|  | /* | 
|  | * This file is part of UBIFS. | 
|  | * | 
|  | * Copyright (C) 2006-2008 Nokia Corporation. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of the GNU General Public License version 2 as published by | 
|  | * the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but WITHOUT | 
|  | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | * more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License along with | 
|  | * this program; if not, write to the Free Software Foundation, Inc., 51 | 
|  | * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | 
|  | * | 
|  | * Authors: Adrian Hunter | 
|  | *          Artem Bityutskiy (Битюцкий Артём) | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * This file implements commit-related functionality of the LEB properties | 
|  | * subsystem. | 
|  | */ | 
|  |  | 
|  | #include <linux/crc16.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/random.h> | 
|  | #include "ubifs.h" | 
|  |  | 
|  | static int dbg_populate_lsave(struct ubifs_info *c); | 
|  |  | 
|  | /** | 
|  | * first_dirty_cnode - find first dirty cnode. | 
|  | * @c: UBIFS file-system description object | 
|  | * @nnode: nnode at which to start | 
|  | * | 
|  | * This function returns the first dirty cnode or %NULL if there is not one. | 
|  | */ | 
|  | static struct ubifs_cnode *first_dirty_cnode(const struct ubifs_info *c, struct ubifs_nnode *nnode) | 
|  | { | 
|  | ubifs_assert(c, nnode); | 
|  | while (1) { | 
|  | int i, cont = 0; | 
|  |  | 
|  | for (i = 0; i < UBIFS_LPT_FANOUT; i++) { | 
|  | struct ubifs_cnode *cnode; | 
|  |  | 
|  | cnode = nnode->nbranch[i].cnode; | 
|  | if (cnode && | 
|  | test_bit(DIRTY_CNODE, &cnode->flags)) { | 
|  | if (cnode->level == 0) | 
|  | return cnode; | 
|  | nnode = (struct ubifs_nnode *)cnode; | 
|  | cont = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!cont) | 
|  | return (struct ubifs_cnode *)nnode; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * next_dirty_cnode - find next dirty cnode. | 
|  | * @c: UBIFS file-system description object | 
|  | * @cnode: cnode from which to begin searching | 
|  | * | 
|  | * This function returns the next dirty cnode or %NULL if there is not one. | 
|  | */ | 
|  | static struct ubifs_cnode *next_dirty_cnode(const struct ubifs_info *c, struct ubifs_cnode *cnode) | 
|  | { | 
|  | struct ubifs_nnode *nnode; | 
|  | int i; | 
|  |  | 
|  | ubifs_assert(c, cnode); | 
|  | nnode = cnode->parent; | 
|  | if (!nnode) | 
|  | return NULL; | 
|  | for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) { | 
|  | cnode = nnode->nbranch[i].cnode; | 
|  | if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) { | 
|  | if (cnode->level == 0) | 
|  | return cnode; /* cnode is a pnode */ | 
|  | /* cnode is a nnode */ | 
|  | return first_dirty_cnode(c, (struct ubifs_nnode *)cnode); | 
|  | } | 
|  | } | 
|  | return (struct ubifs_cnode *)nnode; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * get_cnodes_to_commit - create list of dirty cnodes to commit. | 
|  | * @c: UBIFS file-system description object | 
|  | * | 
|  | * This function returns the number of cnodes to commit. | 
|  | */ | 
|  | static int get_cnodes_to_commit(struct ubifs_info *c) | 
|  | { | 
|  | struct ubifs_cnode *cnode, *cnext; | 
|  | int cnt = 0; | 
|  |  | 
|  | if (!c->nroot) | 
|  | return 0; | 
|  |  | 
|  | if (!test_bit(DIRTY_CNODE, &c->nroot->flags)) | 
|  | return 0; | 
|  |  | 
|  | c->lpt_cnext = first_dirty_cnode(c, c->nroot); | 
|  | cnode = c->lpt_cnext; | 
|  | if (!cnode) | 
|  | return 0; | 
|  | cnt += 1; | 
|  | while (1) { | 
|  | ubifs_assert(c, !test_bit(COW_CNODE, &cnode->flags)); | 
|  | __set_bit(COW_CNODE, &cnode->flags); | 
|  | cnext = next_dirty_cnode(c, cnode); | 
|  | if (!cnext) { | 
|  | cnode->cnext = c->lpt_cnext; | 
|  | break; | 
|  | } | 
|  | cnode->cnext = cnext; | 
|  | cnode = cnext; | 
|  | cnt += 1; | 
|  | } | 
|  | dbg_cmt("committing %d cnodes", cnt); | 
|  | dbg_lp("committing %d cnodes", cnt); | 
|  | ubifs_assert(c, cnt == c->dirty_nn_cnt + c->dirty_pn_cnt); | 
|  | return cnt; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * upd_ltab - update LPT LEB properties. | 
|  | * @c: UBIFS file-system description object | 
|  | * @lnum: LEB number | 
|  | * @free: amount of free space | 
|  | * @dirty: amount of dirty space to add | 
|  | */ | 
|  | static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty) | 
|  | { | 
|  | dbg_lp("LEB %d free %d dirty %d to %d +%d", | 
|  | lnum, c->ltab[lnum - c->lpt_first].free, | 
|  | c->ltab[lnum - c->lpt_first].dirty, free, dirty); | 
|  | ubifs_assert(c, lnum >= c->lpt_first && lnum <= c->lpt_last); | 
|  | c->ltab[lnum - c->lpt_first].free = free; | 
|  | c->ltab[lnum - c->lpt_first].dirty += dirty; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * alloc_lpt_leb - allocate an LPT LEB that is empty. | 
|  | * @c: UBIFS file-system description object | 
|  | * @lnum: LEB number is passed and returned here | 
|  | * | 
|  | * This function finds the next empty LEB in the ltab starting from @lnum. If a | 
|  | * an empty LEB is found it is returned in @lnum and the function returns %0. | 
|  | * Otherwise the function returns -ENOSPC.  Note however, that LPT is designed | 
|  | * never to run out of space. | 
|  | */ | 
|  | static int alloc_lpt_leb(struct ubifs_info *c, int *lnum) | 
|  | { | 
|  | int i, n; | 
|  |  | 
|  | n = *lnum - c->lpt_first + 1; | 
|  | for (i = n; i < c->lpt_lebs; i++) { | 
|  | if (c->ltab[i].tgc || c->ltab[i].cmt) | 
|  | continue; | 
|  | if (c->ltab[i].free == c->leb_size) { | 
|  | c->ltab[i].cmt = 1; | 
|  | *lnum = i + c->lpt_first; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < n; i++) { | 
|  | if (c->ltab[i].tgc || c->ltab[i].cmt) | 
|  | continue; | 
|  | if (c->ltab[i].free == c->leb_size) { | 
|  | c->ltab[i].cmt = 1; | 
|  | *lnum = i + c->lpt_first; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * layout_cnodes - layout cnodes for commit. | 
|  | * @c: UBIFS file-system description object | 
|  | * | 
|  | * This function returns %0 on success and a negative error code on failure. | 
|  | */ | 
|  | static int layout_cnodes(struct ubifs_info *c) | 
|  | { | 
|  | int lnum, offs, len, alen, done_lsave, done_ltab, err; | 
|  | struct ubifs_cnode *cnode; | 
|  |  | 
|  | err = dbg_chk_lpt_sz(c, 0, 0); | 
|  | if (err) | 
|  | return err; | 
|  | cnode = c->lpt_cnext; | 
|  | if (!cnode) | 
|  | return 0; | 
|  | lnum = c->nhead_lnum; | 
|  | offs = c->nhead_offs; | 
|  | /* Try to place lsave and ltab nicely */ | 
|  | done_lsave = !c->big_lpt; | 
|  | done_ltab = 0; | 
|  | if (!done_lsave && offs + c->lsave_sz <= c->leb_size) { | 
|  | done_lsave = 1; | 
|  | c->lsave_lnum = lnum; | 
|  | c->lsave_offs = offs; | 
|  | offs += c->lsave_sz; | 
|  | dbg_chk_lpt_sz(c, 1, c->lsave_sz); | 
|  | } | 
|  |  | 
|  | if (offs + c->ltab_sz <= c->leb_size) { | 
|  | done_ltab = 1; | 
|  | c->ltab_lnum = lnum; | 
|  | c->ltab_offs = offs; | 
|  | offs += c->ltab_sz; | 
|  | dbg_chk_lpt_sz(c, 1, c->ltab_sz); | 
|  | } | 
|  |  | 
|  | do { | 
|  | if (cnode->level) { | 
|  | len = c->nnode_sz; | 
|  | c->dirty_nn_cnt -= 1; | 
|  | } else { | 
|  | len = c->pnode_sz; | 
|  | c->dirty_pn_cnt -= 1; | 
|  | } | 
|  | while (offs + len > c->leb_size) { | 
|  | alen = ALIGN(offs, c->min_io_size); | 
|  | upd_ltab(c, lnum, c->leb_size - alen, alen - offs); | 
|  | dbg_chk_lpt_sz(c, 2, c->leb_size - offs); | 
|  | err = alloc_lpt_leb(c, &lnum); | 
|  | if (err) | 
|  | goto no_space; | 
|  | offs = 0; | 
|  | ubifs_assert(c, lnum >= c->lpt_first && | 
|  | lnum <= c->lpt_last); | 
|  | /* Try to place lsave and ltab nicely */ | 
|  | if (!done_lsave) { | 
|  | done_lsave = 1; | 
|  | c->lsave_lnum = lnum; | 
|  | c->lsave_offs = offs; | 
|  | offs += c->lsave_sz; | 
|  | dbg_chk_lpt_sz(c, 1, c->lsave_sz); | 
|  | continue; | 
|  | } | 
|  | if (!done_ltab) { | 
|  | done_ltab = 1; | 
|  | c->ltab_lnum = lnum; | 
|  | c->ltab_offs = offs; | 
|  | offs += c->ltab_sz; | 
|  | dbg_chk_lpt_sz(c, 1, c->ltab_sz); | 
|  | continue; | 
|  | } | 
|  | break; | 
|  | } | 
|  | if (cnode->parent) { | 
|  | cnode->parent->nbranch[cnode->iip].lnum = lnum; | 
|  | cnode->parent->nbranch[cnode->iip].offs = offs; | 
|  | } else { | 
|  | c->lpt_lnum = lnum; | 
|  | c->lpt_offs = offs; | 
|  | } | 
|  | offs += len; | 
|  | dbg_chk_lpt_sz(c, 1, len); | 
|  | cnode = cnode->cnext; | 
|  | } while (cnode && cnode != c->lpt_cnext); | 
|  |  | 
|  | /* Make sure to place LPT's save table */ | 
|  | if (!done_lsave) { | 
|  | if (offs + c->lsave_sz > c->leb_size) { | 
|  | alen = ALIGN(offs, c->min_io_size); | 
|  | upd_ltab(c, lnum, c->leb_size - alen, alen - offs); | 
|  | dbg_chk_lpt_sz(c, 2, c->leb_size - offs); | 
|  | err = alloc_lpt_leb(c, &lnum); | 
|  | if (err) | 
|  | goto no_space; | 
|  | offs = 0; | 
|  | ubifs_assert(c, lnum >= c->lpt_first && | 
|  | lnum <= c->lpt_last); | 
|  | } | 
|  | done_lsave = 1; | 
|  | c->lsave_lnum = lnum; | 
|  | c->lsave_offs = offs; | 
|  | offs += c->lsave_sz; | 
|  | dbg_chk_lpt_sz(c, 1, c->lsave_sz); | 
|  | } | 
|  |  | 
|  | /* Make sure to place LPT's own lprops table */ | 
|  | if (!done_ltab) { | 
|  | if (offs + c->ltab_sz > c->leb_size) { | 
|  | alen = ALIGN(offs, c->min_io_size); | 
|  | upd_ltab(c, lnum, c->leb_size - alen, alen - offs); | 
|  | dbg_chk_lpt_sz(c, 2, c->leb_size - offs); | 
|  | err = alloc_lpt_leb(c, &lnum); | 
|  | if (err) | 
|  | goto no_space; | 
|  | offs = 0; | 
|  | ubifs_assert(c, lnum >= c->lpt_first && | 
|  | lnum <= c->lpt_last); | 
|  | } | 
|  | c->ltab_lnum = lnum; | 
|  | c->ltab_offs = offs; | 
|  | offs += c->ltab_sz; | 
|  | dbg_chk_lpt_sz(c, 1, c->ltab_sz); | 
|  | } | 
|  |  | 
|  | alen = ALIGN(offs, c->min_io_size); | 
|  | upd_ltab(c, lnum, c->leb_size - alen, alen - offs); | 
|  | dbg_chk_lpt_sz(c, 4, alen - offs); | 
|  | err = dbg_chk_lpt_sz(c, 3, alen); | 
|  | if (err) | 
|  | return err; | 
|  | return 0; | 
|  |  | 
|  | no_space: | 
|  | ubifs_err(c, "LPT out of space at LEB %d:%d needing %d, done_ltab %d, done_lsave %d", | 
|  | lnum, offs, len, done_ltab, done_lsave); | 
|  | ubifs_dump_lpt_info(c); | 
|  | ubifs_dump_lpt_lebs(c); | 
|  | dump_stack(); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * realloc_lpt_leb - allocate an LPT LEB that is empty. | 
|  | * @c: UBIFS file-system description object | 
|  | * @lnum: LEB number is passed and returned here | 
|  | * | 
|  | * This function duplicates exactly the results of the function alloc_lpt_leb. | 
|  | * It is used during end commit to reallocate the same LEB numbers that were | 
|  | * allocated by alloc_lpt_leb during start commit. | 
|  | * | 
|  | * This function finds the next LEB that was allocated by the alloc_lpt_leb | 
|  | * function starting from @lnum. If a LEB is found it is returned in @lnum and | 
|  | * the function returns %0. Otherwise the function returns -ENOSPC. | 
|  | * Note however, that LPT is designed never to run out of space. | 
|  | */ | 
|  | static int realloc_lpt_leb(struct ubifs_info *c, int *lnum) | 
|  | { | 
|  | int i, n; | 
|  |  | 
|  | n = *lnum - c->lpt_first + 1; | 
|  | for (i = n; i < c->lpt_lebs; i++) | 
|  | if (c->ltab[i].cmt) { | 
|  | c->ltab[i].cmt = 0; | 
|  | *lnum = i + c->lpt_first; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < n; i++) | 
|  | if (c->ltab[i].cmt) { | 
|  | c->ltab[i].cmt = 0; | 
|  | *lnum = i + c->lpt_first; | 
|  | return 0; | 
|  | } | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * write_cnodes - write cnodes for commit. | 
|  | * @c: UBIFS file-system description object | 
|  | * | 
|  | * This function returns %0 on success and a negative error code on failure. | 
|  | */ | 
|  | static int write_cnodes(struct ubifs_info *c) | 
|  | { | 
|  | int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave; | 
|  | struct ubifs_cnode *cnode; | 
|  | void *buf = c->lpt_buf; | 
|  |  | 
|  | cnode = c->lpt_cnext; | 
|  | if (!cnode) | 
|  | return 0; | 
|  | lnum = c->nhead_lnum; | 
|  | offs = c->nhead_offs; | 
|  | from = offs; | 
|  | /* Ensure empty LEB is unmapped */ | 
|  | if (offs == 0) { | 
|  | err = ubifs_leb_unmap(c, lnum); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | /* Try to place lsave and ltab nicely */ | 
|  | done_lsave = !c->big_lpt; | 
|  | done_ltab = 0; | 
|  | if (!done_lsave && offs + c->lsave_sz <= c->leb_size) { | 
|  | done_lsave = 1; | 
|  | ubifs_pack_lsave(c, buf + offs, c->lsave); | 
|  | offs += c->lsave_sz; | 
|  | dbg_chk_lpt_sz(c, 1, c->lsave_sz); | 
|  | } | 
|  |  | 
|  | if (offs + c->ltab_sz <= c->leb_size) { | 
|  | done_ltab = 1; | 
|  | ubifs_pack_ltab(c, buf + offs, c->ltab_cmt); | 
|  | offs += c->ltab_sz; | 
|  | dbg_chk_lpt_sz(c, 1, c->ltab_sz); | 
|  | } | 
|  |  | 
|  | /* Loop for each cnode */ | 
|  | do { | 
|  | if (cnode->level) | 
|  | len = c->nnode_sz; | 
|  | else | 
|  | len = c->pnode_sz; | 
|  | while (offs + len > c->leb_size) { | 
|  | wlen = offs - from; | 
|  | if (wlen) { | 
|  | alen = ALIGN(wlen, c->min_io_size); | 
|  | memset(buf + offs, 0xff, alen - wlen); | 
|  | err = ubifs_leb_write(c, lnum, buf + from, from, | 
|  | alen); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | dbg_chk_lpt_sz(c, 2, c->leb_size - offs); | 
|  | err = realloc_lpt_leb(c, &lnum); | 
|  | if (err) | 
|  | goto no_space; | 
|  | offs = from = 0; | 
|  | ubifs_assert(c, lnum >= c->lpt_first && | 
|  | lnum <= c->lpt_last); | 
|  | err = ubifs_leb_unmap(c, lnum); | 
|  | if (err) | 
|  | return err; | 
|  | /* Try to place lsave and ltab nicely */ | 
|  | if (!done_lsave) { | 
|  | done_lsave = 1; | 
|  | ubifs_pack_lsave(c, buf + offs, c->lsave); | 
|  | offs += c->lsave_sz; | 
|  | dbg_chk_lpt_sz(c, 1, c->lsave_sz); | 
|  | continue; | 
|  | } | 
|  | if (!done_ltab) { | 
|  | done_ltab = 1; | 
|  | ubifs_pack_ltab(c, buf + offs, c->ltab_cmt); | 
|  | offs += c->ltab_sz; | 
|  | dbg_chk_lpt_sz(c, 1, c->ltab_sz); | 
|  | continue; | 
|  | } | 
|  | break; | 
|  | } | 
|  | if (cnode->level) | 
|  | ubifs_pack_nnode(c, buf + offs, | 
|  | (struct ubifs_nnode *)cnode); | 
|  | else | 
|  | ubifs_pack_pnode(c, buf + offs, | 
|  | (struct ubifs_pnode *)cnode); | 
|  | /* | 
|  | * The reason for the barriers is the same as in case of TNC. | 
|  | * See comment in 'write_index()'. 'dirty_cow_nnode()' and | 
|  | * 'dirty_cow_pnode()' are the functions for which this is | 
|  | * important. | 
|  | */ | 
|  | clear_bit(DIRTY_CNODE, &cnode->flags); | 
|  | smp_mb__before_atomic(); | 
|  | clear_bit(COW_CNODE, &cnode->flags); | 
|  | smp_mb__after_atomic(); | 
|  | offs += len; | 
|  | dbg_chk_lpt_sz(c, 1, len); | 
|  | cnode = cnode->cnext; | 
|  | } while (cnode && cnode != c->lpt_cnext); | 
|  |  | 
|  | /* Make sure to place LPT's save table */ | 
|  | if (!done_lsave) { | 
|  | if (offs + c->lsave_sz > c->leb_size) { | 
|  | wlen = offs - from; | 
|  | alen = ALIGN(wlen, c->min_io_size); | 
|  | memset(buf + offs, 0xff, alen - wlen); | 
|  | err = ubifs_leb_write(c, lnum, buf + from, from, alen); | 
|  | if (err) | 
|  | return err; | 
|  | dbg_chk_lpt_sz(c, 2, c->leb_size - offs); | 
|  | err = realloc_lpt_leb(c, &lnum); | 
|  | if (err) | 
|  | goto no_space; | 
|  | offs = from = 0; | 
|  | ubifs_assert(c, lnum >= c->lpt_first && | 
|  | lnum <= c->lpt_last); | 
|  | err = ubifs_leb_unmap(c, lnum); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | done_lsave = 1; | 
|  | ubifs_pack_lsave(c, buf + offs, c->lsave); | 
|  | offs += c->lsave_sz; | 
|  | dbg_chk_lpt_sz(c, 1, c->lsave_sz); | 
|  | } | 
|  |  | 
|  | /* Make sure to place LPT's own lprops table */ | 
|  | if (!done_ltab) { | 
|  | if (offs + c->ltab_sz > c->leb_size) { | 
|  | wlen = offs - from; | 
|  | alen = ALIGN(wlen, c->min_io_size); | 
|  | memset(buf + offs, 0xff, alen - wlen); | 
|  | err = ubifs_leb_write(c, lnum, buf + from, from, alen); | 
|  | if (err) | 
|  | return err; | 
|  | dbg_chk_lpt_sz(c, 2, c->leb_size - offs); | 
|  | err = realloc_lpt_leb(c, &lnum); | 
|  | if (err) | 
|  | goto no_space; | 
|  | offs = from = 0; | 
|  | ubifs_assert(c, lnum >= c->lpt_first && | 
|  | lnum <= c->lpt_last); | 
|  | err = ubifs_leb_unmap(c, lnum); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | ubifs_pack_ltab(c, buf + offs, c->ltab_cmt); | 
|  | offs += c->ltab_sz; | 
|  | dbg_chk_lpt_sz(c, 1, c->ltab_sz); | 
|  | } | 
|  |  | 
|  | /* Write remaining data in buffer */ | 
|  | wlen = offs - from; | 
|  | alen = ALIGN(wlen, c->min_io_size); | 
|  | memset(buf + offs, 0xff, alen - wlen); | 
|  | err = ubifs_leb_write(c, lnum, buf + from, from, alen); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | dbg_chk_lpt_sz(c, 4, alen - wlen); | 
|  | err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size)); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | c->nhead_lnum = lnum; | 
|  | c->nhead_offs = ALIGN(offs, c->min_io_size); | 
|  |  | 
|  | dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs); | 
|  | dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs); | 
|  | dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs); | 
|  | if (c->big_lpt) | 
|  | dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | no_space: | 
|  | ubifs_err(c, "LPT out of space mismatch at LEB %d:%d needing %d, done_ltab %d, done_lsave %d", | 
|  | lnum, offs, len, done_ltab, done_lsave); | 
|  | ubifs_dump_lpt_info(c); | 
|  | ubifs_dump_lpt_lebs(c); | 
|  | dump_stack(); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * next_pnode_to_dirty - find next pnode to dirty. | 
|  | * @c: UBIFS file-system description object | 
|  | * @pnode: pnode | 
|  | * | 
|  | * This function returns the next pnode to dirty or %NULL if there are no more | 
|  | * pnodes.  Note that pnodes that have never been written (lnum == 0) are | 
|  | * skipped. | 
|  | */ | 
|  | static struct ubifs_pnode *next_pnode_to_dirty(struct ubifs_info *c, | 
|  | struct ubifs_pnode *pnode) | 
|  | { | 
|  | struct ubifs_nnode *nnode; | 
|  | int iip; | 
|  |  | 
|  | /* Try to go right */ | 
|  | nnode = pnode->parent; | 
|  | for (iip = pnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) { | 
|  | if (nnode->nbranch[iip].lnum) | 
|  | return ubifs_get_pnode(c, nnode, iip); | 
|  | } | 
|  |  | 
|  | /* Go up while can't go right */ | 
|  | do { | 
|  | iip = nnode->iip + 1; | 
|  | nnode = nnode->parent; | 
|  | if (!nnode) | 
|  | return NULL; | 
|  | for (; iip < UBIFS_LPT_FANOUT; iip++) { | 
|  | if (nnode->nbranch[iip].lnum) | 
|  | break; | 
|  | } | 
|  | } while (iip >= UBIFS_LPT_FANOUT); | 
|  |  | 
|  | /* Go right */ | 
|  | nnode = ubifs_get_nnode(c, nnode, iip); | 
|  | if (IS_ERR(nnode)) | 
|  | return (void *)nnode; | 
|  |  | 
|  | /* Go down to level 1 */ | 
|  | while (nnode->level > 1) { | 
|  | for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) { | 
|  | if (nnode->nbranch[iip].lnum) | 
|  | break; | 
|  | } | 
|  | if (iip >= UBIFS_LPT_FANOUT) { | 
|  | /* | 
|  | * Should not happen, but we need to keep going | 
|  | * if it does. | 
|  | */ | 
|  | iip = 0; | 
|  | } | 
|  | nnode = ubifs_get_nnode(c, nnode, iip); | 
|  | if (IS_ERR(nnode)) | 
|  | return (void *)nnode; | 
|  | } | 
|  |  | 
|  | for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) | 
|  | if (nnode->nbranch[iip].lnum) | 
|  | break; | 
|  | if (iip >= UBIFS_LPT_FANOUT) | 
|  | /* Should not happen, but we need to keep going if it does */ | 
|  | iip = 0; | 
|  | return ubifs_get_pnode(c, nnode, iip); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pnode_lookup - lookup a pnode in the LPT. | 
|  | * @c: UBIFS file-system description object | 
|  | * @i: pnode number (0 to (main_lebs - 1) / UBIFS_LPT_FANOUT)) | 
|  | * | 
|  | * This function returns a pointer to the pnode on success or a negative | 
|  | * error code on failure. | 
|  | */ | 
|  | static struct ubifs_pnode *pnode_lookup(struct ubifs_info *c, int i) | 
|  | { | 
|  | int err, h, iip, shft; | 
|  | struct ubifs_nnode *nnode; | 
|  |  | 
|  | if (!c->nroot) { | 
|  | err = ubifs_read_nnode(c, NULL, 0); | 
|  | if (err) | 
|  | return ERR_PTR(err); | 
|  | } | 
|  | i <<= UBIFS_LPT_FANOUT_SHIFT; | 
|  | nnode = c->nroot; | 
|  | shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT; | 
|  | for (h = 1; h < c->lpt_hght; h++) { | 
|  | iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); | 
|  | shft -= UBIFS_LPT_FANOUT_SHIFT; | 
|  | nnode = ubifs_get_nnode(c, nnode, iip); | 
|  | if (IS_ERR(nnode)) | 
|  | return ERR_CAST(nnode); | 
|  | } | 
|  | iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); | 
|  | return ubifs_get_pnode(c, nnode, iip); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * add_pnode_dirt - add dirty space to LPT LEB properties. | 
|  | * @c: UBIFS file-system description object | 
|  | * @pnode: pnode for which to add dirt | 
|  | */ | 
|  | static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode) | 
|  | { | 
|  | ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum, | 
|  | c->pnode_sz); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * do_make_pnode_dirty - mark a pnode dirty. | 
|  | * @c: UBIFS file-system description object | 
|  | * @pnode: pnode to mark dirty | 
|  | */ | 
|  | static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode) | 
|  | { | 
|  | /* Assumes cnext list is empty i.e. not called during commit */ | 
|  | if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) { | 
|  | struct ubifs_nnode *nnode; | 
|  |  | 
|  | c->dirty_pn_cnt += 1; | 
|  | add_pnode_dirt(c, pnode); | 
|  | /* Mark parent and ancestors dirty too */ | 
|  | nnode = pnode->parent; | 
|  | while (nnode) { | 
|  | if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) { | 
|  | c->dirty_nn_cnt += 1; | 
|  | ubifs_add_nnode_dirt(c, nnode); | 
|  | nnode = nnode->parent; | 
|  | } else | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * make_tree_dirty - mark the entire LEB properties tree dirty. | 
|  | * @c: UBIFS file-system description object | 
|  | * | 
|  | * This function is used by the "small" LPT model to cause the entire LEB | 
|  | * properties tree to be written.  The "small" LPT model does not use LPT | 
|  | * garbage collection because it is more efficient to write the entire tree | 
|  | * (because it is small). | 
|  | * | 
|  | * This function returns %0 on success and a negative error code on failure. | 
|  | */ | 
|  | static int make_tree_dirty(struct ubifs_info *c) | 
|  | { | 
|  | struct ubifs_pnode *pnode; | 
|  |  | 
|  | pnode = pnode_lookup(c, 0); | 
|  | if (IS_ERR(pnode)) | 
|  | return PTR_ERR(pnode); | 
|  |  | 
|  | while (pnode) { | 
|  | do_make_pnode_dirty(c, pnode); | 
|  | pnode = next_pnode_to_dirty(c, pnode); | 
|  | if (IS_ERR(pnode)) | 
|  | return PTR_ERR(pnode); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * need_write_all - determine if the LPT area is running out of free space. | 
|  | * @c: UBIFS file-system description object | 
|  | * | 
|  | * This function returns %1 if the LPT area is running out of free space and %0 | 
|  | * if it is not. | 
|  | */ | 
|  | static int need_write_all(struct ubifs_info *c) | 
|  | { | 
|  | long long free = 0; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < c->lpt_lebs; i++) { | 
|  | if (i + c->lpt_first == c->nhead_lnum) | 
|  | free += c->leb_size - c->nhead_offs; | 
|  | else if (c->ltab[i].free == c->leb_size) | 
|  | free += c->leb_size; | 
|  | else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size) | 
|  | free += c->leb_size; | 
|  | } | 
|  | /* Less than twice the size left */ | 
|  | if (free <= c->lpt_sz * 2) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * lpt_tgc_start - start trivial garbage collection of LPT LEBs. | 
|  | * @c: UBIFS file-system description object | 
|  | * | 
|  | * LPT trivial garbage collection is where a LPT LEB contains only dirty and | 
|  | * free space and so may be reused as soon as the next commit is completed. | 
|  | * This function is called during start commit to mark LPT LEBs for trivial GC. | 
|  | */ | 
|  | static void lpt_tgc_start(struct ubifs_info *c) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < c->lpt_lebs; i++) { | 
|  | if (i + c->lpt_first == c->nhead_lnum) | 
|  | continue; | 
|  | if (c->ltab[i].dirty > 0 && | 
|  | c->ltab[i].free + c->ltab[i].dirty == c->leb_size) { | 
|  | c->ltab[i].tgc = 1; | 
|  | c->ltab[i].free = c->leb_size; | 
|  | c->ltab[i].dirty = 0; | 
|  | dbg_lp("LEB %d", i + c->lpt_first); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * lpt_tgc_end - end trivial garbage collection of LPT LEBs. | 
|  | * @c: UBIFS file-system description object | 
|  | * | 
|  | * LPT trivial garbage collection is where a LPT LEB contains only dirty and | 
|  | * free space and so may be reused as soon as the next commit is completed. | 
|  | * This function is called after the commit is completed (master node has been | 
|  | * written) and un-maps LPT LEBs that were marked for trivial GC. | 
|  | */ | 
|  | static int lpt_tgc_end(struct ubifs_info *c) | 
|  | { | 
|  | int i, err; | 
|  |  | 
|  | for (i = 0; i < c->lpt_lebs; i++) | 
|  | if (c->ltab[i].tgc) { | 
|  | err = ubifs_leb_unmap(c, i + c->lpt_first); | 
|  | if (err) | 
|  | return err; | 
|  | c->ltab[i].tgc = 0; | 
|  | dbg_lp("LEB %d", i + c->lpt_first); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * populate_lsave - fill the lsave array with important LEB numbers. | 
|  | * @c: the UBIFS file-system description object | 
|  | * | 
|  | * This function is only called for the "big" model. It records a small number | 
|  | * of LEB numbers of important LEBs.  Important LEBs are ones that are (from | 
|  | * most important to least important): empty, freeable, freeable index, dirty | 
|  | * index, dirty or free. Upon mount, we read this list of LEB numbers and bring | 
|  | * their pnodes into memory.  That will stop us from having to scan the LPT | 
|  | * straight away. For the "small" model we assume that scanning the LPT is no | 
|  | * big deal. | 
|  | */ | 
|  | static void populate_lsave(struct ubifs_info *c) | 
|  | { | 
|  | struct ubifs_lprops *lprops; | 
|  | struct ubifs_lpt_heap *heap; | 
|  | int i, cnt = 0; | 
|  |  | 
|  | ubifs_assert(c, c->big_lpt); | 
|  | if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) { | 
|  | c->lpt_drty_flgs |= LSAVE_DIRTY; | 
|  | ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz); | 
|  | } | 
|  |  | 
|  | if (dbg_populate_lsave(c)) | 
|  | return; | 
|  |  | 
|  | list_for_each_entry(lprops, &c->empty_list, list) { | 
|  | c->lsave[cnt++] = lprops->lnum; | 
|  | if (cnt >= c->lsave_cnt) | 
|  | return; | 
|  | } | 
|  | list_for_each_entry(lprops, &c->freeable_list, list) { | 
|  | c->lsave[cnt++] = lprops->lnum; | 
|  | if (cnt >= c->lsave_cnt) | 
|  | return; | 
|  | } | 
|  | list_for_each_entry(lprops, &c->frdi_idx_list, list) { | 
|  | c->lsave[cnt++] = lprops->lnum; | 
|  | if (cnt >= c->lsave_cnt) | 
|  | return; | 
|  | } | 
|  | heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1]; | 
|  | for (i = 0; i < heap->cnt; i++) { | 
|  | c->lsave[cnt++] = heap->arr[i]->lnum; | 
|  | if (cnt >= c->lsave_cnt) | 
|  | return; | 
|  | } | 
|  | heap = &c->lpt_heap[LPROPS_DIRTY - 1]; | 
|  | for (i = 0; i < heap->cnt; i++) { | 
|  | c->lsave[cnt++] = heap->arr[i]->lnum; | 
|  | if (cnt >= c->lsave_cnt) | 
|  | return; | 
|  | } | 
|  | heap = &c->lpt_heap[LPROPS_FREE - 1]; | 
|  | for (i = 0; i < heap->cnt; i++) { | 
|  | c->lsave[cnt++] = heap->arr[i]->lnum; | 
|  | if (cnt >= c->lsave_cnt) | 
|  | return; | 
|  | } | 
|  | /* Fill it up completely */ | 
|  | while (cnt < c->lsave_cnt) | 
|  | c->lsave[cnt++] = c->main_first; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nnode_lookup - lookup a nnode in the LPT. | 
|  | * @c: UBIFS file-system description object | 
|  | * @i: nnode number | 
|  | * | 
|  | * This function returns a pointer to the nnode on success or a negative | 
|  | * error code on failure. | 
|  | */ | 
|  | static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i) | 
|  | { | 
|  | int err, iip; | 
|  | struct ubifs_nnode *nnode; | 
|  |  | 
|  | if (!c->nroot) { | 
|  | err = ubifs_read_nnode(c, NULL, 0); | 
|  | if (err) | 
|  | return ERR_PTR(err); | 
|  | } | 
|  | nnode = c->nroot; | 
|  | while (1) { | 
|  | iip = i & (UBIFS_LPT_FANOUT - 1); | 
|  | i >>= UBIFS_LPT_FANOUT_SHIFT; | 
|  | if (!i) | 
|  | break; | 
|  | nnode = ubifs_get_nnode(c, nnode, iip); | 
|  | if (IS_ERR(nnode)) | 
|  | return nnode; | 
|  | } | 
|  | return nnode; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * make_nnode_dirty - find a nnode and, if found, make it dirty. | 
|  | * @c: UBIFS file-system description object | 
|  | * @node_num: nnode number of nnode to make dirty | 
|  | * @lnum: LEB number where nnode was written | 
|  | * @offs: offset where nnode was written | 
|  | * | 
|  | * This function is used by LPT garbage collection.  LPT garbage collection is | 
|  | * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection | 
|  | * simply involves marking all the nodes in the LEB being garbage-collected as | 
|  | * dirty.  The dirty nodes are written next commit, after which the LEB is free | 
|  | * to be reused. | 
|  | * | 
|  | * This function returns %0 on success and a negative error code on failure. | 
|  | */ | 
|  | static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum, | 
|  | int offs) | 
|  | { | 
|  | struct ubifs_nnode *nnode; | 
|  |  | 
|  | nnode = nnode_lookup(c, node_num); | 
|  | if (IS_ERR(nnode)) | 
|  | return PTR_ERR(nnode); | 
|  | if (nnode->parent) { | 
|  | struct ubifs_nbranch *branch; | 
|  |  | 
|  | branch = &nnode->parent->nbranch[nnode->iip]; | 
|  | if (branch->lnum != lnum || branch->offs != offs) | 
|  | return 0; /* nnode is obsolete */ | 
|  | } else if (c->lpt_lnum != lnum || c->lpt_offs != offs) | 
|  | return 0; /* nnode is obsolete */ | 
|  | /* Assumes cnext list is empty i.e. not called during commit */ | 
|  | if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) { | 
|  | c->dirty_nn_cnt += 1; | 
|  | ubifs_add_nnode_dirt(c, nnode); | 
|  | /* Mark parent and ancestors dirty too */ | 
|  | nnode = nnode->parent; | 
|  | while (nnode) { | 
|  | if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) { | 
|  | c->dirty_nn_cnt += 1; | 
|  | ubifs_add_nnode_dirt(c, nnode); | 
|  | nnode = nnode->parent; | 
|  | } else | 
|  | break; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * make_pnode_dirty - find a pnode and, if found, make it dirty. | 
|  | * @c: UBIFS file-system description object | 
|  | * @node_num: pnode number of pnode to make dirty | 
|  | * @lnum: LEB number where pnode was written | 
|  | * @offs: offset where pnode was written | 
|  | * | 
|  | * This function is used by LPT garbage collection.  LPT garbage collection is | 
|  | * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection | 
|  | * simply involves marking all the nodes in the LEB being garbage-collected as | 
|  | * dirty.  The dirty nodes are written next commit, after which the LEB is free | 
|  | * to be reused. | 
|  | * | 
|  | * This function returns %0 on success and a negative error code on failure. | 
|  | */ | 
|  | static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum, | 
|  | int offs) | 
|  | { | 
|  | struct ubifs_pnode *pnode; | 
|  | struct ubifs_nbranch *branch; | 
|  |  | 
|  | pnode = pnode_lookup(c, node_num); | 
|  | if (IS_ERR(pnode)) | 
|  | return PTR_ERR(pnode); | 
|  | branch = &pnode->parent->nbranch[pnode->iip]; | 
|  | if (branch->lnum != lnum || branch->offs != offs) | 
|  | return 0; | 
|  | do_make_pnode_dirty(c, pnode); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * make_ltab_dirty - make ltab node dirty. | 
|  | * @c: UBIFS file-system description object | 
|  | * @lnum: LEB number where ltab was written | 
|  | * @offs: offset where ltab was written | 
|  | * | 
|  | * This function is used by LPT garbage collection.  LPT garbage collection is | 
|  | * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection | 
|  | * simply involves marking all the nodes in the LEB being garbage-collected as | 
|  | * dirty.  The dirty nodes are written next commit, after which the LEB is free | 
|  | * to be reused. | 
|  | * | 
|  | * This function returns %0 on success and a negative error code on failure. | 
|  | */ | 
|  | static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs) | 
|  | { | 
|  | if (lnum != c->ltab_lnum || offs != c->ltab_offs) | 
|  | return 0; /* This ltab node is obsolete */ | 
|  | if (!(c->lpt_drty_flgs & LTAB_DIRTY)) { | 
|  | c->lpt_drty_flgs |= LTAB_DIRTY; | 
|  | ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * make_lsave_dirty - make lsave node dirty. | 
|  | * @c: UBIFS file-system description object | 
|  | * @lnum: LEB number where lsave was written | 
|  | * @offs: offset where lsave was written | 
|  | * | 
|  | * This function is used by LPT garbage collection.  LPT garbage collection is | 
|  | * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection | 
|  | * simply involves marking all the nodes in the LEB being garbage-collected as | 
|  | * dirty.  The dirty nodes are written next commit, after which the LEB is free | 
|  | * to be reused. | 
|  | * | 
|  | * This function returns %0 on success and a negative error code on failure. | 
|  | */ | 
|  | static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs) | 
|  | { | 
|  | if (lnum != c->lsave_lnum || offs != c->lsave_offs) | 
|  | return 0; /* This lsave node is obsolete */ | 
|  | if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) { | 
|  | c->lpt_drty_flgs |= LSAVE_DIRTY; | 
|  | ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * make_node_dirty - make node dirty. | 
|  | * @c: UBIFS file-system description object | 
|  | * @node_type: LPT node type | 
|  | * @node_num: node number | 
|  | * @lnum: LEB number where node was written | 
|  | * @offs: offset where node was written | 
|  | * | 
|  | * This function is used by LPT garbage collection.  LPT garbage collection is | 
|  | * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection | 
|  | * simply involves marking all the nodes in the LEB being garbage-collected as | 
|  | * dirty.  The dirty nodes are written next commit, after which the LEB is free | 
|  | * to be reused. | 
|  | * | 
|  | * This function returns %0 on success and a negative error code on failure. | 
|  | */ | 
|  | static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num, | 
|  | int lnum, int offs) | 
|  | { | 
|  | switch (node_type) { | 
|  | case UBIFS_LPT_NNODE: | 
|  | return make_nnode_dirty(c, node_num, lnum, offs); | 
|  | case UBIFS_LPT_PNODE: | 
|  | return make_pnode_dirty(c, node_num, lnum, offs); | 
|  | case UBIFS_LPT_LTAB: | 
|  | return make_ltab_dirty(c, lnum, offs); | 
|  | case UBIFS_LPT_LSAVE: | 
|  | return make_lsave_dirty(c, lnum, offs); | 
|  | } | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * get_lpt_node_len - return the length of a node based on its type. | 
|  | * @c: UBIFS file-system description object | 
|  | * @node_type: LPT node type | 
|  | */ | 
|  | static int get_lpt_node_len(const struct ubifs_info *c, int node_type) | 
|  | { | 
|  | switch (node_type) { | 
|  | case UBIFS_LPT_NNODE: | 
|  | return c->nnode_sz; | 
|  | case UBIFS_LPT_PNODE: | 
|  | return c->pnode_sz; | 
|  | case UBIFS_LPT_LTAB: | 
|  | return c->ltab_sz; | 
|  | case UBIFS_LPT_LSAVE: | 
|  | return c->lsave_sz; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * get_pad_len - return the length of padding in a buffer. | 
|  | * @c: UBIFS file-system description object | 
|  | * @buf: buffer | 
|  | * @len: length of buffer | 
|  | */ | 
|  | static int get_pad_len(const struct ubifs_info *c, uint8_t *buf, int len) | 
|  | { | 
|  | int offs, pad_len; | 
|  |  | 
|  | if (c->min_io_size == 1) | 
|  | return 0; | 
|  | offs = c->leb_size - len; | 
|  | pad_len = ALIGN(offs, c->min_io_size) - offs; | 
|  | return pad_len; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * get_lpt_node_type - return type (and node number) of a node in a buffer. | 
|  | * @c: UBIFS file-system description object | 
|  | * @buf: buffer | 
|  | * @node_num: node number is returned here | 
|  | */ | 
|  | static int get_lpt_node_type(const struct ubifs_info *c, uint8_t *buf, | 
|  | int *node_num) | 
|  | { | 
|  | uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; | 
|  | int pos = 0, node_type; | 
|  |  | 
|  | node_type = ubifs_unpack_bits(c, &addr, &pos, UBIFS_LPT_TYPE_BITS); | 
|  | *node_num = ubifs_unpack_bits(c, &addr, &pos, c->pcnt_bits); | 
|  | return node_type; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * is_a_node - determine if a buffer contains a node. | 
|  | * @c: UBIFS file-system description object | 
|  | * @buf: buffer | 
|  | * @len: length of buffer | 
|  | * | 
|  | * This function returns %1 if the buffer contains a node or %0 if it does not. | 
|  | */ | 
|  | static int is_a_node(const struct ubifs_info *c, uint8_t *buf, int len) | 
|  | { | 
|  | uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; | 
|  | int pos = 0, node_type, node_len; | 
|  | uint16_t crc, calc_crc; | 
|  |  | 
|  | if (len < UBIFS_LPT_CRC_BYTES + (UBIFS_LPT_TYPE_BITS + 7) / 8) | 
|  | return 0; | 
|  | node_type = ubifs_unpack_bits(c, &addr, &pos, UBIFS_LPT_TYPE_BITS); | 
|  | if (node_type == UBIFS_LPT_NOT_A_NODE) | 
|  | return 0; | 
|  | node_len = get_lpt_node_len(c, node_type); | 
|  | if (!node_len || node_len > len) | 
|  | return 0; | 
|  | pos = 0; | 
|  | addr = buf; | 
|  | crc = ubifs_unpack_bits(c, &addr, &pos, UBIFS_LPT_CRC_BITS); | 
|  | calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, | 
|  | node_len - UBIFS_LPT_CRC_BYTES); | 
|  | if (crc != calc_crc) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * lpt_gc_lnum - garbage collect a LPT LEB. | 
|  | * @c: UBIFS file-system description object | 
|  | * @lnum: LEB number to garbage collect | 
|  | * | 
|  | * LPT garbage collection is used only for the "big" LPT model | 
|  | * (c->big_lpt == 1).  Garbage collection simply involves marking all the nodes | 
|  | * in the LEB being garbage-collected as dirty.  The dirty nodes are written | 
|  | * next commit, after which the LEB is free to be reused. | 
|  | * | 
|  | * This function returns %0 on success and a negative error code on failure. | 
|  | */ | 
|  | static int lpt_gc_lnum(struct ubifs_info *c, int lnum) | 
|  | { | 
|  | int err, len = c->leb_size, node_type, node_num, node_len, offs; | 
|  | void *buf = c->lpt_buf; | 
|  |  | 
|  | dbg_lp("LEB %d", lnum); | 
|  |  | 
|  | err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | while (1) { | 
|  | if (!is_a_node(c, buf, len)) { | 
|  | int pad_len; | 
|  |  | 
|  | pad_len = get_pad_len(c, buf, len); | 
|  | if (pad_len) { | 
|  | buf += pad_len; | 
|  | len -= pad_len; | 
|  | continue; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | node_type = get_lpt_node_type(c, buf, &node_num); | 
|  | node_len = get_lpt_node_len(c, node_type); | 
|  | offs = c->leb_size - len; | 
|  | ubifs_assert(c, node_len != 0); | 
|  | mutex_lock(&c->lp_mutex); | 
|  | err = make_node_dirty(c, node_type, node_num, lnum, offs); | 
|  | mutex_unlock(&c->lp_mutex); | 
|  | if (err) | 
|  | return err; | 
|  | buf += node_len; | 
|  | len -= node_len; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * lpt_gc - LPT garbage collection. | 
|  | * @c: UBIFS file-system description object | 
|  | * | 
|  | * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'. | 
|  | * Returns %0 on success and a negative error code on failure. | 
|  | */ | 
|  | static int lpt_gc(struct ubifs_info *c) | 
|  | { | 
|  | int i, lnum = -1, dirty = 0; | 
|  |  | 
|  | mutex_lock(&c->lp_mutex); | 
|  | for (i = 0; i < c->lpt_lebs; i++) { | 
|  | ubifs_assert(c, !c->ltab[i].tgc); | 
|  | if (i + c->lpt_first == c->nhead_lnum || | 
|  | c->ltab[i].free + c->ltab[i].dirty == c->leb_size) | 
|  | continue; | 
|  | if (c->ltab[i].dirty > dirty) { | 
|  | dirty = c->ltab[i].dirty; | 
|  | lnum = i + c->lpt_first; | 
|  | } | 
|  | } | 
|  | mutex_unlock(&c->lp_mutex); | 
|  | if (lnum == -1) | 
|  | return -ENOSPC; | 
|  | return lpt_gc_lnum(c, lnum); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_lpt_start_commit - UBIFS commit starts. | 
|  | * @c: the UBIFS file-system description object | 
|  | * | 
|  | * This function has to be called when UBIFS starts the commit operation. | 
|  | * This function "freezes" all currently dirty LEB properties and does not | 
|  | * change them anymore. Further changes are saved and tracked separately | 
|  | * because they are not part of this commit. This function returns zero in case | 
|  | * of success and a negative error code in case of failure. | 
|  | */ | 
|  | int ubifs_lpt_start_commit(struct ubifs_info *c) | 
|  | { | 
|  | int err, cnt; | 
|  |  | 
|  | dbg_lp(""); | 
|  |  | 
|  | mutex_lock(&c->lp_mutex); | 
|  | err = dbg_chk_lpt_free_spc(c); | 
|  | if (err) | 
|  | goto out; | 
|  | err = dbg_check_ltab(c); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | if (c->check_lpt_free) { | 
|  | /* | 
|  | * We ensure there is enough free space in | 
|  | * ubifs_lpt_post_commit() by marking nodes dirty. That | 
|  | * information is lost when we unmount, so we also need | 
|  | * to check free space once after mounting also. | 
|  | */ | 
|  | c->check_lpt_free = 0; | 
|  | while (need_write_all(c)) { | 
|  | mutex_unlock(&c->lp_mutex); | 
|  | err = lpt_gc(c); | 
|  | if (err) | 
|  | return err; | 
|  | mutex_lock(&c->lp_mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | lpt_tgc_start(c); | 
|  |  | 
|  | if (!c->dirty_pn_cnt) { | 
|  | dbg_cmt("no cnodes to commit"); | 
|  | err = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!c->big_lpt && need_write_all(c)) { | 
|  | /* If needed, write everything */ | 
|  | err = make_tree_dirty(c); | 
|  | if (err) | 
|  | goto out; | 
|  | lpt_tgc_start(c); | 
|  | } | 
|  |  | 
|  | if (c->big_lpt) | 
|  | populate_lsave(c); | 
|  |  | 
|  | cnt = get_cnodes_to_commit(c); | 
|  | ubifs_assert(c, cnt != 0); | 
|  |  | 
|  | err = layout_cnodes(c); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | /* Copy the LPT's own lprops for end commit to write */ | 
|  | memcpy(c->ltab_cmt, c->ltab, | 
|  | sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs); | 
|  | c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY); | 
|  |  | 
|  | out: | 
|  | mutex_unlock(&c->lp_mutex); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * free_obsolete_cnodes - free obsolete cnodes for commit end. | 
|  | * @c: UBIFS file-system description object | 
|  | */ | 
|  | static void free_obsolete_cnodes(struct ubifs_info *c) | 
|  | { | 
|  | struct ubifs_cnode *cnode, *cnext; | 
|  |  | 
|  | cnext = c->lpt_cnext; | 
|  | if (!cnext) | 
|  | return; | 
|  | do { | 
|  | cnode = cnext; | 
|  | cnext = cnode->cnext; | 
|  | if (test_bit(OBSOLETE_CNODE, &cnode->flags)) | 
|  | kfree(cnode); | 
|  | else | 
|  | cnode->cnext = NULL; | 
|  | } while (cnext != c->lpt_cnext); | 
|  | c->lpt_cnext = NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_lpt_end_commit - finish the commit operation. | 
|  | * @c: the UBIFS file-system description object | 
|  | * | 
|  | * This function has to be called when the commit operation finishes. It | 
|  | * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to | 
|  | * the media. Returns zero in case of success and a negative error code in case | 
|  | * of failure. | 
|  | */ | 
|  | int ubifs_lpt_end_commit(struct ubifs_info *c) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | dbg_lp(""); | 
|  |  | 
|  | if (!c->lpt_cnext) | 
|  | return 0; | 
|  |  | 
|  | err = write_cnodes(c); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | mutex_lock(&c->lp_mutex); | 
|  | free_obsolete_cnodes(c); | 
|  | mutex_unlock(&c->lp_mutex); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC. | 
|  | * @c: UBIFS file-system description object | 
|  | * | 
|  | * LPT trivial GC is completed after a commit. Also LPT GC is done after a | 
|  | * commit for the "big" LPT model. | 
|  | */ | 
|  | int ubifs_lpt_post_commit(struct ubifs_info *c) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | mutex_lock(&c->lp_mutex); | 
|  | err = lpt_tgc_end(c); | 
|  | if (err) | 
|  | goto out; | 
|  | if (c->big_lpt) | 
|  | while (need_write_all(c)) { | 
|  | mutex_unlock(&c->lp_mutex); | 
|  | err = lpt_gc(c); | 
|  | if (err) | 
|  | return err; | 
|  | mutex_lock(&c->lp_mutex); | 
|  | } | 
|  | out: | 
|  | mutex_unlock(&c->lp_mutex); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * first_nnode - find the first nnode in memory. | 
|  | * @c: UBIFS file-system description object | 
|  | * @hght: height of tree where nnode found is returned here | 
|  | * | 
|  | * This function returns a pointer to the nnode found or %NULL if no nnode is | 
|  | * found. This function is a helper to 'ubifs_lpt_free()'. | 
|  | */ | 
|  | static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght) | 
|  | { | 
|  | struct ubifs_nnode *nnode; | 
|  | int h, i, found; | 
|  |  | 
|  | nnode = c->nroot; | 
|  | *hght = 0; | 
|  | if (!nnode) | 
|  | return NULL; | 
|  | for (h = 1; h < c->lpt_hght; h++) { | 
|  | found = 0; | 
|  | for (i = 0; i < UBIFS_LPT_FANOUT; i++) { | 
|  | if (nnode->nbranch[i].nnode) { | 
|  | found = 1; | 
|  | nnode = nnode->nbranch[i].nnode; | 
|  | *hght = h; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!found) | 
|  | break; | 
|  | } | 
|  | return nnode; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * next_nnode - find the next nnode in memory. | 
|  | * @c: UBIFS file-system description object | 
|  | * @nnode: nnode from which to start. | 
|  | * @hght: height of tree where nnode is, is passed and returned here | 
|  | * | 
|  | * This function returns a pointer to the nnode found or %NULL if no nnode is | 
|  | * found. This function is a helper to 'ubifs_lpt_free()'. | 
|  | */ | 
|  | static struct ubifs_nnode *next_nnode(struct ubifs_info *c, | 
|  | struct ubifs_nnode *nnode, int *hght) | 
|  | { | 
|  | struct ubifs_nnode *parent; | 
|  | int iip, h, i, found; | 
|  |  | 
|  | parent = nnode->parent; | 
|  | if (!parent) | 
|  | return NULL; | 
|  | if (nnode->iip == UBIFS_LPT_FANOUT - 1) { | 
|  | *hght -= 1; | 
|  | return parent; | 
|  | } | 
|  | for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) { | 
|  | nnode = parent->nbranch[iip].nnode; | 
|  | if (nnode) | 
|  | break; | 
|  | } | 
|  | if (!nnode) { | 
|  | *hght -= 1; | 
|  | return parent; | 
|  | } | 
|  | for (h = *hght + 1; h < c->lpt_hght; h++) { | 
|  | found = 0; | 
|  | for (i = 0; i < UBIFS_LPT_FANOUT; i++) { | 
|  | if (nnode->nbranch[i].nnode) { | 
|  | found = 1; | 
|  | nnode = nnode->nbranch[i].nnode; | 
|  | *hght = h; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!found) | 
|  | break; | 
|  | } | 
|  | return nnode; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_lpt_free - free resources owned by the LPT. | 
|  | * @c: UBIFS file-system description object | 
|  | * @wr_only: free only resources used for writing | 
|  | */ | 
|  | void ubifs_lpt_free(struct ubifs_info *c, int wr_only) | 
|  | { | 
|  | struct ubifs_nnode *nnode; | 
|  | int i, hght; | 
|  |  | 
|  | /* Free write-only things first */ | 
|  |  | 
|  | free_obsolete_cnodes(c); /* Leftover from a failed commit */ | 
|  |  | 
|  | vfree(c->ltab_cmt); | 
|  | c->ltab_cmt = NULL; | 
|  | vfree(c->lpt_buf); | 
|  | c->lpt_buf = NULL; | 
|  | kfree(c->lsave); | 
|  | c->lsave = NULL; | 
|  |  | 
|  | if (wr_only) | 
|  | return; | 
|  |  | 
|  | /* Now free the rest */ | 
|  |  | 
|  | nnode = first_nnode(c, &hght); | 
|  | while (nnode) { | 
|  | for (i = 0; i < UBIFS_LPT_FANOUT; i++) | 
|  | kfree(nnode->nbranch[i].nnode); | 
|  | nnode = next_nnode(c, nnode, &hght); | 
|  | } | 
|  | for (i = 0; i < LPROPS_HEAP_CNT; i++) | 
|  | kfree(c->lpt_heap[i].arr); | 
|  | kfree(c->dirty_idx.arr); | 
|  | kfree(c->nroot); | 
|  | vfree(c->ltab); | 
|  | kfree(c->lpt_nod_buf); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Everything below is related to debugging. | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * dbg_is_all_ff - determine if a buffer contains only 0xFF bytes. | 
|  | * @buf: buffer | 
|  | * @len: buffer length | 
|  | */ | 
|  | static int dbg_is_all_ff(uint8_t *buf, int len) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < len; i++) | 
|  | if (buf[i] != 0xff) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dbg_is_nnode_dirty - determine if a nnode is dirty. | 
|  | * @c: the UBIFS file-system description object | 
|  | * @lnum: LEB number where nnode was written | 
|  | * @offs: offset where nnode was written | 
|  | */ | 
|  | static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs) | 
|  | { | 
|  | struct ubifs_nnode *nnode; | 
|  | int hght; | 
|  |  | 
|  | /* Entire tree is in memory so first_nnode / next_nnode are OK */ | 
|  | nnode = first_nnode(c, &hght); | 
|  | for (; nnode; nnode = next_nnode(c, nnode, &hght)) { | 
|  | struct ubifs_nbranch *branch; | 
|  |  | 
|  | cond_resched(); | 
|  | if (nnode->parent) { | 
|  | branch = &nnode->parent->nbranch[nnode->iip]; | 
|  | if (branch->lnum != lnum || branch->offs != offs) | 
|  | continue; | 
|  | if (test_bit(DIRTY_CNODE, &nnode->flags)) | 
|  | return 1; | 
|  | return 0; | 
|  | } else { | 
|  | if (c->lpt_lnum != lnum || c->lpt_offs != offs) | 
|  | continue; | 
|  | if (test_bit(DIRTY_CNODE, &nnode->flags)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dbg_is_pnode_dirty - determine if a pnode is dirty. | 
|  | * @c: the UBIFS file-system description object | 
|  | * @lnum: LEB number where pnode was written | 
|  | * @offs: offset where pnode was written | 
|  | */ | 
|  | static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs) | 
|  | { | 
|  | int i, cnt; | 
|  |  | 
|  | cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT); | 
|  | for (i = 0; i < cnt; i++) { | 
|  | struct ubifs_pnode *pnode; | 
|  | struct ubifs_nbranch *branch; | 
|  |  | 
|  | cond_resched(); | 
|  | pnode = pnode_lookup(c, i); | 
|  | if (IS_ERR(pnode)) | 
|  | return PTR_ERR(pnode); | 
|  | branch = &pnode->parent->nbranch[pnode->iip]; | 
|  | if (branch->lnum != lnum || branch->offs != offs) | 
|  | continue; | 
|  | if (test_bit(DIRTY_CNODE, &pnode->flags)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dbg_is_ltab_dirty - determine if a ltab node is dirty. | 
|  | * @c: the UBIFS file-system description object | 
|  | * @lnum: LEB number where ltab node was written | 
|  | * @offs: offset where ltab node was written | 
|  | */ | 
|  | static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs) | 
|  | { | 
|  | if (lnum != c->ltab_lnum || offs != c->ltab_offs) | 
|  | return 1; | 
|  | return (c->lpt_drty_flgs & LTAB_DIRTY) != 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dbg_is_lsave_dirty - determine if a lsave node is dirty. | 
|  | * @c: the UBIFS file-system description object | 
|  | * @lnum: LEB number where lsave node was written | 
|  | * @offs: offset where lsave node was written | 
|  | */ | 
|  | static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs) | 
|  | { | 
|  | if (lnum != c->lsave_lnum || offs != c->lsave_offs) | 
|  | return 1; | 
|  | return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dbg_is_node_dirty - determine if a node is dirty. | 
|  | * @c: the UBIFS file-system description object | 
|  | * @node_type: node type | 
|  | * @lnum: LEB number where node was written | 
|  | * @offs: offset where node was written | 
|  | */ | 
|  | static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum, | 
|  | int offs) | 
|  | { | 
|  | switch (node_type) { | 
|  | case UBIFS_LPT_NNODE: | 
|  | return dbg_is_nnode_dirty(c, lnum, offs); | 
|  | case UBIFS_LPT_PNODE: | 
|  | return dbg_is_pnode_dirty(c, lnum, offs); | 
|  | case UBIFS_LPT_LTAB: | 
|  | return dbg_is_ltab_dirty(c, lnum, offs); | 
|  | case UBIFS_LPT_LSAVE: | 
|  | return dbg_is_lsave_dirty(c, lnum, offs); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dbg_check_ltab_lnum - check the ltab for a LPT LEB number. | 
|  | * @c: the UBIFS file-system description object | 
|  | * @lnum: LEB number where node was written | 
|  | * | 
|  | * This function returns %0 on success and a negative error code on failure. | 
|  | */ | 
|  | static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum) | 
|  | { | 
|  | int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len; | 
|  | int ret; | 
|  | void *buf, *p; | 
|  |  | 
|  | if (!dbg_is_chk_lprops(c)) | 
|  | return 0; | 
|  |  | 
|  | buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); | 
|  | if (!buf) { | 
|  | ubifs_err(c, "cannot allocate memory for ltab checking"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | dbg_lp("LEB %d", lnum); | 
|  |  | 
|  | err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | while (1) { | 
|  | if (!is_a_node(c, p, len)) { | 
|  | int i, pad_len; | 
|  |  | 
|  | pad_len = get_pad_len(c, p, len); | 
|  | if (pad_len) { | 
|  | p += pad_len; | 
|  | len -= pad_len; | 
|  | dirty += pad_len; | 
|  | continue; | 
|  | } | 
|  | if (!dbg_is_all_ff(p, len)) { | 
|  | ubifs_err(c, "invalid empty space in LEB %d at %d", | 
|  | lnum, c->leb_size - len); | 
|  | err = -EINVAL; | 
|  | } | 
|  | i = lnum - c->lpt_first; | 
|  | if (len != c->ltab[i].free) { | 
|  | ubifs_err(c, "invalid free space in LEB %d (free %d, expected %d)", | 
|  | lnum, len, c->ltab[i].free); | 
|  | err = -EINVAL; | 
|  | } | 
|  | if (dirty != c->ltab[i].dirty) { | 
|  | ubifs_err(c, "invalid dirty space in LEB %d (dirty %d, expected %d)", | 
|  | lnum, dirty, c->ltab[i].dirty); | 
|  | err = -EINVAL; | 
|  | } | 
|  | goto out; | 
|  | } | 
|  | node_type = get_lpt_node_type(c, p, &node_num); | 
|  | node_len = get_lpt_node_len(c, node_type); | 
|  | ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len); | 
|  | if (ret == 1) | 
|  | dirty += node_len; | 
|  | p += node_len; | 
|  | len -= node_len; | 
|  | } | 
|  |  | 
|  | err = 0; | 
|  | out: | 
|  | vfree(buf); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dbg_check_ltab - check the free and dirty space in the ltab. | 
|  | * @c: the UBIFS file-system description object | 
|  | * | 
|  | * This function returns %0 on success and a negative error code on failure. | 
|  | */ | 
|  | int dbg_check_ltab(struct ubifs_info *c) | 
|  | { | 
|  | int lnum, err, i, cnt; | 
|  |  | 
|  | if (!dbg_is_chk_lprops(c)) | 
|  | return 0; | 
|  |  | 
|  | /* Bring the entire tree into memory */ | 
|  | cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT); | 
|  | for (i = 0; i < cnt; i++) { | 
|  | struct ubifs_pnode *pnode; | 
|  |  | 
|  | pnode = pnode_lookup(c, i); | 
|  | if (IS_ERR(pnode)) | 
|  | return PTR_ERR(pnode); | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | /* Check nodes */ | 
|  | err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* Check each LEB */ | 
|  | for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) { | 
|  | err = dbg_check_ltab_lnum(c, lnum); | 
|  | if (err) { | 
|  | ubifs_err(c, "failed at LEB %d", lnum); | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | dbg_lp("succeeded"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT. | 
|  | * @c: the UBIFS file-system description object | 
|  | * | 
|  | * This function returns %0 on success and a negative error code on failure. | 
|  | */ | 
|  | int dbg_chk_lpt_free_spc(struct ubifs_info *c) | 
|  | { | 
|  | long long free = 0; | 
|  | int i; | 
|  |  | 
|  | if (!dbg_is_chk_lprops(c)) | 
|  | return 0; | 
|  |  | 
|  | for (i = 0; i < c->lpt_lebs; i++) { | 
|  | if (c->ltab[i].tgc || c->ltab[i].cmt) | 
|  | continue; | 
|  | if (i + c->lpt_first == c->nhead_lnum) | 
|  | free += c->leb_size - c->nhead_offs; | 
|  | else if (c->ltab[i].free == c->leb_size) | 
|  | free += c->leb_size; | 
|  | } | 
|  | if (free < c->lpt_sz) { | 
|  | ubifs_err(c, "LPT space error: free %lld lpt_sz %lld", | 
|  | free, c->lpt_sz); | 
|  | ubifs_dump_lpt_info(c); | 
|  | ubifs_dump_lpt_lebs(c); | 
|  | dump_stack(); | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dbg_chk_lpt_sz - check LPT does not write more than LPT size. | 
|  | * @c: the UBIFS file-system description object | 
|  | * @action: what to do | 
|  | * @len: length written | 
|  | * | 
|  | * This function returns %0 on success and a negative error code on failure. | 
|  | * The @action argument may be one of: | 
|  | *   o %0 - LPT debugging checking starts, initialize debugging variables; | 
|  | *   o %1 - wrote an LPT node, increase LPT size by @len bytes; | 
|  | *   o %2 - switched to a different LEB and wasted @len bytes; | 
|  | *   o %3 - check that we've written the right number of bytes. | 
|  | *   o %4 - wasted @len bytes; | 
|  | */ | 
|  | int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len) | 
|  | { | 
|  | struct ubifs_debug_info *d = c->dbg; | 
|  | long long chk_lpt_sz, lpt_sz; | 
|  | int err = 0; | 
|  |  | 
|  | if (!dbg_is_chk_lprops(c)) | 
|  | return 0; | 
|  |  | 
|  | switch (action) { | 
|  | case 0: | 
|  | d->chk_lpt_sz = 0; | 
|  | d->chk_lpt_sz2 = 0; | 
|  | d->chk_lpt_lebs = 0; | 
|  | d->chk_lpt_wastage = 0; | 
|  | if (c->dirty_pn_cnt > c->pnode_cnt) { | 
|  | ubifs_err(c, "dirty pnodes %d exceed max %d", | 
|  | c->dirty_pn_cnt, c->pnode_cnt); | 
|  | err = -EINVAL; | 
|  | } | 
|  | if (c->dirty_nn_cnt > c->nnode_cnt) { | 
|  | ubifs_err(c, "dirty nnodes %d exceed max %d", | 
|  | c->dirty_nn_cnt, c->nnode_cnt); | 
|  | err = -EINVAL; | 
|  | } | 
|  | return err; | 
|  | case 1: | 
|  | d->chk_lpt_sz += len; | 
|  | return 0; | 
|  | case 2: | 
|  | d->chk_lpt_sz += len; | 
|  | d->chk_lpt_wastage += len; | 
|  | d->chk_lpt_lebs += 1; | 
|  | return 0; | 
|  | case 3: | 
|  | chk_lpt_sz = c->leb_size; | 
|  | chk_lpt_sz *= d->chk_lpt_lebs; | 
|  | chk_lpt_sz += len - c->nhead_offs; | 
|  | if (d->chk_lpt_sz != chk_lpt_sz) { | 
|  | ubifs_err(c, "LPT wrote %lld but space used was %lld", | 
|  | d->chk_lpt_sz, chk_lpt_sz); | 
|  | err = -EINVAL; | 
|  | } | 
|  | if (d->chk_lpt_sz > c->lpt_sz) { | 
|  | ubifs_err(c, "LPT wrote %lld but lpt_sz is %lld", | 
|  | d->chk_lpt_sz, c->lpt_sz); | 
|  | err = -EINVAL; | 
|  | } | 
|  | if (d->chk_lpt_sz2 && d->chk_lpt_sz != d->chk_lpt_sz2) { | 
|  | ubifs_err(c, "LPT layout size %lld but wrote %lld", | 
|  | d->chk_lpt_sz, d->chk_lpt_sz2); | 
|  | err = -EINVAL; | 
|  | } | 
|  | if (d->chk_lpt_sz2 && d->new_nhead_offs != len) { | 
|  | ubifs_err(c, "LPT new nhead offs: expected %d was %d", | 
|  | d->new_nhead_offs, len); | 
|  | err = -EINVAL; | 
|  | } | 
|  | lpt_sz = (long long)c->pnode_cnt * c->pnode_sz; | 
|  | lpt_sz += (long long)c->nnode_cnt * c->nnode_sz; | 
|  | lpt_sz += c->ltab_sz; | 
|  | if (c->big_lpt) | 
|  | lpt_sz += c->lsave_sz; | 
|  | if (d->chk_lpt_sz - d->chk_lpt_wastage > lpt_sz) { | 
|  | ubifs_err(c, "LPT chk_lpt_sz %lld + waste %lld exceeds %lld", | 
|  | d->chk_lpt_sz, d->chk_lpt_wastage, lpt_sz); | 
|  | err = -EINVAL; | 
|  | } | 
|  | if (err) { | 
|  | ubifs_dump_lpt_info(c); | 
|  | ubifs_dump_lpt_lebs(c); | 
|  | dump_stack(); | 
|  | } | 
|  | d->chk_lpt_sz2 = d->chk_lpt_sz; | 
|  | d->chk_lpt_sz = 0; | 
|  | d->chk_lpt_wastage = 0; | 
|  | d->chk_lpt_lebs = 0; | 
|  | d->new_nhead_offs = len; | 
|  | return err; | 
|  | case 4: | 
|  | d->chk_lpt_sz += len; | 
|  | d->chk_lpt_wastage += len; | 
|  | return 0; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dump_lpt_leb - dump an LPT LEB. | 
|  | * @c: UBIFS file-system description object | 
|  | * @lnum: LEB number to dump | 
|  | * | 
|  | * This function dumps an LEB from LPT area. Nodes in this area are very | 
|  | * different to nodes in the main area (e.g., they do not have common headers, | 
|  | * they do not have 8-byte alignments, etc), so we have a separate function to | 
|  | * dump LPT area LEBs. Note, LPT has to be locked by the caller. | 
|  | */ | 
|  | static void dump_lpt_leb(const struct ubifs_info *c, int lnum) | 
|  | { | 
|  | int err, len = c->leb_size, node_type, node_num, node_len, offs; | 
|  | void *buf, *p; | 
|  |  | 
|  | pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum); | 
|  | buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); | 
|  | if (!buf) { | 
|  | ubifs_err(c, "cannot allocate memory to dump LPT"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | while (1) { | 
|  | offs = c->leb_size - len; | 
|  | if (!is_a_node(c, p, len)) { | 
|  | int pad_len; | 
|  |  | 
|  | pad_len = get_pad_len(c, p, len); | 
|  | if (pad_len) { | 
|  | pr_err("LEB %d:%d, pad %d bytes\n", | 
|  | lnum, offs, pad_len); | 
|  | p += pad_len; | 
|  | len -= pad_len; | 
|  | continue; | 
|  | } | 
|  | if (len) | 
|  | pr_err("LEB %d:%d, free %d bytes\n", | 
|  | lnum, offs, len); | 
|  | break; | 
|  | } | 
|  |  | 
|  | node_type = get_lpt_node_type(c, p, &node_num); | 
|  | switch (node_type) { | 
|  | case UBIFS_LPT_PNODE: | 
|  | { | 
|  | node_len = c->pnode_sz; | 
|  | if (c->big_lpt) | 
|  | pr_err("LEB %d:%d, pnode num %d\n", | 
|  | lnum, offs, node_num); | 
|  | else | 
|  | pr_err("LEB %d:%d, pnode\n", lnum, offs); | 
|  | break; | 
|  | } | 
|  | case UBIFS_LPT_NNODE: | 
|  | { | 
|  | int i; | 
|  | struct ubifs_nnode nnode; | 
|  |  | 
|  | node_len = c->nnode_sz; | 
|  | if (c->big_lpt) | 
|  | pr_err("LEB %d:%d, nnode num %d, ", | 
|  | lnum, offs, node_num); | 
|  | else | 
|  | pr_err("LEB %d:%d, nnode, ", | 
|  | lnum, offs); | 
|  | err = ubifs_unpack_nnode(c, p, &nnode); | 
|  | if (err) { | 
|  | pr_err("failed to unpack_node, error %d\n", | 
|  | err); | 
|  | break; | 
|  | } | 
|  | for (i = 0; i < UBIFS_LPT_FANOUT; i++) { | 
|  | pr_cont("%d:%d", nnode.nbranch[i].lnum, | 
|  | nnode.nbranch[i].offs); | 
|  | if (i != UBIFS_LPT_FANOUT - 1) | 
|  | pr_cont(", "); | 
|  | } | 
|  | pr_cont("\n"); | 
|  | break; | 
|  | } | 
|  | case UBIFS_LPT_LTAB: | 
|  | node_len = c->ltab_sz; | 
|  | pr_err("LEB %d:%d, ltab\n", lnum, offs); | 
|  | break; | 
|  | case UBIFS_LPT_LSAVE: | 
|  | node_len = c->lsave_sz; | 
|  | pr_err("LEB %d:%d, lsave len\n", lnum, offs); | 
|  | break; | 
|  | default: | 
|  | ubifs_err(c, "LPT node type %d not recognized", node_type); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | p += node_len; | 
|  | len -= node_len; | 
|  | } | 
|  |  | 
|  | pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum); | 
|  | out: | 
|  | vfree(buf); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_dump_lpt_lebs - dump LPT lebs. | 
|  | * @c: UBIFS file-system description object | 
|  | * | 
|  | * This function dumps all LPT LEBs. The caller has to make sure the LPT is | 
|  | * locked. | 
|  | */ | 
|  | void ubifs_dump_lpt_lebs(const struct ubifs_info *c) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | pr_err("(pid %d) start dumping all LPT LEBs\n", current->pid); | 
|  | for (i = 0; i < c->lpt_lebs; i++) | 
|  | dump_lpt_leb(c, i + c->lpt_first); | 
|  | pr_err("(pid %d) finish dumping all LPT LEBs\n", current->pid); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dbg_populate_lsave - debugging version of 'populate_lsave()' | 
|  | * @c: UBIFS file-system description object | 
|  | * | 
|  | * This is a debugging version for 'populate_lsave()' which populates lsave | 
|  | * with random LEBs instead of useful LEBs, which is good for test coverage. | 
|  | * Returns zero if lsave has not been populated (this debugging feature is | 
|  | * disabled) an non-zero if lsave has been populated. | 
|  | */ | 
|  | static int dbg_populate_lsave(struct ubifs_info *c) | 
|  | { | 
|  | struct ubifs_lprops *lprops; | 
|  | struct ubifs_lpt_heap *heap; | 
|  | int i; | 
|  |  | 
|  | if (!dbg_is_chk_gen(c)) | 
|  | return 0; | 
|  | if (prandom_u32() & 3) | 
|  | return 0; | 
|  |  | 
|  | for (i = 0; i < c->lsave_cnt; i++) | 
|  | c->lsave[i] = c->main_first; | 
|  |  | 
|  | list_for_each_entry(lprops, &c->empty_list, list) | 
|  | c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum; | 
|  | list_for_each_entry(lprops, &c->freeable_list, list) | 
|  | c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum; | 
|  | list_for_each_entry(lprops, &c->frdi_idx_list, list) | 
|  | c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum; | 
|  |  | 
|  | heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1]; | 
|  | for (i = 0; i < heap->cnt; i++) | 
|  | c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum; | 
|  | heap = &c->lpt_heap[LPROPS_DIRTY - 1]; | 
|  | for (i = 0; i < heap->cnt; i++) | 
|  | c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum; | 
|  | heap = &c->lpt_heap[LPROPS_FREE - 1]; | 
|  | for (i = 0; i < heap->cnt; i++) | 
|  | c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum; | 
|  |  | 
|  | return 1; | 
|  | } |