
page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, true);
return skb;
}
skb_mark_for_recycle(skb);
if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP))
WX_CB(skb)->dma = rx_buffer->dma;
skb_add_rx_frag(skb, 0, rx_buffer->page,
rx_buffer->page_offset,
size, truesize);
goto out;
} else {
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
rx_buffer->page_offset, size, truesize);
}
out:
#if (PAGE_SIZE < 8192)
/* flip page offset to other buffer */
rx_buffer->page_offset ^= truesize;
#else
/* move offset up to the next cache line */
rx_buffer->page_offset += truesize;
#endif
return skb;
}
static bool wx_alloc_mapped_page(struct wx_ring *rx_ring,
struct wx_rx_buffer *bi)
{
struct page *page = bi->page;
dma_addr_t dma;
/* since we are recycling buffers we should seldom need to alloc */
if (likely(page))
return true;
page = page_pool_dev_alloc_pages(rx_ring->page_pool);
WARN_ON(!page);
dma = page_pool_get_dma_addr(page);
bi->page_dma = dma;
bi->page = page;
bi->page_offset = 0;
return true;
}
/**
* wx_alloc_rx_buffers - Replace used receive buffers
* @rx_ring: ring to place buffers on
* @cleaned_count: number of buffers to replace
**/
void wx_alloc_rx_buffers(struct wx_ring *rx_ring, u16 cleaned_count)
{
u16 i = rx_ring->next_to_use;
union wx_rx_desc *rx_desc;
struct wx_rx_buffer *bi;
/* nothing to do */
if (!cleaned_count)
return;
rx_desc = WX_RX_DESC(rx_ring, i);
bi = &rx_ring->rx_buffer_info[i];
i -= rx_ring->count;
do {
if (!wx_alloc_mapped_page(rx_ring, bi))
break;
/* sync the buffer for use by the device */
dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
bi->page_offset,
WX_RX_BUFSZ,
DMA_FROM_DEVICE);
rx_desc->read.pkt_addr =
cpu_to_le64(bi->page_dma + bi->page_offset);
rx_desc++;
bi++;
i++;
if (unlikely(!i)) {
rx_desc = WX_RX_DESC(rx_ring, 0);
bi = rx_ring->rx_buffer_info;
i -= rx_ring->count;
}
/* clear the status bits for the next_to_use descriptor */
rx_desc->wb.upper.status_error = 0;
cleaned_count--;
} while (cleaned_count);
i += rx_ring->count;
if (rx_ring->next_to_use != i) {
rx_ring->next_to_use = i;
/* update next to alloc since we have filled the ring */
rx_ring->next_to_alloc = i;
/* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64).
*/
wmb();
writel(i, rx_ring->tail);
}
}
u16 wx_desc_unused(struct wx_ring *ring)
{
u16 ntc = ring->next_to_clean;
u16 ntu = ring->next_to_use;
return ((ntc > ntu) ? 0 : ring->count) + ntc - ntu - 1;
}
/**
* wx_is_non_eop - process handling of non-EOP buffers
* @rx_ring: Rx ring being processed
* @rx_desc: Rx descriptor for current buffer
* @skb: Current socket buffer containing buffer in progress
*
* This function updates next to clean. If the buffer is an EOP buffer
* this function exits returning false, otherwise it will place the
* sk_buff in the next buffer to be chained and return true indicating
* that this is in fact a non-EOP buffer.
**/
static bool wx_is_non_eop(struct wx_ring *rx_ring,
union wx_rx_desc *rx_desc,
struct sk_buff *skb)
{
u32 ntc = rx_ring->next_to_clean + 1;
/* fetch, update, and store next to clean */
ntc = (ntc < rx_ring->count) ? ntc : 0;
rx_ring->next_to_clean = ntc;
prefetch(WX_RX_DESC(rx_ring, ntc));
/* if we are the last buffer then there is nothing else to do */
if (likely(wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)))
return false;
rx_ring->rx_buffer_info[ntc].skb = skb;
rx_ring->rx_stats.non_eop_descs++;
return true;
}
static void wx_pull_tail(struct sk_buff *skb)
{
skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
unsigned int pull_len;
unsigned char *va;
/* it is valid to use page_address instead of kmap since we are
* working with pages allocated out of the lomem pool per
* alloc_page(GFP_ATOMIC)
*/
va = skb_frag_address(frag);
/* we need the header to contain the greater of either ETH_HLEN or
* 60 bytes if the skb->len is less than 60 for skb_pad.
*/
pull_len = eth_get_headlen(skb->dev, va, WX_RXBUFFER_256);
/* align pull length to size of long to optimize memcpy performance */
skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
/* update all of the pointers */
skb_frag_size_sub(frag, pull_len);
skb_frag_off_add(frag, pull_len);
skb->data_len -= pull_len;
skb->tail += pull_len;
}
/**
* wx_cleanup_headers - Correct corrupted or empty headers
* @rx_ring: rx descriptor ring packet is being transacted on
* @rx_desc: pointer to the EOP Rx descriptor
* @skb: pointer to current skb being fixed
*
* Check for corrupted packet headers caused by senders on the local L2
* embedded NIC switch not setting up their Tx Descriptors right. These
* should be very rare.
*
* Also address the case where we are pulling data in on pages only
* and as such no data is present in the skb header.
*
* In addition if skb is not at least 60 bytes we need to pad it so that
* it is large enough to qualify as a valid Ethernet frame.
*
* Returns true if an error was encountered and skb was freed.
**/
static bool wx_cleanup_headers(struct wx_ring *rx_ring,
union wx_rx_desc *rx_desc,
struct sk_buff *skb)
{
struct net_device *netdev = rx_ring->netdev;
/* verify that the packet does not have any known errors */
if (!netdev ||
unlikely(wx_test_staterr(rx_desc, WX_RXD_ERR_RXE) &&
!(netdev->features & NETIF_F_RXALL))) {
dev_kfree_skb_any(skb);
return true;
}
/* place header in linear portion of buffer */
if (!skb_headlen(skb))
wx_pull_tail(skb);
/* if eth_skb_pad returns an error the skb was freed */
if (eth_skb_pad(skb))
return true;
return false;
}
static void wx_rx_hash(struct wx_ring *ring,
union wx_rx_desc *rx_desc,
struct sk_buff *skb)
{
u16 rss_type;
if (!(ring->netdev->features & NETIF_F_RXHASH))
return;
rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
WX_RXD_RSSTYPE_MASK;
if (!rss_type)
return;
skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
(WX_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
}
/**
* wx_rx_checksum - indicate in skb if hw indicated a good cksum
* @ring: structure containing ring specific data
* @rx_desc: current Rx descriptor being processed
* @skb: skb currently being received and modified
**/
static void wx_rx_checksum(struct wx_ring *ring,
union wx_rx_desc *rx_desc,
struct sk_buff *skb)
{
struct wx_dec_ptype dptype = wx_decode_ptype(WX_RXD_PKTTYPE(rx_desc));
skb_checksum_none_assert(skb);
/* Rx csum disabled */
if (!(ring->netdev->features & NETIF_F_RXCSUM))
return;
/* if IPv4 header checksum error */
if ((wx_test_staterr(rx_desc, WX_RXD_STAT_IPCS) &&
wx_test_staterr(rx_desc, WX_RXD_ERR_IPE)) ||
(wx_test_staterr(rx_desc, WX_RXD_STAT_OUTERIPCS) &&
wx_test_staterr(rx_desc, WX_RXD_ERR_OUTERIPER))) {
ring->rx_stats.csum_err++;
return;
}
/* L4 checksum offload flag must set for the below code to work */
if (!wx_test_staterr(rx_desc, WX_RXD_STAT_L4CS))
return;
/* Hardware can't guarantee csum if IPv6 Dest Header found */
if (dptype.prot != WX_DEC_PTYPE_PROT_SCTP && WX_RXD_IPV6EX(rx_desc))
return;
/* if L4 checksum error */
if (wx_test_staterr(rx_desc, WX_RXD_ERR_TCPE)) {
ring->rx_stats.csum_err++;
return;
}
/* It must be a TCP or UDP or SCTP packet with a valid checksum */
skb->ip_summed = CHECKSUM_UNNECESSARY;
/* If there is an outer header present that might contain a checksum
* we need to bump the checksum level by 1 to reflect the fact that
* we are indicating we validated the inner checksum.
*/
if (dptype.etype >= WX_DEC_PTYPE_ETYPE_IG)
__skb_incr_checksum_unnecessary(skb);
ring->rx_stats.csum_good_cnt++;
}
static void wx_rx_vlan(struct wx_ring *ring, union wx_rx_desc *rx_desc,
struct sk_buff *skb)
{
u16 ethertype;
u8 idx = 0;
if ((ring->netdev->features &
(NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) &&
wx_test_staterr(rx_desc, WX_RXD_STAT_VP)) {
idx = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
0x1c0) >> 6;
ethertype = ring->q_vector->wx->tpid[idx];
__vlan_hwaccel_put_tag(skb, htons(ethertype),
le16_to_cpu(rx_desc->wb.upper.vlan));
}
}
/**
* wx_process_skb_fields - Populate skb header fields from Rx descriptor
* @rx_ring: rx descriptor ring packet is being transacted on
* @rx_desc: pointer to the EOP Rx descriptor
* @skb: pointer to current skb being populated
*
* This function checks the ring, descriptor, and packet information in
* order to populate the hash, checksum, protocol, and
* other fields within the skb.
**/
static void wx_process_skb_fields(struct wx_ring *rx_ring,
union wx_rx_desc *rx_desc,
struct sk_buff *skb)
{
wx_rx_hash(rx_ring, rx_desc, skb);
wx_rx_checksum(rx_ring, rx_desc, skb);
wx_rx_vlan(rx_ring, rx_desc, skb);
skb_record_rx_queue(skb, rx_ring->queue_index);
skb->protocol = eth_type_trans(skb, rx_ring->netdev);
}
/**
* wx_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
* @q_vector: structure containing interrupt and ring information
* @rx_ring: rx descriptor ring to transact packets on
* @budget: Total limit on number of packets to process
*
* This function provides a "bounce buffer" approach to Rx interrupt
* processing. The advantage to this is that on systems that have
* expensive overhead for IOMMU access this provides a means of avoiding
* it by maintaining the mapping of the page to the system.
*
* Returns amount of work completed.
**/
static int wx_clean_rx_irq(struct wx_q_vector *q_vector,
struct wx_ring *rx_ring,
int budget)
{
unsigned int total_rx_bytes = 0, total_rx_packets = 0;
u16 cleaned_count = wx_desc_unused(rx_ring);
do {
struct wx_rx_buffer *rx_buffer;
union wx_rx_desc *rx_desc;
struct sk_buff *skb;
int rx_buffer_pgcnt;
/* return some buffers to hardware, one at a time is too slow */
if (cleaned_count >= WX_RX_BUFFER_WRITE) {
wx_alloc_rx_buffers(rx_ring, cleaned_count);
cleaned_count = 0;
}
rx_desc = WX_RX_DESC(rx_ring, rx_ring->next_to_clean);
if (!wx_test_staterr(rx_desc, WX_RXD_STAT_DD))
break;
/* This memory barrier is needed to keep us from reading
* any other fields out of the rx_desc until we know the
* descriptor has been written back
*/
dma_rmb();
rx_buffer = wx_get_rx_buffer(rx_ring, rx_desc, &skb, &rx_buffer_pgcnt);
/* retrieve a buffer from the ring */
skb = wx_build_skb(rx_ring, rx_buffer, rx_desc);
/* exit if we failed to retrieve a buffer */
if (!skb) {
rx_ring->rx_stats.alloc_rx_buff_failed++;
break;
}
wx_put_rx_buffer(rx_ring, rx_buffer, skb, rx_buffer_pgcnt);
cleaned_count++;
/* place incomplete frames back on ring for completion */
if (wx_is_non_eop(rx_ring, rx_desc, skb))
continue;
/* verify the packet layout is correct */
if (wx_cleanup_headers(rx_ring, rx_desc, skb))
continue;
/* probably a little skewed due to removing CRC */
total_rx_bytes += skb->len;
/* populate checksum, timestamp, VLAN, and protocol */
wx_process_skb_fields(rx_ring, rx_desc, skb);
napi_gro_receive(&q_vector->napi, skb);
/* update budget accounting */
total_rx_packets++;
} while (likely(total_rx_packets < budget));
u64_stats_update_begin(&rx_ring->syncp);
rx_ring->stats.packets += total_rx_packets;
rx_ring->stats.bytes += total_rx_bytes;
u64_stats_update_end(&rx_ring->syncp);
q_vector->rx.total_packets += total_rx_packets;
q_vector->rx.total_bytes += total_rx_bytes;
return total_rx_packets;
}
static struct netdev_queue *wx_txring_txq(const struct wx_ring *ring)
{
return netdev_get_tx_queue(ring->netdev, ring->queue_index);
}
/**
* wx_clean_tx_irq - Reclaim resources after transmit completes
* @q_vector: structure containing interrupt and ring information
* @tx_ring: tx ring to clean
* @napi_budget: Used to determine if we are in netpoll
**/
static bool wx_clean_tx_irq(struct wx_q_vector *q_vector,
struct wx_ring *tx_ring, int napi_budget)
{
unsigned int budget = q_vector->wx->tx_work_limit;
unsigned int total_bytes = 0, total_packets = 0;
unsigned int i = tx_ring->next_to_clean;
struct wx_tx_buffer *tx_buffer;
union wx_tx_desc *tx_desc;
if (!netif_carrier_ok(tx_ring->netdev))
return true;
tx_buffer = &tx_ring->tx_buffer_info[i];
tx_desc = WX_TX_DESC(tx_ring, i);
i -= tx_ring->count;
do {
union wx_tx_desc *eop_desc = tx_buffer->next_to_watch;
/* if next_to_watch is not set then there is no work pending */
if (!eop_desc)
break;
/* prevent any other reads prior to eop_desc */
smp_rmb();
/* if DD is not set pending work has not been completed */
if (!(eop_desc->wb.status & cpu_to_le32(WX_TXD_STAT_DD)))
break;
/* clear next_to_watch to prevent false hangs */
tx_buffer->next_to_watch = NULL;
/* update the statistics for this packet */
total_bytes += tx_buffer->bytecount;
total_packets += tx_buffer->gso_segs;
/* free the skb */
napi_consume_skb(tx_buffer->skb, napi_budget);
/* unmap skb header data */
dma_unmap_single(tx_ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
/* clear tx_buffer data */
dma_unmap_len_set(tx_buffer, len, 0);
/* unmap remaining buffers */
while (tx_desc != eop_desc) {
tx_buffer++;
tx_desc++;
i++;
if (unlikely(!i)) {
i -= tx_ring->count;
tx_buffer = tx_ring->tx_buffer_info;
tx_desc = WX_TX_DESC(tx_ring, 0);
}
/* unmap any remaining paged data */
if (dma_unmap_len(tx_buffer, len)) {
dma_unmap_page(tx_ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
dma_unmap_len_set(tx_buffer, len, 0);
}
}
/* move us one more past the eop_desc for start of next pkt */
tx_buffer++;
tx_desc++;
i++;
if (unlikely(!i)) {
i -= tx_ring->count;
tx_buffer = tx_ring->tx_buffer_info;
tx_desc = WX_TX_DESC(tx_ring, 0);
}
/* issue prefetch for next Tx descriptor */
prefetch(tx_desc);
/* update budget accounting */
budget--;
} while (likely(budget));
i += tx_ring->count;
tx_ring->next_to_clean = i;
u64_stats_update_begin(&tx_ring->syncp);
tx_ring->stats.bytes += total_bytes;
tx_ring->stats.packets += total_packets;
u64_stats_update_end(&tx_ring->syncp);
q_vector->tx.total_bytes += total_bytes;
q_vector->tx.total_packets += total_packets;
netdev_tx_completed_queue(wx_txring_txq(tx_ring),
total_packets, total_bytes);
#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
(wx_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
/* Make sure that anybody stopping the queue after this
* sees the new next_to_clean.
*/
smp_mb();
if (__netif_subqueue_stopped(tx_ring->netdev,
tx_ring->queue_index) &&
netif_running(tx_ring->netdev)) {
netif_wake_subqueue(tx_ring->netdev,
tx_ring->queue_index);
++tx_ring->tx_stats.restart_queue;
}
}
return !!budget;
}
/**
* wx_poll - NAPI polling RX/TX cleanup routine
* @napi: napi struct with our devices info in it
* @budget: amount of work driver is allowed to do this pass, in packets
*
* This function will clean all queues associated with a q_vector.
**/
static int wx_poll(struct napi_struct *napi, int budget)
{
struct wx_q_vector *q_vector = container_of(napi, struct wx_q_vector, napi);
int per_ring_budget, work_done = 0;
struct wx *wx = q_vector->wx;
bool clean_complete = true;
struct wx_ring *ring;
wx_for_each_ring(ring, q_vector->tx) {
if (!wx_clean_tx_irq(q_vector, ring, budget))
clean_complete = false;
}
/* Exit if we are called by netpoll */
if (budget <= 0)
return budget;
/* attempt to distribute budget to each queue fairly, but don't allow
* the budget to go below 1 because we'll exit polling
*/
if (q_vector->rx.count > 1)
per_ring_budget = max(budget / q_vector->rx.count, 1);
else
per_ring_budget = budget;
wx_for_each_ring(ring, q_vector->rx) {
int cleaned = wx_clean_rx_irq(q_vector, ring, per_ring_budget);
work_done += cleaned;
if (cleaned >= per_ring_budget)
clean_complete = false;
}
/* If all work not completed, return budget and keep polling */
if (!clean_complete)
return budget;
/* all work done, exit the polling mode */
if (likely(napi_complete_done(napi, work_done))) {
if (netif_running(wx->netdev))
wx_intr_enable(wx, WX_INTR_Q(q_vector->v_idx));
}
return min(work_done, budget - 1);
}
static int wx_maybe_stop_tx(struct wx_ring *tx_ring, u16 size)
{
if (likely(wx_desc_unused(tx_ring) >= size))
return 0;
netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
/* For the next check */
smp_mb();
/* We need to check again in a case another CPU has just
* made room available.
*/
if (likely(wx_desc_unused(tx_ring) < size))
return -EBUSY;
/* A reprieve! - use start_queue because it doesn't call schedule */
netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
++tx_ring->tx_stats.restart_queue;
return 0;
}
static u32 wx_tx_cmd_type(u32 tx_flags)
{
/* set type for advanced descriptor with frame checksum insertion */
u32 cmd_type = WX_TXD_DTYP_DATA | WX_TXD_IFCS;
/* set HW vlan bit if vlan is present */
cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_HW_VLAN, WX_TXD_VLE);
/* set segmentation enable bits for TSO/FSO */
cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSO, WX_TXD_TSE);
/* set timestamp bit if present */
cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSTAMP, WX_TXD_MAC_TSTAMP);
cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_LINKSEC, WX_TXD_LINKSEC);
return cmd_type;
}
static void wx_tx_olinfo_status(union wx_tx_desc *tx_desc,
u32 tx_flags, unsigned int paylen)
{
u32 olinfo_status = paylen << WX_TXD_PAYLEN_SHIFT;
/* enable L4 checksum for TSO and TX checksum offload */
olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CSUM, WX_TXD_L4CS);
/* enable IPv4 checksum for TSO */
olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPV4, WX_TXD_IIPCS);
/* enable outer IPv4 checksum for TSO */
olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_OUTER_IPV4,
WX_TXD_EIPCS);
/* Check Context must be set if Tx switch is enabled, which it
* always is for case where virtual functions are running
*/
olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CC, WX_TXD_CC);
olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPSEC,
WX_TXD_IPSEC);
tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
}
static void wx_tx_map(struct wx_ring *tx_ring,
struct wx_tx_buffer *first,
const u8 hdr_len)
{
struct sk_buff *skb = first->skb;
struct wx_tx_buffer *tx_buffer;
u32 tx_flags = first->tx_flags;
u16 i = tx_ring->next_to_use;
unsigned int data_len, size;
union wx_tx_desc *tx_desc;
skb_frag_t *frag;
dma_addr_t dma;
u32 cmd_type;
cmd_type = wx_tx_cmd_type(tx_flags);
tx_desc = WX_TX_DESC(tx_ring, i);
wx_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len);
size = skb_headlen(skb);
data_len = skb->data_len;
dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
tx_buffer = first;
for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
if (dma_mapping_error(tx_ring->dev, dma))
goto dma_error;
/* record length, and DMA address */
dma_unmap_len_set(tx_buffer, len, size);
dma_unmap_addr_set(tx_buffer, dma, dma);
tx_desc->read.buffer_addr = cpu_to_le64(dma);
while (unlikely(size > WX_MAX_DATA_PER_TXD)) {
tx_desc->read.cmd_type_len =
cpu_to_le32(cmd_type ^ WX_MAX_DATA_PER_TXD);
i++;
tx_desc++;
if (i == tx_ring->count) {
tx_desc = WX_TX_DESC(tx_ring, 0);
i = 0;
}
tx_desc->read.olinfo_status = 0;
dma += WX_MAX_DATA_PER_TXD;
size -= WX_MAX_DATA_PER_TXD;
tx_desc->read.buffer_addr = cpu_to_le64(dma);
}
if (likely(!data_len))
break;
tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
i++;
tx_desc++;
if (i == tx_ring->count) {
tx_desc = WX_TX_DESC(tx_ring, 0);
i = 0;
}
tx_desc->read.olinfo_status = 0;
size = skb_frag_size(frag);
data_len -= size;
dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
DMA_TO_DEVICE);
tx_buffer = &tx_ring->tx_buffer_info[i];
}
/* write last descriptor with RS and EOP bits */
cmd_type |= size | WX_TXD_EOP | WX_TXD_RS;
tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
netdev_tx_sent_queue(wx_txring_txq(tx_ring), first->bytecount);
skb_tx_timestamp(skb);
/* Force memory writes to complete before letting h/w know there
* are new descriptors to fetch. (Only applicable for weak-ordered
* memory model archs, such as IA-64).
*
* We also need this memory barrier to make certain all of the
* status bits have been updated before next_to_watch is written.
*/
wmb();
/* set next_to_watch value indicating a packet is present */
first->next_to_watch = tx_desc;
i++;
if (i == tx_ring->count)
i = 0;
tx_ring->next_to_use = i;
wx_maybe_stop_tx(tx_ring, DESC_NEEDED);
if (netif_xmit_stopped(wx_txring_txq(tx_ring)) || !netdev_xmit_more())
writel(i, tx_ring->tail);
return;
dma_error:
dev_err(tx_ring->dev, "TX DMA map failed\n");
/* clear dma mappings for failed tx_buffer_info map */
for (;;) {
tx_buffer = &tx_ring->tx_buffer_info[i];
if (dma_unmap_len(tx_buffer, len))
dma_unmap_page(tx_ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
dma_unmap_len_set(tx_buffer, len, 0);
if (tx_buffer == first)
break;
if (i == 0)
i += tx_ring->count;
i--;
}
dev_kfree_skb_any(first->skb);
first->skb = NULL;
tx_ring->next_to_use = i;
}
static void wx_tx_ctxtdesc(struct wx_ring *tx_ring, u32 vlan_macip_lens,
u32 fcoe_sof_eof, u32 type_tucmd, u32 mss_l4len_idx)
{
struct wx_tx_context_desc *context_desc;
u16 i = tx_ring->next_to_use;
context_desc = WX_TX_CTXTDESC(tx_ring, i);
i++;
tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
/* set bits to identify this as an advanced context descriptor */
type_tucmd |= WX_TXD_DTYP_CTXT;
context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
context_desc->seqnum_seed = cpu_to_le32(fcoe_sof_eof);
context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
}
static void wx_get_ipv6_proto(struct sk_buff *skb, int offset, u8 *nexthdr)
{
struct ipv6hdr *hdr = (struct ipv6hdr *)(skb->data + offset);
*nexthdr = hdr->nexthdr;
offset += sizeof(struct ipv6hdr);
while (ipv6_ext_hdr(*nexthdr)) {
struct ipv6_opt_hdr _hdr, *hp;
if (*nexthdr == NEXTHDR_NONE)
return;
hp = skb_header_pointer(skb, offset, sizeof(_hdr), &_hdr);
if (!hp)
return;
if (*nexthdr == NEXTHDR_FRAGMENT)
break;
*nexthdr = hp->nexthdr;
}
}
union network_header {
struct iphdr *ipv4;
struct ipv6hdr *ipv6;
void *raw;
};
static u8 wx_encode_tx_desc_ptype(const struct wx_tx_buffer *first)
{
u8 tun_prot = 0, l4_prot = 0, ptype = 0;
struct sk_buff *skb = first->skb;
if (skb->encapsulation) {
union network_header hdr;
switch (first->protocol) {
case htons(ETH_P_IP):
tun_prot = ip_hdr(skb)->protocol;
ptype = WX_PTYPE_TUN_IPV4;
break;
case htons(ETH_P_IPV6):
wx_get_ipv6_proto(skb, skb_network_offset(skb), &tun_prot);
ptype = WX_PTYPE_TUN_IPV6;
break;
default:
return ptype;
}
if (tun_prot == IPPROTO_IPIP) {
hdr.raw = (void *)inner_ip_hdr(skb);
ptype |= WX_PTYPE_PKT_IPIP;
} else if (tun_prot == IPPROTO_UDP) {
hdr.raw = (void *)inner_ip_hdr(skb);
if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
skb->inner_protocol != htons(ETH_P_TEB)) {
ptype |= WX_PTYPE_PKT_IG;
} else {
if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto
== htons(ETH_P_8021Q))
ptype |= WX_PTYPE_PKT_IGMV;
else
ptype |= WX_PTYPE_PKT_IGM;
}
} else if (tun_prot == IPPROTO_GRE) {
hdr.raw = (void *)inner_ip_hdr(skb);
if (skb->inner_protocol == htons(ETH_P_IP) ||
skb->inner_protocol == htons(ETH_P_IPV6)) {
ptype |= WX_PTYPE_PKT_IG;
} else {
if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto
== htons(ETH_P_8021Q))
ptype |= WX_PTYPE_PKT_IGMV;
else
ptype |= WX_PTYPE_PKT_IGM;
}
} else {
return ptype;
}
switch (hdr.ipv4->version) {
case IPVERSION:
l4_prot = hdr.ipv4->protocol;
break;
case 6:
wx_get_ipv6_proto(skb, skb_inner_network_offset(skb), &l4_prot);
ptype |= WX_PTYPE_PKT_IPV6;
break;
default:
return ptype;
}
} else {
switch (first->protocol) {
case htons(ETH_P_IP):
l4_prot = ip_hdr(skb)->protocol;
ptype = WX_PTYPE_PKT_IP;
break;
case htons(ETH_P_IPV6):
wx_get_ipv6_proto(skb, skb_network_offset(skb), &l4_prot);
ptype = WX_PTYPE_PKT_IP | WX_PTYPE_PKT_IPV6;
break;
default:
return WX_PTYPE_PKT_MAC | WX_PTYPE_TYP_MAC;
}
}
switch (l4_prot) {
case IPPROTO_TCP:
ptype |= WX_PTYPE_TYP_TCP;
break;
case IPPROTO_UDP:
ptype |= WX_PTYPE_TYP_UDP;
break;
case IPPROTO_SCTP:
ptype |= WX_PTYPE_TYP_SCTP;
break;
default:
ptype |= WX_PTYPE_TYP_IP;
break;
}
return ptype;
}
static int wx_tso(struct wx_ring *tx_ring, struct wx_tx_buffer *first,
u8 *hdr_len, u8 ptype)
{
u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
struct net_device *netdev = tx_ring->netdev;
u32 l4len, tunhdr_eiplen_tunlen = 0;
struct sk_buff *skb = first->skb;
bool enc = skb->encapsulation;
struct ipv6hdr *ipv6h;
struct tcphdr *tcph;
struct iphdr *iph;
u8 tun_prot = 0;
int err;
if (skb->ip_summed != CHECKSUM_PARTIAL)
return 0;
if (!skb_is_gso(skb))
return 0;
err = skb_cow_head(skb, 0);
if (err < 0)
return err;
/* indicates the inner headers in the skbuff are valid. */
iph = enc ? inner_ip_hdr(skb) : ip_hdr(skb);
if (iph->version == 4) {
tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb);
iph->tot_len = 0;
iph->check = 0;
tcph->check = ~csum_tcpudp_magic(iph->saddr,
iph->daddr, 0,
IPPROTO_TCP, 0);
first->tx_flags |= WX_TX_FLAGS_TSO |
WX_TX_FLAGS_CSUM |
WX_TX_FLAGS_IPV4 |
WX_TX_FLAGS_CC;
} else if (iph->version == 6 && skb_is_gso_v6(skb)) {
ipv6h = enc ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb);
ipv6h->payload_len = 0;
tcph->check = ~csum_ipv6_magic(&ipv6h->saddr,
&ipv6h->daddr, 0,
IPPROTO_TCP, 0);
first->tx_flags |= WX_TX_FLAGS_TSO |
WX_TX_FLAGS_CSUM |
WX_TX_FLAGS_CC;
}
/* compute header lengths */
l4len = enc ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
*hdr_len = enc ? skb_inner_transport_offset(skb) :
skb_transport_offset(skb);
*hdr_len += l4len;
/* update gso size and bytecount with header size */
first->gso_segs = skb_shinfo(skb)->gso_segs;
first->bytecount += (first->gso_segs - 1) * *hdr_len;
/* mss_l4len_id: use 0 as index for TSO */
mss_l4len_idx = l4len << WX_TXD_L4LEN_SHIFT;
mss_l4len_idx |= skb_shinfo(skb)->gso_size << WX_TXD_MSS_SHIFT;
/* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
if (enc) {
switch (first->protocol) {
case htons(ETH_P_IP):
tun_prot = ip_hdr(skb)->protocol;
first->tx_flags |= WX_TX_FLAGS_OUTER_IPV4;
break;
case htons(ETH_P_IPV6):
tun_prot = ipv6_hdr(skb)->nexthdr;
break;
default:
break;
}
switch (tun_prot) {
case IPPROTO_UDP:
tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP;
tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
WX_TXD_OUTER_IPLEN_SHIFT) |
(((skb_inner_mac_header(skb) -
skb_transport_header(skb)) >> 1) <<
WX_TXD_TUNNEL_LEN_SHIFT);
break;
case IPPROTO_GRE:
tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE;
tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
WX_TXD_OUTER_IPLEN_SHIFT) |
(((skb_inner_mac_header(skb) -
skb_transport_header(skb)) >> 1) <<
WX_TXD_TUNNEL_LEN_SHIFT);
break;
case IPPROTO_IPIP:
tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) -
(char *)ip_hdr(skb)) >> 2) <<
WX_TXD_OUTER_IPLEN_SHIFT;
break;
default:
break;
}
vlan_macip_lens = skb_inner_network_header_len(skb) >> 1;
} else {
vlan_macip_lens = skb_network_header_len(skb) >> 1;
}
vlan_macip_lens |= skb_network_offset(skb) << WX_TXD_MACLEN_SHIFT;
vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK;
type_tucmd = ptype << 24;
if (skb->vlan_proto == htons(ETH_P_8021AD) &&
netdev->features & NETIF_F_HW_VLAN_STAG_TX)
type_tucmd |= WX_SET_FLAG(first->tx_flags,
WX_TX_FLAGS_HW_VLAN,
0x1 << WX_TXD_TAG_TPID_SEL_SHIFT);
wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen,
type_tucmd, mss_l4len_idx);
return 1;
}
static void wx_tx_csum(struct wx_ring *tx_ring, struct wx_tx_buffer *first,
u8 ptype)
{
u32 tunhdr_eiplen_tunlen = 0, vlan_macip_lens = 0;
struct net_device *netdev = tx_ring->netdev;
u32 mss_l4len_idx = 0, type_tucmd;
struct sk_buff *skb = first->skb;
u8 tun_prot = 0;
if (skb->ip_summed != CHECKSUM_PARTIAL) {
if (!(first->tx_flags & WX_TX_FLAGS_HW_VLAN) &&
!(first->tx_flags & WX_TX_FLAGS_CC))
return;
vlan_macip_lens = skb_network_offset(skb) <<
WX_TXD_MACLEN_SHIFT;
} else {
u8 l4_prot = 0;
union {
struct iphdr *ipv4;
struct ipv6hdr *ipv6;
u8 *raw;
} network_hdr;
union {
struct tcphdr *tcphdr;
u8 *raw;
} transport_hdr;
if (skb->encapsulation) {
network_hdr.raw = skb_inner_network_header(skb);
transport_hdr.raw = skb_inner_transport_header(skb);
vlan_macip_lens = skb_network_offset(skb) <<
WX_TXD_MACLEN_SHIFT;
switch (first->protocol) {
case htons(ETH_P_IP):
tun_prot = ip_hdr(skb)->protocol;
break;
case htons(ETH_P_IPV6):
tun_prot = ipv6_hdr(skb)->nexthdr;
break;
default:
return;
}
switch (tun_prot) {
case IPPROTO_UDP:
tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP;
tunhdr_eiplen_tunlen |=
((skb_network_header_len(skb) >> 2) <<
WX_TXD_OUTER_IPLEN_SHIFT) |
(((skb_inner_mac_header(skb) -
skb_transport_header(skb)) >> 1) <<
WX_TXD_TUNNEL_LEN_SHIFT);
break;
case IPPROTO_GRE:
tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE;
tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
WX_TXD_OUTER_IPLEN_SHIFT) |
(((skb_inner_mac_header(skb) -
skb_transport_header(skb)) >> 1) <<
WX_TXD_TUNNEL_LEN_SHIFT);
break;
case IPPROTO_IPIP:
tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) -
(char *)ip_hdr(skb)) >> 2) <<
WX_TXD_OUTER_IPLEN_SHIFT;
break;
default:
break;
}
} else {
network_hdr.raw = skb_network_header(skb);
transport_hdr.raw = skb_transport_header(skb);
vlan_macip_lens = skb_network_offset(skb) <<
WX_TXD_MACLEN_SHIFT;
}
switch (network_hdr.ipv4->version) {
case IPVERSION:
vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1;
l4_prot = network_hdr.ipv4->protocol;
break;
case 6:
vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1;
l4_prot = network_hdr.ipv6->nexthdr;
break;
default:
break;
}
switch (l4_prot) {
case IPPROTO_TCP:
mss_l4len_idx = (transport_hdr.tcphdr->doff * 4) <<
WX_TXD_L4LEN_SHIFT;
break;
case IPPROTO_SCTP:
mss_l4len_idx = sizeof(struct sctphdr) <<
WX_TXD_L4LEN_SHIFT;
break;
case IPPROTO_UDP:
mss_l4len_idx = sizeof(struct udphdr) <<
WX_TXD_L4LEN_SHIFT;
break;
default:
break;
}
/* update TX checksum flag */
first->tx_flags |= WX_TX_FLAGS_CSUM;
}
first->tx_flags |= WX_TX_FLAGS_CC;
/* vlan_macip_lens: MACLEN, VLAN tag */
vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK;
type_tucmd = ptype << 24;
if (skb->vlan_proto == htons(ETH_P_8021AD) &&
netdev->features & NETIF_F_HW_VLAN_STAG_TX)
type_tucmd |= WX_SET_FLAG(first->tx_flags,
WX_TX_FLAGS_HW_VLAN,
0x1 << WX_TXD_TAG_TPID_SEL_SHIFT);
wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen,
type_tucmd, mss_l4len_idx);
}
static netdev_tx_t wx_xmit_frame_ring(struct sk_buff *skb,
struct wx_ring *tx_ring)
{
u16 count = TXD_USE_COUNT(skb_headlen(skb));
struct wx_tx_buffer *first;
u8 hdr_len = 0, ptype;
unsigned short f;
u32 tx_flags = 0;
int tso;
/* need: 1 descriptor per page * PAGE_SIZE/WX_MAX_DATA_PER_TXD,
* + 1 desc for skb_headlen/WX_MAX_DATA_PER_TXD,
* + 2 desc gap to keep tail from touching head,
* + 1 desc for context descriptor,
* otherwise try next time
*/
for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->
frags[f]));
if (wx_maybe_stop_tx(tx_ring, count + 3)) {
tx_ring->tx_stats.tx_busy++;
return NETDEV_TX_BUSY;
}
/* record the location of the first descriptor for this packet */
first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
first->skb = skb;
first->bytecount = skb->len;
first->gso_segs = 1;
/* if we have a HW VLAN tag being added default to the HW one */
if (skb_vlan_tag_present(skb)) {
tx_flags |= skb_vlan_tag_get(skb) << WX_TX_FLAGS_VLAN_SHIFT;
tx_flags |= WX_TX_FLAGS_HW_VLAN;
}
/* record initial flags and protocol */
first->tx_flags = tx_flags;
first->protocol = vlan_get_protocol(skb);
ptype = wx_encode_tx_desc_ptype(first);
tso = wx_tso(tx_ring, first, &hdr_len, ptype);
if (tso < 0)
goto out_drop;
else if (!tso)
wx_tx_csum(tx_ring, first, ptype);
wx_tx_map(tx_ring, first, hdr_len);
return NETDEV_TX_OK;
out_drop:
dev_kfree_skb_any(first->skb);
first->skb = NULL;
return NETDEV_TX_OK;
}
netdev_tx_t wx_xmit_frame(struct sk_buff *skb,
struct net_device *netdev)
{
unsigned int r_idx = skb->queue_mapping;
struct wx *wx = netdev_priv(netdev);
struct wx_ring *tx_ring;
if (!netif_carrier_ok(netdev)) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
/* The minimum packet size for olinfo paylen is 17 so pad the skb
* in order to meet this minimum size requirement.
*/
if (skb_put_padto(skb, 17))
return NETDEV_TX_OK;
if (r_idx >= wx->num_tx_queues)
r_idx = r_idx % wx->num_tx_queues;
tx_ring = wx->tx_ring[r_idx];
return wx_xmit_frame_ring(skb, tx_ring);
}
EXPORT_SYMBOL(wx_xmit_frame);
void wx_napi_enable_all(struct wx *wx)
{
struct wx_q_vector *q_vector;
int q_idx;
for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) {
q_vector = wx->q_vector[q_idx];
napi_enable(&q_vector->napi);
}
}
EXPORT_SYMBOL(wx_napi_enable_all);
void wx_napi_disable_all(struct wx *wx)
{
struct wx_q_vector *q_vector;
int q_idx;
for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) {
q_vector = wx->q_vector[q_idx];
napi_disable(&q_vector->napi);
}
}
EXPORT_SYMBOL(wx_napi_disable_all);
/**
* wx_set_rss_queues: Allocate queues for RSS
* @wx: board private structure to initialize
*
* This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try
* to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
*
**/
static void wx_set_rss_queues(struct wx *wx)
{
struct wx_ring_feature *f;
/* set mask for 16 queue limit of RSS */
f = &wx->ring_feature[RING_F_RSS];
f->indices = f->limit;
wx->num_rx_queues = f->limit;
wx->num_tx_queues = f->limit;
}
static void wx_set_num_queues(struct wx *wx)
{
/* Start with base case */
wx->num_rx_queues = 1;
wx->num_tx_queues = 1;
wx->queues_per_pool = 1;
wx_set_rss_queues(wx);
}
/**
* wx_acquire_msix_vectors - acquire MSI-X vectors
* @wx: board private structure
*
* Attempts to acquire a suitable range of MSI-X vector interrupts. Will
* return a negative error code if unable to acquire MSI-X vectors for any
* reason.
*/
static int wx_acquire_msix_vectors(struct wx *wx)
{
struct irq_affinity affd = { .pre_vectors = 1 };
int nvecs, i;
/* We start by asking for one vector per queue pair */
nvecs = max(wx->num_rx_queues, wx->num_tx_queues);
nvecs = min_t(int, nvecs, num_online_cpus());
nvecs = min_t(int, nvecs, wx->mac.max_msix_vectors);
wx->msix_q_entries = kcalloc(nvecs, sizeof(struct msix_entry),
GFP_KERNEL);
if (!wx->msix_q_entries)
return -ENOMEM;
/* One for non-queue interrupts */
nvecs += 1;
wx->msix_entry = kcalloc(1, sizeof(struct msix_entry),
GFP_KERNEL);
if (!wx->msix_entry) {
kfree(wx->msix_q_entries);
wx->msix_q_entries = NULL;
return -ENOMEM;
}
nvecs = pci_alloc_irq_vectors_affinity(wx->pdev, nvecs,
nvecs,
PCI_IRQ_MSIX | PCI_IRQ_AFFINITY,
&affd);
if (nvecs < 0) {
wx_err(wx, "Failed to allocate MSI-X interrupts. Err: %d\n", nvecs);
kfree(wx->msix_q_entries);
wx->msix_q_entries = NULL;
kfree(wx->msix_entry);
wx->msix_entry = NULL;
return nvecs;
}
wx->msix_entry->entry = 0;
wx->msix_entry->vector = pci_irq_vector(wx->pdev, 0);
nvecs -= 1;
for (i = 0; i < nvecs; i++) {
wx->msix_q_entries[i].entry = i;
wx->msix_q_entries[i].vector = pci_irq_vector(wx->pdev, i + 1);
}
wx->num_q_vectors = nvecs;
return 0;
}
/**
* wx_set_interrupt_capability - set MSI-X or MSI if supported
* @wx: board private structure to initialize
*
* Attempt to configure the interrupts using the best available
* capabilities of the hardware and the kernel.
**/
static int wx_set_interrupt_capability(struct wx *wx)
{
struct pci_dev *pdev = wx->pdev;
int nvecs, ret;
/* We will try to get MSI-X interrupts first */
ret = wx_acquire_msix_vectors(wx);
if (ret == 0 || (ret == -ENOMEM))
return ret;
/* Disable RSS */
dev_warn(&wx->pdev->dev, "Disabling RSS support\n");
wx->ring_feature[RING_F_RSS].limit = 1;
wx_set_num_queues(wx);
/* minmum one for queue, one for misc*/
nvecs = 1;
nvecs = pci_alloc_irq_vectors(pdev, nvecs,
nvecs, PCI_IRQ_MSI | PCI_IRQ_LEGACY);
if (nvecs == 1) {
if (pdev->msi_enabled)
wx_err(wx, "Fallback to MSI.\n");
else
wx_err(wx, "Fallback to LEGACY.\n");
} else {
wx_err(wx, "Failed to allocate MSI/LEGACY interrupts. Error: %d\n", nvecs);
return nvecs;
}
pdev->irq = pci_irq_vector(pdev, 0);
return 0;
}
/**
* wx_cache_ring_rss - Descriptor ring to register mapping for RSS
* @wx: board private structure to initialize
*
* Cache the descriptor ring offsets for RSS, ATR, FCoE, and SR-IOV.
*
**/
static void wx_cache_ring_rss(struct wx *wx)
{
u16 i;
for (i = 0; i < wx->num_rx_queues; i++)
wx->rx_ring[i]->reg_idx = i;
for (i = 0; i < wx->num_tx_queues; i++)
wx->tx_ring[i]->reg_idx = i;
}
static void wx_add_ring(struct wx_ring *ring, struct wx_ring_container *head)
{
ring->next = head->ring;
head->ring = ring;
head->count++;
}
/**
* wx_alloc_q_vector - Allocate memory for a single interrupt vector
* @wx: board private structure to initialize
* @v_count: q_vectors allocated on wx, used for ring interleaving
* @v_idx: index of vector in wx struct
* @txr_count: total number of Tx rings to allocate
* @txr_idx: index of first Tx ring to allocate
* @rxr_count: total number of Rx rings to allocate
* @rxr_idx: index of first Rx ring to allocate
*
* We allocate one q_vector. If allocation fails we return -ENOMEM.
**/
static int wx_alloc_q_vector(struct wx *wx,
unsigned int v_count, unsigned int v_idx,
unsigned int txr_count, unsigned int txr_idx,
unsigned int rxr_count, unsigned int rxr_idx)
{
struct wx_q_vector *q_vector;
int ring_count, default_itr;
struct wx_ring *ring;
/* note this will allocate space for the ring structure as well! */
ring_count = txr_count + rxr_count;
q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
GFP_KERNEL);
if (!q_vector)
return -ENOMEM;
/* initialize NAPI */
netif_napi_add(wx->netdev, &q_vector->napi,
wx_poll);
/* tie q_vector and wx together */
wx->q_vector[v_idx] = q_vector;
q_vector->wx = wx;
q_vector->v_idx = v_idx;
if (cpu_online(v_idx))
q_vector->numa_node = cpu_to_node(v_idx);
/* initialize pointer to rings */
ring = q_vector->ring;
if (wx->mac.type == wx_mac_sp)
default_itr = WX_12K_ITR;
else
default_itr = WX_7K_ITR;
/* initialize ITR */
if (txr_count && !rxr_count)
/* tx only vector */
q_vector->itr = wx->tx_itr_setting ?
default_itr : wx->tx_itr_setting;
else
/* rx or rx/tx vector */
q_vector->itr = wx->rx_itr_setting ?
default_itr : wx->rx_itr_setting;
while (txr_count) {
/* assign generic ring traits */
ring->dev = &wx->pdev->dev;
ring->netdev = wx->netdev;
/* configure backlink on ring */
ring->q_vector = q_vector;
/* update q_vector Tx values */
wx_add_ring(ring, &q_vector->tx);
/* apply Tx specific ring traits */
ring->count = wx->tx_ring_count;
ring->queue_index = txr_idx;
/* assign ring to wx */
wx->tx_ring[txr_idx] = ring;
/* update count and index */
txr_count--;
txr_idx += v_count;
/* push pointer to next ring */
ring++;
}
while (rxr_count) {
/* assign generic ring traits */
ring->dev = &wx->pdev->dev;
ring->netdev = wx->netdev;
/* configure backlink on ring */
ring->q_vector = q_vector;
/* update q_vector Rx values */
wx_add_ring(ring, &q_vector->rx);
/* apply Rx specific ring traits */
ring->count = wx->rx_ring_count;
ring->queue_index = rxr_idx;
/* assign ring to wx */
wx->rx_ring[rxr_idx] = ring;
/* update count and index */
rxr_count--;
rxr_idx += v_count;
/* push pointer to next ring */
ring++;
}
return 0;
}
/**
* wx_free_q_vector - Free memory allocated for specific interrupt vector
* @wx: board private structure to initialize
* @v_idx: Index of vector to be freed
*
* This function frees the memory allocated to the q_vector. In addition if
* NAPI is enabled it will delete any references to the NAPI struct prior
* to freeing the q_vector.
**/
static void wx_free_q_vector(struct wx *wx, int v_idx)
{
struct wx_q_vector *q_vector = wx->q_vector[v_idx];
struct wx_ring *ring;
wx_for_each_ring(ring, q_vector->tx)
wx->tx_ring[ring->queue_index] = NULL;
wx_for_each_ring(ring, q_vector->rx)
wx->rx_ring[ring->queue_index] = NULL;
wx->q_vector[v_idx] = NULL;
netif_napi_del(&q_vector->napi);
kfree_rcu(q_vector, rcu);
}
/**
* wx_alloc_q_vectors - Allocate memory for interrupt vectors
* @wx: board private structure to initialize
*
* We allocate one q_vector per queue interrupt. If allocation fails we
* return -ENOMEM.
**/
static int wx_alloc_q_vectors(struct wx *wx)
{
unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
unsigned int rxr_remaining = wx->num_rx_queues;
unsigned int txr_remaining = wx->num_tx_queues;
unsigned int q_vectors = wx->num_q_vectors;
int rqpv, tqpv;
int err;
for (; v_idx < q_vectors; v_idx++) {
rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
err = wx_alloc_q_vector(wx, q_vectors, v_idx,
tqpv, txr_idx,
rqpv, rxr_idx);
if (err)
goto err_out;
/* update counts and index */
rxr_remaining -= rqpv;
txr_remaining -= tqpv;
rxr_idx++;
txr_idx++;
}
return 0;
err_out:
wx->num_tx_queues = 0;
wx->num_rx_queues = 0;
wx->num_q_vectors = 0;
while (v_idx--)
wx_free_q_vector(wx, v_idx);
return -ENOMEM;
}
/**
* wx_free_q_vectors - Free memory allocated for interrupt vectors
* @wx: board private structure to initialize
*
* This function frees the memory allocated to the q_vectors. In addition if
* NAPI is enabled it will delete any references to the NAPI struct prior
* to freeing the q_vector.
**/
static void wx_free_q_vectors(struct wx *wx)
{
int v_idx = wx->num_q_vectors;
wx->num_tx_queues = 0;
wx->num_rx_queues = 0;
wx->num_q_vectors = 0;
while (v_idx--)
wx_free_q_vector(wx, v_idx);
}
void wx_reset_interrupt_capability(struct wx *wx)
{
struct pci_dev *pdev = wx->pdev;
if (!pdev->msi_enabled && !pdev->msix_enabled)
return;
if (pdev->msix_enabled) {
kfree(wx->msix_q_entries);
wx->msix_q_entries = NULL;
kfree(wx->msix_entry);
wx->msix_entry = NULL;
}
pci_free_irq_vectors(wx->pdev);
}
EXPORT_SYMBOL(wx_reset_interrupt_capability);
/**
* wx_clear_interrupt_scheme - Clear the current interrupt scheme settings
* @wx: board private structure to clear interrupt scheme on
*
* We go through and clear interrupt specific resources and reset the structure
* to pre-load conditions
**/
void wx_clear_interrupt_scheme(struct wx *wx)
{
wx_free_q_vectors(wx);
wx_reset_interrupt_capability(wx);
}
EXPORT_SYMBOL(wx_clear_interrupt_scheme);
int wx_init_interrupt_scheme(struct wx *wx)
{
int ret;
/* Number of supported queues */
wx_set_num_queues(wx);
/* Set interrupt mode */
ret = wx_set_interrupt_capability(wx);
if (ret) {
wx_err(wx, "Allocate irq vectors for failed.\n");
return ret;
}
/* Allocate memory for queues */
ret = wx_alloc_q_vectors(wx);
if (ret) {
wx_err(wx, "Unable to allocate memory for queue vectors.\n");
wx_reset_interrupt_capability(wx);
return ret;
}
wx_cache_ring_rss(wx);
return 0;
}
EXPORT_SYMBOL(wx_init_interrupt_scheme);
irqreturn_t wx_msix_clean_rings(int __always_unused irq, void *data)
{
struct wx_q_vector *q_vector = data;
/* EIAM disabled interrupts (on this vector) for us */
if (q_vector->rx.ring || q_vector->tx.ring)
napi_schedule_irqoff(&q_vector->napi);
return IRQ_HANDLED;
}
EXPORT_SYMBOL(wx_msix_clean_rings);
void wx_free_irq(struct wx *wx)
{
struct pci_dev *pdev = wx->pdev;
int vector;
if (!(pdev->msix_enabled)) {
free_irq(pdev->irq, wx);
return;
}
for (vector = 0; vector < wx->num_q_vectors; vector++) {
struct wx_q_vector *q_vector = wx->q_vector[vector];
struct msix_entry *entry = &wx->msix_q_entries[vector];
/* free only the irqs that were actually requested */
if (!q_vector->rx.ring && !q_vector->tx.ring)
continue;
free_irq(entry->vector, q_vector);
}
if (wx->mac.type == wx_mac_em)
free_irq(wx->msix_entry->vector, wx);
}
EXPORT_SYMBOL(wx_free_irq);
/**
* wx_setup_isb_resources - allocate interrupt status resources
* @wx: board private structure
*
* Return 0 on success, negative on failure
**/
int wx_setup_isb_resources(struct wx *wx)
{
struct pci_dev *pdev = wx->pdev;
wx->isb_mem = dma_alloc_coherent(&pdev->dev,
sizeof(u32) * 4,
&wx->isb_dma,
GFP_KERNEL);
if (!wx->isb_mem) {
wx_err(wx, "Alloc isb_mem failed\n");
return -ENOMEM;
}
return 0;
}
EXPORT_SYMBOL(wx_setup_isb_resources);
/**
* wx_free_isb_resources - allocate all queues Rx resources
* @wx: board private structure
*
* Return 0 on success, negative on failure
**/
void wx_free_isb_resources(struct wx *wx)
{
struct pci_dev *pdev = wx->pdev;
dma_free_coherent(&pdev->dev, sizeof(u32) * 4,
wx->isb_mem, wx->isb_dma);
wx->isb_mem = NULL;
}
EXPORT_SYMBOL(wx_free_isb_resources);
u32 wx_misc_isb(struct wx *wx, enum wx_isb_idx idx)
{
u32 cur_tag = 0;
cur_tag = wx->isb_mem[WX_ISB_HEADER];
wx->isb_tag[idx] = cur_tag;
return (__force u32)cpu_to_le32(wx->isb_mem[idx]);
}
EXPORT_SYMBOL(wx_misc_isb);
/**
* wx_set_ivar - set the IVAR registers, mapping interrupt causes to vectors
* @wx: pointer to wx struct
* @direction: 0 for Rx, 1 for Tx, -1 for other causes
* @queue: queue to map the corresponding interrupt to
* @msix_vector: the vector to map to the corresponding queue
*
**/
static void wx_set_ivar(struct wx *wx, s8 direction,
u16 queue, u16 msix_vector)
{
u32 ivar, index;
if (direction == -1) {
/* other causes */
msix_vector |= WX_PX_IVAR_ALLOC_VAL;
index = 0;
ivar = rd32(wx, WX_PX_MISC_IVAR);
ivar &= ~(0xFF << index);
ivar |= (msix_vector << index);
wr32(wx, WX_PX_MISC_IVAR, ivar);
} else {
/* tx or rx causes */
msix_vector += 1; /* offset for queue vectors */
msix_vector |= WX_PX_IVAR_ALLOC_VAL;
index = ((16 * (queue & 1)) + (8 * direction));
ivar = rd32(wx, WX_PX_IVAR(queue >> 1));
ivar &= ~(0xFF << index);
ivar |= (msix_vector << index);
wr32(wx, WX_PX_IVAR(queue >> 1), ivar);
}
}
/**
* wx_write_eitr - write EITR register in hardware specific way
* @q_vector: structure containing interrupt and ring information
*
* This function is made to be called by ethtool and by the driver
* when it needs to update EITR registers at runtime. Hardware
* specific quirks/differences are taken care of here.
*/
void wx_write_eitr(struct wx_q_vector *q_vector)
{
struct wx *wx = q_vector->wx;
int v_idx = q_vector->v_idx;
u32 itr_reg;
if (wx->mac.type == wx_mac_sp)
itr_reg = q_vector->itr & WX_SP_MAX_EITR;
else
itr_reg = q_vector->itr & WX_EM_MAX_EITR;
itr_reg |= WX_PX_ITR_CNT_WDIS;
wr32(wx, WX_PX_ITR(v_idx + 1), itr_reg);
}
/**
* wx_configure_vectors - Configure vectors for hardware
* @wx: board private structure
*
* wx_configure_vectors sets up the hardware to properly generate MSI-X/MSI/LEGACY
* interrupts.
**/
void wx_configure_vectors(struct wx *wx)
{
struct pci_dev *pdev = wx->pdev;
u32 eitrsel = 0;
u16 v_idx;
if (pdev->msix_enabled) {
/* Populate MSIX to EITR Select */
wr32(wx, WX_PX_ITRSEL, eitrsel);
/* use EIAM to auto-mask when MSI-X interrupt is asserted
* this saves a register write for every interrupt
*/
wr32(wx, WX_PX_GPIE, WX_PX_GPIE_MODEL);
} else {
/* legacy interrupts, use EIAM to auto-mask when reading EICR,
* specifically only auto mask tx and rx interrupts.
*/
wr32(wx, WX_PX_GPIE, 0);
}
/* Populate the IVAR table and set the ITR values to the
* corresponding register.
*/
for (v_idx = 0; v_idx < wx->num_q_vectors; v_idx++) {
struct wx_q_vector *q_vector = wx->q_vector[v_idx];
struct wx_ring *ring;
wx_for_each_ring(ring, q_vector->rx)
wx_set_ivar(wx, 0, ring->reg_idx, v_idx);
wx_for_each_ring(ring, q_vector->tx)
wx_set_ivar(wx, 1, ring->reg_idx, v_idx);
wx_write_eitr(q_vector);
}
wx_set_ivar(wx, -1, 0, 0);
if (pdev->msix_enabled)
wr32(wx, WX_PX_ITR(0), 1950);
}
EXPORT_SYMBOL(wx_configure_vectors);
/**
* wx_clean_rx_ring - Free Rx Buffers per Queue
* @rx_ring: ring to free buffers from
**/
static void wx_clean_rx_ring(struct wx_ring *rx_ring)
{
struct wx_rx_buffer *rx_buffer;
u16 i = rx_ring->next_to_clean;
rx_buffer = &rx_ring->rx_buffer_info[i];
/* Free all the Rx ring sk_buffs */
while (i != rx_ring->next_to_alloc) {
if (rx_buffer->skb) {
struct sk_buff *skb = rx_buffer->skb;
if (WX_CB(skb)->page_released)
page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
dev_kfree_skb(skb);
}
/* Invalidate cache lines that may have been written to by
* device so that we avoid corrupting memory.
*/
dma_sync_single_range_for_cpu(rx_ring->dev,
rx_buffer->dma,
rx_buffer->page_offset,
WX_RX_BUFSZ,
DMA_FROM_DEVICE);
/* free resources associated with mapping */
page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
i++;
rx_buffer++;
if (i == rx_ring->count) {
i = 0;
rx_buffer = rx_ring->rx_buffer_info;
}
}
rx_ring->next_to_alloc = 0;
rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0;
}
/**
* wx_clean_all_rx_rings - Free Rx Buffers for all queues
* @wx: board private structure
**/
void wx_clean_all_rx_rings(struct wx *wx)
{
int i;
for (i = 0; i < wx->num_rx_queues; i++)
wx_clean_rx_ring(wx->rx_ring[i]);
}
EXPORT_SYMBOL(wx_clean_all_rx_rings);
/**
* wx_free_rx_resources - Free Rx Resources
* @rx_ring: ring to clean the resources from
*
* Free all receive software resources
**/
static void wx_free_rx_resources(struct wx_ring *rx_ring)
{
wx_clean_rx_ring(rx_ring);
kvfree(rx_ring->rx_buffer_info);
rx_ring->rx_buffer_info = NULL;
/* if not set, then don't free */
if (!rx_ring->desc)
return;
dma_free_coherent(rx_ring->dev, rx_ring->size,
rx_ring->desc, rx_ring->dma);
rx_ring->desc = NULL;
if (rx_ring->page_pool) {
page_pool_destroy(rx_ring->page_pool);
rx_ring->page_pool = NULL;
}
}
/**
* wx_free_all_rx_resources - Free Rx Resources for All Queues
* @wx: pointer to hardware structure
*
* Free all receive software resources
**/
static void wx_free_all_rx_resources(struct wx *wx)
{
int i;
for (i = 0; i < wx->num_rx_queues; i++)
wx_free_rx_resources(wx->rx_ring[i]);
}
/**
* wx_clean_tx_ring - Free Tx Buffers
* @tx_ring: ring to be cleaned
**/
static void wx_clean_tx_ring(struct wx_ring *tx_ring)
{
struct wx_tx_buffer *tx_buffer;
u16 i = tx_ring->next_to_clean;
tx_buffer = &tx_ring->tx_buffer_info[i];
while (i != tx_ring->next_to_use) {
union wx_tx_desc *eop_desc, *tx_desc;
/* Free all the Tx ring sk_buffs */
dev_kfree_skb_any(tx_buffer->skb);
/* unmap skb header data */
dma_unmap_single(tx_ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
/* check for eop_desc to determine the end of the packet */
eop_desc = tx_buffer->next_to_watch;
tx_desc = WX_TX_DESC(tx_ring, i);
/* unmap remaining buffers */
while (tx_desc != eop_desc) {
tx_buffer++;
tx_desc++;
i++;
if (unlikely(i == tx_ring->count)) {
i = 0;
tx_buffer = tx_ring->tx_buffer_info;
tx_desc = WX_TX_DESC(tx_ring, 0);
}
/* unmap any remaining paged data */
if (dma_unmap_len(tx_buffer, len))
dma_unmap_page(tx_ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
}
/* move us one more past the eop_desc for start of next pkt */
tx_buffer++;
i++;
if (unlikely(i == tx_ring->count)) {
i = 0;
tx_buffer = tx_ring->tx_buffer_info;
}
}
netdev_tx_reset_queue(wx_txring_txq(tx_ring));
/* reset next_to_use and next_to_clean */
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
}
/**
* wx_clean_all_tx_rings - Free Tx Buffers for all queues
* @wx: board private structure
**/
void wx_clean_all_tx_rings(struct wx *wx)
{
int i;
for (i = 0; i < wx->num_tx_queues; i++)
wx_clean_tx_ring(wx->tx_ring[i]);
}
EXPORT_SYMBOL(wx_clean_all_tx_rings);
/**
* wx_free_tx_resources - Free Tx Resources per Queue
* @tx_ring: Tx descriptor ring for a specific queue
*
* Free all transmit software resources
**/
static void wx_free_tx_resources(struct wx_ring *tx_ring)
{
wx_clean_tx_ring(tx_ring);
kvfree(tx_ring->tx_buffer_info);
tx_ring->tx_buffer_info = NULL;
/* if not set, then don't free */
if (!tx_ring->desc)
return;
dma_free_coherent(tx_ring->dev, tx_ring->size,
tx_ring->desc, tx_ring->dma);
tx_ring->desc = NULL;
}
/**
* wx_free_all_tx_resources - Free Tx Resources for All Queues
* @wx: pointer to hardware structure
*
* Free all transmit software resources
**/
static void wx_free_all_tx_resources(struct wx *wx)
{
int i;
for (i = 0; i < wx->num_tx_queues; i++)
wx_free_tx_resources(wx->tx_ring[i]);
}
void wx_free_resources(struct wx *wx)
{
wx_free_isb_resources(wx);
wx_free_all_rx_resources(wx);
wx_free_all_tx_resources(wx);
}
EXPORT_SYMBOL(wx_free_resources);
static int wx_alloc_page_pool(struct wx_ring *rx_ring)
{
int ret = 0;
struct page_pool_params pp_params = {
.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
.order = 0,
.pool_size = rx_ring->size,
.nid = dev_to_node(rx_ring->dev),
.dev = rx_ring->dev,
.dma_dir = DMA_FROM_DEVICE,
.offset = 0,
.max_len = PAGE_SIZE,
};
rx_ring->page_pool = page_pool_create(&pp_params);
if (IS_ERR(rx_ring->page_pool)) {
ret = PTR_ERR(rx_ring->page_pool);
rx_ring->page_pool = NULL;
}
return ret;
}
/**
* wx_setup_rx_resources - allocate Rx resources (Descriptors)
* @rx_ring: rx descriptor ring (for a specific queue) to setup
*
* Returns 0 on success, negative on failure
**/
static int wx_setup_rx_resources(struct wx_ring *rx_ring)
{
struct device *dev = rx_ring->dev;
int orig_node = dev_to_node(dev);
int numa_node = NUMA_NO_NODE;
int size, ret;
size = sizeof(struct wx_rx_buffer) * rx_ring->count;
if (rx_ring->q_vector)
numa_node = rx_ring->q_vector->numa_node;
rx_ring->rx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node);
if (!rx_ring->rx_buffer_info)
rx_ring->rx_buffer_info = kvmalloc(size, GFP_KERNEL);
if (!rx_ring->rx_buffer_info)
goto err;
/* Round up to nearest 4K */
rx_ring->size = rx_ring->count * sizeof(union wx_rx_desc);
rx_ring->size = ALIGN(rx_ring->size, 4096);
set_dev_node(dev, numa_node);
rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
&rx_ring->dma, GFP_KERNEL);
if (!rx_ring->desc) {
set_dev_node(dev, orig_node);
rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
&rx_ring->dma, GFP_KERNEL);
}
if (!rx_ring->desc)
goto err;
rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0;
ret = wx_alloc_page_pool(rx_ring);
if (ret < 0) {
dev_err(rx_ring->dev, "Page pool creation failed: %d\n", ret);
goto err_desc;
}
return 0;
err_desc:
dma_free_coherent(dev, rx_ring->size, rx_ring->desc, rx_ring->dma);
err:
kvfree(rx_ring->rx_buffer_info);
rx_ring->rx_buffer_info = NULL;
dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
return -ENOMEM;
}
/**
* wx_setup_all_rx_resources - allocate all queues Rx resources
* @wx: pointer to hardware structure
*
* If this function returns with an error, then it's possible one or
* more of the rings is populated (while the rest are not). It is the
* callers duty to clean those orphaned rings.
*
* Return 0 on success, negative on failure
**/
static int wx_setup_all_rx_resources(struct wx *wx)
{
int i, err = 0;
for (i = 0; i < wx->num_rx_queues; i++) {
err = wx_setup_rx_resources(wx->rx_ring[i]);
if (!err)
continue;
wx_err(wx, "Allocation for Rx Queue %u failed\n", i);
goto err_setup_rx;
}
return 0;
err_setup_rx:
/* rewind the index freeing the rings as we go */
while (i--)
wx_free_rx_resources(wx->rx_ring[i]);
return err;
}
/**
* wx_setup_tx_resources - allocate Tx resources (Descriptors)
* @tx_ring: tx descriptor ring (for a specific queue) to setup
*
* Return 0 on success, negative on failure
**/
static int wx_setup_tx_resources(struct wx_ring *tx_ring)
{
struct device *dev = tx_ring->dev;
int orig_node = dev_to_node(dev);
int numa_node = NUMA_NO_NODE;
int size;
size = sizeof(struct wx_tx_buffer) * tx_ring->count;
if (tx_ring->q_vector)
numa_node = tx_ring->q_vector->numa_node;
tx_ring->tx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node);
if (!tx_ring->tx_buffer_info)
tx_ring->tx_buffer_info = kvmalloc(size, GFP_KERNEL);
if (!tx_ring->tx_buffer_info)
goto err;
/* round up to nearest 4K */
tx_ring->size = tx_ring->count * sizeof(union wx_tx_desc);
tx_ring->size = ALIGN(tx_ring->size, 4096);
set_dev_node(dev, numa_node);
tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
&tx_ring->dma, GFP_KERNEL);
if (!tx_ring->desc) {
set_dev_node(dev, orig_node);
tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
&tx_ring->dma, GFP_KERNEL);
}
if (!tx_ring->desc)
goto err;
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
return 0;
err:
kvfree(tx_ring->tx_buffer_info);
tx_ring->tx_buffer_info = NULL;
dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
return -ENOMEM;
}
/**
* wx_setup_all_tx_resources - allocate all queues Tx resources
* @wx: pointer to private structure
*
* If this function returns with an error, then it's possible one or
* more of the rings is populated (while the rest are not). It is the
* callers duty to clean those orphaned rings.
*
* Return 0 on success, negative on failure
**/
static int wx_setup_all_tx_resources(struct wx *wx)
{
int i, err = 0;
for (i = 0; i < wx->num_tx_queues; i++) {
err = wx_setup_tx_resources(wx->tx_ring[i]);
if (!err)
continue;
wx_err(wx, "Allocation for Tx Queue %u failed\n", i);
goto err_setup_tx;
}
return 0;
err_setup_tx:
/* rewind the index freeing the rings as we go */
while (i--)
wx_free_tx_resources(wx->tx_ring[i]);
return err;
}
int wx_setup_resources(struct wx *wx)
{
int err;
/* allocate transmit descriptors */
err = wx_setup_all_tx_resources(wx);
if (err)
return err;
/* allocate receive descriptors */
err = wx_setup_all_rx_resources(wx);
if (err)
goto err_free_tx;
err = wx_setup_isb_resources(wx);
if (err)
goto err_free_rx;
return 0;
err_free_rx:
wx_free_all_rx_resources(wx);
err_free_tx:
wx_free_all_tx_resources(wx);
return err;
}
EXPORT_SYMBOL(wx_setup_resources);
/**
* wx_get_stats64 - Get System Network Statistics
* @netdev: network interface device structure
* @stats: storage space for 64bit statistics
*/
void wx_get_stats64(struct net_device *netdev,
struct rtnl_link_stats64 *stats)
{
struct wx *wx = netdev_priv(netdev);
struct wx_hw_stats *hwstats;
int i;
wx_update_stats(wx);
rcu_read_lock();
for (i = 0; i < wx->num_rx_queues; i++) {
struct wx_ring *ring = READ_ONCE(wx->rx_ring[i]);
u64 bytes, packets;
unsigned int start;
if (ring) {
do {
start = u64_stats_fetch_begin(&ring->syncp);
packets = ring->stats.packets;
bytes = ring->stats.bytes;
} while (u64_stats_fetch_retry(&ring->syncp, start));
stats->rx_packets += packets;
stats->rx_bytes += bytes;
}
}
for (i = 0; i < wx->num_tx_queues; i++) {
struct wx_ring *ring = READ_ONCE(wx->tx_ring[i]);
u64 bytes, packets;
unsigned int start;
if (ring) {
do {
start = u64_stats_fetch_begin(&ring->syncp);
packets = ring->stats.packets;
bytes = ring->stats.bytes;
} while (u64_stats_fetch_retry(&ring->syncp,
start));
stats->tx_packets += packets;
stats->tx_bytes += bytes;
}
}
rcu_read_unlock();
hwstats = &wx->stats;
stats->rx_errors = hwstats->crcerrs + hwstats->rlec;
stats->multicast = hwstats->qmprc;
stats->rx_length_errors = hwstats->rlec;
stats->rx_crc_errors = hwstats->crcerrs;
}
EXPORT_SYMBOL(wx_get_stats64);
int wx_set_features(struct net_device *netdev, netdev_features_t features)
{
netdev_features_t changed = netdev->features ^ features;
struct wx *wx = netdev_priv(netdev);
if (features & NETIF_F_RXHASH) {
wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN,
WX_RDB_RA_CTL_RSS_EN);
wx->rss_enabled = true;
} else {
wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN, 0);
wx->rss_enabled = false;
}
if (changed &
(NETIF_F_HW_VLAN_CTAG_RX |
NETIF_F_HW_VLAN_STAG_RX))
wx_set_rx_mode(netdev);
return 1;
}
EXPORT_SYMBOL(wx_set_features);
void wx_set_ring(struct wx *wx, u32 new_tx_count,
u32 new_rx_count, struct wx_ring *temp_ring)
{
int i, err = 0;
/* Setup new Tx resources and free the old Tx resources in that order.
* We can then assign the new resources to the rings via a memcpy.
* The advantage to this approach is that we are guaranteed to still
* have resources even in the case of an allocation failure.
*/
if (new_tx_count != wx->tx_ring_count) {
for (i = 0; i < wx->num_tx_queues; i++) {
memcpy(&temp_ring[i], wx->tx_ring[i],
sizeof(struct wx_ring));
temp_ring[i].count = new_tx_count;
err = wx_setup_tx_resources(&temp_ring[i]);
if (err) {
wx_err(wx, "setup new tx resources failed, keep using the old config\n");
while (i) {
i--;
wx_free_tx_resources(&temp_ring[i]);
}
return;
}
}
for (i = 0; i < wx->num_tx_queues; i++) {
wx_free_tx_resources(wx->tx_ring[i]);
memcpy(wx->tx_ring[i], &temp_ring[i],
sizeof(struct wx_ring));
}
wx->tx_ring_count = new_tx_count;
}
/* Repeat the process for the Rx rings if needed */
if (new_rx_count != wx->rx_ring_count) {
for (i = 0; i < wx->num_rx_queues; i++) {
memcpy(&temp_ring[i], wx->rx_ring[i],
sizeof(struct wx_ring));
temp_ring[i].count = new_rx_count;
err = wx_setup_rx_resources(&temp_ring[i]);
if (err) {
wx_err(wx, "setup new rx resources failed, keep using the old config\n");
while (i) {
i--;
wx_free_rx_resources(&temp_ring[i]);
}
return;
}
}
for (i = 0; i < wx->num_rx_queues; i++) {
wx_free_rx_resources(wx->rx_ring[i]);
memcpy(wx->rx_ring[i], &temp_ring[i],
sizeof(struct wx_ring));
}
wx->rx_ring_count = new_rx_count;
}
}
EXPORT_SYMBOL(wx_set_ring);
MODULE_DESCRIPTION("Common library for Wangxun(R) Ethernet drivers.");
MODULE_LICENSE("GPL");