|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | * INET		An implementation of the TCP/IP protocol suite for the LINUX | 
|  | *		operating system.  INET is implemented using the  BSD Socket | 
|  | *		interface as the means of communication with the user level. | 
|  | * | 
|  | *		Generic socket support routines. Memory allocators, socket lock/release | 
|  | *		handler for protocols to use and generic option handler. | 
|  | * | 
|  | * Authors:	Ross Biro | 
|  | *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> | 
|  | *		Florian La Roche, <flla@stud.uni-sb.de> | 
|  | *		Alan Cox, <A.Cox@swansea.ac.uk> | 
|  | * | 
|  | * Fixes: | 
|  | *		Alan Cox	: 	Numerous verify_area() problems | 
|  | *		Alan Cox	:	Connecting on a connecting socket | 
|  | *					now returns an error for tcp. | 
|  | *		Alan Cox	:	sock->protocol is set correctly. | 
|  | *					and is not sometimes left as 0. | 
|  | *		Alan Cox	:	connect handles icmp errors on a | 
|  | *					connect properly. Unfortunately there | 
|  | *					is a restart syscall nasty there. I | 
|  | *					can't match BSD without hacking the C | 
|  | *					library. Ideas urgently sought! | 
|  | *		Alan Cox	:	Disallow bind() to addresses that are | 
|  | *					not ours - especially broadcast ones!! | 
|  | *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost) | 
|  | *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets, | 
|  | *					instead they leave that for the DESTROY timer. | 
|  | *		Alan Cox	:	Clean up error flag in accept | 
|  | *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer | 
|  | *					was buggy. Put a remove_sock() in the handler | 
|  | *					for memory when we hit 0. Also altered the timer | 
|  | *					code. The ACK stuff can wait and needs major | 
|  | *					TCP layer surgery. | 
|  | *		Alan Cox	:	Fixed TCP ack bug, removed remove sock | 
|  | *					and fixed timer/inet_bh race. | 
|  | *		Alan Cox	:	Added zapped flag for TCP | 
|  | *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code | 
|  | *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb | 
|  | *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources | 
|  | *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing. | 
|  | *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... | 
|  | *		Rick Sladkey	:	Relaxed UDP rules for matching packets. | 
|  | *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support | 
|  | *	Pauline Middelink	:	identd support | 
|  | *		Alan Cox	:	Fixed connect() taking signals I think. | 
|  | *		Alan Cox	:	SO_LINGER supported | 
|  | *		Alan Cox	:	Error reporting fixes | 
|  | *		Anonymous	:	inet_create tidied up (sk->reuse setting) | 
|  | *		Alan Cox	:	inet sockets don't set sk->type! | 
|  | *		Alan Cox	:	Split socket option code | 
|  | *		Alan Cox	:	Callbacks | 
|  | *		Alan Cox	:	Nagle flag for Charles & Johannes stuff | 
|  | *		Alex		:	Removed restriction on inet fioctl | 
|  | *		Alan Cox	:	Splitting INET from NET core | 
|  | *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt() | 
|  | *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code | 
|  | *		Alan Cox	:	Split IP from generic code | 
|  | *		Alan Cox	:	New kfree_skbmem() | 
|  | *		Alan Cox	:	Make SO_DEBUG superuser only. | 
|  | *		Alan Cox	:	Allow anyone to clear SO_DEBUG | 
|  | *					(compatibility fix) | 
|  | *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput. | 
|  | *		Alan Cox	:	Allocator for a socket is settable. | 
|  | *		Alan Cox	:	SO_ERROR includes soft errors. | 
|  | *		Alan Cox	:	Allow NULL arguments on some SO_ opts | 
|  | *		Alan Cox	: 	Generic socket allocation to make hooks | 
|  | *					easier (suggested by Craig Metz). | 
|  | *		Michael Pall	:	SO_ERROR returns positive errno again | 
|  | *              Steve Whitehouse:       Added default destructor to free | 
|  | *                                      protocol private data. | 
|  | *              Steve Whitehouse:       Added various other default routines | 
|  | *                                      common to several socket families. | 
|  | *              Chris Evans     :       Call suser() check last on F_SETOWN | 
|  | *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER. | 
|  | *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s() | 
|  | *		Andi Kleen	:	Fix write_space callback | 
|  | *		Chris Evans	:	Security fixes - signedness again | 
|  | *		Arnaldo C. Melo :       cleanups, use skb_queue_purge | 
|  | * | 
|  | * To Fix: | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <asm/unaligned.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/errqueue.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/socket.h> | 
|  | #include <linux/in.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/timer.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/sockios.h> | 
|  | #include <linux/net.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/poll.h> | 
|  | #include <linux/tcp.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/user_namespace.h> | 
|  | #include <linux/static_key.h> | 
|  | #include <linux/memcontrol.h> | 
|  | #include <linux/prefetch.h> | 
|  | #include <linux/compat.h> | 
|  | #include <linux/mroute.h> | 
|  | #include <linux/mroute6.h> | 
|  | #include <linux/icmpv6.h> | 
|  |  | 
|  | #include <linux/uaccess.h> | 
|  |  | 
|  | #include <linux/netdevice.h> | 
|  | #include <net/protocol.h> | 
|  | #include <linux/skbuff.h> | 
|  | #include <net/net_namespace.h> | 
|  | #include <net/request_sock.h> | 
|  | #include <net/sock.h> | 
|  | #include <linux/net_tstamp.h> | 
|  | #include <net/xfrm.h> | 
|  | #include <linux/ipsec.h> | 
|  | #include <net/cls_cgroup.h> | 
|  | #include <net/netprio_cgroup.h> | 
|  | #include <linux/sock_diag.h> | 
|  |  | 
|  | #include <linux/filter.h> | 
|  | #include <net/sock_reuseport.h> | 
|  | #include <net/bpf_sk_storage.h> | 
|  |  | 
|  | #include <trace/events/sock.h> | 
|  |  | 
|  | #include <net/tcp.h> | 
|  | #include <net/busy_poll.h> | 
|  | #include <net/phonet/phonet.h> | 
|  |  | 
|  | #include <linux/ethtool.h> | 
|  |  | 
|  | #include "dev.h" | 
|  |  | 
|  | static DEFINE_MUTEX(proto_list_mutex); | 
|  | static LIST_HEAD(proto_list); | 
|  |  | 
|  | static void sock_def_write_space_wfree(struct sock *sk); | 
|  | static void sock_def_write_space(struct sock *sk); | 
|  |  | 
|  | /** | 
|  | * sk_ns_capable - General socket capability test | 
|  | * @sk: Socket to use a capability on or through | 
|  | * @user_ns: The user namespace of the capability to use | 
|  | * @cap: The capability to use | 
|  | * | 
|  | * Test to see if the opener of the socket had when the socket was | 
|  | * created and the current process has the capability @cap in the user | 
|  | * namespace @user_ns. | 
|  | */ | 
|  | bool sk_ns_capable(const struct sock *sk, | 
|  | struct user_namespace *user_ns, int cap) | 
|  | { | 
|  | return file_ns_capable(sk->sk_socket->file, user_ns, cap) && | 
|  | ns_capable(user_ns, cap); | 
|  | } | 
|  | EXPORT_SYMBOL(sk_ns_capable); | 
|  |  | 
|  | /** | 
|  | * sk_capable - Socket global capability test | 
|  | * @sk: Socket to use a capability on or through | 
|  | * @cap: The global capability to use | 
|  | * | 
|  | * Test to see if the opener of the socket had when the socket was | 
|  | * created and the current process has the capability @cap in all user | 
|  | * namespaces. | 
|  | */ | 
|  | bool sk_capable(const struct sock *sk, int cap) | 
|  | { | 
|  | return sk_ns_capable(sk, &init_user_ns, cap); | 
|  | } | 
|  | EXPORT_SYMBOL(sk_capable); | 
|  |  | 
|  | /** | 
|  | * sk_net_capable - Network namespace socket capability test | 
|  | * @sk: Socket to use a capability on or through | 
|  | * @cap: The capability to use | 
|  | * | 
|  | * Test to see if the opener of the socket had when the socket was created | 
|  | * and the current process has the capability @cap over the network namespace | 
|  | * the socket is a member of. | 
|  | */ | 
|  | bool sk_net_capable(const struct sock *sk, int cap) | 
|  | { | 
|  | return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); | 
|  | } | 
|  | EXPORT_SYMBOL(sk_net_capable); | 
|  |  | 
|  | /* | 
|  | * Each address family might have different locking rules, so we have | 
|  | * one slock key per address family and separate keys for internal and | 
|  | * userspace sockets. | 
|  | */ | 
|  | static struct lock_class_key af_family_keys[AF_MAX]; | 
|  | static struct lock_class_key af_family_kern_keys[AF_MAX]; | 
|  | static struct lock_class_key af_family_slock_keys[AF_MAX]; | 
|  | static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; | 
|  |  | 
|  | /* | 
|  | * Make lock validator output more readable. (we pre-construct these | 
|  | * strings build-time, so that runtime initialization of socket | 
|  | * locks is fast): | 
|  | */ | 
|  |  | 
|  | #define _sock_locks(x)						  \ | 
|  | x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \ | 
|  | x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \ | 
|  | x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \ | 
|  | x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \ | 
|  | x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \ | 
|  | x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \ | 
|  | x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \ | 
|  | x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \ | 
|  | x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \ | 
|  | x "27"       ,	x "28"          ,	x "AF_CAN"      , \ | 
|  | x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \ | 
|  | x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \ | 
|  | x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \ | 
|  | x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \ | 
|  | x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \ | 
|  | x "AF_MCTP"  , \ | 
|  | x "AF_MAX" | 
|  |  | 
|  | static const char *const af_family_key_strings[AF_MAX+1] = { | 
|  | _sock_locks("sk_lock-") | 
|  | }; | 
|  | static const char *const af_family_slock_key_strings[AF_MAX+1] = { | 
|  | _sock_locks("slock-") | 
|  | }; | 
|  | static const char *const af_family_clock_key_strings[AF_MAX+1] = { | 
|  | _sock_locks("clock-") | 
|  | }; | 
|  |  | 
|  | static const char *const af_family_kern_key_strings[AF_MAX+1] = { | 
|  | _sock_locks("k-sk_lock-") | 
|  | }; | 
|  | static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { | 
|  | _sock_locks("k-slock-") | 
|  | }; | 
|  | static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { | 
|  | _sock_locks("k-clock-") | 
|  | }; | 
|  | static const char *const af_family_rlock_key_strings[AF_MAX+1] = { | 
|  | _sock_locks("rlock-") | 
|  | }; | 
|  | static const char *const af_family_wlock_key_strings[AF_MAX+1] = { | 
|  | _sock_locks("wlock-") | 
|  | }; | 
|  | static const char *const af_family_elock_key_strings[AF_MAX+1] = { | 
|  | _sock_locks("elock-") | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * sk_callback_lock and sk queues locking rules are per-address-family, | 
|  | * so split the lock classes by using a per-AF key: | 
|  | */ | 
|  | static struct lock_class_key af_callback_keys[AF_MAX]; | 
|  | static struct lock_class_key af_rlock_keys[AF_MAX]; | 
|  | static struct lock_class_key af_wlock_keys[AF_MAX]; | 
|  | static struct lock_class_key af_elock_keys[AF_MAX]; | 
|  | static struct lock_class_key af_kern_callback_keys[AF_MAX]; | 
|  |  | 
|  | /* Run time adjustable parameters. */ | 
|  | __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; | 
|  | EXPORT_SYMBOL(sysctl_wmem_max); | 
|  | __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; | 
|  | EXPORT_SYMBOL(sysctl_rmem_max); | 
|  | __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; | 
|  | __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; | 
|  |  | 
|  | /* Maximal space eaten by iovec or ancillary data plus some space */ | 
|  | int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); | 
|  | EXPORT_SYMBOL(sysctl_optmem_max); | 
|  |  | 
|  | int sysctl_tstamp_allow_data __read_mostly = 1; | 
|  |  | 
|  | DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); | 
|  | EXPORT_SYMBOL_GPL(memalloc_socks_key); | 
|  |  | 
|  | /** | 
|  | * sk_set_memalloc - sets %SOCK_MEMALLOC | 
|  | * @sk: socket to set it on | 
|  | * | 
|  | * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. | 
|  | * It's the responsibility of the admin to adjust min_free_kbytes | 
|  | * to meet the requirements | 
|  | */ | 
|  | void sk_set_memalloc(struct sock *sk) | 
|  | { | 
|  | sock_set_flag(sk, SOCK_MEMALLOC); | 
|  | sk->sk_allocation |= __GFP_MEMALLOC; | 
|  | static_branch_inc(&memalloc_socks_key); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sk_set_memalloc); | 
|  |  | 
|  | void sk_clear_memalloc(struct sock *sk) | 
|  | { | 
|  | sock_reset_flag(sk, SOCK_MEMALLOC); | 
|  | sk->sk_allocation &= ~__GFP_MEMALLOC; | 
|  | static_branch_dec(&memalloc_socks_key); | 
|  |  | 
|  | /* | 
|  | * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward | 
|  | * progress of swapping. SOCK_MEMALLOC may be cleared while | 
|  | * it has rmem allocations due to the last swapfile being deactivated | 
|  | * but there is a risk that the socket is unusable due to exceeding | 
|  | * the rmem limits. Reclaim the reserves and obey rmem limits again. | 
|  | */ | 
|  | sk_mem_reclaim(sk); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sk_clear_memalloc); | 
|  |  | 
|  | int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | int ret; | 
|  | unsigned int noreclaim_flag; | 
|  |  | 
|  | /* these should have been dropped before queueing */ | 
|  | BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); | 
|  |  | 
|  | noreclaim_flag = memalloc_noreclaim_save(); | 
|  | ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv, | 
|  | tcp_v6_do_rcv, | 
|  | tcp_v4_do_rcv, | 
|  | sk, skb); | 
|  | memalloc_noreclaim_restore(noreclaim_flag); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(__sk_backlog_rcv); | 
|  |  | 
|  | void sk_error_report(struct sock *sk) | 
|  | { | 
|  | sk->sk_error_report(sk); | 
|  |  | 
|  | switch (sk->sk_family) { | 
|  | case AF_INET: | 
|  | fallthrough; | 
|  | case AF_INET6: | 
|  | trace_inet_sk_error_report(sk); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(sk_error_report); | 
|  |  | 
|  | int sock_get_timeout(long timeo, void *optval, bool old_timeval) | 
|  | { | 
|  | struct __kernel_sock_timeval tv; | 
|  |  | 
|  | if (timeo == MAX_SCHEDULE_TIMEOUT) { | 
|  | tv.tv_sec = 0; | 
|  | tv.tv_usec = 0; | 
|  | } else { | 
|  | tv.tv_sec = timeo / HZ; | 
|  | tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; | 
|  | } | 
|  |  | 
|  | if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { | 
|  | struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; | 
|  | *(struct old_timeval32 *)optval = tv32; | 
|  | return sizeof(tv32); | 
|  | } | 
|  |  | 
|  | if (old_timeval) { | 
|  | struct __kernel_old_timeval old_tv; | 
|  | old_tv.tv_sec = tv.tv_sec; | 
|  | old_tv.tv_usec = tv.tv_usec; | 
|  | *(struct __kernel_old_timeval *)optval = old_tv; | 
|  | return sizeof(old_tv); | 
|  | } | 
|  |  | 
|  | *(struct __kernel_sock_timeval *)optval = tv; | 
|  | return sizeof(tv); | 
|  | } | 
|  | EXPORT_SYMBOL(sock_get_timeout); | 
|  |  | 
|  | int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, | 
|  | sockptr_t optval, int optlen, bool old_timeval) | 
|  | { | 
|  | if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { | 
|  | struct old_timeval32 tv32; | 
|  |  | 
|  | if (optlen < sizeof(tv32)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (copy_from_sockptr(&tv32, optval, sizeof(tv32))) | 
|  | return -EFAULT; | 
|  | tv->tv_sec = tv32.tv_sec; | 
|  | tv->tv_usec = tv32.tv_usec; | 
|  | } else if (old_timeval) { | 
|  | struct __kernel_old_timeval old_tv; | 
|  |  | 
|  | if (optlen < sizeof(old_tv)) | 
|  | return -EINVAL; | 
|  | if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv))) | 
|  | return -EFAULT; | 
|  | tv->tv_sec = old_tv.tv_sec; | 
|  | tv->tv_usec = old_tv.tv_usec; | 
|  | } else { | 
|  | if (optlen < sizeof(*tv)) | 
|  | return -EINVAL; | 
|  | if (copy_from_sockptr(tv, optval, sizeof(*tv))) | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(sock_copy_user_timeval); | 
|  |  | 
|  | static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen, | 
|  | bool old_timeval) | 
|  | { | 
|  | struct __kernel_sock_timeval tv; | 
|  | int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval); | 
|  | long val; | 
|  |  | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) | 
|  | return -EDOM; | 
|  |  | 
|  | if (tv.tv_sec < 0) { | 
|  | static int warned __read_mostly; | 
|  |  | 
|  | WRITE_ONCE(*timeo_p, 0); | 
|  | if (warned < 10 && net_ratelimit()) { | 
|  | warned++; | 
|  | pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", | 
|  | __func__, current->comm, task_pid_nr(current)); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | val = MAX_SCHEDULE_TIMEOUT; | 
|  | if ((tv.tv_sec || tv.tv_usec) && | 
|  | (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))) | 
|  | val = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, | 
|  | USEC_PER_SEC / HZ); | 
|  | WRITE_ONCE(*timeo_p, val); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool sock_needs_netstamp(const struct sock *sk) | 
|  | { | 
|  | switch (sk->sk_family) { | 
|  | case AF_UNSPEC: | 
|  | case AF_UNIX: | 
|  | return false; | 
|  | default: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void sock_disable_timestamp(struct sock *sk, unsigned long flags) | 
|  | { | 
|  | if (sk->sk_flags & flags) { | 
|  | sk->sk_flags &= ~flags; | 
|  | if (sock_needs_netstamp(sk) && | 
|  | !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) | 
|  | net_disable_timestamp(); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct sk_buff_head *list = &sk->sk_receive_queue; | 
|  |  | 
|  | if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { | 
|  | atomic_inc(&sk->sk_drops); | 
|  | trace_sock_rcvqueue_full(sk, skb); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | if (!sk_rmem_schedule(sk, skb, skb->truesize)) { | 
|  | atomic_inc(&sk->sk_drops); | 
|  | return -ENOBUFS; | 
|  | } | 
|  |  | 
|  | skb->dev = NULL; | 
|  | skb_set_owner_r(skb, sk); | 
|  |  | 
|  | /* we escape from rcu protected region, make sure we dont leak | 
|  | * a norefcounted dst | 
|  | */ | 
|  | skb_dst_force(skb); | 
|  |  | 
|  | spin_lock_irqsave(&list->lock, flags); | 
|  | sock_skb_set_dropcount(sk, skb); | 
|  | __skb_queue_tail(list, skb); | 
|  | spin_unlock_irqrestore(&list->lock, flags); | 
|  |  | 
|  | if (!sock_flag(sk, SOCK_DEAD)) | 
|  | sk->sk_data_ready(sk); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(__sock_queue_rcv_skb); | 
|  |  | 
|  | int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, | 
|  | enum skb_drop_reason *reason) | 
|  | { | 
|  | enum skb_drop_reason drop_reason; | 
|  | int err; | 
|  |  | 
|  | err = sk_filter(sk, skb); | 
|  | if (err) { | 
|  | drop_reason = SKB_DROP_REASON_SOCKET_FILTER; | 
|  | goto out; | 
|  | } | 
|  | err = __sock_queue_rcv_skb(sk, skb); | 
|  | switch (err) { | 
|  | case -ENOMEM: | 
|  | drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; | 
|  | break; | 
|  | case -ENOBUFS: | 
|  | drop_reason = SKB_DROP_REASON_PROTO_MEM; | 
|  | break; | 
|  | default: | 
|  | drop_reason = SKB_NOT_DROPPED_YET; | 
|  | break; | 
|  | } | 
|  | out: | 
|  | if (reason) | 
|  | *reason = drop_reason; | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL(sock_queue_rcv_skb_reason); | 
|  |  | 
|  | int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, | 
|  | const int nested, unsigned int trim_cap, bool refcounted) | 
|  | { | 
|  | int rc = NET_RX_SUCCESS; | 
|  |  | 
|  | if (sk_filter_trim_cap(sk, skb, trim_cap)) | 
|  | goto discard_and_relse; | 
|  |  | 
|  | skb->dev = NULL; | 
|  |  | 
|  | if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { | 
|  | atomic_inc(&sk->sk_drops); | 
|  | goto discard_and_relse; | 
|  | } | 
|  | if (nested) | 
|  | bh_lock_sock_nested(sk); | 
|  | else | 
|  | bh_lock_sock(sk); | 
|  | if (!sock_owned_by_user(sk)) { | 
|  | /* | 
|  | * trylock + unlock semantics: | 
|  | */ | 
|  | mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); | 
|  |  | 
|  | rc = sk_backlog_rcv(sk, skb); | 
|  |  | 
|  | mutex_release(&sk->sk_lock.dep_map, _RET_IP_); | 
|  | } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) { | 
|  | bh_unlock_sock(sk); | 
|  | atomic_inc(&sk->sk_drops); | 
|  | goto discard_and_relse; | 
|  | } | 
|  |  | 
|  | bh_unlock_sock(sk); | 
|  | out: | 
|  | if (refcounted) | 
|  | sock_put(sk); | 
|  | return rc; | 
|  | discard_and_relse: | 
|  | kfree_skb(skb); | 
|  | goto out; | 
|  | } | 
|  | EXPORT_SYMBOL(__sk_receive_skb); | 
|  |  | 
|  | INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *, | 
|  | u32)); | 
|  | INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *, | 
|  | u32)); | 
|  | struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) | 
|  | { | 
|  | struct dst_entry *dst = __sk_dst_get(sk); | 
|  |  | 
|  | if (dst && dst->obsolete && | 
|  | INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, | 
|  | dst, cookie) == NULL) { | 
|  | sk_tx_queue_clear(sk); | 
|  | WRITE_ONCE(sk->sk_dst_pending_confirm, 0); | 
|  | RCU_INIT_POINTER(sk->sk_dst_cache, NULL); | 
|  | dst_release(dst); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return dst; | 
|  | } | 
|  | EXPORT_SYMBOL(__sk_dst_check); | 
|  |  | 
|  | struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) | 
|  | { | 
|  | struct dst_entry *dst = sk_dst_get(sk); | 
|  |  | 
|  | if (dst && dst->obsolete && | 
|  | INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, | 
|  | dst, cookie) == NULL) { | 
|  | sk_dst_reset(sk); | 
|  | dst_release(dst); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return dst; | 
|  | } | 
|  | EXPORT_SYMBOL(sk_dst_check); | 
|  |  | 
|  | static int sock_bindtoindex_locked(struct sock *sk, int ifindex) | 
|  | { | 
|  | int ret = -ENOPROTOOPT; | 
|  | #ifdef CONFIG_NETDEVICES | 
|  | struct net *net = sock_net(sk); | 
|  |  | 
|  | /* Sorry... */ | 
|  | ret = -EPERM; | 
|  | if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW)) | 
|  | goto out; | 
|  |  | 
|  | ret = -EINVAL; | 
|  | if (ifindex < 0) | 
|  | goto out; | 
|  |  | 
|  | /* Paired with all READ_ONCE() done locklessly. */ | 
|  | WRITE_ONCE(sk->sk_bound_dev_if, ifindex); | 
|  |  | 
|  | if (sk->sk_prot->rehash) | 
|  | sk->sk_prot->rehash(sk); | 
|  | sk_dst_reset(sk); | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | out: | 
|  | #endif | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (lock_sk) | 
|  | lock_sock(sk); | 
|  | ret = sock_bindtoindex_locked(sk, ifindex); | 
|  | if (lock_sk) | 
|  | release_sock(sk); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(sock_bindtoindex); | 
|  |  | 
|  | static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen) | 
|  | { | 
|  | int ret = -ENOPROTOOPT; | 
|  | #ifdef CONFIG_NETDEVICES | 
|  | struct net *net = sock_net(sk); | 
|  | char devname[IFNAMSIZ]; | 
|  | int index; | 
|  |  | 
|  | ret = -EINVAL; | 
|  | if (optlen < 0) | 
|  | goto out; | 
|  |  | 
|  | /* Bind this socket to a particular device like "eth0", | 
|  | * as specified in the passed interface name. If the | 
|  | * name is "" or the option length is zero the socket | 
|  | * is not bound. | 
|  | */ | 
|  | if (optlen > IFNAMSIZ - 1) | 
|  | optlen = IFNAMSIZ - 1; | 
|  | memset(devname, 0, sizeof(devname)); | 
|  |  | 
|  | ret = -EFAULT; | 
|  | if (copy_from_sockptr(devname, optval, optlen)) | 
|  | goto out; | 
|  |  | 
|  | index = 0; | 
|  | if (devname[0] != '\0') { | 
|  | struct net_device *dev; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | dev = dev_get_by_name_rcu(net, devname); | 
|  | if (dev) | 
|  | index = dev->ifindex; | 
|  | rcu_read_unlock(); | 
|  | ret = -ENODEV; | 
|  | if (!dev) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | sockopt_lock_sock(sk); | 
|  | ret = sock_bindtoindex_locked(sk, index); | 
|  | sockopt_release_sock(sk); | 
|  | out: | 
|  | #endif | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int sock_getbindtodevice(struct sock *sk, sockptr_t optval, | 
|  | sockptr_t optlen, int len) | 
|  | { | 
|  | int ret = -ENOPROTOOPT; | 
|  | #ifdef CONFIG_NETDEVICES | 
|  | int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); | 
|  | struct net *net = sock_net(sk); | 
|  | char devname[IFNAMSIZ]; | 
|  |  | 
|  | if (bound_dev_if == 0) { | 
|  | len = 0; | 
|  | goto zero; | 
|  | } | 
|  |  | 
|  | ret = -EINVAL; | 
|  | if (len < IFNAMSIZ) | 
|  | goto out; | 
|  |  | 
|  | ret = netdev_get_name(net, devname, bound_dev_if); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | len = strlen(devname) + 1; | 
|  |  | 
|  | ret = -EFAULT; | 
|  | if (copy_to_sockptr(optval, devname, len)) | 
|  | goto out; | 
|  |  | 
|  | zero: | 
|  | ret = -EFAULT; | 
|  | if (copy_to_sockptr(optlen, &len, sizeof(int))) | 
|  | goto out; | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | out: | 
|  | #endif | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | bool sk_mc_loop(const struct sock *sk) | 
|  | { | 
|  | if (dev_recursion_level()) | 
|  | return false; | 
|  | if (!sk) | 
|  | return true; | 
|  | /* IPV6_ADDRFORM can change sk->sk_family under us. */ | 
|  | switch (READ_ONCE(sk->sk_family)) { | 
|  | case AF_INET: | 
|  | return inet_test_bit(MC_LOOP, sk); | 
|  | #if IS_ENABLED(CONFIG_IPV6) | 
|  | case AF_INET6: | 
|  | return inet6_test_bit(MC6_LOOP, sk); | 
|  | #endif | 
|  | } | 
|  | WARN_ON_ONCE(1); | 
|  | return true; | 
|  | } | 
|  | EXPORT_SYMBOL(sk_mc_loop); | 
|  |  | 
|  | void sock_set_reuseaddr(struct sock *sk) | 
|  | { | 
|  | lock_sock(sk); | 
|  | sk->sk_reuse = SK_CAN_REUSE; | 
|  | release_sock(sk); | 
|  | } | 
|  | EXPORT_SYMBOL(sock_set_reuseaddr); | 
|  |  | 
|  | void sock_set_reuseport(struct sock *sk) | 
|  | { | 
|  | lock_sock(sk); | 
|  | sk->sk_reuseport = true; | 
|  | release_sock(sk); | 
|  | } | 
|  | EXPORT_SYMBOL(sock_set_reuseport); | 
|  |  | 
|  | void sock_no_linger(struct sock *sk) | 
|  | { | 
|  | lock_sock(sk); | 
|  | WRITE_ONCE(sk->sk_lingertime, 0); | 
|  | sock_set_flag(sk, SOCK_LINGER); | 
|  | release_sock(sk); | 
|  | } | 
|  | EXPORT_SYMBOL(sock_no_linger); | 
|  |  | 
|  | void sock_set_priority(struct sock *sk, u32 priority) | 
|  | { | 
|  | WRITE_ONCE(sk->sk_priority, priority); | 
|  | } | 
|  | EXPORT_SYMBOL(sock_set_priority); | 
|  |  | 
|  | void sock_set_sndtimeo(struct sock *sk, s64 secs) | 
|  | { | 
|  | lock_sock(sk); | 
|  | if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1) | 
|  | WRITE_ONCE(sk->sk_sndtimeo, secs * HZ); | 
|  | else | 
|  | WRITE_ONCE(sk->sk_sndtimeo, MAX_SCHEDULE_TIMEOUT); | 
|  | release_sock(sk); | 
|  | } | 
|  | EXPORT_SYMBOL(sock_set_sndtimeo); | 
|  |  | 
|  | static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns) | 
|  | { | 
|  | if (val)  { | 
|  | sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new); | 
|  | sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns); | 
|  | sock_set_flag(sk, SOCK_RCVTSTAMP); | 
|  | sock_enable_timestamp(sk, SOCK_TIMESTAMP); | 
|  | } else { | 
|  | sock_reset_flag(sk, SOCK_RCVTSTAMP); | 
|  | sock_reset_flag(sk, SOCK_RCVTSTAMPNS); | 
|  | } | 
|  | } | 
|  |  | 
|  | void sock_enable_timestamps(struct sock *sk) | 
|  | { | 
|  | lock_sock(sk); | 
|  | __sock_set_timestamps(sk, true, false, true); | 
|  | release_sock(sk); | 
|  | } | 
|  | EXPORT_SYMBOL(sock_enable_timestamps); | 
|  |  | 
|  | void sock_set_timestamp(struct sock *sk, int optname, bool valbool) | 
|  | { | 
|  | switch (optname) { | 
|  | case SO_TIMESTAMP_OLD: | 
|  | __sock_set_timestamps(sk, valbool, false, false); | 
|  | break; | 
|  | case SO_TIMESTAMP_NEW: | 
|  | __sock_set_timestamps(sk, valbool, true, false); | 
|  | break; | 
|  | case SO_TIMESTAMPNS_OLD: | 
|  | __sock_set_timestamps(sk, valbool, false, true); | 
|  | break; | 
|  | case SO_TIMESTAMPNS_NEW: | 
|  | __sock_set_timestamps(sk, valbool, true, true); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int sock_timestamping_bind_phc(struct sock *sk, int phc_index) | 
|  | { | 
|  | struct net *net = sock_net(sk); | 
|  | struct net_device *dev = NULL; | 
|  | bool match = false; | 
|  | int *vclock_index; | 
|  | int i, num; | 
|  |  | 
|  | if (sk->sk_bound_dev_if) | 
|  | dev = dev_get_by_index(net, sk->sk_bound_dev_if); | 
|  |  | 
|  | if (!dev) { | 
|  | pr_err("%s: sock not bind to device\n", __func__); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | num = ethtool_get_phc_vclocks(dev, &vclock_index); | 
|  | dev_put(dev); | 
|  |  | 
|  | for (i = 0; i < num; i++) { | 
|  | if (*(vclock_index + i) == phc_index) { | 
|  | match = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (num > 0) | 
|  | kfree(vclock_index); | 
|  |  | 
|  | if (!match) | 
|  | return -EINVAL; | 
|  |  | 
|  | WRITE_ONCE(sk->sk_bind_phc, phc_index); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int sock_set_timestamping(struct sock *sk, int optname, | 
|  | struct so_timestamping timestamping) | 
|  | { | 
|  | int val = timestamping.flags; | 
|  | int ret; | 
|  |  | 
|  | if (val & ~SOF_TIMESTAMPING_MASK) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (val & SOF_TIMESTAMPING_OPT_ID_TCP && | 
|  | !(val & SOF_TIMESTAMPING_OPT_ID)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (val & SOF_TIMESTAMPING_OPT_ID && | 
|  | !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { | 
|  | if (sk_is_tcp(sk)) { | 
|  | if ((1 << sk->sk_state) & | 
|  | (TCPF_CLOSE | TCPF_LISTEN)) | 
|  | return -EINVAL; | 
|  | if (val & SOF_TIMESTAMPING_OPT_ID_TCP) | 
|  | atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq); | 
|  | else | 
|  | atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una); | 
|  | } else { | 
|  | atomic_set(&sk->sk_tskey, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (val & SOF_TIMESTAMPING_OPT_STATS && | 
|  | !(val & SOF_TIMESTAMPING_OPT_TSONLY)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (val & SOF_TIMESTAMPING_BIND_PHC) { | 
|  | ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | WRITE_ONCE(sk->sk_tsflags, val); | 
|  | sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW); | 
|  |  | 
|  | if (val & SOF_TIMESTAMPING_RX_SOFTWARE) | 
|  | sock_enable_timestamp(sk, | 
|  | SOCK_TIMESTAMPING_RX_SOFTWARE); | 
|  | else | 
|  | sock_disable_timestamp(sk, | 
|  | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void sock_set_keepalive(struct sock *sk) | 
|  | { | 
|  | lock_sock(sk); | 
|  | if (sk->sk_prot->keepalive) | 
|  | sk->sk_prot->keepalive(sk, true); | 
|  | sock_valbool_flag(sk, SOCK_KEEPOPEN, true); | 
|  | release_sock(sk); | 
|  | } | 
|  | EXPORT_SYMBOL(sock_set_keepalive); | 
|  |  | 
|  | static void __sock_set_rcvbuf(struct sock *sk, int val) | 
|  | { | 
|  | /* Ensure val * 2 fits into an int, to prevent max_t() from treating it | 
|  | * as a negative value. | 
|  | */ | 
|  | val = min_t(int, val, INT_MAX / 2); | 
|  | sk->sk_userlocks |= SOCK_RCVBUF_LOCK; | 
|  |  | 
|  | /* We double it on the way in to account for "struct sk_buff" etc. | 
|  | * overhead.   Applications assume that the SO_RCVBUF setting they make | 
|  | * will allow that much actual data to be received on that socket. | 
|  | * | 
|  | * Applications are unaware that "struct sk_buff" and other overheads | 
|  | * allocate from the receive buffer during socket buffer allocation. | 
|  | * | 
|  | * And after considering the possible alternatives, returning the value | 
|  | * we actually used in getsockopt is the most desirable behavior. | 
|  | */ | 
|  | WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF)); | 
|  | } | 
|  |  | 
|  | void sock_set_rcvbuf(struct sock *sk, int val) | 
|  | { | 
|  | lock_sock(sk); | 
|  | __sock_set_rcvbuf(sk, val); | 
|  | release_sock(sk); | 
|  | } | 
|  | EXPORT_SYMBOL(sock_set_rcvbuf); | 
|  |  | 
|  | static void __sock_set_mark(struct sock *sk, u32 val) | 
|  | { | 
|  | if (val != sk->sk_mark) { | 
|  | WRITE_ONCE(sk->sk_mark, val); | 
|  | sk_dst_reset(sk); | 
|  | } | 
|  | } | 
|  |  | 
|  | void sock_set_mark(struct sock *sk, u32 val) | 
|  | { | 
|  | lock_sock(sk); | 
|  | __sock_set_mark(sk, val); | 
|  | release_sock(sk); | 
|  | } | 
|  | EXPORT_SYMBOL(sock_set_mark); | 
|  |  | 
|  | static void sock_release_reserved_memory(struct sock *sk, int bytes) | 
|  | { | 
|  | /* Round down bytes to multiple of pages */ | 
|  | bytes = round_down(bytes, PAGE_SIZE); | 
|  |  | 
|  | WARN_ON(bytes > sk->sk_reserved_mem); | 
|  | WRITE_ONCE(sk->sk_reserved_mem, sk->sk_reserved_mem - bytes); | 
|  | sk_mem_reclaim(sk); | 
|  | } | 
|  |  | 
|  | static int sock_reserve_memory(struct sock *sk, int bytes) | 
|  | { | 
|  | long allocated; | 
|  | bool charged; | 
|  | int pages; | 
|  |  | 
|  | if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if (!bytes) | 
|  | return 0; | 
|  |  | 
|  | pages = sk_mem_pages(bytes); | 
|  |  | 
|  | /* pre-charge to memcg */ | 
|  | charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages, | 
|  | GFP_KERNEL | __GFP_RETRY_MAYFAIL); | 
|  | if (!charged) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* pre-charge to forward_alloc */ | 
|  | sk_memory_allocated_add(sk, pages); | 
|  | allocated = sk_memory_allocated(sk); | 
|  | /* If the system goes into memory pressure with this | 
|  | * precharge, give up and return error. | 
|  | */ | 
|  | if (allocated > sk_prot_mem_limits(sk, 1)) { | 
|  | sk_memory_allocated_sub(sk, pages); | 
|  | mem_cgroup_uncharge_skmem(sk->sk_memcg, pages); | 
|  | return -ENOMEM; | 
|  | } | 
|  | sk_forward_alloc_add(sk, pages << PAGE_SHIFT); | 
|  |  | 
|  | WRITE_ONCE(sk->sk_reserved_mem, | 
|  | sk->sk_reserved_mem + (pages << PAGE_SHIFT)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void sockopt_lock_sock(struct sock *sk) | 
|  | { | 
|  | /* When current->bpf_ctx is set, the setsockopt is called from | 
|  | * a bpf prog.  bpf has ensured the sk lock has been | 
|  | * acquired before calling setsockopt(). | 
|  | */ | 
|  | if (has_current_bpf_ctx()) | 
|  | return; | 
|  |  | 
|  | lock_sock(sk); | 
|  | } | 
|  | EXPORT_SYMBOL(sockopt_lock_sock); | 
|  |  | 
|  | void sockopt_release_sock(struct sock *sk) | 
|  | { | 
|  | if (has_current_bpf_ctx()) | 
|  | return; | 
|  |  | 
|  | release_sock(sk); | 
|  | } | 
|  | EXPORT_SYMBOL(sockopt_release_sock); | 
|  |  | 
|  | bool sockopt_ns_capable(struct user_namespace *ns, int cap) | 
|  | { | 
|  | return has_current_bpf_ctx() || ns_capable(ns, cap); | 
|  | } | 
|  | EXPORT_SYMBOL(sockopt_ns_capable); | 
|  |  | 
|  | bool sockopt_capable(int cap) | 
|  | { | 
|  | return has_current_bpf_ctx() || capable(cap); | 
|  | } | 
|  | EXPORT_SYMBOL(sockopt_capable); | 
|  |  | 
|  | /* | 
|  | *	This is meant for all protocols to use and covers goings on | 
|  | *	at the socket level. Everything here is generic. | 
|  | */ | 
|  |  | 
|  | int sk_setsockopt(struct sock *sk, int level, int optname, | 
|  | sockptr_t optval, unsigned int optlen) | 
|  | { | 
|  | struct so_timestamping timestamping; | 
|  | struct socket *sock = sk->sk_socket; | 
|  | struct sock_txtime sk_txtime; | 
|  | int val; | 
|  | int valbool; | 
|  | struct linger ling; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | *	Options without arguments | 
|  | */ | 
|  |  | 
|  | if (optname == SO_BINDTODEVICE) | 
|  | return sock_setbindtodevice(sk, optval, optlen); | 
|  |  | 
|  | if (optlen < sizeof(int)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (copy_from_sockptr(&val, optval, sizeof(val))) | 
|  | return -EFAULT; | 
|  |  | 
|  | valbool = val ? 1 : 0; | 
|  |  | 
|  | /* handle options which do not require locking the socket. */ | 
|  | switch (optname) { | 
|  | case SO_PRIORITY: | 
|  | if ((val >= 0 && val <= 6) || | 
|  | sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) || | 
|  | sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { | 
|  | sock_set_priority(sk, val); | 
|  | return 0; | 
|  | } | 
|  | return -EPERM; | 
|  | case SO_PASSSEC: | 
|  | assign_bit(SOCK_PASSSEC, &sock->flags, valbool); | 
|  | return 0; | 
|  | case SO_PASSCRED: | 
|  | assign_bit(SOCK_PASSCRED, &sock->flags, valbool); | 
|  | return 0; | 
|  | case SO_PASSPIDFD: | 
|  | assign_bit(SOCK_PASSPIDFD, &sock->flags, valbool); | 
|  | return 0; | 
|  | case SO_TYPE: | 
|  | case SO_PROTOCOL: | 
|  | case SO_DOMAIN: | 
|  | case SO_ERROR: | 
|  | return -ENOPROTOOPT; | 
|  | #ifdef CONFIG_NET_RX_BUSY_POLL | 
|  | case SO_BUSY_POLL: | 
|  | if (val < 0) | 
|  | return -EINVAL; | 
|  | WRITE_ONCE(sk->sk_ll_usec, val); | 
|  | return 0; | 
|  | case SO_PREFER_BUSY_POLL: | 
|  | if (valbool && !sockopt_capable(CAP_NET_ADMIN)) | 
|  | return -EPERM; | 
|  | WRITE_ONCE(sk->sk_prefer_busy_poll, valbool); | 
|  | return 0; | 
|  | case SO_BUSY_POLL_BUDGET: | 
|  | if (val > READ_ONCE(sk->sk_busy_poll_budget) && | 
|  | !sockopt_capable(CAP_NET_ADMIN)) | 
|  | return -EPERM; | 
|  | if (val < 0 || val > U16_MAX) | 
|  | return -EINVAL; | 
|  | WRITE_ONCE(sk->sk_busy_poll_budget, val); | 
|  | return 0; | 
|  | #endif | 
|  | case SO_MAX_PACING_RATE: | 
|  | { | 
|  | unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val; | 
|  | unsigned long pacing_rate; | 
|  |  | 
|  | if (sizeof(ulval) != sizeof(val) && | 
|  | optlen >= sizeof(ulval) && | 
|  | copy_from_sockptr(&ulval, optval, sizeof(ulval))) { | 
|  | return -EFAULT; | 
|  | } | 
|  | if (ulval != ~0UL) | 
|  | cmpxchg(&sk->sk_pacing_status, | 
|  | SK_PACING_NONE, | 
|  | SK_PACING_NEEDED); | 
|  | /* Pairs with READ_ONCE() from sk_getsockopt() */ | 
|  | WRITE_ONCE(sk->sk_max_pacing_rate, ulval); | 
|  | pacing_rate = READ_ONCE(sk->sk_pacing_rate); | 
|  | if (ulval < pacing_rate) | 
|  | WRITE_ONCE(sk->sk_pacing_rate, ulval); | 
|  | return 0; | 
|  | } | 
|  | case SO_TXREHASH: | 
|  | if (val < -1 || val > 1) | 
|  | return -EINVAL; | 
|  | if ((u8)val == SOCK_TXREHASH_DEFAULT) | 
|  | val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash); | 
|  | /* Paired with READ_ONCE() in tcp_rtx_synack() | 
|  | * and sk_getsockopt(). | 
|  | */ | 
|  | WRITE_ONCE(sk->sk_txrehash, (u8)val); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | sockopt_lock_sock(sk); | 
|  |  | 
|  | switch (optname) { | 
|  | case SO_DEBUG: | 
|  | if (val && !sockopt_capable(CAP_NET_ADMIN)) | 
|  | ret = -EACCES; | 
|  | else | 
|  | sock_valbool_flag(sk, SOCK_DBG, valbool); | 
|  | break; | 
|  | case SO_REUSEADDR: | 
|  | sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); | 
|  | break; | 
|  | case SO_REUSEPORT: | 
|  | sk->sk_reuseport = valbool; | 
|  | break; | 
|  | case SO_DONTROUTE: | 
|  | sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); | 
|  | sk_dst_reset(sk); | 
|  | break; | 
|  | case SO_BROADCAST: | 
|  | sock_valbool_flag(sk, SOCK_BROADCAST, valbool); | 
|  | break; | 
|  | case SO_SNDBUF: | 
|  | /* Don't error on this BSD doesn't and if you think | 
|  | * about it this is right. Otherwise apps have to | 
|  | * play 'guess the biggest size' games. RCVBUF/SNDBUF | 
|  | * are treated in BSD as hints | 
|  | */ | 
|  | val = min_t(u32, val, READ_ONCE(sysctl_wmem_max)); | 
|  | set_sndbuf: | 
|  | /* Ensure val * 2 fits into an int, to prevent max_t() | 
|  | * from treating it as a negative value. | 
|  | */ | 
|  | val = min_t(int, val, INT_MAX / 2); | 
|  | sk->sk_userlocks |= SOCK_SNDBUF_LOCK; | 
|  | WRITE_ONCE(sk->sk_sndbuf, | 
|  | max_t(int, val * 2, SOCK_MIN_SNDBUF)); | 
|  | /* Wake up sending tasks if we upped the value. */ | 
|  | sk->sk_write_space(sk); | 
|  | break; | 
|  |  | 
|  | case SO_SNDBUFFORCE: | 
|  | if (!sockopt_capable(CAP_NET_ADMIN)) { | 
|  | ret = -EPERM; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* No negative values (to prevent underflow, as val will be | 
|  | * multiplied by 2). | 
|  | */ | 
|  | if (val < 0) | 
|  | val = 0; | 
|  | goto set_sndbuf; | 
|  |  | 
|  | case SO_RCVBUF: | 
|  | /* Don't error on this BSD doesn't and if you think | 
|  | * about it this is right. Otherwise apps have to | 
|  | * play 'guess the biggest size' games. RCVBUF/SNDBUF | 
|  | * are treated in BSD as hints | 
|  | */ | 
|  | __sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max))); | 
|  | break; | 
|  |  | 
|  | case SO_RCVBUFFORCE: | 
|  | if (!sockopt_capable(CAP_NET_ADMIN)) { | 
|  | ret = -EPERM; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* No negative values (to prevent underflow, as val will be | 
|  | * multiplied by 2). | 
|  | */ | 
|  | __sock_set_rcvbuf(sk, max(val, 0)); | 
|  | break; | 
|  |  | 
|  | case SO_KEEPALIVE: | 
|  | if (sk->sk_prot->keepalive) | 
|  | sk->sk_prot->keepalive(sk, valbool); | 
|  | sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); | 
|  | break; | 
|  |  | 
|  | case SO_OOBINLINE: | 
|  | sock_valbool_flag(sk, SOCK_URGINLINE, valbool); | 
|  | break; | 
|  |  | 
|  | case SO_NO_CHECK: | 
|  | sk->sk_no_check_tx = valbool; | 
|  | break; | 
|  |  | 
|  | case SO_LINGER: | 
|  | if (optlen < sizeof(ling)) { | 
|  | ret = -EINVAL;	/* 1003.1g */ | 
|  | break; | 
|  | } | 
|  | if (copy_from_sockptr(&ling, optval, sizeof(ling))) { | 
|  | ret = -EFAULT; | 
|  | break; | 
|  | } | 
|  | if (!ling.l_onoff) { | 
|  | sock_reset_flag(sk, SOCK_LINGER); | 
|  | } else { | 
|  | unsigned long t_sec = ling.l_linger; | 
|  |  | 
|  | if (t_sec >= MAX_SCHEDULE_TIMEOUT / HZ) | 
|  | WRITE_ONCE(sk->sk_lingertime, MAX_SCHEDULE_TIMEOUT); | 
|  | else | 
|  | WRITE_ONCE(sk->sk_lingertime, t_sec * HZ); | 
|  | sock_set_flag(sk, SOCK_LINGER); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case SO_BSDCOMPAT: | 
|  | break; | 
|  |  | 
|  | case SO_TIMESTAMP_OLD: | 
|  | case SO_TIMESTAMP_NEW: | 
|  | case SO_TIMESTAMPNS_OLD: | 
|  | case SO_TIMESTAMPNS_NEW: | 
|  | sock_set_timestamp(sk, optname, valbool); | 
|  | break; | 
|  |  | 
|  | case SO_TIMESTAMPING_NEW: | 
|  | case SO_TIMESTAMPING_OLD: | 
|  | if (optlen == sizeof(timestamping)) { | 
|  | if (copy_from_sockptr(×tamping, optval, | 
|  | sizeof(timestamping))) { | 
|  | ret = -EFAULT; | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | memset(×tamping, 0, sizeof(timestamping)); | 
|  | timestamping.flags = val; | 
|  | } | 
|  | ret = sock_set_timestamping(sk, optname, timestamping); | 
|  | break; | 
|  |  | 
|  | case SO_RCVLOWAT: | 
|  | { | 
|  | int (*set_rcvlowat)(struct sock *sk, int val) = NULL; | 
|  |  | 
|  | if (val < 0) | 
|  | val = INT_MAX; | 
|  | if (sock) | 
|  | set_rcvlowat = READ_ONCE(sock->ops)->set_rcvlowat; | 
|  | if (set_rcvlowat) | 
|  | ret = set_rcvlowat(sk, val); | 
|  | else | 
|  | WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); | 
|  | break; | 
|  | } | 
|  | case SO_RCVTIMEO_OLD: | 
|  | case SO_RCVTIMEO_NEW: | 
|  | ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, | 
|  | optlen, optname == SO_RCVTIMEO_OLD); | 
|  | break; | 
|  |  | 
|  | case SO_SNDTIMEO_OLD: | 
|  | case SO_SNDTIMEO_NEW: | 
|  | ret = sock_set_timeout(&sk->sk_sndtimeo, optval, | 
|  | optlen, optname == SO_SNDTIMEO_OLD); | 
|  | break; | 
|  |  | 
|  | case SO_ATTACH_FILTER: { | 
|  | struct sock_fprog fprog; | 
|  |  | 
|  | ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); | 
|  | if (!ret) | 
|  | ret = sk_attach_filter(&fprog, sk); | 
|  | break; | 
|  | } | 
|  | case SO_ATTACH_BPF: | 
|  | ret = -EINVAL; | 
|  | if (optlen == sizeof(u32)) { | 
|  | u32 ufd; | 
|  |  | 
|  | ret = -EFAULT; | 
|  | if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) | 
|  | break; | 
|  |  | 
|  | ret = sk_attach_bpf(ufd, sk); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case SO_ATTACH_REUSEPORT_CBPF: { | 
|  | struct sock_fprog fprog; | 
|  |  | 
|  | ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); | 
|  | if (!ret) | 
|  | ret = sk_reuseport_attach_filter(&fprog, sk); | 
|  | break; | 
|  | } | 
|  | case SO_ATTACH_REUSEPORT_EBPF: | 
|  | ret = -EINVAL; | 
|  | if (optlen == sizeof(u32)) { | 
|  | u32 ufd; | 
|  |  | 
|  | ret = -EFAULT; | 
|  | if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) | 
|  | break; | 
|  |  | 
|  | ret = sk_reuseport_attach_bpf(ufd, sk); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case SO_DETACH_REUSEPORT_BPF: | 
|  | ret = reuseport_detach_prog(sk); | 
|  | break; | 
|  |  | 
|  | case SO_DETACH_FILTER: | 
|  | ret = sk_detach_filter(sk); | 
|  | break; | 
|  |  | 
|  | case SO_LOCK_FILTER: | 
|  | if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) | 
|  | ret = -EPERM; | 
|  | else | 
|  | sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); | 
|  | break; | 
|  |  | 
|  | case SO_MARK: | 
|  | if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && | 
|  | !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { | 
|  | ret = -EPERM; | 
|  | break; | 
|  | } | 
|  |  | 
|  | __sock_set_mark(sk, val); | 
|  | break; | 
|  | case SO_RCVMARK: | 
|  | sock_valbool_flag(sk, SOCK_RCVMARK, valbool); | 
|  | break; | 
|  |  | 
|  | case SO_RXQ_OVFL: | 
|  | sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); | 
|  | break; | 
|  |  | 
|  | case SO_WIFI_STATUS: | 
|  | sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); | 
|  | break; | 
|  |  | 
|  | case SO_PEEK_OFF: | 
|  | { | 
|  | int (*set_peek_off)(struct sock *sk, int val); | 
|  |  | 
|  | set_peek_off = READ_ONCE(sock->ops)->set_peek_off; | 
|  | if (set_peek_off) | 
|  | ret = set_peek_off(sk, val); | 
|  | else | 
|  | ret = -EOPNOTSUPP; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case SO_NOFCS: | 
|  | sock_valbool_flag(sk, SOCK_NOFCS, valbool); | 
|  | break; | 
|  |  | 
|  | case SO_SELECT_ERR_QUEUE: | 
|  | sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); | 
|  | break; | 
|  |  | 
|  |  | 
|  | case SO_INCOMING_CPU: | 
|  | reuseport_update_incoming_cpu(sk, val); | 
|  | break; | 
|  |  | 
|  | case SO_CNX_ADVICE: | 
|  | if (val == 1) | 
|  | dst_negative_advice(sk); | 
|  | break; | 
|  |  | 
|  | case SO_ZEROCOPY: | 
|  | if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { | 
|  | if (!(sk_is_tcp(sk) || | 
|  | (sk->sk_type == SOCK_DGRAM && | 
|  | sk->sk_protocol == IPPROTO_UDP))) | 
|  | ret = -EOPNOTSUPP; | 
|  | } else if (sk->sk_family != PF_RDS) { | 
|  | ret = -EOPNOTSUPP; | 
|  | } | 
|  | if (!ret) { | 
|  | if (val < 0 || val > 1) | 
|  | ret = -EINVAL; | 
|  | else | 
|  | sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case SO_TXTIME: | 
|  | if (optlen != sizeof(struct sock_txtime)) { | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } else if (copy_from_sockptr(&sk_txtime, optval, | 
|  | sizeof(struct sock_txtime))) { | 
|  | ret = -EFAULT; | 
|  | break; | 
|  | } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } | 
|  | /* CLOCK_MONOTONIC is only used by sch_fq, and this packet | 
|  | * scheduler has enough safe guards. | 
|  | */ | 
|  | if (sk_txtime.clockid != CLOCK_MONOTONIC && | 
|  | !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { | 
|  | ret = -EPERM; | 
|  | break; | 
|  | } | 
|  | sock_valbool_flag(sk, SOCK_TXTIME, true); | 
|  | sk->sk_clockid = sk_txtime.clockid; | 
|  | sk->sk_txtime_deadline_mode = | 
|  | !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); | 
|  | sk->sk_txtime_report_errors = | 
|  | !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); | 
|  | break; | 
|  |  | 
|  | case SO_BINDTOIFINDEX: | 
|  | ret = sock_bindtoindex_locked(sk, val); | 
|  | break; | 
|  |  | 
|  | case SO_BUF_LOCK: | 
|  | if (val & ~SOCK_BUF_LOCK_MASK) { | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } | 
|  | sk->sk_userlocks = val | (sk->sk_userlocks & | 
|  | ~SOCK_BUF_LOCK_MASK); | 
|  | break; | 
|  |  | 
|  | case SO_RESERVE_MEM: | 
|  | { | 
|  | int delta; | 
|  |  | 
|  | if (val < 0) { | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | delta = val - sk->sk_reserved_mem; | 
|  | if (delta < 0) | 
|  | sock_release_reserved_memory(sk, -delta); | 
|  | else | 
|  | ret = sock_reserve_memory(sk, delta); | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | ret = -ENOPROTOOPT; | 
|  | break; | 
|  | } | 
|  | sockopt_release_sock(sk); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int sock_setsockopt(struct socket *sock, int level, int optname, | 
|  | sockptr_t optval, unsigned int optlen) | 
|  | { | 
|  | return sk_setsockopt(sock->sk, level, optname, | 
|  | optval, optlen); | 
|  | } | 
|  | EXPORT_SYMBOL(sock_setsockopt); | 
|  |  | 
|  | static const struct cred *sk_get_peer_cred(struct sock *sk) | 
|  | { | 
|  | const struct cred *cred; | 
|  |  | 
|  | spin_lock(&sk->sk_peer_lock); | 
|  | cred = get_cred(sk->sk_peer_cred); | 
|  | spin_unlock(&sk->sk_peer_lock); | 
|  |  | 
|  | return cred; | 
|  | } | 
|  |  | 
|  | static void cred_to_ucred(struct pid *pid, const struct cred *cred, | 
|  | struct ucred *ucred) | 
|  | { | 
|  | ucred->pid = pid_vnr(pid); | 
|  | ucred->uid = ucred->gid = -1; | 
|  | if (cred) { | 
|  | struct user_namespace *current_ns = current_user_ns(); | 
|  |  | 
|  | ucred->uid = from_kuid_munged(current_ns, cred->euid); | 
|  | ucred->gid = from_kgid_munged(current_ns, cred->egid); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int groups_to_user(sockptr_t dst, const struct group_info *src) | 
|  | { | 
|  | struct user_namespace *user_ns = current_user_ns(); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < src->ngroups; i++) { | 
|  | gid_t gid = from_kgid_munged(user_ns, src->gid[i]); | 
|  |  | 
|  | if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid))) | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int sk_getsockopt(struct sock *sk, int level, int optname, | 
|  | sockptr_t optval, sockptr_t optlen) | 
|  | { | 
|  | struct socket *sock = sk->sk_socket; | 
|  |  | 
|  | union { | 
|  | int val; | 
|  | u64 val64; | 
|  | unsigned long ulval; | 
|  | struct linger ling; | 
|  | struct old_timeval32 tm32; | 
|  | struct __kernel_old_timeval tm; | 
|  | struct  __kernel_sock_timeval stm; | 
|  | struct sock_txtime txtime; | 
|  | struct so_timestamping timestamping; | 
|  | } v; | 
|  |  | 
|  | int lv = sizeof(int); | 
|  | int len; | 
|  |  | 
|  | if (copy_from_sockptr(&len, optlen, sizeof(int))) | 
|  | return -EFAULT; | 
|  | if (len < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | memset(&v, 0, sizeof(v)); | 
|  |  | 
|  | switch (optname) { | 
|  | case SO_DEBUG: | 
|  | v.val = sock_flag(sk, SOCK_DBG); | 
|  | break; | 
|  |  | 
|  | case SO_DONTROUTE: | 
|  | v.val = sock_flag(sk, SOCK_LOCALROUTE); | 
|  | break; | 
|  |  | 
|  | case SO_BROADCAST: | 
|  | v.val = sock_flag(sk, SOCK_BROADCAST); | 
|  | break; | 
|  |  | 
|  | case SO_SNDBUF: | 
|  | v.val = READ_ONCE(sk->sk_sndbuf); | 
|  | break; | 
|  |  | 
|  | case SO_RCVBUF: | 
|  | v.val = READ_ONCE(sk->sk_rcvbuf); | 
|  | break; | 
|  |  | 
|  | case SO_REUSEADDR: | 
|  | v.val = sk->sk_reuse; | 
|  | break; | 
|  |  | 
|  | case SO_REUSEPORT: | 
|  | v.val = sk->sk_reuseport; | 
|  | break; | 
|  |  | 
|  | case SO_KEEPALIVE: | 
|  | v.val = sock_flag(sk, SOCK_KEEPOPEN); | 
|  | break; | 
|  |  | 
|  | case SO_TYPE: | 
|  | v.val = sk->sk_type; | 
|  | break; | 
|  |  | 
|  | case SO_PROTOCOL: | 
|  | v.val = sk->sk_protocol; | 
|  | break; | 
|  |  | 
|  | case SO_DOMAIN: | 
|  | v.val = sk->sk_family; | 
|  | break; | 
|  |  | 
|  | case SO_ERROR: | 
|  | v.val = -sock_error(sk); | 
|  | if (v.val == 0) | 
|  | v.val = xchg(&sk->sk_err_soft, 0); | 
|  | break; | 
|  |  | 
|  | case SO_OOBINLINE: | 
|  | v.val = sock_flag(sk, SOCK_URGINLINE); | 
|  | break; | 
|  |  | 
|  | case SO_NO_CHECK: | 
|  | v.val = sk->sk_no_check_tx; | 
|  | break; | 
|  |  | 
|  | case SO_PRIORITY: | 
|  | v.val = READ_ONCE(sk->sk_priority); | 
|  | break; | 
|  |  | 
|  | case SO_LINGER: | 
|  | lv		= sizeof(v.ling); | 
|  | v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER); | 
|  | v.ling.l_linger	= READ_ONCE(sk->sk_lingertime) / HZ; | 
|  | break; | 
|  |  | 
|  | case SO_BSDCOMPAT: | 
|  | break; | 
|  |  | 
|  | case SO_TIMESTAMP_OLD: | 
|  | v.val = sock_flag(sk, SOCK_RCVTSTAMP) && | 
|  | !sock_flag(sk, SOCK_TSTAMP_NEW) && | 
|  | !sock_flag(sk, SOCK_RCVTSTAMPNS); | 
|  | break; | 
|  |  | 
|  | case SO_TIMESTAMPNS_OLD: | 
|  | v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW); | 
|  | break; | 
|  |  | 
|  | case SO_TIMESTAMP_NEW: | 
|  | v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW); | 
|  | break; | 
|  |  | 
|  | case SO_TIMESTAMPNS_NEW: | 
|  | v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW); | 
|  | break; | 
|  |  | 
|  | case SO_TIMESTAMPING_OLD: | 
|  | lv = sizeof(v.timestamping); | 
|  | v.timestamping.flags = READ_ONCE(sk->sk_tsflags); | 
|  | v.timestamping.bind_phc = READ_ONCE(sk->sk_bind_phc); | 
|  | break; | 
|  |  | 
|  | case SO_RCVTIMEO_OLD: | 
|  | case SO_RCVTIMEO_NEW: | 
|  | lv = sock_get_timeout(READ_ONCE(sk->sk_rcvtimeo), &v, | 
|  | SO_RCVTIMEO_OLD == optname); | 
|  | break; | 
|  |  | 
|  | case SO_SNDTIMEO_OLD: | 
|  | case SO_SNDTIMEO_NEW: | 
|  | lv = sock_get_timeout(READ_ONCE(sk->sk_sndtimeo), &v, | 
|  | SO_SNDTIMEO_OLD == optname); | 
|  | break; | 
|  |  | 
|  | case SO_RCVLOWAT: | 
|  | v.val = READ_ONCE(sk->sk_rcvlowat); | 
|  | break; | 
|  |  | 
|  | case SO_SNDLOWAT: | 
|  | v.val = 1; | 
|  | break; | 
|  |  | 
|  | case SO_PASSCRED: | 
|  | v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); | 
|  | break; | 
|  |  | 
|  | case SO_PASSPIDFD: | 
|  | v.val = !!test_bit(SOCK_PASSPIDFD, &sock->flags); | 
|  | break; | 
|  |  | 
|  | case SO_PEERCRED: | 
|  | { | 
|  | struct ucred peercred; | 
|  | if (len > sizeof(peercred)) | 
|  | len = sizeof(peercred); | 
|  |  | 
|  | spin_lock(&sk->sk_peer_lock); | 
|  | cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); | 
|  | spin_unlock(&sk->sk_peer_lock); | 
|  |  | 
|  | if (copy_to_sockptr(optval, &peercred, len)) | 
|  | return -EFAULT; | 
|  | goto lenout; | 
|  | } | 
|  |  | 
|  | case SO_PEERPIDFD: | 
|  | { | 
|  | struct pid *peer_pid; | 
|  | struct file *pidfd_file = NULL; | 
|  | int pidfd; | 
|  |  | 
|  | if (len > sizeof(pidfd)) | 
|  | len = sizeof(pidfd); | 
|  |  | 
|  | spin_lock(&sk->sk_peer_lock); | 
|  | peer_pid = get_pid(sk->sk_peer_pid); | 
|  | spin_unlock(&sk->sk_peer_lock); | 
|  |  | 
|  | if (!peer_pid) | 
|  | return -ENODATA; | 
|  |  | 
|  | pidfd = pidfd_prepare(peer_pid, 0, &pidfd_file); | 
|  | put_pid(peer_pid); | 
|  | if (pidfd < 0) | 
|  | return pidfd; | 
|  |  | 
|  | if (copy_to_sockptr(optval, &pidfd, len) || | 
|  | copy_to_sockptr(optlen, &len, sizeof(int))) { | 
|  | put_unused_fd(pidfd); | 
|  | fput(pidfd_file); | 
|  |  | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | fd_install(pidfd, pidfd_file); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | case SO_PEERGROUPS: | 
|  | { | 
|  | const struct cred *cred; | 
|  | int ret, n; | 
|  |  | 
|  | cred = sk_get_peer_cred(sk); | 
|  | if (!cred) | 
|  | return -ENODATA; | 
|  |  | 
|  | n = cred->group_info->ngroups; | 
|  | if (len < n * sizeof(gid_t)) { | 
|  | len = n * sizeof(gid_t); | 
|  | put_cred(cred); | 
|  | return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE; | 
|  | } | 
|  | len = n * sizeof(gid_t); | 
|  |  | 
|  | ret = groups_to_user(optval, cred->group_info); | 
|  | put_cred(cred); | 
|  | if (ret) | 
|  | return ret; | 
|  | goto lenout; | 
|  | } | 
|  |  | 
|  | case SO_PEERNAME: | 
|  | { | 
|  | struct sockaddr_storage address; | 
|  |  | 
|  | lv = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 2); | 
|  | if (lv < 0) | 
|  | return -ENOTCONN; | 
|  | if (lv < len) | 
|  | return -EINVAL; | 
|  | if (copy_to_sockptr(optval, &address, len)) | 
|  | return -EFAULT; | 
|  | goto lenout; | 
|  | } | 
|  |  | 
|  | /* Dubious BSD thing... Probably nobody even uses it, but | 
|  | * the UNIX standard wants it for whatever reason... -DaveM | 
|  | */ | 
|  | case SO_ACCEPTCONN: | 
|  | v.val = sk->sk_state == TCP_LISTEN; | 
|  | break; | 
|  |  | 
|  | case SO_PASSSEC: | 
|  | v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); | 
|  | break; | 
|  |  | 
|  | case SO_PEERSEC: | 
|  | return security_socket_getpeersec_stream(sock, | 
|  | optval, optlen, len); | 
|  |  | 
|  | case SO_MARK: | 
|  | v.val = READ_ONCE(sk->sk_mark); | 
|  | break; | 
|  |  | 
|  | case SO_RCVMARK: | 
|  | v.val = sock_flag(sk, SOCK_RCVMARK); | 
|  | break; | 
|  |  | 
|  | case SO_RXQ_OVFL: | 
|  | v.val = sock_flag(sk, SOCK_RXQ_OVFL); | 
|  | break; | 
|  |  | 
|  | case SO_WIFI_STATUS: | 
|  | v.val = sock_flag(sk, SOCK_WIFI_STATUS); | 
|  | break; | 
|  |  | 
|  | case SO_PEEK_OFF: | 
|  | if (!READ_ONCE(sock->ops)->set_peek_off) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | v.val = READ_ONCE(sk->sk_peek_off); | 
|  | break; | 
|  | case SO_NOFCS: | 
|  | v.val = sock_flag(sk, SOCK_NOFCS); | 
|  | break; | 
|  |  | 
|  | case SO_BINDTODEVICE: | 
|  | return sock_getbindtodevice(sk, optval, optlen, len); | 
|  |  | 
|  | case SO_GET_FILTER: | 
|  | len = sk_get_filter(sk, optval, len); | 
|  | if (len < 0) | 
|  | return len; | 
|  |  | 
|  | goto lenout; | 
|  |  | 
|  | case SO_LOCK_FILTER: | 
|  | v.val = sock_flag(sk, SOCK_FILTER_LOCKED); | 
|  | break; | 
|  |  | 
|  | case SO_BPF_EXTENSIONS: | 
|  | v.val = bpf_tell_extensions(); | 
|  | break; | 
|  |  | 
|  | case SO_SELECT_ERR_QUEUE: | 
|  | v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); | 
|  | break; | 
|  |  | 
|  | #ifdef CONFIG_NET_RX_BUSY_POLL | 
|  | case SO_BUSY_POLL: | 
|  | v.val = READ_ONCE(sk->sk_ll_usec); | 
|  | break; | 
|  | case SO_PREFER_BUSY_POLL: | 
|  | v.val = READ_ONCE(sk->sk_prefer_busy_poll); | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | case SO_MAX_PACING_RATE: | 
|  | /* The READ_ONCE() pair with the WRITE_ONCE() in sk_setsockopt() */ | 
|  | if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { | 
|  | lv = sizeof(v.ulval); | 
|  | v.ulval = READ_ONCE(sk->sk_max_pacing_rate); | 
|  | } else { | 
|  | /* 32bit version */ | 
|  | v.val = min_t(unsigned long, ~0U, | 
|  | READ_ONCE(sk->sk_max_pacing_rate)); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case SO_INCOMING_CPU: | 
|  | v.val = READ_ONCE(sk->sk_incoming_cpu); | 
|  | break; | 
|  |  | 
|  | case SO_MEMINFO: | 
|  | { | 
|  | u32 meminfo[SK_MEMINFO_VARS]; | 
|  |  | 
|  | sk_get_meminfo(sk, meminfo); | 
|  |  | 
|  | len = min_t(unsigned int, len, sizeof(meminfo)); | 
|  | if (copy_to_sockptr(optval, &meminfo, len)) | 
|  | return -EFAULT; | 
|  |  | 
|  | goto lenout; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NET_RX_BUSY_POLL | 
|  | case SO_INCOMING_NAPI_ID: | 
|  | v.val = READ_ONCE(sk->sk_napi_id); | 
|  |  | 
|  | /* aggregate non-NAPI IDs down to 0 */ | 
|  | if (v.val < MIN_NAPI_ID) | 
|  | v.val = 0; | 
|  |  | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | case SO_COOKIE: | 
|  | lv = sizeof(u64); | 
|  | if (len < lv) | 
|  | return -EINVAL; | 
|  | v.val64 = sock_gen_cookie(sk); | 
|  | break; | 
|  |  | 
|  | case SO_ZEROCOPY: | 
|  | v.val = sock_flag(sk, SOCK_ZEROCOPY); | 
|  | break; | 
|  |  | 
|  | case SO_TXTIME: | 
|  | lv = sizeof(v.txtime); | 
|  | v.txtime.clockid = sk->sk_clockid; | 
|  | v.txtime.flags |= sk->sk_txtime_deadline_mode ? | 
|  | SOF_TXTIME_DEADLINE_MODE : 0; | 
|  | v.txtime.flags |= sk->sk_txtime_report_errors ? | 
|  | SOF_TXTIME_REPORT_ERRORS : 0; | 
|  | break; | 
|  |  | 
|  | case SO_BINDTOIFINDEX: | 
|  | v.val = READ_ONCE(sk->sk_bound_dev_if); | 
|  | break; | 
|  |  | 
|  | case SO_NETNS_COOKIE: | 
|  | lv = sizeof(u64); | 
|  | if (len != lv) | 
|  | return -EINVAL; | 
|  | v.val64 = sock_net(sk)->net_cookie; | 
|  | break; | 
|  |  | 
|  | case SO_BUF_LOCK: | 
|  | v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK; | 
|  | break; | 
|  |  | 
|  | case SO_RESERVE_MEM: | 
|  | v.val = READ_ONCE(sk->sk_reserved_mem); | 
|  | break; | 
|  |  | 
|  | case SO_TXREHASH: | 
|  | /* Paired with WRITE_ONCE() in sk_setsockopt() */ | 
|  | v.val = READ_ONCE(sk->sk_txrehash); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | /* We implement the SO_SNDLOWAT etc to not be settable | 
|  | * (1003.1g 7). | 
|  | */ | 
|  | return -ENOPROTOOPT; | 
|  | } | 
|  |  | 
|  | if (len > lv) | 
|  | len = lv; | 
|  | if (copy_to_sockptr(optval, &v, len)) | 
|  | return -EFAULT; | 
|  | lenout: | 
|  | if (copy_to_sockptr(optlen, &len, sizeof(int))) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize an sk_lock. | 
|  | * | 
|  | * (We also register the sk_lock with the lock validator.) | 
|  | */ | 
|  | static inline void sock_lock_init(struct sock *sk) | 
|  | { | 
|  | if (sk->sk_kern_sock) | 
|  | sock_lock_init_class_and_name( | 
|  | sk, | 
|  | af_family_kern_slock_key_strings[sk->sk_family], | 
|  | af_family_kern_slock_keys + sk->sk_family, | 
|  | af_family_kern_key_strings[sk->sk_family], | 
|  | af_family_kern_keys + sk->sk_family); | 
|  | else | 
|  | sock_lock_init_class_and_name( | 
|  | sk, | 
|  | af_family_slock_key_strings[sk->sk_family], | 
|  | af_family_slock_keys + sk->sk_family, | 
|  | af_family_key_strings[sk->sk_family], | 
|  | af_family_keys + sk->sk_family); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, | 
|  | * even temporarly, because of RCU lookups. sk_node should also be left as is. | 
|  | * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end | 
|  | */ | 
|  | static void sock_copy(struct sock *nsk, const struct sock *osk) | 
|  | { | 
|  | const struct proto *prot = READ_ONCE(osk->sk_prot); | 
|  | #ifdef CONFIG_SECURITY_NETWORK | 
|  | void *sptr = nsk->sk_security; | 
|  | #endif | 
|  |  | 
|  | /* If we move sk_tx_queue_mapping out of the private section, | 
|  | * we must check if sk_tx_queue_clear() is called after | 
|  | * sock_copy() in sk_clone_lock(). | 
|  | */ | 
|  | BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) < | 
|  | offsetof(struct sock, sk_dontcopy_begin) || | 
|  | offsetof(struct sock, sk_tx_queue_mapping) >= | 
|  | offsetof(struct sock, sk_dontcopy_end)); | 
|  |  | 
|  | memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); | 
|  |  | 
|  | memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, | 
|  | prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); | 
|  |  | 
|  | #ifdef CONFIG_SECURITY_NETWORK | 
|  | nsk->sk_security = sptr; | 
|  | security_sk_clone(osk, nsk); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, | 
|  | int family) | 
|  | { | 
|  | struct sock *sk; | 
|  | struct kmem_cache *slab; | 
|  |  | 
|  | slab = prot->slab; | 
|  | if (slab != NULL) { | 
|  | sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); | 
|  | if (!sk) | 
|  | return sk; | 
|  | if (want_init_on_alloc(priority)) | 
|  | sk_prot_clear_nulls(sk, prot->obj_size); | 
|  | } else | 
|  | sk = kmalloc(prot->obj_size, priority); | 
|  |  | 
|  | if (sk != NULL) { | 
|  | if (security_sk_alloc(sk, family, priority)) | 
|  | goto out_free; | 
|  |  | 
|  | if (!try_module_get(prot->owner)) | 
|  | goto out_free_sec; | 
|  | } | 
|  |  | 
|  | return sk; | 
|  |  | 
|  | out_free_sec: | 
|  | security_sk_free(sk); | 
|  | out_free: | 
|  | if (slab != NULL) | 
|  | kmem_cache_free(slab, sk); | 
|  | else | 
|  | kfree(sk); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void sk_prot_free(struct proto *prot, struct sock *sk) | 
|  | { | 
|  | struct kmem_cache *slab; | 
|  | struct module *owner; | 
|  |  | 
|  | owner = prot->owner; | 
|  | slab = prot->slab; | 
|  |  | 
|  | cgroup_sk_free(&sk->sk_cgrp_data); | 
|  | mem_cgroup_sk_free(sk); | 
|  | security_sk_free(sk); | 
|  | if (slab != NULL) | 
|  | kmem_cache_free(slab, sk); | 
|  | else | 
|  | kfree(sk); | 
|  | module_put(owner); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	sk_alloc - All socket objects are allocated here | 
|  | *	@net: the applicable net namespace | 
|  | *	@family: protocol family | 
|  | *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) | 
|  | *	@prot: struct proto associated with this new sock instance | 
|  | *	@kern: is this to be a kernel socket? | 
|  | */ | 
|  | struct sock *sk_alloc(struct net *net, int family, gfp_t priority, | 
|  | struct proto *prot, int kern) | 
|  | { | 
|  | struct sock *sk; | 
|  |  | 
|  | sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); | 
|  | if (sk) { | 
|  | sk->sk_family = family; | 
|  | /* | 
|  | * See comment in struct sock definition to understand | 
|  | * why we need sk_prot_creator -acme | 
|  | */ | 
|  | sk->sk_prot = sk->sk_prot_creator = prot; | 
|  | sk->sk_kern_sock = kern; | 
|  | sock_lock_init(sk); | 
|  | sk->sk_net_refcnt = kern ? 0 : 1; | 
|  | if (likely(sk->sk_net_refcnt)) { | 
|  | get_net_track(net, &sk->ns_tracker, priority); | 
|  | sock_inuse_add(net, 1); | 
|  | } else { | 
|  | __netns_tracker_alloc(net, &sk->ns_tracker, | 
|  | false, priority); | 
|  | } | 
|  |  | 
|  | sock_net_set(sk, net); | 
|  | refcount_set(&sk->sk_wmem_alloc, 1); | 
|  |  | 
|  | mem_cgroup_sk_alloc(sk); | 
|  | cgroup_sk_alloc(&sk->sk_cgrp_data); | 
|  | sock_update_classid(&sk->sk_cgrp_data); | 
|  | sock_update_netprioidx(&sk->sk_cgrp_data); | 
|  | sk_tx_queue_clear(sk); | 
|  | } | 
|  |  | 
|  | return sk; | 
|  | } | 
|  | EXPORT_SYMBOL(sk_alloc); | 
|  |  | 
|  | /* Sockets having SOCK_RCU_FREE will call this function after one RCU | 
|  | * grace period. This is the case for UDP sockets and TCP listeners. | 
|  | */ | 
|  | static void __sk_destruct(struct rcu_head *head) | 
|  | { | 
|  | struct sock *sk = container_of(head, struct sock, sk_rcu); | 
|  | struct sk_filter *filter; | 
|  |  | 
|  | if (sk->sk_destruct) | 
|  | sk->sk_destruct(sk); | 
|  |  | 
|  | filter = rcu_dereference_check(sk->sk_filter, | 
|  | refcount_read(&sk->sk_wmem_alloc) == 0); | 
|  | if (filter) { | 
|  | sk_filter_uncharge(sk, filter); | 
|  | RCU_INIT_POINTER(sk->sk_filter, NULL); | 
|  | } | 
|  |  | 
|  | sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); | 
|  |  | 
|  | #ifdef CONFIG_BPF_SYSCALL | 
|  | bpf_sk_storage_free(sk); | 
|  | #endif | 
|  |  | 
|  | if (atomic_read(&sk->sk_omem_alloc)) | 
|  | pr_debug("%s: optmem leakage (%d bytes) detected\n", | 
|  | __func__, atomic_read(&sk->sk_omem_alloc)); | 
|  |  | 
|  | if (sk->sk_frag.page) { | 
|  | put_page(sk->sk_frag.page); | 
|  | sk->sk_frag.page = NULL; | 
|  | } | 
|  |  | 
|  | /* We do not need to acquire sk->sk_peer_lock, we are the last user. */ | 
|  | put_cred(sk->sk_peer_cred); | 
|  | put_pid(sk->sk_peer_pid); | 
|  |  | 
|  | if (likely(sk->sk_net_refcnt)) | 
|  | put_net_track(sock_net(sk), &sk->ns_tracker); | 
|  | else | 
|  | __netns_tracker_free(sock_net(sk), &sk->ns_tracker, false); | 
|  |  | 
|  | sk_prot_free(sk->sk_prot_creator, sk); | 
|  | } | 
|  |  | 
|  | void sk_destruct(struct sock *sk) | 
|  | { | 
|  | bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE); | 
|  |  | 
|  | if (rcu_access_pointer(sk->sk_reuseport_cb)) { | 
|  | reuseport_detach_sock(sk); | 
|  | use_call_rcu = true; | 
|  | } | 
|  |  | 
|  | if (use_call_rcu) | 
|  | call_rcu(&sk->sk_rcu, __sk_destruct); | 
|  | else | 
|  | __sk_destruct(&sk->sk_rcu); | 
|  | } | 
|  |  | 
|  | static void __sk_free(struct sock *sk) | 
|  | { | 
|  | if (likely(sk->sk_net_refcnt)) | 
|  | sock_inuse_add(sock_net(sk), -1); | 
|  |  | 
|  | if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) | 
|  | sock_diag_broadcast_destroy(sk); | 
|  | else | 
|  | sk_destruct(sk); | 
|  | } | 
|  |  | 
|  | void sk_free(struct sock *sk) | 
|  | { | 
|  | /* | 
|  | * We subtract one from sk_wmem_alloc and can know if | 
|  | * some packets are still in some tx queue. | 
|  | * If not null, sock_wfree() will call __sk_free(sk) later | 
|  | */ | 
|  | if (refcount_dec_and_test(&sk->sk_wmem_alloc)) | 
|  | __sk_free(sk); | 
|  | } | 
|  | EXPORT_SYMBOL(sk_free); | 
|  |  | 
|  | static void sk_init_common(struct sock *sk) | 
|  | { | 
|  | skb_queue_head_init(&sk->sk_receive_queue); | 
|  | skb_queue_head_init(&sk->sk_write_queue); | 
|  | skb_queue_head_init(&sk->sk_error_queue); | 
|  |  | 
|  | rwlock_init(&sk->sk_callback_lock); | 
|  | lockdep_set_class_and_name(&sk->sk_receive_queue.lock, | 
|  | af_rlock_keys + sk->sk_family, | 
|  | af_family_rlock_key_strings[sk->sk_family]); | 
|  | lockdep_set_class_and_name(&sk->sk_write_queue.lock, | 
|  | af_wlock_keys + sk->sk_family, | 
|  | af_family_wlock_key_strings[sk->sk_family]); | 
|  | lockdep_set_class_and_name(&sk->sk_error_queue.lock, | 
|  | af_elock_keys + sk->sk_family, | 
|  | af_family_elock_key_strings[sk->sk_family]); | 
|  | lockdep_set_class_and_name(&sk->sk_callback_lock, | 
|  | af_callback_keys + sk->sk_family, | 
|  | af_family_clock_key_strings[sk->sk_family]); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	sk_clone_lock - clone a socket, and lock its clone | 
|  | *	@sk: the socket to clone | 
|  | *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) | 
|  | * | 
|  | *	Caller must unlock socket even in error path (bh_unlock_sock(newsk)) | 
|  | */ | 
|  | struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) | 
|  | { | 
|  | struct proto *prot = READ_ONCE(sk->sk_prot); | 
|  | struct sk_filter *filter; | 
|  | bool is_charged = true; | 
|  | struct sock *newsk; | 
|  |  | 
|  | newsk = sk_prot_alloc(prot, priority, sk->sk_family); | 
|  | if (!newsk) | 
|  | goto out; | 
|  |  | 
|  | sock_copy(newsk, sk); | 
|  |  | 
|  | newsk->sk_prot_creator = prot; | 
|  |  | 
|  | /* SANITY */ | 
|  | if (likely(newsk->sk_net_refcnt)) { | 
|  | get_net_track(sock_net(newsk), &newsk->ns_tracker, priority); | 
|  | sock_inuse_add(sock_net(newsk), 1); | 
|  | } else { | 
|  | /* Kernel sockets are not elevating the struct net refcount. | 
|  | * Instead, use a tracker to more easily detect if a layer | 
|  | * is not properly dismantling its kernel sockets at netns | 
|  | * destroy time. | 
|  | */ | 
|  | __netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker, | 
|  | false, priority); | 
|  | } | 
|  | sk_node_init(&newsk->sk_node); | 
|  | sock_lock_init(newsk); | 
|  | bh_lock_sock(newsk); | 
|  | newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL; | 
|  | newsk->sk_backlog.len = 0; | 
|  |  | 
|  | atomic_set(&newsk->sk_rmem_alloc, 0); | 
|  |  | 
|  | /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */ | 
|  | refcount_set(&newsk->sk_wmem_alloc, 1); | 
|  |  | 
|  | atomic_set(&newsk->sk_omem_alloc, 0); | 
|  | sk_init_common(newsk); | 
|  |  | 
|  | newsk->sk_dst_cache	= NULL; | 
|  | newsk->sk_dst_pending_confirm = 0; | 
|  | newsk->sk_wmem_queued	= 0; | 
|  | newsk->sk_forward_alloc = 0; | 
|  | newsk->sk_reserved_mem  = 0; | 
|  | atomic_set(&newsk->sk_drops, 0); | 
|  | newsk->sk_send_head	= NULL; | 
|  | newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; | 
|  | atomic_set(&newsk->sk_zckey, 0); | 
|  |  | 
|  | sock_reset_flag(newsk, SOCK_DONE); | 
|  |  | 
|  | /* sk->sk_memcg will be populated at accept() time */ | 
|  | newsk->sk_memcg = NULL; | 
|  |  | 
|  | cgroup_sk_clone(&newsk->sk_cgrp_data); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | filter = rcu_dereference(sk->sk_filter); | 
|  | if (filter != NULL) | 
|  | /* though it's an empty new sock, the charging may fail | 
|  | * if sysctl_optmem_max was changed between creation of | 
|  | * original socket and cloning | 
|  | */ | 
|  | is_charged = sk_filter_charge(newsk, filter); | 
|  | RCU_INIT_POINTER(newsk->sk_filter, filter); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { | 
|  | /* We need to make sure that we don't uncharge the new | 
|  | * socket if we couldn't charge it in the first place | 
|  | * as otherwise we uncharge the parent's filter. | 
|  | */ | 
|  | if (!is_charged) | 
|  | RCU_INIT_POINTER(newsk->sk_filter, NULL); | 
|  | sk_free_unlock_clone(newsk); | 
|  | newsk = NULL; | 
|  | goto out; | 
|  | } | 
|  | RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); | 
|  |  | 
|  | if (bpf_sk_storage_clone(sk, newsk)) { | 
|  | sk_free_unlock_clone(newsk); | 
|  | newsk = NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Clear sk_user_data if parent had the pointer tagged | 
|  | * as not suitable for copying when cloning. | 
|  | */ | 
|  | if (sk_user_data_is_nocopy(newsk)) | 
|  | newsk->sk_user_data = NULL; | 
|  |  | 
|  | newsk->sk_err	   = 0; | 
|  | newsk->sk_err_soft = 0; | 
|  | newsk->sk_priority = 0; | 
|  | newsk->sk_incoming_cpu = raw_smp_processor_id(); | 
|  |  | 
|  | /* Before updating sk_refcnt, we must commit prior changes to memory | 
|  | * (Documentation/RCU/rculist_nulls.rst for details) | 
|  | */ | 
|  | smp_wmb(); | 
|  | refcount_set(&newsk->sk_refcnt, 2); | 
|  |  | 
|  | sk_set_socket(newsk, NULL); | 
|  | sk_tx_queue_clear(newsk); | 
|  | RCU_INIT_POINTER(newsk->sk_wq, NULL); | 
|  |  | 
|  | if (newsk->sk_prot->sockets_allocated) | 
|  | sk_sockets_allocated_inc(newsk); | 
|  |  | 
|  | if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP) | 
|  | net_enable_timestamp(); | 
|  | out: | 
|  | return newsk; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sk_clone_lock); | 
|  |  | 
|  | void sk_free_unlock_clone(struct sock *sk) | 
|  | { | 
|  | /* It is still raw copy of parent, so invalidate | 
|  | * destructor and make plain sk_free() */ | 
|  | sk->sk_destruct = NULL; | 
|  | bh_unlock_sock(sk); | 
|  | sk_free(sk); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sk_free_unlock_clone); | 
|  |  | 
|  | static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst) | 
|  | { | 
|  | bool is_ipv6 = false; | 
|  | u32 max_size; | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_IPV6) | 
|  | is_ipv6 = (sk->sk_family == AF_INET6 && | 
|  | !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr)); | 
|  | #endif | 
|  | /* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */ | 
|  | max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) : | 
|  | READ_ONCE(dst->dev->gso_ipv4_max_size); | 
|  | if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk)) | 
|  | max_size = GSO_LEGACY_MAX_SIZE; | 
|  |  | 
|  | return max_size - (MAX_TCP_HEADER + 1); | 
|  | } | 
|  |  | 
|  | void sk_setup_caps(struct sock *sk, struct dst_entry *dst) | 
|  | { | 
|  | u32 max_segs = 1; | 
|  |  | 
|  | sk->sk_route_caps = dst->dev->features; | 
|  | if (sk_is_tcp(sk)) | 
|  | sk->sk_route_caps |= NETIF_F_GSO; | 
|  | if (sk->sk_route_caps & NETIF_F_GSO) | 
|  | sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; | 
|  | if (unlikely(sk->sk_gso_disabled)) | 
|  | sk->sk_route_caps &= ~NETIF_F_GSO_MASK; | 
|  | if (sk_can_gso(sk)) { | 
|  | if (dst->header_len && !xfrm_dst_offload_ok(dst)) { | 
|  | sk->sk_route_caps &= ~NETIF_F_GSO_MASK; | 
|  | } else { | 
|  | sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; | 
|  | sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst); | 
|  | /* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */ | 
|  | max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1); | 
|  | } | 
|  | } | 
|  | sk->sk_gso_max_segs = max_segs; | 
|  | sk_dst_set(sk, dst); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sk_setup_caps); | 
|  |  | 
|  | /* | 
|  | *	Simple resource managers for sockets. | 
|  | */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Write buffer destructor automatically called from kfree_skb. | 
|  | */ | 
|  | void sock_wfree(struct sk_buff *skb) | 
|  | { | 
|  | struct sock *sk = skb->sk; | 
|  | unsigned int len = skb->truesize; | 
|  | bool free; | 
|  |  | 
|  | if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { | 
|  | if (sock_flag(sk, SOCK_RCU_FREE) && | 
|  | sk->sk_write_space == sock_def_write_space) { | 
|  | rcu_read_lock(); | 
|  | free = refcount_sub_and_test(len, &sk->sk_wmem_alloc); | 
|  | sock_def_write_space_wfree(sk); | 
|  | rcu_read_unlock(); | 
|  | if (unlikely(free)) | 
|  | __sk_free(sk); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Keep a reference on sk_wmem_alloc, this will be released | 
|  | * after sk_write_space() call | 
|  | */ | 
|  | WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); | 
|  | sk->sk_write_space(sk); | 
|  | len = 1; | 
|  | } | 
|  | /* | 
|  | * if sk_wmem_alloc reaches 0, we must finish what sk_free() | 
|  | * could not do because of in-flight packets | 
|  | */ | 
|  | if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) | 
|  | __sk_free(sk); | 
|  | } | 
|  | EXPORT_SYMBOL(sock_wfree); | 
|  |  | 
|  | /* This variant of sock_wfree() is used by TCP, | 
|  | * since it sets SOCK_USE_WRITE_QUEUE. | 
|  | */ | 
|  | void __sock_wfree(struct sk_buff *skb) | 
|  | { | 
|  | struct sock *sk = skb->sk; | 
|  |  | 
|  | if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) | 
|  | __sk_free(sk); | 
|  | } | 
|  |  | 
|  | void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) | 
|  | { | 
|  | skb_orphan(skb); | 
|  | skb->sk = sk; | 
|  | #ifdef CONFIG_INET | 
|  | if (unlikely(!sk_fullsock(sk))) { | 
|  | skb->destructor = sock_edemux; | 
|  | sock_hold(sk); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  | skb->destructor = sock_wfree; | 
|  | skb_set_hash_from_sk(skb, sk); | 
|  | /* | 
|  | * We used to take a refcount on sk, but following operation | 
|  | * is enough to guarantee sk_free() wont free this sock until | 
|  | * all in-flight packets are completed | 
|  | */ | 
|  | refcount_add(skb->truesize, &sk->sk_wmem_alloc); | 
|  | } | 
|  | EXPORT_SYMBOL(skb_set_owner_w); | 
|  |  | 
|  | static bool can_skb_orphan_partial(const struct sk_buff *skb) | 
|  | { | 
|  | #ifdef CONFIG_TLS_DEVICE | 
|  | /* Drivers depend on in-order delivery for crypto offload, | 
|  | * partial orphan breaks out-of-order-OK logic. | 
|  | */ | 
|  | if (skb->decrypted) | 
|  | return false; | 
|  | #endif | 
|  | return (skb->destructor == sock_wfree || | 
|  | (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree)); | 
|  | } | 
|  |  | 
|  | /* This helper is used by netem, as it can hold packets in its | 
|  | * delay queue. We want to allow the owner socket to send more | 
|  | * packets, as if they were already TX completed by a typical driver. | 
|  | * But we also want to keep skb->sk set because some packet schedulers | 
|  | * rely on it (sch_fq for example). | 
|  | */ | 
|  | void skb_orphan_partial(struct sk_buff *skb) | 
|  | { | 
|  | if (skb_is_tcp_pure_ack(skb)) | 
|  | return; | 
|  |  | 
|  | if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk)) | 
|  | return; | 
|  |  | 
|  | skb_orphan(skb); | 
|  | } | 
|  | EXPORT_SYMBOL(skb_orphan_partial); | 
|  |  | 
|  | /* | 
|  | * Read buffer destructor automatically called from kfree_skb. | 
|  | */ | 
|  | void sock_rfree(struct sk_buff *skb) | 
|  | { | 
|  | struct sock *sk = skb->sk; | 
|  | unsigned int len = skb->truesize; | 
|  |  | 
|  | atomic_sub(len, &sk->sk_rmem_alloc); | 
|  | sk_mem_uncharge(sk, len); | 
|  | } | 
|  | EXPORT_SYMBOL(sock_rfree); | 
|  |  | 
|  | /* | 
|  | * Buffer destructor for skbs that are not used directly in read or write | 
|  | * path, e.g. for error handler skbs. Automatically called from kfree_skb. | 
|  | */ | 
|  | void sock_efree(struct sk_buff *skb) | 
|  | { | 
|  | sock_put(skb->sk); | 
|  | } | 
|  | EXPORT_SYMBOL(sock_efree); | 
|  |  | 
|  | /* Buffer destructor for prefetch/receive path where reference count may | 
|  | * not be held, e.g. for listen sockets. | 
|  | */ | 
|  | #ifdef CONFIG_INET | 
|  | void sock_pfree(struct sk_buff *skb) | 
|  | { | 
|  | if (sk_is_refcounted(skb->sk)) | 
|  | sock_gen_put(skb->sk); | 
|  | } | 
|  | EXPORT_SYMBOL(sock_pfree); | 
|  | #endif /* CONFIG_INET */ | 
|  |  | 
|  | kuid_t sock_i_uid(struct sock *sk) | 
|  | { | 
|  | kuid_t uid; | 
|  |  | 
|  | read_lock_bh(&sk->sk_callback_lock); | 
|  | uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; | 
|  | read_unlock_bh(&sk->sk_callback_lock); | 
|  | return uid; | 
|  | } | 
|  | EXPORT_SYMBOL(sock_i_uid); | 
|  |  | 
|  | unsigned long __sock_i_ino(struct sock *sk) | 
|  | { | 
|  | unsigned long ino; | 
|  |  | 
|  | read_lock(&sk->sk_callback_lock); | 
|  | ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; | 
|  | read_unlock(&sk->sk_callback_lock); | 
|  | return ino; | 
|  | } | 
|  | EXPORT_SYMBOL(__sock_i_ino); | 
|  |  | 
|  | unsigned long sock_i_ino(struct sock *sk) | 
|  | { | 
|  | unsigned long ino; | 
|  |  | 
|  | local_bh_disable(); | 
|  | ino = __sock_i_ino(sk); | 
|  | local_bh_enable(); | 
|  | return ino; | 
|  | } | 
|  | EXPORT_SYMBOL(sock_i_ino); | 
|  |  | 
|  | /* | 
|  | * Allocate a skb from the socket's send buffer. | 
|  | */ | 
|  | struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, | 
|  | gfp_t priority) | 
|  | { | 
|  | if (force || | 
|  | refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) { | 
|  | struct sk_buff *skb = alloc_skb(size, priority); | 
|  |  | 
|  | if (skb) { | 
|  | skb_set_owner_w(skb, sk); | 
|  | return skb; | 
|  | } | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(sock_wmalloc); | 
|  |  | 
|  | static void sock_ofree(struct sk_buff *skb) | 
|  | { | 
|  | struct sock *sk = skb->sk; | 
|  |  | 
|  | atomic_sub(skb->truesize, &sk->sk_omem_alloc); | 
|  | } | 
|  |  | 
|  | struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, | 
|  | gfp_t priority) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ | 
|  | if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > | 
|  | READ_ONCE(sysctl_optmem_max)) | 
|  | return NULL; | 
|  |  | 
|  | skb = alloc_skb(size, priority); | 
|  | if (!skb) | 
|  | return NULL; | 
|  |  | 
|  | atomic_add(skb->truesize, &sk->sk_omem_alloc); | 
|  | skb->sk = sk; | 
|  | skb->destructor = sock_ofree; | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a memory block from the socket's option memory buffer. | 
|  | */ | 
|  | void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) | 
|  | { | 
|  | int optmem_max = READ_ONCE(sysctl_optmem_max); | 
|  |  | 
|  | if ((unsigned int)size <= optmem_max && | 
|  | atomic_read(&sk->sk_omem_alloc) + size < optmem_max) { | 
|  | void *mem; | 
|  | /* First do the add, to avoid the race if kmalloc | 
|  | * might sleep. | 
|  | */ | 
|  | atomic_add(size, &sk->sk_omem_alloc); | 
|  | mem = kmalloc(size, priority); | 
|  | if (mem) | 
|  | return mem; | 
|  | atomic_sub(size, &sk->sk_omem_alloc); | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(sock_kmalloc); | 
|  |  | 
|  | /* Free an option memory block. Note, we actually want the inline | 
|  | * here as this allows gcc to detect the nullify and fold away the | 
|  | * condition entirely. | 
|  | */ | 
|  | static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, | 
|  | const bool nullify) | 
|  | { | 
|  | if (WARN_ON_ONCE(!mem)) | 
|  | return; | 
|  | if (nullify) | 
|  | kfree_sensitive(mem); | 
|  | else | 
|  | kfree(mem); | 
|  | atomic_sub(size, &sk->sk_omem_alloc); | 
|  | } | 
|  |  | 
|  | void sock_kfree_s(struct sock *sk, void *mem, int size) | 
|  | { | 
|  | __sock_kfree_s(sk, mem, size, false); | 
|  | } | 
|  | EXPORT_SYMBOL(sock_kfree_s); | 
|  |  | 
|  | void sock_kzfree_s(struct sock *sk, void *mem, int size) | 
|  | { | 
|  | __sock_kfree_s(sk, mem, size, true); | 
|  | } | 
|  | EXPORT_SYMBOL(sock_kzfree_s); | 
|  |  | 
|  | /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. | 
|  | I think, these locks should be removed for datagram sockets. | 
|  | */ | 
|  | static long sock_wait_for_wmem(struct sock *sk, long timeo) | 
|  | { | 
|  | DEFINE_WAIT(wait); | 
|  |  | 
|  | sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); | 
|  | for (;;) { | 
|  | if (!timeo) | 
|  | break; | 
|  | if (signal_pending(current)) | 
|  | break; | 
|  | set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); | 
|  | prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); | 
|  | if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) | 
|  | break; | 
|  | if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN) | 
|  | break; | 
|  | if (READ_ONCE(sk->sk_err)) | 
|  | break; | 
|  | timeo = schedule_timeout(timeo); | 
|  | } | 
|  | finish_wait(sk_sleep(sk), &wait); | 
|  | return timeo; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | *	Generic send/receive buffer handlers | 
|  | */ | 
|  |  | 
|  | struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, | 
|  | unsigned long data_len, int noblock, | 
|  | int *errcode, int max_page_order) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  | long timeo; | 
|  | int err; | 
|  |  | 
|  | timeo = sock_sndtimeo(sk, noblock); | 
|  | for (;;) { | 
|  | err = sock_error(sk); | 
|  | if (err != 0) | 
|  | goto failure; | 
|  |  | 
|  | err = -EPIPE; | 
|  | if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN) | 
|  | goto failure; | 
|  |  | 
|  | if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf)) | 
|  | break; | 
|  |  | 
|  | sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); | 
|  | set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); | 
|  | err = -EAGAIN; | 
|  | if (!timeo) | 
|  | goto failure; | 
|  | if (signal_pending(current)) | 
|  | goto interrupted; | 
|  | timeo = sock_wait_for_wmem(sk, timeo); | 
|  | } | 
|  | skb = alloc_skb_with_frags(header_len, data_len, max_page_order, | 
|  | errcode, sk->sk_allocation); | 
|  | if (skb) | 
|  | skb_set_owner_w(skb, sk); | 
|  | return skb; | 
|  |  | 
|  | interrupted: | 
|  | err = sock_intr_errno(timeo); | 
|  | failure: | 
|  | *errcode = err; | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(sock_alloc_send_pskb); | 
|  |  | 
|  | int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg, | 
|  | struct sockcm_cookie *sockc) | 
|  | { | 
|  | u32 tsflags; | 
|  |  | 
|  | switch (cmsg->cmsg_type) { | 
|  | case SO_MARK: | 
|  | if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && | 
|  | !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) | 
|  | return -EPERM; | 
|  | if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) | 
|  | return -EINVAL; | 
|  | sockc->mark = *(u32 *)CMSG_DATA(cmsg); | 
|  | break; | 
|  | case SO_TIMESTAMPING_OLD: | 
|  | if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) | 
|  | return -EINVAL; | 
|  |  | 
|  | tsflags = *(u32 *)CMSG_DATA(cmsg); | 
|  | if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) | 
|  | return -EINVAL; | 
|  |  | 
|  | sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; | 
|  | sockc->tsflags |= tsflags; | 
|  | break; | 
|  | case SCM_TXTIME: | 
|  | if (!sock_flag(sk, SOCK_TXTIME)) | 
|  | return -EINVAL; | 
|  | if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) | 
|  | return -EINVAL; | 
|  | sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); | 
|  | break; | 
|  | /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ | 
|  | case SCM_RIGHTS: | 
|  | case SCM_CREDENTIALS: | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(__sock_cmsg_send); | 
|  |  | 
|  | int sock_cmsg_send(struct sock *sk, struct msghdr *msg, | 
|  | struct sockcm_cookie *sockc) | 
|  | { | 
|  | struct cmsghdr *cmsg; | 
|  | int ret; | 
|  |  | 
|  | for_each_cmsghdr(cmsg, msg) { | 
|  | if (!CMSG_OK(msg, cmsg)) | 
|  | return -EINVAL; | 
|  | if (cmsg->cmsg_level != SOL_SOCKET) | 
|  | continue; | 
|  | ret = __sock_cmsg_send(sk, cmsg, sockc); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(sock_cmsg_send); | 
|  |  | 
|  | static void sk_enter_memory_pressure(struct sock *sk) | 
|  | { | 
|  | if (!sk->sk_prot->enter_memory_pressure) | 
|  | return; | 
|  |  | 
|  | sk->sk_prot->enter_memory_pressure(sk); | 
|  | } | 
|  |  | 
|  | static void sk_leave_memory_pressure(struct sock *sk) | 
|  | { | 
|  | if (sk->sk_prot->leave_memory_pressure) { | 
|  | INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure, | 
|  | tcp_leave_memory_pressure, sk); | 
|  | } else { | 
|  | unsigned long *memory_pressure = sk->sk_prot->memory_pressure; | 
|  |  | 
|  | if (memory_pressure && READ_ONCE(*memory_pressure)) | 
|  | WRITE_ONCE(*memory_pressure, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); | 
|  |  | 
|  | /** | 
|  | * skb_page_frag_refill - check that a page_frag contains enough room | 
|  | * @sz: minimum size of the fragment we want to get | 
|  | * @pfrag: pointer to page_frag | 
|  | * @gfp: priority for memory allocation | 
|  | * | 
|  | * Note: While this allocator tries to use high order pages, there is | 
|  | * no guarantee that allocations succeed. Therefore, @sz MUST be | 
|  | * less or equal than PAGE_SIZE. | 
|  | */ | 
|  | bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) | 
|  | { | 
|  | if (pfrag->page) { | 
|  | if (page_ref_count(pfrag->page) == 1) { | 
|  | pfrag->offset = 0; | 
|  | return true; | 
|  | } | 
|  | if (pfrag->offset + sz <= pfrag->size) | 
|  | return true; | 
|  | put_page(pfrag->page); | 
|  | } | 
|  |  | 
|  | pfrag->offset = 0; | 
|  | if (SKB_FRAG_PAGE_ORDER && | 
|  | !static_branch_unlikely(&net_high_order_alloc_disable_key)) { | 
|  | /* Avoid direct reclaim but allow kswapd to wake */ | 
|  | pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | | 
|  | __GFP_COMP | __GFP_NOWARN | | 
|  | __GFP_NORETRY, | 
|  | SKB_FRAG_PAGE_ORDER); | 
|  | if (likely(pfrag->page)) { | 
|  | pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | pfrag->page = alloc_page(gfp); | 
|  | if (likely(pfrag->page)) { | 
|  | pfrag->size = PAGE_SIZE; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | EXPORT_SYMBOL(skb_page_frag_refill); | 
|  |  | 
|  | bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) | 
|  | { | 
|  | if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) | 
|  | return true; | 
|  |  | 
|  | sk_enter_memory_pressure(sk); | 
|  | sk_stream_moderate_sndbuf(sk); | 
|  | return false; | 
|  | } | 
|  | EXPORT_SYMBOL(sk_page_frag_refill); | 
|  |  | 
|  | void __lock_sock(struct sock *sk) | 
|  | __releases(&sk->sk_lock.slock) | 
|  | __acquires(&sk->sk_lock.slock) | 
|  | { | 
|  | DEFINE_WAIT(wait); | 
|  |  | 
|  | for (;;) { | 
|  | prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, | 
|  | TASK_UNINTERRUPTIBLE); | 
|  | spin_unlock_bh(&sk->sk_lock.slock); | 
|  | schedule(); | 
|  | spin_lock_bh(&sk->sk_lock.slock); | 
|  | if (!sock_owned_by_user(sk)) | 
|  | break; | 
|  | } | 
|  | finish_wait(&sk->sk_lock.wq, &wait); | 
|  | } | 
|  |  | 
|  | void __release_sock(struct sock *sk) | 
|  | __releases(&sk->sk_lock.slock) | 
|  | __acquires(&sk->sk_lock.slock) | 
|  | { | 
|  | struct sk_buff *skb, *next; | 
|  |  | 
|  | while ((skb = sk->sk_backlog.head) != NULL) { | 
|  | sk->sk_backlog.head = sk->sk_backlog.tail = NULL; | 
|  |  | 
|  | spin_unlock_bh(&sk->sk_lock.slock); | 
|  |  | 
|  | do { | 
|  | next = skb->next; | 
|  | prefetch(next); | 
|  | DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb)); | 
|  | skb_mark_not_on_list(skb); | 
|  | sk_backlog_rcv(sk, skb); | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | skb = next; | 
|  | } while (skb != NULL); | 
|  |  | 
|  | spin_lock_bh(&sk->sk_lock.slock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Doing the zeroing here guarantee we can not loop forever | 
|  | * while a wild producer attempts to flood us. | 
|  | */ | 
|  | sk->sk_backlog.len = 0; | 
|  | } | 
|  |  | 
|  | void __sk_flush_backlog(struct sock *sk) | 
|  | { | 
|  | spin_lock_bh(&sk->sk_lock.slock); | 
|  | __release_sock(sk); | 
|  |  | 
|  | if (sk->sk_prot->release_cb) | 
|  | INDIRECT_CALL_INET_1(sk->sk_prot->release_cb, | 
|  | tcp_release_cb, sk); | 
|  |  | 
|  | spin_unlock_bh(&sk->sk_lock.slock); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__sk_flush_backlog); | 
|  |  | 
|  | /** | 
|  | * sk_wait_data - wait for data to arrive at sk_receive_queue | 
|  | * @sk:    sock to wait on | 
|  | * @timeo: for how long | 
|  | * @skb:   last skb seen on sk_receive_queue | 
|  | * | 
|  | * Now socket state including sk->sk_err is changed only under lock, | 
|  | * hence we may omit checks after joining wait queue. | 
|  | * We check receive queue before schedule() only as optimization; | 
|  | * it is very likely that release_sock() added new data. | 
|  | */ | 
|  | int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) | 
|  | { | 
|  | DEFINE_WAIT_FUNC(wait, woken_wake_function); | 
|  | int rc; | 
|  |  | 
|  | add_wait_queue(sk_sleep(sk), &wait); | 
|  | sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); | 
|  | rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); | 
|  | sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); | 
|  | remove_wait_queue(sk_sleep(sk), &wait); | 
|  | return rc; | 
|  | } | 
|  | EXPORT_SYMBOL(sk_wait_data); | 
|  |  | 
|  | /** | 
|  | *	__sk_mem_raise_allocated - increase memory_allocated | 
|  | *	@sk: socket | 
|  | *	@size: memory size to allocate | 
|  | *	@amt: pages to allocate | 
|  | *	@kind: allocation type | 
|  | * | 
|  | *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc. | 
|  | * | 
|  | *	Unlike the globally shared limits among the sockets under same protocol, | 
|  | *	consuming the budget of a memcg won't have direct effect on other ones. | 
|  | *	So be optimistic about memcg's tolerance, and leave the callers to decide | 
|  | *	whether or not to raise allocated through sk_under_memory_pressure() or | 
|  | *	its variants. | 
|  | */ | 
|  | int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_sockets_enabled ? sk->sk_memcg : NULL; | 
|  | struct proto *prot = sk->sk_prot; | 
|  | bool charged = false; | 
|  | long allocated; | 
|  |  | 
|  | sk_memory_allocated_add(sk, amt); | 
|  | allocated = sk_memory_allocated(sk); | 
|  |  | 
|  | if (memcg) { | 
|  | if (!mem_cgroup_charge_skmem(memcg, amt, gfp_memcg_charge())) | 
|  | goto suppress_allocation; | 
|  | charged = true; | 
|  | } | 
|  |  | 
|  | /* Under limit. */ | 
|  | if (allocated <= sk_prot_mem_limits(sk, 0)) { | 
|  | sk_leave_memory_pressure(sk); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Under pressure. */ | 
|  | if (allocated > sk_prot_mem_limits(sk, 1)) | 
|  | sk_enter_memory_pressure(sk); | 
|  |  | 
|  | /* Over hard limit. */ | 
|  | if (allocated > sk_prot_mem_limits(sk, 2)) | 
|  | goto suppress_allocation; | 
|  |  | 
|  | /* Guarantee minimum buffer size under pressure (either global | 
|  | * or memcg) to make sure features described in RFC 7323 (TCP | 
|  | * Extensions for High Performance) work properly. | 
|  | * | 
|  | * This rule does NOT stand when exceeds global or memcg's hard | 
|  | * limit, or else a DoS attack can be taken place by spawning | 
|  | * lots of sockets whose usage are under minimum buffer size. | 
|  | */ | 
|  | if (kind == SK_MEM_RECV) { | 
|  | if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) | 
|  | return 1; | 
|  |  | 
|  | } else { /* SK_MEM_SEND */ | 
|  | int wmem0 = sk_get_wmem0(sk, prot); | 
|  |  | 
|  | if (sk->sk_type == SOCK_STREAM) { | 
|  | if (sk->sk_wmem_queued < wmem0) | 
|  | return 1; | 
|  | } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (sk_has_memory_pressure(sk)) { | 
|  | u64 alloc; | 
|  |  | 
|  | /* The following 'average' heuristic is within the | 
|  | * scope of global accounting, so it only makes | 
|  | * sense for global memory pressure. | 
|  | */ | 
|  | if (!sk_under_global_memory_pressure(sk)) | 
|  | return 1; | 
|  |  | 
|  | /* Try to be fair among all the sockets under global | 
|  | * pressure by allowing the ones that below average | 
|  | * usage to raise. | 
|  | */ | 
|  | alloc = sk_sockets_allocated_read_positive(sk); | 
|  | if (sk_prot_mem_limits(sk, 2) > alloc * | 
|  | sk_mem_pages(sk->sk_wmem_queued + | 
|  | atomic_read(&sk->sk_rmem_alloc) + | 
|  | sk->sk_forward_alloc)) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | suppress_allocation: | 
|  |  | 
|  | if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { | 
|  | sk_stream_moderate_sndbuf(sk); | 
|  |  | 
|  | /* Fail only if socket is _under_ its sndbuf. | 
|  | * In this case we cannot block, so that we have to fail. | 
|  | */ | 
|  | if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) { | 
|  | /* Force charge with __GFP_NOFAIL */ | 
|  | if (memcg && !charged) { | 
|  | mem_cgroup_charge_skmem(memcg, amt, | 
|  | gfp_memcg_charge() | __GFP_NOFAIL); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) | 
|  | trace_sock_exceed_buf_limit(sk, prot, allocated, kind); | 
|  |  | 
|  | sk_memory_allocated_sub(sk, amt); | 
|  |  | 
|  | if (charged) | 
|  | mem_cgroup_uncharge_skmem(memcg, amt); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated | 
|  | *	@sk: socket | 
|  | *	@size: memory size to allocate | 
|  | *	@kind: allocation type | 
|  | * | 
|  | *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means | 
|  | *	rmem allocation. This function assumes that protocols which have | 
|  | *	memory_pressure use sk_wmem_queued as write buffer accounting. | 
|  | */ | 
|  | int __sk_mem_schedule(struct sock *sk, int size, int kind) | 
|  | { | 
|  | int ret, amt = sk_mem_pages(size); | 
|  |  | 
|  | sk_forward_alloc_add(sk, amt << PAGE_SHIFT); | 
|  | ret = __sk_mem_raise_allocated(sk, size, amt, kind); | 
|  | if (!ret) | 
|  | sk_forward_alloc_add(sk, -(amt << PAGE_SHIFT)); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(__sk_mem_schedule); | 
|  |  | 
|  | /** | 
|  | *	__sk_mem_reduce_allocated - reclaim memory_allocated | 
|  | *	@sk: socket | 
|  | *	@amount: number of quanta | 
|  | * | 
|  | *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc | 
|  | */ | 
|  | void __sk_mem_reduce_allocated(struct sock *sk, int amount) | 
|  | { | 
|  | sk_memory_allocated_sub(sk, amount); | 
|  |  | 
|  | if (mem_cgroup_sockets_enabled && sk->sk_memcg) | 
|  | mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); | 
|  |  | 
|  | if (sk_under_global_memory_pressure(sk) && | 
|  | (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) | 
|  | sk_leave_memory_pressure(sk); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated | 
|  | *	@sk: socket | 
|  | *	@amount: number of bytes (rounded down to a PAGE_SIZE multiple) | 
|  | */ | 
|  | void __sk_mem_reclaim(struct sock *sk, int amount) | 
|  | { | 
|  | amount >>= PAGE_SHIFT; | 
|  | sk_forward_alloc_add(sk, -(amount << PAGE_SHIFT)); | 
|  | __sk_mem_reduce_allocated(sk, amount); | 
|  | } | 
|  | EXPORT_SYMBOL(__sk_mem_reclaim); | 
|  |  | 
|  | int sk_set_peek_off(struct sock *sk, int val) | 
|  | { | 
|  | WRITE_ONCE(sk->sk_peek_off, val); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sk_set_peek_off); | 
|  |  | 
|  | /* | 
|  | * Set of default routines for initialising struct proto_ops when | 
|  | * the protocol does not support a particular function. In certain | 
|  | * cases where it makes no sense for a protocol to have a "do nothing" | 
|  | * function, some default processing is provided. | 
|  | */ | 
|  |  | 
|  | int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) | 
|  | { | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | EXPORT_SYMBOL(sock_no_bind); | 
|  |  | 
|  | int sock_no_connect(struct socket *sock, struct sockaddr *saddr, | 
|  | int len, int flags) | 
|  | { | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | EXPORT_SYMBOL(sock_no_connect); | 
|  |  | 
|  | int sock_no_socketpair(struct socket *sock1, struct socket *sock2) | 
|  | { | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | EXPORT_SYMBOL(sock_no_socketpair); | 
|  |  | 
|  | int sock_no_accept(struct socket *sock, struct socket *newsock, int flags, | 
|  | bool kern) | 
|  | { | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | EXPORT_SYMBOL(sock_no_accept); | 
|  |  | 
|  | int sock_no_getname(struct socket *sock, struct sockaddr *saddr, | 
|  | int peer) | 
|  | { | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | EXPORT_SYMBOL(sock_no_getname); | 
|  |  | 
|  | int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) | 
|  | { | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | EXPORT_SYMBOL(sock_no_ioctl); | 
|  |  | 
|  | int sock_no_listen(struct socket *sock, int backlog) | 
|  | { | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | EXPORT_SYMBOL(sock_no_listen); | 
|  |  | 
|  | int sock_no_shutdown(struct socket *sock, int how) | 
|  | { | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | EXPORT_SYMBOL(sock_no_shutdown); | 
|  |  | 
|  | int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) | 
|  | { | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | EXPORT_SYMBOL(sock_no_sendmsg); | 
|  |  | 
|  | int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) | 
|  | { | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | EXPORT_SYMBOL(sock_no_sendmsg_locked); | 
|  |  | 
|  | int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, | 
|  | int flags) | 
|  | { | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | EXPORT_SYMBOL(sock_no_recvmsg); | 
|  |  | 
|  | int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) | 
|  | { | 
|  | /* Mirror missing mmap method error code */ | 
|  | return -ENODEV; | 
|  | } | 
|  | EXPORT_SYMBOL(sock_no_mmap); | 
|  |  | 
|  | /* | 
|  | * When a file is received (via SCM_RIGHTS, etc), we must bump the | 
|  | * various sock-based usage counts. | 
|  | */ | 
|  | void __receive_sock(struct file *file) | 
|  | { | 
|  | struct socket *sock; | 
|  |  | 
|  | sock = sock_from_file(file); | 
|  | if (sock) { | 
|  | sock_update_netprioidx(&sock->sk->sk_cgrp_data); | 
|  | sock_update_classid(&sock->sk->sk_cgrp_data); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Default Socket Callbacks | 
|  | */ | 
|  |  | 
|  | static void sock_def_wakeup(struct sock *sk) | 
|  | { | 
|  | struct socket_wq *wq; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | wq = rcu_dereference(sk->sk_wq); | 
|  | if (skwq_has_sleeper(wq)) | 
|  | wake_up_interruptible_all(&wq->wait); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static void sock_def_error_report(struct sock *sk) | 
|  | { | 
|  | struct socket_wq *wq; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | wq = rcu_dereference(sk->sk_wq); | 
|  | if (skwq_has_sleeper(wq)) | 
|  | wake_up_interruptible_poll(&wq->wait, EPOLLERR); | 
|  | sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | void sock_def_readable(struct sock *sk) | 
|  | { | 
|  | struct socket_wq *wq; | 
|  |  | 
|  | trace_sk_data_ready(sk); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | wq = rcu_dereference(sk->sk_wq); | 
|  | if (skwq_has_sleeper(wq)) | 
|  | wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | | 
|  | EPOLLRDNORM | EPOLLRDBAND); | 
|  | sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static void sock_def_write_space(struct sock *sk) | 
|  | { | 
|  | struct socket_wq *wq; | 
|  |  | 
|  | rcu_read_lock(); | 
|  |  | 
|  | /* Do not wake up a writer until he can make "significant" | 
|  | * progress.  --DaveM | 
|  | */ | 
|  | if (sock_writeable(sk)) { | 
|  | wq = rcu_dereference(sk->sk_wq); | 
|  | if (skwq_has_sleeper(wq)) | 
|  | wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | | 
|  | EPOLLWRNORM | EPOLLWRBAND); | 
|  |  | 
|  | /* Should agree with poll, otherwise some programs break */ | 
|  | sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); | 
|  | } | 
|  |  | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /* An optimised version of sock_def_write_space(), should only be called | 
|  | * for SOCK_RCU_FREE sockets under RCU read section and after putting | 
|  | * ->sk_wmem_alloc. | 
|  | */ | 
|  | static void sock_def_write_space_wfree(struct sock *sk) | 
|  | { | 
|  | /* Do not wake up a writer until he can make "significant" | 
|  | * progress.  --DaveM | 
|  | */ | 
|  | if (sock_writeable(sk)) { | 
|  | struct socket_wq *wq = rcu_dereference(sk->sk_wq); | 
|  |  | 
|  | /* rely on refcount_sub from sock_wfree() */ | 
|  | smp_mb__after_atomic(); | 
|  | if (wq && waitqueue_active(&wq->wait)) | 
|  | wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | | 
|  | EPOLLWRNORM | EPOLLWRBAND); | 
|  |  | 
|  | /* Should agree with poll, otherwise some programs break */ | 
|  | sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void sock_def_destruct(struct sock *sk) | 
|  | { | 
|  | } | 
|  |  | 
|  | void sk_send_sigurg(struct sock *sk) | 
|  | { | 
|  | if (sk->sk_socket && sk->sk_socket->file) | 
|  | if (send_sigurg(&sk->sk_socket->file->f_owner)) | 
|  | sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); | 
|  | } | 
|  | EXPORT_SYMBOL(sk_send_sigurg); | 
|  |  | 
|  | void sk_reset_timer(struct sock *sk, struct timer_list* timer, | 
|  | unsigned long expires) | 
|  | { | 
|  | if (!mod_timer(timer, expires)) | 
|  | sock_hold(sk); | 
|  | } | 
|  | EXPORT_SYMBOL(sk_reset_timer); | 
|  |  | 
|  | void sk_stop_timer(struct sock *sk, struct timer_list* timer) | 
|  | { | 
|  | if (del_timer(timer)) | 
|  | __sock_put(sk); | 
|  | } | 
|  | EXPORT_SYMBOL(sk_stop_timer); | 
|  |  | 
|  | void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer) | 
|  | { | 
|  | if (del_timer_sync(timer)) | 
|  | __sock_put(sk); | 
|  | } | 
|  | EXPORT_SYMBOL(sk_stop_timer_sync); | 
|  |  | 
|  | void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid) | 
|  | { | 
|  | sk_init_common(sk); | 
|  | sk->sk_send_head	=	NULL; | 
|  |  | 
|  | timer_setup(&sk->sk_timer, NULL, 0); | 
|  |  | 
|  | sk->sk_allocation	=	GFP_KERNEL; | 
|  | sk->sk_rcvbuf		=	READ_ONCE(sysctl_rmem_default); | 
|  | sk->sk_sndbuf		=	READ_ONCE(sysctl_wmem_default); | 
|  | sk->sk_state		=	TCP_CLOSE; | 
|  | sk->sk_use_task_frag	=	true; | 
|  | sk_set_socket(sk, sock); | 
|  |  | 
|  | sock_set_flag(sk, SOCK_ZAPPED); | 
|  |  | 
|  | if (sock) { | 
|  | sk->sk_type	=	sock->type; | 
|  | RCU_INIT_POINTER(sk->sk_wq, &sock->wq); | 
|  | sock->sk	=	sk; | 
|  | } else { | 
|  | RCU_INIT_POINTER(sk->sk_wq, NULL); | 
|  | } | 
|  | sk->sk_uid	=	uid; | 
|  |  | 
|  | rwlock_init(&sk->sk_callback_lock); | 
|  | if (sk->sk_kern_sock) | 
|  | lockdep_set_class_and_name( | 
|  | &sk->sk_callback_lock, | 
|  | af_kern_callback_keys + sk->sk_family, | 
|  | af_family_kern_clock_key_strings[sk->sk_family]); | 
|  | else | 
|  | lockdep_set_class_and_name( | 
|  | &sk->sk_callback_lock, | 
|  | af_callback_keys + sk->sk_family, | 
|  | af_family_clock_key_strings[sk->sk_family]); | 
|  |  | 
|  | sk->sk_state_change	=	sock_def_wakeup; | 
|  | sk->sk_data_ready	=	sock_def_readable; | 
|  | sk->sk_write_space	=	sock_def_write_space; | 
|  | sk->sk_error_report	=	sock_def_error_report; | 
|  | sk->sk_destruct		=	sock_def_destruct; | 
|  |  | 
|  | sk->sk_frag.page	=	NULL; | 
|  | sk->sk_frag.offset	=	0; | 
|  | sk->sk_peek_off		=	-1; | 
|  |  | 
|  | sk->sk_peer_pid 	=	NULL; | 
|  | sk->sk_peer_cred	=	NULL; | 
|  | spin_lock_init(&sk->sk_peer_lock); | 
|  |  | 
|  | sk->sk_write_pending	=	0; | 
|  | sk->sk_rcvlowat		=	1; | 
|  | sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT; | 
|  | sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT; | 
|  |  | 
|  | sk->sk_stamp = SK_DEFAULT_STAMP; | 
|  | #if BITS_PER_LONG==32 | 
|  | seqlock_init(&sk->sk_stamp_seq); | 
|  | #endif | 
|  | atomic_set(&sk->sk_zckey, 0); | 
|  |  | 
|  | #ifdef CONFIG_NET_RX_BUSY_POLL | 
|  | sk->sk_napi_id		=	0; | 
|  | sk->sk_ll_usec		=	READ_ONCE(sysctl_net_busy_read); | 
|  | #endif | 
|  |  | 
|  | sk->sk_max_pacing_rate = ~0UL; | 
|  | sk->sk_pacing_rate = ~0UL; | 
|  | WRITE_ONCE(sk->sk_pacing_shift, 10); | 
|  | sk->sk_incoming_cpu = -1; | 
|  |  | 
|  | sk_rx_queue_clear(sk); | 
|  | /* | 
|  | * Before updating sk_refcnt, we must commit prior changes to memory | 
|  | * (Documentation/RCU/rculist_nulls.rst for details) | 
|  | */ | 
|  | smp_wmb(); | 
|  | refcount_set(&sk->sk_refcnt, 1); | 
|  | atomic_set(&sk->sk_drops, 0); | 
|  | } | 
|  | EXPORT_SYMBOL(sock_init_data_uid); | 
|  |  | 
|  | void sock_init_data(struct socket *sock, struct sock *sk) | 
|  | { | 
|  | kuid_t uid = sock ? | 
|  | SOCK_INODE(sock)->i_uid : | 
|  | make_kuid(sock_net(sk)->user_ns, 0); | 
|  |  | 
|  | sock_init_data_uid(sock, sk, uid); | 
|  | } | 
|  | EXPORT_SYMBOL(sock_init_data); | 
|  |  | 
|  | void lock_sock_nested(struct sock *sk, int subclass) | 
|  | { | 
|  | /* The sk_lock has mutex_lock() semantics here. */ | 
|  | mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); | 
|  |  | 
|  | might_sleep(); | 
|  | spin_lock_bh(&sk->sk_lock.slock); | 
|  | if (sock_owned_by_user_nocheck(sk)) | 
|  | __lock_sock(sk); | 
|  | sk->sk_lock.owned = 1; | 
|  | spin_unlock_bh(&sk->sk_lock.slock); | 
|  | } | 
|  | EXPORT_SYMBOL(lock_sock_nested); | 
|  |  | 
|  | void release_sock(struct sock *sk) | 
|  | { | 
|  | spin_lock_bh(&sk->sk_lock.slock); | 
|  | if (sk->sk_backlog.tail) | 
|  | __release_sock(sk); | 
|  |  | 
|  | if (sk->sk_prot->release_cb) | 
|  | INDIRECT_CALL_INET_1(sk->sk_prot->release_cb, | 
|  | tcp_release_cb, sk); | 
|  |  | 
|  | sock_release_ownership(sk); | 
|  | if (waitqueue_active(&sk->sk_lock.wq)) | 
|  | wake_up(&sk->sk_lock.wq); | 
|  | spin_unlock_bh(&sk->sk_lock.slock); | 
|  | } | 
|  | EXPORT_SYMBOL(release_sock); | 
|  |  | 
|  | bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock) | 
|  | { | 
|  | might_sleep(); | 
|  | spin_lock_bh(&sk->sk_lock.slock); | 
|  |  | 
|  | if (!sock_owned_by_user_nocheck(sk)) { | 
|  | /* | 
|  | * Fast path return with bottom halves disabled and | 
|  | * sock::sk_lock.slock held. | 
|  | * | 
|  | * The 'mutex' is not contended and holding | 
|  | * sock::sk_lock.slock prevents all other lockers to | 
|  | * proceed so the corresponding unlock_sock_fast() can | 
|  | * avoid the slow path of release_sock() completely and | 
|  | * just release slock. | 
|  | * | 
|  | * From a semantical POV this is equivalent to 'acquiring' | 
|  | * the 'mutex', hence the corresponding lockdep | 
|  | * mutex_release() has to happen in the fast path of | 
|  | * unlock_sock_fast(). | 
|  | */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | __lock_sock(sk); | 
|  | sk->sk_lock.owned = 1; | 
|  | __acquire(&sk->sk_lock.slock); | 
|  | spin_unlock_bh(&sk->sk_lock.slock); | 
|  | return true; | 
|  | } | 
|  | EXPORT_SYMBOL(__lock_sock_fast); | 
|  |  | 
|  | int sock_gettstamp(struct socket *sock, void __user *userstamp, | 
|  | bool timeval, bool time32) | 
|  | { | 
|  | struct sock *sk = sock->sk; | 
|  | struct timespec64 ts; | 
|  |  | 
|  | sock_enable_timestamp(sk, SOCK_TIMESTAMP); | 
|  | ts = ktime_to_timespec64(sock_read_timestamp(sk)); | 
|  | if (ts.tv_sec == -1) | 
|  | return -ENOENT; | 
|  | if (ts.tv_sec == 0) { | 
|  | ktime_t kt = ktime_get_real(); | 
|  | sock_write_timestamp(sk, kt); | 
|  | ts = ktime_to_timespec64(kt); | 
|  | } | 
|  |  | 
|  | if (timeval) | 
|  | ts.tv_nsec /= 1000; | 
|  |  | 
|  | #ifdef CONFIG_COMPAT_32BIT_TIME | 
|  | if (time32) | 
|  | return put_old_timespec32(&ts, userstamp); | 
|  | #endif | 
|  | #ifdef CONFIG_SPARC64 | 
|  | /* beware of padding in sparc64 timeval */ | 
|  | if (timeval && !in_compat_syscall()) { | 
|  | struct __kernel_old_timeval __user tv = { | 
|  | .tv_sec = ts.tv_sec, | 
|  | .tv_usec = ts.tv_nsec, | 
|  | }; | 
|  | if (copy_to_user(userstamp, &tv, sizeof(tv))) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  | return put_timespec64(&ts, userstamp); | 
|  | } | 
|  | EXPORT_SYMBOL(sock_gettstamp); | 
|  |  | 
|  | void sock_enable_timestamp(struct sock *sk, enum sock_flags flag) | 
|  | { | 
|  | if (!sock_flag(sk, flag)) { | 
|  | unsigned long previous_flags = sk->sk_flags; | 
|  |  | 
|  | sock_set_flag(sk, flag); | 
|  | /* | 
|  | * we just set one of the two flags which require net | 
|  | * time stamping, but time stamping might have been on | 
|  | * already because of the other one | 
|  | */ | 
|  | if (sock_needs_netstamp(sk) && | 
|  | !(previous_flags & SK_FLAGS_TIMESTAMP)) | 
|  | net_enable_timestamp(); | 
|  | } | 
|  | } | 
|  |  | 
|  | int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, | 
|  | int level, int type) | 
|  | { | 
|  | struct sock_exterr_skb *serr; | 
|  | struct sk_buff *skb; | 
|  | int copied, err; | 
|  |  | 
|  | err = -EAGAIN; | 
|  | skb = sock_dequeue_err_skb(sk); | 
|  | if (skb == NULL) | 
|  | goto out; | 
|  |  | 
|  | copied = skb->len; | 
|  | if (copied > len) { | 
|  | msg->msg_flags |= MSG_TRUNC; | 
|  | copied = len; | 
|  | } | 
|  | err = skb_copy_datagram_msg(skb, 0, msg, copied); | 
|  | if (err) | 
|  | goto out_free_skb; | 
|  |  | 
|  | sock_recv_timestamp(msg, sk, skb); | 
|  |  | 
|  | serr = SKB_EXT_ERR(skb); | 
|  | put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); | 
|  |  | 
|  | msg->msg_flags |= MSG_ERRQUEUE; | 
|  | err = copied; | 
|  |  | 
|  | out_free_skb: | 
|  | kfree_skb(skb); | 
|  | out: | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL(sock_recv_errqueue); | 
|  |  | 
|  | /* | 
|  | *	Get a socket option on an socket. | 
|  | * | 
|  | *	FIX: POSIX 1003.1g is very ambiguous here. It states that | 
|  | *	asynchronous errors should be reported by getsockopt. We assume | 
|  | *	this means if you specify SO_ERROR (otherwise whats the point of it). | 
|  | */ | 
|  | int sock_common_getsockopt(struct socket *sock, int level, int optname, | 
|  | char __user *optval, int __user *optlen) | 
|  | { | 
|  | struct sock *sk = sock->sk; | 
|  |  | 
|  | /* IPV6_ADDRFORM can change sk->sk_prot under us. */ | 
|  | return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen); | 
|  | } | 
|  | EXPORT_SYMBOL(sock_common_getsockopt); | 
|  |  | 
|  | int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, | 
|  | int flags) | 
|  | { | 
|  | struct sock *sk = sock->sk; | 
|  | int addr_len = 0; | 
|  | int err; | 
|  |  | 
|  | err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len); | 
|  | if (err >= 0) | 
|  | msg->msg_namelen = addr_len; | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL(sock_common_recvmsg); | 
|  |  | 
|  | /* | 
|  | *	Set socket options on an inet socket. | 
|  | */ | 
|  | int sock_common_setsockopt(struct socket *sock, int level, int optname, | 
|  | sockptr_t optval, unsigned int optlen) | 
|  | { | 
|  | struct sock *sk = sock->sk; | 
|  |  | 
|  | /* IPV6_ADDRFORM can change sk->sk_prot under us. */ | 
|  | return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen); | 
|  | } | 
|  | EXPORT_SYMBOL(sock_common_setsockopt); | 
|  |  | 
|  | void sk_common_release(struct sock *sk) | 
|  | { | 
|  | if (sk->sk_prot->destroy) | 
|  | sk->sk_prot->destroy(sk); | 
|  |  | 
|  | /* | 
|  | * Observation: when sk_common_release is called, processes have | 
|  | * no access to socket. But net still has. | 
|  | * Step one, detach it from networking: | 
|  | * | 
|  | * A. Remove from hash tables. | 
|  | */ | 
|  |  | 
|  | sk->sk_prot->unhash(sk); | 
|  |  | 
|  | /* | 
|  | * In this point socket cannot receive new packets, but it is possible | 
|  | * that some packets are in flight because some CPU runs receiver and | 
|  | * did hash table lookup before we unhashed socket. They will achieve | 
|  | * receive queue and will be purged by socket destructor. | 
|  | * | 
|  | * Also we still have packets pending on receive queue and probably, | 
|  | * our own packets waiting in device queues. sock_destroy will drain | 
|  | * receive queue, but transmitted packets will delay socket destruction | 
|  | * until the last reference will be released. | 
|  | */ | 
|  |  | 
|  | sock_orphan(sk); | 
|  |  | 
|  | xfrm_sk_free_policy(sk); | 
|  |  | 
|  | sock_put(sk); | 
|  | } | 
|  | EXPORT_SYMBOL(sk_common_release); | 
|  |  | 
|  | void sk_get_meminfo(const struct sock *sk, u32 *mem) | 
|  | { | 
|  | memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); | 
|  |  | 
|  | mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); | 
|  | mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf); | 
|  | mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); | 
|  | mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf); | 
|  | mem[SK_MEMINFO_FWD_ALLOC] = sk_forward_alloc_get(sk); | 
|  | mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued); | 
|  | mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); | 
|  | mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len); | 
|  | mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PROC_FS | 
|  | static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); | 
|  |  | 
|  | int sock_prot_inuse_get(struct net *net, struct proto *prot) | 
|  | { | 
|  | int cpu, idx = prot->inuse_idx; | 
|  | int res = 0; | 
|  |  | 
|  | for_each_possible_cpu(cpu) | 
|  | res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; | 
|  |  | 
|  | return res >= 0 ? res : 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sock_prot_inuse_get); | 
|  |  | 
|  | int sock_inuse_get(struct net *net) | 
|  | { | 
|  | int cpu, res = 0; | 
|  |  | 
|  | for_each_possible_cpu(cpu) | 
|  | res += per_cpu_ptr(net->core.prot_inuse, cpu)->all; | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(sock_inuse_get); | 
|  |  | 
|  | static int __net_init sock_inuse_init_net(struct net *net) | 
|  | { | 
|  | net->core.prot_inuse = alloc_percpu(struct prot_inuse); | 
|  | if (net->core.prot_inuse == NULL) | 
|  | return -ENOMEM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __net_exit sock_inuse_exit_net(struct net *net) | 
|  | { | 
|  | free_percpu(net->core.prot_inuse); | 
|  | } | 
|  |  | 
|  | static struct pernet_operations net_inuse_ops = { | 
|  | .init = sock_inuse_init_net, | 
|  | .exit = sock_inuse_exit_net, | 
|  | }; | 
|  |  | 
|  | static __init int net_inuse_init(void) | 
|  | { | 
|  | if (register_pernet_subsys(&net_inuse_ops)) | 
|  | panic("Cannot initialize net inuse counters"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | core_initcall(net_inuse_init); | 
|  |  | 
|  | static int assign_proto_idx(struct proto *prot) | 
|  | { | 
|  | prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); | 
|  |  | 
|  | if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { | 
|  | pr_err("PROTO_INUSE_NR exhausted\n"); | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | set_bit(prot->inuse_idx, proto_inuse_idx); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void release_proto_idx(struct proto *prot) | 
|  | { | 
|  | if (prot->inuse_idx != PROTO_INUSE_NR - 1) | 
|  | clear_bit(prot->inuse_idx, proto_inuse_idx); | 
|  | } | 
|  | #else | 
|  | static inline int assign_proto_idx(struct proto *prot) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void release_proto_idx(struct proto *prot) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot) | 
|  | { | 
|  | if (!twsk_prot) | 
|  | return; | 
|  | kfree(twsk_prot->twsk_slab_name); | 
|  | twsk_prot->twsk_slab_name = NULL; | 
|  | kmem_cache_destroy(twsk_prot->twsk_slab); | 
|  | twsk_prot->twsk_slab = NULL; | 
|  | } | 
|  |  | 
|  | static int tw_prot_init(const struct proto *prot) | 
|  | { | 
|  | struct timewait_sock_ops *twsk_prot = prot->twsk_prot; | 
|  |  | 
|  | if (!twsk_prot) | 
|  | return 0; | 
|  |  | 
|  | twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", | 
|  | prot->name); | 
|  | if (!twsk_prot->twsk_slab_name) | 
|  | return -ENOMEM; | 
|  |  | 
|  | twsk_prot->twsk_slab = | 
|  | kmem_cache_create(twsk_prot->twsk_slab_name, | 
|  | twsk_prot->twsk_obj_size, 0, | 
|  | SLAB_ACCOUNT | prot->slab_flags, | 
|  | NULL); | 
|  | if (!twsk_prot->twsk_slab) { | 
|  | pr_crit("%s: Can't create timewait sock SLAB cache!\n", | 
|  | prot->name); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void req_prot_cleanup(struct request_sock_ops *rsk_prot) | 
|  | { | 
|  | if (!rsk_prot) | 
|  | return; | 
|  | kfree(rsk_prot->slab_name); | 
|  | rsk_prot->slab_name = NULL; | 
|  | kmem_cache_destroy(rsk_prot->slab); | 
|  | rsk_prot->slab = NULL; | 
|  | } | 
|  |  | 
|  | static int req_prot_init(const struct proto *prot) | 
|  | { | 
|  | struct request_sock_ops *rsk_prot = prot->rsk_prot; | 
|  |  | 
|  | if (!rsk_prot) | 
|  | return 0; | 
|  |  | 
|  | rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", | 
|  | prot->name); | 
|  | if (!rsk_prot->slab_name) | 
|  | return -ENOMEM; | 
|  |  | 
|  | rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, | 
|  | rsk_prot->obj_size, 0, | 
|  | SLAB_ACCOUNT | prot->slab_flags, | 
|  | NULL); | 
|  |  | 
|  | if (!rsk_prot->slab) { | 
|  | pr_crit("%s: Can't create request sock SLAB cache!\n", | 
|  | prot->name); | 
|  | return -ENOMEM; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int proto_register(struct proto *prot, int alloc_slab) | 
|  | { | 
|  | int ret = -ENOBUFS; | 
|  |  | 
|  | if (prot->memory_allocated && !prot->sysctl_mem) { | 
|  | pr_err("%s: missing sysctl_mem\n", prot->name); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (prot->memory_allocated && !prot->per_cpu_fw_alloc) { | 
|  | pr_err("%s: missing per_cpu_fw_alloc\n", prot->name); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (alloc_slab) { | 
|  | prot->slab = kmem_cache_create_usercopy(prot->name, | 
|  | prot->obj_size, 0, | 
|  | SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | | 
|  | prot->slab_flags, | 
|  | prot->useroffset, prot->usersize, | 
|  | NULL); | 
|  |  | 
|  | if (prot->slab == NULL) { | 
|  | pr_crit("%s: Can't create sock SLAB cache!\n", | 
|  | prot->name); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (req_prot_init(prot)) | 
|  | goto out_free_request_sock_slab; | 
|  |  | 
|  | if (tw_prot_init(prot)) | 
|  | goto out_free_timewait_sock_slab; | 
|  | } | 
|  |  | 
|  | mutex_lock(&proto_list_mutex); | 
|  | ret = assign_proto_idx(prot); | 
|  | if (ret) { | 
|  | mutex_unlock(&proto_list_mutex); | 
|  | goto out_free_timewait_sock_slab; | 
|  | } | 
|  | list_add(&prot->node, &proto_list); | 
|  | mutex_unlock(&proto_list_mutex); | 
|  | return ret; | 
|  |  | 
|  | out_free_timewait_sock_slab: | 
|  | if (alloc_slab) | 
|  | tw_prot_cleanup(prot->twsk_prot); | 
|  | out_free_request_sock_slab: | 
|  | if (alloc_slab) { | 
|  | req_prot_cleanup(prot->rsk_prot); | 
|  |  | 
|  | kmem_cache_destroy(prot->slab); | 
|  | prot->slab = NULL; | 
|  | } | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(proto_register); | 
|  |  | 
|  | void proto_unregister(struct proto *prot) | 
|  | { | 
|  | mutex_lock(&proto_list_mutex); | 
|  | release_proto_idx(prot); | 
|  | list_del(&prot->node); | 
|  | mutex_unlock(&proto_list_mutex); | 
|  |  | 
|  | kmem_cache_destroy(prot->slab); | 
|  | prot->slab = NULL; | 
|  |  | 
|  | req_prot_cleanup(prot->rsk_prot); | 
|  | tw_prot_cleanup(prot->twsk_prot); | 
|  | } | 
|  | EXPORT_SYMBOL(proto_unregister); | 
|  |  | 
|  | int sock_load_diag_module(int family, int protocol) | 
|  | { | 
|  | if (!protocol) { | 
|  | if (!sock_is_registered(family)) | 
|  | return -ENOENT; | 
|  |  | 
|  | return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, | 
|  | NETLINK_SOCK_DIAG, family); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_INET | 
|  | if (family == AF_INET && | 
|  | protocol != IPPROTO_RAW && | 
|  | protocol < MAX_INET_PROTOS && | 
|  | !rcu_access_pointer(inet_protos[protocol])) | 
|  | return -ENOENT; | 
|  | #endif | 
|  |  | 
|  | return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, | 
|  | NETLINK_SOCK_DIAG, family, protocol); | 
|  | } | 
|  | EXPORT_SYMBOL(sock_load_diag_module); | 
|  |  | 
|  | #ifdef CONFIG_PROC_FS | 
|  | static void *proto_seq_start(struct seq_file *seq, loff_t *pos) | 
|  | __acquires(proto_list_mutex) | 
|  | { | 
|  | mutex_lock(&proto_list_mutex); | 
|  | return seq_list_start_head(&proto_list, *pos); | 
|  | } | 
|  |  | 
|  | static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) | 
|  | { | 
|  | return seq_list_next(v, &proto_list, pos); | 
|  | } | 
|  |  | 
|  | static void proto_seq_stop(struct seq_file *seq, void *v) | 
|  | __releases(proto_list_mutex) | 
|  | { | 
|  | mutex_unlock(&proto_list_mutex); | 
|  | } | 
|  |  | 
|  | static char proto_method_implemented(const void *method) | 
|  | { | 
|  | return method == NULL ? 'n' : 'y'; | 
|  | } | 
|  | static long sock_prot_memory_allocated(struct proto *proto) | 
|  | { | 
|  | return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; | 
|  | } | 
|  |  | 
|  | static const char *sock_prot_memory_pressure(struct proto *proto) | 
|  | { | 
|  | return proto->memory_pressure != NULL ? | 
|  | proto_memory_pressure(proto) ? "yes" : "no" : "NI"; | 
|  | } | 
|  |  | 
|  | static void proto_seq_printf(struct seq_file *seq, struct proto *proto) | 
|  | { | 
|  |  | 
|  | seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s " | 
|  | "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", | 
|  | proto->name, | 
|  | proto->obj_size, | 
|  | sock_prot_inuse_get(seq_file_net(seq), proto), | 
|  | sock_prot_memory_allocated(proto), | 
|  | sock_prot_memory_pressure(proto), | 
|  | proto->max_header, | 
|  | proto->slab == NULL ? "no" : "yes", | 
|  | module_name(proto->owner), | 
|  | proto_method_implemented(proto->close), | 
|  | proto_method_implemented(proto->connect), | 
|  | proto_method_implemented(proto->disconnect), | 
|  | proto_method_implemented(proto->accept), | 
|  | proto_method_implemented(proto->ioctl), | 
|  | proto_method_implemented(proto->init), | 
|  | proto_method_implemented(proto->destroy), | 
|  | proto_method_implemented(proto->shutdown), | 
|  | proto_method_implemented(proto->setsockopt), | 
|  | proto_method_implemented(proto->getsockopt), | 
|  | proto_method_implemented(proto->sendmsg), | 
|  | proto_method_implemented(proto->recvmsg), | 
|  | proto_method_implemented(proto->bind), | 
|  | proto_method_implemented(proto->backlog_rcv), | 
|  | proto_method_implemented(proto->hash), | 
|  | proto_method_implemented(proto->unhash), | 
|  | proto_method_implemented(proto->get_port), | 
|  | proto_method_implemented(proto->enter_memory_pressure)); | 
|  | } | 
|  |  | 
|  | static int proto_seq_show(struct seq_file *seq, void *v) | 
|  | { | 
|  | if (v == &proto_list) | 
|  | seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", | 
|  | "protocol", | 
|  | "size", | 
|  | "sockets", | 
|  | "memory", | 
|  | "press", | 
|  | "maxhdr", | 
|  | "slab", | 
|  | "module", | 
|  | "cl co di ac io in de sh ss gs se re bi br ha uh gp em\n"); | 
|  | else | 
|  | proto_seq_printf(seq, list_entry(v, struct proto, node)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct seq_operations proto_seq_ops = { | 
|  | .start  = proto_seq_start, | 
|  | .next   = proto_seq_next, | 
|  | .stop   = proto_seq_stop, | 
|  | .show   = proto_seq_show, | 
|  | }; | 
|  |  | 
|  | static __net_init int proto_init_net(struct net *net) | 
|  | { | 
|  | if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, | 
|  | sizeof(struct seq_net_private))) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static __net_exit void proto_exit_net(struct net *net) | 
|  | { | 
|  | remove_proc_entry("protocols", net->proc_net); | 
|  | } | 
|  |  | 
|  |  | 
|  | static __net_initdata struct pernet_operations proto_net_ops = { | 
|  | .init = proto_init_net, | 
|  | .exit = proto_exit_net, | 
|  | }; | 
|  |  | 
|  | static int __init proto_init(void) | 
|  | { | 
|  | return register_pernet_subsys(&proto_net_ops); | 
|  | } | 
|  |  | 
|  | subsys_initcall(proto_init); | 
|  |  | 
|  | #endif /* PROC_FS */ | 
|  |  | 
|  | #ifdef CONFIG_NET_RX_BUSY_POLL | 
|  | bool sk_busy_loop_end(void *p, unsigned long start_time) | 
|  | { | 
|  | struct sock *sk = p; | 
|  |  | 
|  | return !skb_queue_empty_lockless(&sk->sk_receive_queue) || | 
|  | sk_busy_loop_timeout(sk, start_time); | 
|  | } | 
|  | EXPORT_SYMBOL(sk_busy_loop_end); | 
|  | #endif /* CONFIG_NET_RX_BUSY_POLL */ | 
|  |  | 
|  | int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len) | 
|  | { | 
|  | if (!sk->sk_prot->bind_add) | 
|  | return -EOPNOTSUPP; | 
|  | return sk->sk_prot->bind_add(sk, addr, addr_len); | 
|  | } | 
|  | EXPORT_SYMBOL(sock_bind_add); | 
|  |  | 
|  | /* Copy 'size' bytes from userspace and return `size` back to userspace */ | 
|  | int sock_ioctl_inout(struct sock *sk, unsigned int cmd, | 
|  | void __user *arg, void *karg, size_t size) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (copy_from_user(karg, arg, size)) | 
|  | return -EFAULT; | 
|  |  | 
|  | ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, karg); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (copy_to_user(arg, karg, size)) | 
|  | return -EFAULT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(sock_ioctl_inout); | 
|  |  | 
|  | /* This is the most common ioctl prep function, where the result (4 bytes) is | 
|  | * copied back to userspace if the ioctl() returns successfully. No input is | 
|  | * copied from userspace as input argument. | 
|  | */ | 
|  | static int sock_ioctl_out(struct sock *sk, unsigned int cmd, void __user *arg) | 
|  | { | 
|  | int ret, karg = 0; | 
|  |  | 
|  | ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, &karg); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return put_user(karg, (int __user *)arg); | 
|  | } | 
|  |  | 
|  | /* A wrapper around sock ioctls, which copies the data from userspace | 
|  | * (depending on the protocol/ioctl), and copies back the result to userspace. | 
|  | * The main motivation for this function is to pass kernel memory to the | 
|  | * protocol ioctl callbacks, instead of userspace memory. | 
|  | */ | 
|  | int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) | 
|  | { | 
|  | int rc = 1; | 
|  |  | 
|  | if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET) | 
|  | rc = ipmr_sk_ioctl(sk, cmd, arg); | 
|  | else if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET6) | 
|  | rc = ip6mr_sk_ioctl(sk, cmd, arg); | 
|  | else if (sk_is_phonet(sk)) | 
|  | rc = phonet_sk_ioctl(sk, cmd, arg); | 
|  |  | 
|  | /* If ioctl was processed, returns its value */ | 
|  | if (rc <= 0) | 
|  | return rc; | 
|  |  | 
|  | /* Otherwise call the default handler */ | 
|  | return sock_ioctl_out(sk, cmd, arg); | 
|  | } | 
|  | EXPORT_SYMBOL(sk_ioctl); |