|  | /* | 
|  | * Resizable virtual memory filesystem for Linux. | 
|  | * | 
|  | * Copyright (C) 2000 Linus Torvalds. | 
|  | *		 2000 Transmeta Corp. | 
|  | *		 2000-2001 Christoph Rohland | 
|  | *		 2000-2001 SAP AG | 
|  | *		 2002 Red Hat Inc. | 
|  | * Copyright (C) 2002-2011 Hugh Dickins. | 
|  | * Copyright (C) 2011 Google Inc. | 
|  | * Copyright (C) 2002-2005 VERITAS Software Corporation. | 
|  | * Copyright (C) 2004 Andi Kleen, SuSE Labs | 
|  | * | 
|  | * Extended attribute support for tmpfs: | 
|  | * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> | 
|  | * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> | 
|  | * | 
|  | * tiny-shmem: | 
|  | * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> | 
|  | * | 
|  | * This file is released under the GPL. | 
|  | */ | 
|  |  | 
|  | #include <linux/fs.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/vfs.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/ramfs.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/sched/signal.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/uio.h> | 
|  | #include <linux/khugepaged.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/frontswap.h> | 
|  | #include <linux/fs_parser.h> | 
|  |  | 
|  | #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */ | 
|  |  | 
|  | static struct vfsmount *shm_mnt; | 
|  |  | 
|  | #ifdef CONFIG_SHMEM | 
|  | /* | 
|  | * This virtual memory filesystem is heavily based on the ramfs. It | 
|  | * extends ramfs by the ability to use swap and honor resource limits | 
|  | * which makes it a completely usable filesystem. | 
|  | */ | 
|  |  | 
|  | #include <linux/xattr.h> | 
|  | #include <linux/exportfs.h> | 
|  | #include <linux/posix_acl.h> | 
|  | #include <linux/posix_acl_xattr.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/shmem_fs.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include <linux/percpu_counter.h> | 
|  | #include <linux/falloc.h> | 
|  | #include <linux/splice.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/mempolicy.h> | 
|  | #include <linux/namei.h> | 
|  | #include <linux/ctype.h> | 
|  | #include <linux/migrate.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/magic.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/fcntl.h> | 
|  | #include <uapi/linux/memfd.h> | 
|  | #include <linux/userfaultfd_k.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/uuid.h> | 
|  |  | 
|  | #include <linux/uaccess.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  | #define BLOCKS_PER_PAGE  (PAGE_SIZE/512) | 
|  | #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT) | 
|  |  | 
|  | /* Pretend that each entry is of this size in directory's i_size */ | 
|  | #define BOGO_DIRENT_SIZE 20 | 
|  |  | 
|  | /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ | 
|  | #define SHORT_SYMLINK_LEN 128 | 
|  |  | 
|  | /* | 
|  | * shmem_fallocate communicates with shmem_fault or shmem_writepage via | 
|  | * inode->i_private (with i_mutex making sure that it has only one user at | 
|  | * a time): we would prefer not to enlarge the shmem inode just for that. | 
|  | */ | 
|  | struct shmem_falloc { | 
|  | wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ | 
|  | pgoff_t start;		/* start of range currently being fallocated */ | 
|  | pgoff_t next;		/* the next page offset to be fallocated */ | 
|  | pgoff_t nr_falloced;	/* how many new pages have been fallocated */ | 
|  | pgoff_t nr_unswapped;	/* how often writepage refused to swap out */ | 
|  | }; | 
|  |  | 
|  | struct shmem_options { | 
|  | unsigned long long blocks; | 
|  | unsigned long long inodes; | 
|  | struct mempolicy *mpol; | 
|  | kuid_t uid; | 
|  | kgid_t gid; | 
|  | umode_t mode; | 
|  | bool full_inums; | 
|  | int huge; | 
|  | int seen; | 
|  | #define SHMEM_SEEN_BLOCKS 1 | 
|  | #define SHMEM_SEEN_INODES 2 | 
|  | #define SHMEM_SEEN_HUGE 4 | 
|  | #define SHMEM_SEEN_INUMS 8 | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_TMPFS | 
|  | static unsigned long shmem_default_max_blocks(void) | 
|  | { | 
|  | return totalram_pages() / 2; | 
|  | } | 
|  |  | 
|  | static unsigned long shmem_default_max_inodes(void) | 
|  | { | 
|  | unsigned long nr_pages = totalram_pages(); | 
|  |  | 
|  | return min(nr_pages - totalhigh_pages(), nr_pages / 2); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static bool shmem_should_replace_page(struct page *page, gfp_t gfp); | 
|  | static int shmem_replace_page(struct page **pagep, gfp_t gfp, | 
|  | struct shmem_inode_info *info, pgoff_t index); | 
|  | static int shmem_swapin_page(struct inode *inode, pgoff_t index, | 
|  | struct page **pagep, enum sgp_type sgp, | 
|  | gfp_t gfp, struct vm_area_struct *vma, | 
|  | vm_fault_t *fault_type); | 
|  | static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, | 
|  | struct page **pagep, enum sgp_type sgp, | 
|  | gfp_t gfp, struct vm_area_struct *vma, | 
|  | struct vm_fault *vmf, vm_fault_t *fault_type); | 
|  |  | 
|  | int shmem_getpage(struct inode *inode, pgoff_t index, | 
|  | struct page **pagep, enum sgp_type sgp) | 
|  | { | 
|  | return shmem_getpage_gfp(inode, index, pagep, sgp, | 
|  | mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); | 
|  | } | 
|  |  | 
|  | static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) | 
|  | { | 
|  | return sb->s_fs_info; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * shmem_file_setup pre-accounts the whole fixed size of a VM object, | 
|  | * for shared memory and for shared anonymous (/dev/zero) mappings | 
|  | * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), | 
|  | * consistent with the pre-accounting of private mappings ... | 
|  | */ | 
|  | static inline int shmem_acct_size(unsigned long flags, loff_t size) | 
|  | { | 
|  | return (flags & VM_NORESERVE) ? | 
|  | 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); | 
|  | } | 
|  |  | 
|  | static inline void shmem_unacct_size(unsigned long flags, loff_t size) | 
|  | { | 
|  | if (!(flags & VM_NORESERVE)) | 
|  | vm_unacct_memory(VM_ACCT(size)); | 
|  | } | 
|  |  | 
|  | static inline int shmem_reacct_size(unsigned long flags, | 
|  | loff_t oldsize, loff_t newsize) | 
|  | { | 
|  | if (!(flags & VM_NORESERVE)) { | 
|  | if (VM_ACCT(newsize) > VM_ACCT(oldsize)) | 
|  | return security_vm_enough_memory_mm(current->mm, | 
|  | VM_ACCT(newsize) - VM_ACCT(oldsize)); | 
|  | else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) | 
|  | vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ... whereas tmpfs objects are accounted incrementally as | 
|  | * pages are allocated, in order to allow large sparse files. | 
|  | * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, | 
|  | * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. | 
|  | */ | 
|  | static inline int shmem_acct_block(unsigned long flags, long pages) | 
|  | { | 
|  | if (!(flags & VM_NORESERVE)) | 
|  | return 0; | 
|  |  | 
|  | return security_vm_enough_memory_mm(current->mm, | 
|  | pages * VM_ACCT(PAGE_SIZE)); | 
|  | } | 
|  |  | 
|  | static inline void shmem_unacct_blocks(unsigned long flags, long pages) | 
|  | { | 
|  | if (flags & VM_NORESERVE) | 
|  | vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); | 
|  | } | 
|  |  | 
|  | static inline bool shmem_inode_acct_block(struct inode *inode, long pages) | 
|  | { | 
|  | struct shmem_inode_info *info = SHMEM_I(inode); | 
|  | struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); | 
|  |  | 
|  | if (shmem_acct_block(info->flags, pages)) | 
|  | return false; | 
|  |  | 
|  | if (sbinfo->max_blocks) { | 
|  | if (percpu_counter_compare(&sbinfo->used_blocks, | 
|  | sbinfo->max_blocks - pages) > 0) | 
|  | goto unacct; | 
|  | percpu_counter_add(&sbinfo->used_blocks, pages); | 
|  | } | 
|  |  | 
|  | return true; | 
|  |  | 
|  | unacct: | 
|  | shmem_unacct_blocks(info->flags, pages); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) | 
|  | { | 
|  | struct shmem_inode_info *info = SHMEM_I(inode); | 
|  | struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); | 
|  |  | 
|  | if (sbinfo->max_blocks) | 
|  | percpu_counter_sub(&sbinfo->used_blocks, pages); | 
|  | shmem_unacct_blocks(info->flags, pages); | 
|  | } | 
|  |  | 
|  | static const struct super_operations shmem_ops; | 
|  | static const struct address_space_operations shmem_aops; | 
|  | static const struct file_operations shmem_file_operations; | 
|  | static const struct inode_operations shmem_inode_operations; | 
|  | static const struct inode_operations shmem_dir_inode_operations; | 
|  | static const struct inode_operations shmem_special_inode_operations; | 
|  | static const struct vm_operations_struct shmem_vm_ops; | 
|  | static struct file_system_type shmem_fs_type; | 
|  |  | 
|  | bool vma_is_shmem(struct vm_area_struct *vma) | 
|  | { | 
|  | return vma->vm_ops == &shmem_vm_ops; | 
|  | } | 
|  |  | 
|  | static LIST_HEAD(shmem_swaplist); | 
|  | static DEFINE_MUTEX(shmem_swaplist_mutex); | 
|  |  | 
|  | /* | 
|  | * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and | 
|  | * produces a novel ino for the newly allocated inode. | 
|  | * | 
|  | * It may also be called when making a hard link to permit the space needed by | 
|  | * each dentry. However, in that case, no new inode number is needed since that | 
|  | * internally draws from another pool of inode numbers (currently global | 
|  | * get_next_ino()). This case is indicated by passing NULL as inop. | 
|  | */ | 
|  | #define SHMEM_INO_BATCH 1024 | 
|  | static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) | 
|  | { | 
|  | struct shmem_sb_info *sbinfo = SHMEM_SB(sb); | 
|  | ino_t ino; | 
|  |  | 
|  | if (!(sb->s_flags & SB_KERNMOUNT)) { | 
|  | spin_lock(&sbinfo->stat_lock); | 
|  | if (!sbinfo->free_inodes) { | 
|  | spin_unlock(&sbinfo->stat_lock); | 
|  | return -ENOSPC; | 
|  | } | 
|  | sbinfo->free_inodes--; | 
|  | if (inop) { | 
|  | ino = sbinfo->next_ino++; | 
|  | if (unlikely(is_zero_ino(ino))) | 
|  | ino = sbinfo->next_ino++; | 
|  | if (unlikely(!sbinfo->full_inums && | 
|  | ino > UINT_MAX)) { | 
|  | /* | 
|  | * Emulate get_next_ino uint wraparound for | 
|  | * compatibility | 
|  | */ | 
|  | if (IS_ENABLED(CONFIG_64BIT)) | 
|  | pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", | 
|  | __func__, MINOR(sb->s_dev)); | 
|  | sbinfo->next_ino = 1; | 
|  | ino = sbinfo->next_ino++; | 
|  | } | 
|  | *inop = ino; | 
|  | } | 
|  | spin_unlock(&sbinfo->stat_lock); | 
|  | } else if (inop) { | 
|  | /* | 
|  | * __shmem_file_setup, one of our callers, is lock-free: it | 
|  | * doesn't hold stat_lock in shmem_reserve_inode since | 
|  | * max_inodes is always 0, and is called from potentially | 
|  | * unknown contexts. As such, use a per-cpu batched allocator | 
|  | * which doesn't require the per-sb stat_lock unless we are at | 
|  | * the batch boundary. | 
|  | * | 
|  | * We don't need to worry about inode{32,64} since SB_KERNMOUNT | 
|  | * shmem mounts are not exposed to userspace, so we don't need | 
|  | * to worry about things like glibc compatibility. | 
|  | */ | 
|  | ino_t *next_ino; | 
|  | next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); | 
|  | ino = *next_ino; | 
|  | if (unlikely(ino % SHMEM_INO_BATCH == 0)) { | 
|  | spin_lock(&sbinfo->stat_lock); | 
|  | ino = sbinfo->next_ino; | 
|  | sbinfo->next_ino += SHMEM_INO_BATCH; | 
|  | spin_unlock(&sbinfo->stat_lock); | 
|  | if (unlikely(is_zero_ino(ino))) | 
|  | ino++; | 
|  | } | 
|  | *inop = ino; | 
|  | *next_ino = ++ino; | 
|  | put_cpu(); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void shmem_free_inode(struct super_block *sb) | 
|  | { | 
|  | struct shmem_sb_info *sbinfo = SHMEM_SB(sb); | 
|  | if (sbinfo->max_inodes) { | 
|  | spin_lock(&sbinfo->stat_lock); | 
|  | sbinfo->free_inodes++; | 
|  | spin_unlock(&sbinfo->stat_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * shmem_recalc_inode - recalculate the block usage of an inode | 
|  | * @inode: inode to recalc | 
|  | * | 
|  | * We have to calculate the free blocks since the mm can drop | 
|  | * undirtied hole pages behind our back. | 
|  | * | 
|  | * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped | 
|  | * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) | 
|  | * | 
|  | * It has to be called with the spinlock held. | 
|  | */ | 
|  | static void shmem_recalc_inode(struct inode *inode) | 
|  | { | 
|  | struct shmem_inode_info *info = SHMEM_I(inode); | 
|  | long freed; | 
|  |  | 
|  | freed = info->alloced - info->swapped - inode->i_mapping->nrpages; | 
|  | if (freed > 0) { | 
|  | info->alloced -= freed; | 
|  | inode->i_blocks -= freed * BLOCKS_PER_PAGE; | 
|  | shmem_inode_unacct_blocks(inode, freed); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool shmem_charge(struct inode *inode, long pages) | 
|  | { | 
|  | struct shmem_inode_info *info = SHMEM_I(inode); | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!shmem_inode_acct_block(inode, pages)) | 
|  | return false; | 
|  |  | 
|  | /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ | 
|  | inode->i_mapping->nrpages += pages; | 
|  |  | 
|  | spin_lock_irqsave(&info->lock, flags); | 
|  | info->alloced += pages; | 
|  | inode->i_blocks += pages * BLOCKS_PER_PAGE; | 
|  | shmem_recalc_inode(inode); | 
|  | spin_unlock_irqrestore(&info->lock, flags); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void shmem_uncharge(struct inode *inode, long pages) | 
|  | { | 
|  | struct shmem_inode_info *info = SHMEM_I(inode); | 
|  | unsigned long flags; | 
|  |  | 
|  | /* nrpages adjustment done by __delete_from_page_cache() or caller */ | 
|  |  | 
|  | spin_lock_irqsave(&info->lock, flags); | 
|  | info->alloced -= pages; | 
|  | inode->i_blocks -= pages * BLOCKS_PER_PAGE; | 
|  | shmem_recalc_inode(inode); | 
|  | spin_unlock_irqrestore(&info->lock, flags); | 
|  |  | 
|  | shmem_inode_unacct_blocks(inode, pages); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Replace item expected in xarray by a new item, while holding xa_lock. | 
|  | */ | 
|  | static int shmem_replace_entry(struct address_space *mapping, | 
|  | pgoff_t index, void *expected, void *replacement) | 
|  | { | 
|  | XA_STATE(xas, &mapping->i_pages, index); | 
|  | void *item; | 
|  |  | 
|  | VM_BUG_ON(!expected); | 
|  | VM_BUG_ON(!replacement); | 
|  | item = xas_load(&xas); | 
|  | if (item != expected) | 
|  | return -ENOENT; | 
|  | xas_store(&xas, replacement); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sometimes, before we decide whether to proceed or to fail, we must check | 
|  | * that an entry was not already brought back from swap by a racing thread. | 
|  | * | 
|  | * Checking page is not enough: by the time a SwapCache page is locked, it | 
|  | * might be reused, and again be SwapCache, using the same swap as before. | 
|  | */ | 
|  | static bool shmem_confirm_swap(struct address_space *mapping, | 
|  | pgoff_t index, swp_entry_t swap) | 
|  | { | 
|  | return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Definitions for "huge tmpfs": tmpfs mounted with the huge= option | 
|  | * | 
|  | * SHMEM_HUGE_NEVER: | 
|  | *	disables huge pages for the mount; | 
|  | * SHMEM_HUGE_ALWAYS: | 
|  | *	enables huge pages for the mount; | 
|  | * SHMEM_HUGE_WITHIN_SIZE: | 
|  | *	only allocate huge pages if the page will be fully within i_size, | 
|  | *	also respect fadvise()/madvise() hints; | 
|  | * SHMEM_HUGE_ADVISE: | 
|  | *	only allocate huge pages if requested with fadvise()/madvise(); | 
|  | */ | 
|  |  | 
|  | #define SHMEM_HUGE_NEVER	0 | 
|  | #define SHMEM_HUGE_ALWAYS	1 | 
|  | #define SHMEM_HUGE_WITHIN_SIZE	2 | 
|  | #define SHMEM_HUGE_ADVISE	3 | 
|  |  | 
|  | /* | 
|  | * Special values. | 
|  | * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: | 
|  | * | 
|  | * SHMEM_HUGE_DENY: | 
|  | *	disables huge on shm_mnt and all mounts, for emergency use; | 
|  | * SHMEM_HUGE_FORCE: | 
|  | *	enables huge on shm_mnt and all mounts, w/o needing option, for testing; | 
|  | * | 
|  | */ | 
|  | #define SHMEM_HUGE_DENY		(-1) | 
|  | #define SHMEM_HUGE_FORCE	(-2) | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | /* ifdef here to avoid bloating shmem.o when not necessary */ | 
|  |  | 
|  | static int shmem_huge __read_mostly; | 
|  |  | 
|  | #if defined(CONFIG_SYSFS) | 
|  | static int shmem_parse_huge(const char *str) | 
|  | { | 
|  | if (!strcmp(str, "never")) | 
|  | return SHMEM_HUGE_NEVER; | 
|  | if (!strcmp(str, "always")) | 
|  | return SHMEM_HUGE_ALWAYS; | 
|  | if (!strcmp(str, "within_size")) | 
|  | return SHMEM_HUGE_WITHIN_SIZE; | 
|  | if (!strcmp(str, "advise")) | 
|  | return SHMEM_HUGE_ADVISE; | 
|  | if (!strcmp(str, "deny")) | 
|  | return SHMEM_HUGE_DENY; | 
|  | if (!strcmp(str, "force")) | 
|  | return SHMEM_HUGE_FORCE; | 
|  | return -EINVAL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) | 
|  | static const char *shmem_format_huge(int huge) | 
|  | { | 
|  | switch (huge) { | 
|  | case SHMEM_HUGE_NEVER: | 
|  | return "never"; | 
|  | case SHMEM_HUGE_ALWAYS: | 
|  | return "always"; | 
|  | case SHMEM_HUGE_WITHIN_SIZE: | 
|  | return "within_size"; | 
|  | case SHMEM_HUGE_ADVISE: | 
|  | return "advise"; | 
|  | case SHMEM_HUGE_DENY: | 
|  | return "deny"; | 
|  | case SHMEM_HUGE_FORCE: | 
|  | return "force"; | 
|  | default: | 
|  | VM_BUG_ON(1); | 
|  | return "bad_val"; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, | 
|  | struct shrink_control *sc, unsigned long nr_to_split) | 
|  | { | 
|  | LIST_HEAD(list), *pos, *next; | 
|  | LIST_HEAD(to_remove); | 
|  | struct inode *inode; | 
|  | struct shmem_inode_info *info; | 
|  | struct page *page; | 
|  | unsigned long batch = sc ? sc->nr_to_scan : 128; | 
|  | int removed = 0, split = 0; | 
|  |  | 
|  | if (list_empty(&sbinfo->shrinklist)) | 
|  | return SHRINK_STOP; | 
|  |  | 
|  | spin_lock(&sbinfo->shrinklist_lock); | 
|  | list_for_each_safe(pos, next, &sbinfo->shrinklist) { | 
|  | info = list_entry(pos, struct shmem_inode_info, shrinklist); | 
|  |  | 
|  | /* pin the inode */ | 
|  | inode = igrab(&info->vfs_inode); | 
|  |  | 
|  | /* inode is about to be evicted */ | 
|  | if (!inode) { | 
|  | list_del_init(&info->shrinklist); | 
|  | removed++; | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | /* Check if there's anything to gain */ | 
|  | if (round_up(inode->i_size, PAGE_SIZE) == | 
|  | round_up(inode->i_size, HPAGE_PMD_SIZE)) { | 
|  | list_move(&info->shrinklist, &to_remove); | 
|  | removed++; | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | list_move(&info->shrinklist, &list); | 
|  | next: | 
|  | if (!--batch) | 
|  | break; | 
|  | } | 
|  | spin_unlock(&sbinfo->shrinklist_lock); | 
|  |  | 
|  | list_for_each_safe(pos, next, &to_remove) { | 
|  | info = list_entry(pos, struct shmem_inode_info, shrinklist); | 
|  | inode = &info->vfs_inode; | 
|  | list_del_init(&info->shrinklist); | 
|  | iput(inode); | 
|  | } | 
|  |  | 
|  | list_for_each_safe(pos, next, &list) { | 
|  | int ret; | 
|  |  | 
|  | info = list_entry(pos, struct shmem_inode_info, shrinklist); | 
|  | inode = &info->vfs_inode; | 
|  |  | 
|  | if (nr_to_split && split >= nr_to_split) | 
|  | goto leave; | 
|  |  | 
|  | page = find_get_page(inode->i_mapping, | 
|  | (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); | 
|  | if (!page) | 
|  | goto drop; | 
|  |  | 
|  | /* No huge page at the end of the file: nothing to split */ | 
|  | if (!PageTransHuge(page)) { | 
|  | put_page(page); | 
|  | goto drop; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Leave the inode on the list if we failed to lock | 
|  | * the page at this time. | 
|  | * | 
|  | * Waiting for the lock may lead to deadlock in the | 
|  | * reclaim path. | 
|  | */ | 
|  | if (!trylock_page(page)) { | 
|  | put_page(page); | 
|  | goto leave; | 
|  | } | 
|  |  | 
|  | ret = split_huge_page(page); | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  |  | 
|  | /* If split failed leave the inode on the list */ | 
|  | if (ret) | 
|  | goto leave; | 
|  |  | 
|  | split++; | 
|  | drop: | 
|  | list_del_init(&info->shrinklist); | 
|  | removed++; | 
|  | leave: | 
|  | iput(inode); | 
|  | } | 
|  |  | 
|  | spin_lock(&sbinfo->shrinklist_lock); | 
|  | list_splice_tail(&list, &sbinfo->shrinklist); | 
|  | sbinfo->shrinklist_len -= removed; | 
|  | spin_unlock(&sbinfo->shrinklist_lock); | 
|  |  | 
|  | return split; | 
|  | } | 
|  |  | 
|  | static long shmem_unused_huge_scan(struct super_block *sb, | 
|  | struct shrink_control *sc) | 
|  | { | 
|  | struct shmem_sb_info *sbinfo = SHMEM_SB(sb); | 
|  |  | 
|  | if (!READ_ONCE(sbinfo->shrinklist_len)) | 
|  | return SHRINK_STOP; | 
|  |  | 
|  | return shmem_unused_huge_shrink(sbinfo, sc, 0); | 
|  | } | 
|  |  | 
|  | static long shmem_unused_huge_count(struct super_block *sb, | 
|  | struct shrink_control *sc) | 
|  | { | 
|  | struct shmem_sb_info *sbinfo = SHMEM_SB(sb); | 
|  | return READ_ONCE(sbinfo->shrinklist_len); | 
|  | } | 
|  | #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ | 
|  |  | 
|  | #define shmem_huge SHMEM_HUGE_DENY | 
|  |  | 
|  | static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, | 
|  | struct shrink_control *sc, unsigned long nr_to_split) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | 
|  |  | 
|  | static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo) | 
|  | { | 
|  | if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && | 
|  | (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) && | 
|  | shmem_huge != SHMEM_HUGE_DENY) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Like add_to_page_cache_locked, but error if expected item has gone. | 
|  | */ | 
|  | static int shmem_add_to_page_cache(struct page *page, | 
|  | struct address_space *mapping, | 
|  | pgoff_t index, void *expected, gfp_t gfp, | 
|  | struct mm_struct *charge_mm) | 
|  | { | 
|  | XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page)); | 
|  | unsigned long i = 0; | 
|  | unsigned long nr = compound_nr(page); | 
|  | int error; | 
|  |  | 
|  | VM_BUG_ON_PAGE(PageTail(page), page); | 
|  | VM_BUG_ON_PAGE(index != round_down(index, nr), page); | 
|  | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  | VM_BUG_ON_PAGE(!PageSwapBacked(page), page); | 
|  | VM_BUG_ON(expected && PageTransHuge(page)); | 
|  |  | 
|  | page_ref_add(page, nr); | 
|  | page->mapping = mapping; | 
|  | page->index = index; | 
|  |  | 
|  | if (!PageSwapCache(page)) { | 
|  | error = mem_cgroup_charge(page, charge_mm, gfp); | 
|  | if (error) { | 
|  | if (PageTransHuge(page)) { | 
|  | count_vm_event(THP_FILE_FALLBACK); | 
|  | count_vm_event(THP_FILE_FALLBACK_CHARGE); | 
|  | } | 
|  | goto error; | 
|  | } | 
|  | } | 
|  | cgroup_throttle_swaprate(page, gfp); | 
|  |  | 
|  | do { | 
|  | void *entry; | 
|  | xas_lock_irq(&xas); | 
|  | entry = xas_find_conflict(&xas); | 
|  | if (entry != expected) | 
|  | xas_set_err(&xas, -EEXIST); | 
|  | xas_create_range(&xas); | 
|  | if (xas_error(&xas)) | 
|  | goto unlock; | 
|  | next: | 
|  | xas_store(&xas, page); | 
|  | if (++i < nr) { | 
|  | xas_next(&xas); | 
|  | goto next; | 
|  | } | 
|  | if (PageTransHuge(page)) { | 
|  | count_vm_event(THP_FILE_ALLOC); | 
|  | __inc_node_page_state(page, NR_SHMEM_THPS); | 
|  | } | 
|  | mapping->nrpages += nr; | 
|  | __mod_lruvec_page_state(page, NR_FILE_PAGES, nr); | 
|  | __mod_lruvec_page_state(page, NR_SHMEM, nr); | 
|  | unlock: | 
|  | xas_unlock_irq(&xas); | 
|  | } while (xas_nomem(&xas, gfp)); | 
|  |  | 
|  | if (xas_error(&xas)) { | 
|  | error = xas_error(&xas); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | error: | 
|  | page->mapping = NULL; | 
|  | page_ref_sub(page, nr); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Like delete_from_page_cache, but substitutes swap for page. | 
|  | */ | 
|  | static void shmem_delete_from_page_cache(struct page *page, void *radswap) | 
|  | { | 
|  | struct address_space *mapping = page->mapping; | 
|  | int error; | 
|  |  | 
|  | VM_BUG_ON_PAGE(PageCompound(page), page); | 
|  |  | 
|  | xa_lock_irq(&mapping->i_pages); | 
|  | error = shmem_replace_entry(mapping, page->index, page, radswap); | 
|  | page->mapping = NULL; | 
|  | mapping->nrpages--; | 
|  | __dec_lruvec_page_state(page, NR_FILE_PAGES); | 
|  | __dec_lruvec_page_state(page, NR_SHMEM); | 
|  | xa_unlock_irq(&mapping->i_pages); | 
|  | put_page(page); | 
|  | BUG_ON(error); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove swap entry from page cache, free the swap and its page cache. | 
|  | */ | 
|  | static int shmem_free_swap(struct address_space *mapping, | 
|  | pgoff_t index, void *radswap) | 
|  | { | 
|  | void *old; | 
|  |  | 
|  | old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); | 
|  | if (old != radswap) | 
|  | return -ENOENT; | 
|  | free_swap_and_cache(radix_to_swp_entry(radswap)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine (in bytes) how many of the shmem object's pages mapped by the | 
|  | * given offsets are swapped out. | 
|  | * | 
|  | * This is safe to call without i_mutex or the i_pages lock thanks to RCU, | 
|  | * as long as the inode doesn't go away and racy results are not a problem. | 
|  | */ | 
|  | unsigned long shmem_partial_swap_usage(struct address_space *mapping, | 
|  | pgoff_t start, pgoff_t end) | 
|  | { | 
|  | XA_STATE(xas, &mapping->i_pages, start); | 
|  | struct page *page; | 
|  | unsigned long swapped = 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | xas_for_each(&xas, page, end - 1) { | 
|  | if (xas_retry(&xas, page)) | 
|  | continue; | 
|  | if (xa_is_value(page)) | 
|  | swapped++; | 
|  |  | 
|  | if (need_resched()) { | 
|  | xas_pause(&xas); | 
|  | cond_resched_rcu(); | 
|  | } | 
|  | } | 
|  |  | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return swapped << PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine (in bytes) how many of the shmem object's pages mapped by the | 
|  | * given vma is swapped out. | 
|  | * | 
|  | * This is safe to call without i_mutex or the i_pages lock thanks to RCU, | 
|  | * as long as the inode doesn't go away and racy results are not a problem. | 
|  | */ | 
|  | unsigned long shmem_swap_usage(struct vm_area_struct *vma) | 
|  | { | 
|  | struct inode *inode = file_inode(vma->vm_file); | 
|  | struct shmem_inode_info *info = SHMEM_I(inode); | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  | unsigned long swapped; | 
|  |  | 
|  | /* Be careful as we don't hold info->lock */ | 
|  | swapped = READ_ONCE(info->swapped); | 
|  |  | 
|  | /* | 
|  | * The easier cases are when the shmem object has nothing in swap, or | 
|  | * the vma maps it whole. Then we can simply use the stats that we | 
|  | * already track. | 
|  | */ | 
|  | if (!swapped) | 
|  | return 0; | 
|  |  | 
|  | if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) | 
|  | return swapped << PAGE_SHIFT; | 
|  |  | 
|  | /* Here comes the more involved part */ | 
|  | return shmem_partial_swap_usage(mapping, | 
|  | linear_page_index(vma, vma->vm_start), | 
|  | linear_page_index(vma, vma->vm_end)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. | 
|  | */ | 
|  | void shmem_unlock_mapping(struct address_space *mapping) | 
|  | { | 
|  | struct pagevec pvec; | 
|  | pgoff_t indices[PAGEVEC_SIZE]; | 
|  | pgoff_t index = 0; | 
|  |  | 
|  | pagevec_init(&pvec); | 
|  | /* | 
|  | * Minor point, but we might as well stop if someone else SHM_LOCKs it. | 
|  | */ | 
|  | while (!mapping_unevictable(mapping)) { | 
|  | /* | 
|  | * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it | 
|  | * has finished, if it hits a row of PAGEVEC_SIZE swap entries. | 
|  | */ | 
|  | pvec.nr = find_get_entries(mapping, index, | 
|  | PAGEVEC_SIZE, pvec.pages, indices); | 
|  | if (!pvec.nr) | 
|  | break; | 
|  | index = indices[pvec.nr - 1] + 1; | 
|  | pagevec_remove_exceptionals(&pvec); | 
|  | check_move_unevictable_pages(&pvec); | 
|  | pagevec_release(&pvec); | 
|  | cond_resched(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether a hole-punch or truncation needs to split a huge page, | 
|  | * returning true if no split was required, or the split has been successful. | 
|  | * | 
|  | * Eviction (or truncation to 0 size) should never need to split a huge page; | 
|  | * but in rare cases might do so, if shmem_undo_range() failed to trylock on | 
|  | * head, and then succeeded to trylock on tail. | 
|  | * | 
|  | * A split can only succeed when there are no additional references on the | 
|  | * huge page: so the split below relies upon find_get_entries() having stopped | 
|  | * when it found a subpage of the huge page, without getting further references. | 
|  | */ | 
|  | static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end) | 
|  | { | 
|  | if (!PageTransCompound(page)) | 
|  | return true; | 
|  |  | 
|  | /* Just proceed to delete a huge page wholly within the range punched */ | 
|  | if (PageHead(page) && | 
|  | page->index >= start && page->index + HPAGE_PMD_NR <= end) | 
|  | return true; | 
|  |  | 
|  | /* Try to split huge page, so we can truly punch the hole or truncate */ | 
|  | return split_huge_page(page) >= 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove range of pages and swap entries from page cache, and free them. | 
|  | * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. | 
|  | */ | 
|  | static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, | 
|  | bool unfalloc) | 
|  | { | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  | struct shmem_inode_info *info = SHMEM_I(inode); | 
|  | pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  | pgoff_t end = (lend + 1) >> PAGE_SHIFT; | 
|  | unsigned int partial_start = lstart & (PAGE_SIZE - 1); | 
|  | unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); | 
|  | struct pagevec pvec; | 
|  | pgoff_t indices[PAGEVEC_SIZE]; | 
|  | long nr_swaps_freed = 0; | 
|  | pgoff_t index; | 
|  | int i; | 
|  |  | 
|  | if (lend == -1) | 
|  | end = -1;	/* unsigned, so actually very big */ | 
|  |  | 
|  | pagevec_init(&pvec); | 
|  | index = start; | 
|  | while (index < end) { | 
|  | pvec.nr = find_get_entries(mapping, index, | 
|  | min(end - index, (pgoff_t)PAGEVEC_SIZE), | 
|  | pvec.pages, indices); | 
|  | if (!pvec.nr) | 
|  | break; | 
|  | for (i = 0; i < pagevec_count(&pvec); i++) { | 
|  | struct page *page = pvec.pages[i]; | 
|  |  | 
|  | index = indices[i]; | 
|  | if (index >= end) | 
|  | break; | 
|  |  | 
|  | if (xa_is_value(page)) { | 
|  | if (unfalloc) | 
|  | continue; | 
|  | nr_swaps_freed += !shmem_free_swap(mapping, | 
|  | index, page); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page); | 
|  |  | 
|  | if (!trylock_page(page)) | 
|  | continue; | 
|  |  | 
|  | if ((!unfalloc || !PageUptodate(page)) && | 
|  | page_mapping(page) == mapping) { | 
|  | VM_BUG_ON_PAGE(PageWriteback(page), page); | 
|  | if (shmem_punch_compound(page, start, end)) | 
|  | truncate_inode_page(mapping, page); | 
|  | } | 
|  | unlock_page(page); | 
|  | } | 
|  | pagevec_remove_exceptionals(&pvec); | 
|  | pagevec_release(&pvec); | 
|  | cond_resched(); | 
|  | index++; | 
|  | } | 
|  |  | 
|  | if (partial_start) { | 
|  | struct page *page = NULL; | 
|  | shmem_getpage(inode, start - 1, &page, SGP_READ); | 
|  | if (page) { | 
|  | unsigned int top = PAGE_SIZE; | 
|  | if (start > end) { | 
|  | top = partial_end; | 
|  | partial_end = 0; | 
|  | } | 
|  | zero_user_segment(page, partial_start, top); | 
|  | set_page_dirty(page); | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | } | 
|  | } | 
|  | if (partial_end) { | 
|  | struct page *page = NULL; | 
|  | shmem_getpage(inode, end, &page, SGP_READ); | 
|  | if (page) { | 
|  | zero_user_segment(page, 0, partial_end); | 
|  | set_page_dirty(page); | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | } | 
|  | } | 
|  | if (start >= end) | 
|  | return; | 
|  |  | 
|  | index = start; | 
|  | while (index < end) { | 
|  | cond_resched(); | 
|  |  | 
|  | pvec.nr = find_get_entries(mapping, index, | 
|  | min(end - index, (pgoff_t)PAGEVEC_SIZE), | 
|  | pvec.pages, indices); | 
|  | if (!pvec.nr) { | 
|  | /* If all gone or hole-punch or unfalloc, we're done */ | 
|  | if (index == start || end != -1) | 
|  | break; | 
|  | /* But if truncating, restart to make sure all gone */ | 
|  | index = start; | 
|  | continue; | 
|  | } | 
|  | for (i = 0; i < pagevec_count(&pvec); i++) { | 
|  | struct page *page = pvec.pages[i]; | 
|  |  | 
|  | index = indices[i]; | 
|  | if (index >= end) | 
|  | break; | 
|  |  | 
|  | if (xa_is_value(page)) { | 
|  | if (unfalloc) | 
|  | continue; | 
|  | if (shmem_free_swap(mapping, index, page)) { | 
|  | /* Swap was replaced by page: retry */ | 
|  | index--; | 
|  | break; | 
|  | } | 
|  | nr_swaps_freed++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | lock_page(page); | 
|  |  | 
|  | if (!unfalloc || !PageUptodate(page)) { | 
|  | if (page_mapping(page) != mapping) { | 
|  | /* Page was replaced by swap: retry */ | 
|  | unlock_page(page); | 
|  | index--; | 
|  | break; | 
|  | } | 
|  | VM_BUG_ON_PAGE(PageWriteback(page), page); | 
|  | if (shmem_punch_compound(page, start, end)) | 
|  | truncate_inode_page(mapping, page); | 
|  | else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { | 
|  | /* Wipe the page and don't get stuck */ | 
|  | clear_highpage(page); | 
|  | flush_dcache_page(page); | 
|  | set_page_dirty(page); | 
|  | if (index < | 
|  | round_up(start, HPAGE_PMD_NR)) | 
|  | start = index + 1; | 
|  | } | 
|  | } | 
|  | unlock_page(page); | 
|  | } | 
|  | pagevec_remove_exceptionals(&pvec); | 
|  | pagevec_release(&pvec); | 
|  | index++; | 
|  | } | 
|  |  | 
|  | spin_lock_irq(&info->lock); | 
|  | info->swapped -= nr_swaps_freed; | 
|  | shmem_recalc_inode(inode); | 
|  | spin_unlock_irq(&info->lock); | 
|  | } | 
|  |  | 
|  | void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) | 
|  | { | 
|  | shmem_undo_range(inode, lstart, lend, false); | 
|  | inode->i_ctime = inode->i_mtime = current_time(inode); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(shmem_truncate_range); | 
|  |  | 
|  | static int shmem_getattr(const struct path *path, struct kstat *stat, | 
|  | u32 request_mask, unsigned int query_flags) | 
|  | { | 
|  | struct inode *inode = path->dentry->d_inode; | 
|  | struct shmem_inode_info *info = SHMEM_I(inode); | 
|  | struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb); | 
|  |  | 
|  | if (info->alloced - info->swapped != inode->i_mapping->nrpages) { | 
|  | spin_lock_irq(&info->lock); | 
|  | shmem_recalc_inode(inode); | 
|  | spin_unlock_irq(&info->lock); | 
|  | } | 
|  | generic_fillattr(inode, stat); | 
|  |  | 
|  | if (is_huge_enabled(sb_info)) | 
|  | stat->blksize = HPAGE_PMD_SIZE; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int shmem_setattr(struct dentry *dentry, struct iattr *attr) | 
|  | { | 
|  | struct inode *inode = d_inode(dentry); | 
|  | struct shmem_inode_info *info = SHMEM_I(inode); | 
|  | struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); | 
|  | int error; | 
|  |  | 
|  | error = setattr_prepare(dentry, attr); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { | 
|  | loff_t oldsize = inode->i_size; | 
|  | loff_t newsize = attr->ia_size; | 
|  |  | 
|  | /* protected by i_mutex */ | 
|  | if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || | 
|  | (newsize > oldsize && (info->seals & F_SEAL_GROW))) | 
|  | return -EPERM; | 
|  |  | 
|  | if (newsize != oldsize) { | 
|  | error = shmem_reacct_size(SHMEM_I(inode)->flags, | 
|  | oldsize, newsize); | 
|  | if (error) | 
|  | return error; | 
|  | i_size_write(inode, newsize); | 
|  | inode->i_ctime = inode->i_mtime = current_time(inode); | 
|  | } | 
|  | if (newsize <= oldsize) { | 
|  | loff_t holebegin = round_up(newsize, PAGE_SIZE); | 
|  | if (oldsize > holebegin) | 
|  | unmap_mapping_range(inode->i_mapping, | 
|  | holebegin, 0, 1); | 
|  | if (info->alloced) | 
|  | shmem_truncate_range(inode, | 
|  | newsize, (loff_t)-1); | 
|  | /* unmap again to remove racily COWed private pages */ | 
|  | if (oldsize > holebegin) | 
|  | unmap_mapping_range(inode->i_mapping, | 
|  | holebegin, 0, 1); | 
|  |  | 
|  | /* | 
|  | * Part of the huge page can be beyond i_size: subject | 
|  | * to shrink under memory pressure. | 
|  | */ | 
|  | if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { | 
|  | spin_lock(&sbinfo->shrinklist_lock); | 
|  | /* | 
|  | * _careful to defend against unlocked access to | 
|  | * ->shrink_list in shmem_unused_huge_shrink() | 
|  | */ | 
|  | if (list_empty_careful(&info->shrinklist)) { | 
|  | list_add_tail(&info->shrinklist, | 
|  | &sbinfo->shrinklist); | 
|  | sbinfo->shrinklist_len++; | 
|  | } | 
|  | spin_unlock(&sbinfo->shrinklist_lock); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | setattr_copy(inode, attr); | 
|  | if (attr->ia_valid & ATTR_MODE) | 
|  | error = posix_acl_chmod(inode, inode->i_mode); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static void shmem_evict_inode(struct inode *inode) | 
|  | { | 
|  | struct shmem_inode_info *info = SHMEM_I(inode); | 
|  | struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); | 
|  |  | 
|  | if (inode->i_mapping->a_ops == &shmem_aops) { | 
|  | shmem_unacct_size(info->flags, inode->i_size); | 
|  | inode->i_size = 0; | 
|  | shmem_truncate_range(inode, 0, (loff_t)-1); | 
|  | if (!list_empty(&info->shrinklist)) { | 
|  | spin_lock(&sbinfo->shrinklist_lock); | 
|  | if (!list_empty(&info->shrinklist)) { | 
|  | list_del_init(&info->shrinklist); | 
|  | sbinfo->shrinklist_len--; | 
|  | } | 
|  | spin_unlock(&sbinfo->shrinklist_lock); | 
|  | } | 
|  | while (!list_empty(&info->swaplist)) { | 
|  | /* Wait while shmem_unuse() is scanning this inode... */ | 
|  | wait_var_event(&info->stop_eviction, | 
|  | !atomic_read(&info->stop_eviction)); | 
|  | mutex_lock(&shmem_swaplist_mutex); | 
|  | /* ...but beware of the race if we peeked too early */ | 
|  | if (!atomic_read(&info->stop_eviction)) | 
|  | list_del_init(&info->swaplist); | 
|  | mutex_unlock(&shmem_swaplist_mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | simple_xattrs_free(&info->xattrs); | 
|  | WARN_ON(inode->i_blocks); | 
|  | shmem_free_inode(inode->i_sb); | 
|  | clear_inode(inode); | 
|  | } | 
|  |  | 
|  | extern struct swap_info_struct *swap_info[]; | 
|  |  | 
|  | static int shmem_find_swap_entries(struct address_space *mapping, | 
|  | pgoff_t start, unsigned int nr_entries, | 
|  | struct page **entries, pgoff_t *indices, | 
|  | unsigned int type, bool frontswap) | 
|  | { | 
|  | XA_STATE(xas, &mapping->i_pages, start); | 
|  | struct page *page; | 
|  | swp_entry_t entry; | 
|  | unsigned int ret = 0; | 
|  |  | 
|  | if (!nr_entries) | 
|  | return 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | xas_for_each(&xas, page, ULONG_MAX) { | 
|  | if (xas_retry(&xas, page)) | 
|  | continue; | 
|  |  | 
|  | if (!xa_is_value(page)) | 
|  | continue; | 
|  |  | 
|  | entry = radix_to_swp_entry(page); | 
|  | if (swp_type(entry) != type) | 
|  | continue; | 
|  | if (frontswap && | 
|  | !frontswap_test(swap_info[type], swp_offset(entry))) | 
|  | continue; | 
|  |  | 
|  | indices[ret] = xas.xa_index; | 
|  | entries[ret] = page; | 
|  |  | 
|  | if (need_resched()) { | 
|  | xas_pause(&xas); | 
|  | cond_resched_rcu(); | 
|  | } | 
|  | if (++ret == nr_entries) | 
|  | break; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Move the swapped pages for an inode to page cache. Returns the count | 
|  | * of pages swapped in, or the error in case of failure. | 
|  | */ | 
|  | static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec, | 
|  | pgoff_t *indices) | 
|  | { | 
|  | int i = 0; | 
|  | int ret = 0; | 
|  | int error = 0; | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  |  | 
|  | for (i = 0; i < pvec.nr; i++) { | 
|  | struct page *page = pvec.pages[i]; | 
|  |  | 
|  | if (!xa_is_value(page)) | 
|  | continue; | 
|  | error = shmem_swapin_page(inode, indices[i], | 
|  | &page, SGP_CACHE, | 
|  | mapping_gfp_mask(mapping), | 
|  | NULL, NULL); | 
|  | if (error == 0) { | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | ret++; | 
|  | } | 
|  | if (error == -ENOMEM) | 
|  | break; | 
|  | error = 0; | 
|  | } | 
|  | return error ? error : ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If swap found in inode, free it and move page from swapcache to filecache. | 
|  | */ | 
|  | static int shmem_unuse_inode(struct inode *inode, unsigned int type, | 
|  | bool frontswap, unsigned long *fs_pages_to_unuse) | 
|  | { | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  | pgoff_t start = 0; | 
|  | struct pagevec pvec; | 
|  | pgoff_t indices[PAGEVEC_SIZE]; | 
|  | bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0); | 
|  | int ret = 0; | 
|  |  | 
|  | pagevec_init(&pvec); | 
|  | do { | 
|  | unsigned int nr_entries = PAGEVEC_SIZE; | 
|  |  | 
|  | if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE) | 
|  | nr_entries = *fs_pages_to_unuse; | 
|  |  | 
|  | pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries, | 
|  | pvec.pages, indices, | 
|  | type, frontswap); | 
|  | if (pvec.nr == 0) { | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ret = shmem_unuse_swap_entries(inode, pvec, indices); | 
|  | if (ret < 0) | 
|  | break; | 
|  |  | 
|  | if (frontswap_partial) { | 
|  | *fs_pages_to_unuse -= ret; | 
|  | if (*fs_pages_to_unuse == 0) { | 
|  | ret = FRONTSWAP_PAGES_UNUSED; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | start = indices[pvec.nr - 1]; | 
|  | } while (true); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read all the shared memory data that resides in the swap | 
|  | * device 'type' back into memory, so the swap device can be | 
|  | * unused. | 
|  | */ | 
|  | int shmem_unuse(unsigned int type, bool frontswap, | 
|  | unsigned long *fs_pages_to_unuse) | 
|  | { | 
|  | struct shmem_inode_info *info, *next; | 
|  | int error = 0; | 
|  |  | 
|  | if (list_empty(&shmem_swaplist)) | 
|  | return 0; | 
|  |  | 
|  | mutex_lock(&shmem_swaplist_mutex); | 
|  | list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { | 
|  | if (!info->swapped) { | 
|  | list_del_init(&info->swaplist); | 
|  | continue; | 
|  | } | 
|  | /* | 
|  | * Drop the swaplist mutex while searching the inode for swap; | 
|  | * but before doing so, make sure shmem_evict_inode() will not | 
|  | * remove placeholder inode from swaplist, nor let it be freed | 
|  | * (igrab() would protect from unlink, but not from unmount). | 
|  | */ | 
|  | atomic_inc(&info->stop_eviction); | 
|  | mutex_unlock(&shmem_swaplist_mutex); | 
|  |  | 
|  | error = shmem_unuse_inode(&info->vfs_inode, type, frontswap, | 
|  | fs_pages_to_unuse); | 
|  | cond_resched(); | 
|  |  | 
|  | mutex_lock(&shmem_swaplist_mutex); | 
|  | next = list_next_entry(info, swaplist); | 
|  | if (!info->swapped) | 
|  | list_del_init(&info->swaplist); | 
|  | if (atomic_dec_and_test(&info->stop_eviction)) | 
|  | wake_up_var(&info->stop_eviction); | 
|  | if (error) | 
|  | break; | 
|  | } | 
|  | mutex_unlock(&shmem_swaplist_mutex); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Move the page from the page cache to the swap cache. | 
|  | */ | 
|  | static int shmem_writepage(struct page *page, struct writeback_control *wbc) | 
|  | { | 
|  | struct shmem_inode_info *info; | 
|  | struct address_space *mapping; | 
|  | struct inode *inode; | 
|  | swp_entry_t swap; | 
|  | pgoff_t index; | 
|  |  | 
|  | VM_BUG_ON_PAGE(PageCompound(page), page); | 
|  | BUG_ON(!PageLocked(page)); | 
|  | mapping = page->mapping; | 
|  | index = page->index; | 
|  | inode = mapping->host; | 
|  | info = SHMEM_I(inode); | 
|  | if (info->flags & VM_LOCKED) | 
|  | goto redirty; | 
|  | if (!total_swap_pages) | 
|  | goto redirty; | 
|  |  | 
|  | /* | 
|  | * Our capabilities prevent regular writeback or sync from ever calling | 
|  | * shmem_writepage; but a stacking filesystem might use ->writepage of | 
|  | * its underlying filesystem, in which case tmpfs should write out to | 
|  | * swap only in response to memory pressure, and not for the writeback | 
|  | * threads or sync. | 
|  | */ | 
|  | if (!wbc->for_reclaim) { | 
|  | WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */ | 
|  | goto redirty; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC | 
|  | * value into swapfile.c, the only way we can correctly account for a | 
|  | * fallocated page arriving here is now to initialize it and write it. | 
|  | * | 
|  | * That's okay for a page already fallocated earlier, but if we have | 
|  | * not yet completed the fallocation, then (a) we want to keep track | 
|  | * of this page in case we have to undo it, and (b) it may not be a | 
|  | * good idea to continue anyway, once we're pushing into swap.  So | 
|  | * reactivate the page, and let shmem_fallocate() quit when too many. | 
|  | */ | 
|  | if (!PageUptodate(page)) { | 
|  | if (inode->i_private) { | 
|  | struct shmem_falloc *shmem_falloc; | 
|  | spin_lock(&inode->i_lock); | 
|  | shmem_falloc = inode->i_private; | 
|  | if (shmem_falloc && | 
|  | !shmem_falloc->waitq && | 
|  | index >= shmem_falloc->start && | 
|  | index < shmem_falloc->next) | 
|  | shmem_falloc->nr_unswapped++; | 
|  | else | 
|  | shmem_falloc = NULL; | 
|  | spin_unlock(&inode->i_lock); | 
|  | if (shmem_falloc) | 
|  | goto redirty; | 
|  | } | 
|  | clear_highpage(page); | 
|  | flush_dcache_page(page); | 
|  | SetPageUptodate(page); | 
|  | } | 
|  |  | 
|  | swap = get_swap_page(page); | 
|  | if (!swap.val) | 
|  | goto redirty; | 
|  |  | 
|  | /* | 
|  | * Add inode to shmem_unuse()'s list of swapped-out inodes, | 
|  | * if it's not already there.  Do it now before the page is | 
|  | * moved to swap cache, when its pagelock no longer protects | 
|  | * the inode from eviction.  But don't unlock the mutex until | 
|  | * we've incremented swapped, because shmem_unuse_inode() will | 
|  | * prune a !swapped inode from the swaplist under this mutex. | 
|  | */ | 
|  | mutex_lock(&shmem_swaplist_mutex); | 
|  | if (list_empty(&info->swaplist)) | 
|  | list_add(&info->swaplist, &shmem_swaplist); | 
|  |  | 
|  | if (add_to_swap_cache(page, swap, | 
|  | __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, | 
|  | NULL) == 0) { | 
|  | spin_lock_irq(&info->lock); | 
|  | shmem_recalc_inode(inode); | 
|  | info->swapped++; | 
|  | spin_unlock_irq(&info->lock); | 
|  |  | 
|  | swap_shmem_alloc(swap); | 
|  | shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); | 
|  |  | 
|  | mutex_unlock(&shmem_swaplist_mutex); | 
|  | BUG_ON(page_mapped(page)); | 
|  | swap_writepage(page, wbc); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&shmem_swaplist_mutex); | 
|  | put_swap_page(page, swap); | 
|  | redirty: | 
|  | set_page_dirty(page); | 
|  | if (wbc->for_reclaim) | 
|  | return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */ | 
|  | unlock_page(page); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) | 
|  | static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) | 
|  | { | 
|  | char buffer[64]; | 
|  |  | 
|  | if (!mpol || mpol->mode == MPOL_DEFAULT) | 
|  | return;		/* show nothing */ | 
|  |  | 
|  | mpol_to_str(buffer, sizeof(buffer), mpol); | 
|  |  | 
|  | seq_printf(seq, ",mpol=%s", buffer); | 
|  | } | 
|  |  | 
|  | static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) | 
|  | { | 
|  | struct mempolicy *mpol = NULL; | 
|  | if (sbinfo->mpol) { | 
|  | spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */ | 
|  | mpol = sbinfo->mpol; | 
|  | mpol_get(mpol); | 
|  | spin_unlock(&sbinfo->stat_lock); | 
|  | } | 
|  | return mpol; | 
|  | } | 
|  | #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ | 
|  | static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) | 
|  | { | 
|  | } | 
|  | static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  | #endif /* CONFIG_NUMA && CONFIG_TMPFS */ | 
|  | #ifndef CONFIG_NUMA | 
|  | #define vm_policy vm_private_data | 
|  | #endif | 
|  |  | 
|  | static void shmem_pseudo_vma_init(struct vm_area_struct *vma, | 
|  | struct shmem_inode_info *info, pgoff_t index) | 
|  | { | 
|  | /* Create a pseudo vma that just contains the policy */ | 
|  | vma_init(vma, NULL); | 
|  | /* Bias interleave by inode number to distribute better across nodes */ | 
|  | vma->vm_pgoff = index + info->vfs_inode.i_ino; | 
|  | vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); | 
|  | } | 
|  |  | 
|  | static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) | 
|  | { | 
|  | /* Drop reference taken by mpol_shared_policy_lookup() */ | 
|  | mpol_cond_put(vma->vm_policy); | 
|  | } | 
|  |  | 
|  | static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, | 
|  | struct shmem_inode_info *info, pgoff_t index) | 
|  | { | 
|  | struct vm_area_struct pvma; | 
|  | struct page *page; | 
|  | struct vm_fault vmf; | 
|  |  | 
|  | shmem_pseudo_vma_init(&pvma, info, index); | 
|  | vmf.vma = &pvma; | 
|  | vmf.address = 0; | 
|  | page = swap_cluster_readahead(swap, gfp, &vmf); | 
|  | shmem_pseudo_vma_destroy(&pvma); | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static struct page *shmem_alloc_hugepage(gfp_t gfp, | 
|  | struct shmem_inode_info *info, pgoff_t index) | 
|  | { | 
|  | struct vm_area_struct pvma; | 
|  | struct address_space *mapping = info->vfs_inode.i_mapping; | 
|  | pgoff_t hindex; | 
|  | struct page *page; | 
|  |  | 
|  | hindex = round_down(index, HPAGE_PMD_NR); | 
|  | if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, | 
|  | XA_PRESENT)) | 
|  | return NULL; | 
|  |  | 
|  | shmem_pseudo_vma_init(&pvma, info, hindex); | 
|  | page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN, | 
|  | HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true); | 
|  | shmem_pseudo_vma_destroy(&pvma); | 
|  | if (page) | 
|  | prep_transhuge_page(page); | 
|  | else | 
|  | count_vm_event(THP_FILE_FALLBACK); | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static struct page *shmem_alloc_page(gfp_t gfp, | 
|  | struct shmem_inode_info *info, pgoff_t index) | 
|  | { | 
|  | struct vm_area_struct pvma; | 
|  | struct page *page; | 
|  |  | 
|  | shmem_pseudo_vma_init(&pvma, info, index); | 
|  | page = alloc_page_vma(gfp, &pvma, 0); | 
|  | shmem_pseudo_vma_destroy(&pvma); | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static struct page *shmem_alloc_and_acct_page(gfp_t gfp, | 
|  | struct inode *inode, | 
|  | pgoff_t index, bool huge) | 
|  | { | 
|  | struct shmem_inode_info *info = SHMEM_I(inode); | 
|  | struct page *page; | 
|  | int nr; | 
|  | int err = -ENOSPC; | 
|  |  | 
|  | if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) | 
|  | huge = false; | 
|  | nr = huge ? HPAGE_PMD_NR : 1; | 
|  |  | 
|  | if (!shmem_inode_acct_block(inode, nr)) | 
|  | goto failed; | 
|  |  | 
|  | if (huge) | 
|  | page = shmem_alloc_hugepage(gfp, info, index); | 
|  | else | 
|  | page = shmem_alloc_page(gfp, info, index); | 
|  | if (page) { | 
|  | __SetPageLocked(page); | 
|  | __SetPageSwapBacked(page); | 
|  | return page; | 
|  | } | 
|  |  | 
|  | err = -ENOMEM; | 
|  | shmem_inode_unacct_blocks(inode, nr); | 
|  | failed: | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When a page is moved from swapcache to shmem filecache (either by the | 
|  | * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of | 
|  | * shmem_unuse_inode()), it may have been read in earlier from swap, in | 
|  | * ignorance of the mapping it belongs to.  If that mapping has special | 
|  | * constraints (like the gma500 GEM driver, which requires RAM below 4GB), | 
|  | * we may need to copy to a suitable page before moving to filecache. | 
|  | * | 
|  | * In a future release, this may well be extended to respect cpuset and | 
|  | * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); | 
|  | * but for now it is a simple matter of zone. | 
|  | */ | 
|  | static bool shmem_should_replace_page(struct page *page, gfp_t gfp) | 
|  | { | 
|  | return page_zonenum(page) > gfp_zone(gfp); | 
|  | } | 
|  |  | 
|  | static int shmem_replace_page(struct page **pagep, gfp_t gfp, | 
|  | struct shmem_inode_info *info, pgoff_t index) | 
|  | { | 
|  | struct page *oldpage, *newpage; | 
|  | struct address_space *swap_mapping; | 
|  | swp_entry_t entry; | 
|  | pgoff_t swap_index; | 
|  | int error; | 
|  |  | 
|  | oldpage = *pagep; | 
|  | entry.val = page_private(oldpage); | 
|  | swap_index = swp_offset(entry); | 
|  | swap_mapping = page_mapping(oldpage); | 
|  |  | 
|  | /* | 
|  | * We have arrived here because our zones are constrained, so don't | 
|  | * limit chance of success by further cpuset and node constraints. | 
|  | */ | 
|  | gfp &= ~GFP_CONSTRAINT_MASK; | 
|  | newpage = shmem_alloc_page(gfp, info, index); | 
|  | if (!newpage) | 
|  | return -ENOMEM; | 
|  |  | 
|  | get_page(newpage); | 
|  | copy_highpage(newpage, oldpage); | 
|  | flush_dcache_page(newpage); | 
|  |  | 
|  | __SetPageLocked(newpage); | 
|  | __SetPageSwapBacked(newpage); | 
|  | SetPageUptodate(newpage); | 
|  | set_page_private(newpage, entry.val); | 
|  | SetPageSwapCache(newpage); | 
|  |  | 
|  | /* | 
|  | * Our caller will very soon move newpage out of swapcache, but it's | 
|  | * a nice clean interface for us to replace oldpage by newpage there. | 
|  | */ | 
|  | xa_lock_irq(&swap_mapping->i_pages); | 
|  | error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage); | 
|  | if (!error) { | 
|  | mem_cgroup_migrate(oldpage, newpage); | 
|  | __inc_lruvec_page_state(newpage, NR_FILE_PAGES); | 
|  | __dec_lruvec_page_state(oldpage, NR_FILE_PAGES); | 
|  | } | 
|  | xa_unlock_irq(&swap_mapping->i_pages); | 
|  |  | 
|  | if (unlikely(error)) { | 
|  | /* | 
|  | * Is this possible?  I think not, now that our callers check | 
|  | * both PageSwapCache and page_private after getting page lock; | 
|  | * but be defensive.  Reverse old to newpage for clear and free. | 
|  | */ | 
|  | oldpage = newpage; | 
|  | } else { | 
|  | lru_cache_add(newpage); | 
|  | *pagep = newpage; | 
|  | } | 
|  |  | 
|  | ClearPageSwapCache(oldpage); | 
|  | set_page_private(oldpage, 0); | 
|  |  | 
|  | unlock_page(oldpage); | 
|  | put_page(oldpage); | 
|  | put_page(oldpage); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Swap in the page pointed to by *pagep. | 
|  | * Caller has to make sure that *pagep contains a valid swapped page. | 
|  | * Returns 0 and the page in pagep if success. On failure, returns the | 
|  | * error code and NULL in *pagep. | 
|  | */ | 
|  | static int shmem_swapin_page(struct inode *inode, pgoff_t index, | 
|  | struct page **pagep, enum sgp_type sgp, | 
|  | gfp_t gfp, struct vm_area_struct *vma, | 
|  | vm_fault_t *fault_type) | 
|  | { | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  | struct shmem_inode_info *info = SHMEM_I(inode); | 
|  | struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm; | 
|  | struct page *page; | 
|  | swp_entry_t swap; | 
|  | int error; | 
|  |  | 
|  | VM_BUG_ON(!*pagep || !xa_is_value(*pagep)); | 
|  | swap = radix_to_swp_entry(*pagep); | 
|  | *pagep = NULL; | 
|  |  | 
|  | /* Look it up and read it in.. */ | 
|  | page = lookup_swap_cache(swap, NULL, 0); | 
|  | if (!page) { | 
|  | /* Or update major stats only when swapin succeeds?? */ | 
|  | if (fault_type) { | 
|  | *fault_type |= VM_FAULT_MAJOR; | 
|  | count_vm_event(PGMAJFAULT); | 
|  | count_memcg_event_mm(charge_mm, PGMAJFAULT); | 
|  | } | 
|  | /* Here we actually start the io */ | 
|  | page = shmem_swapin(swap, gfp, info, index); | 
|  | if (!page) { | 
|  | error = -ENOMEM; | 
|  | goto failed; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* We have to do this with page locked to prevent races */ | 
|  | lock_page(page); | 
|  | if (!PageSwapCache(page) || page_private(page) != swap.val || | 
|  | !shmem_confirm_swap(mapping, index, swap)) { | 
|  | error = -EEXIST; | 
|  | goto unlock; | 
|  | } | 
|  | if (!PageUptodate(page)) { | 
|  | error = -EIO; | 
|  | goto failed; | 
|  | } | 
|  | wait_on_page_writeback(page); | 
|  |  | 
|  | if (shmem_should_replace_page(page, gfp)) { | 
|  | error = shmem_replace_page(&page, gfp, info, index); | 
|  | if (error) | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | error = shmem_add_to_page_cache(page, mapping, index, | 
|  | swp_to_radix_entry(swap), gfp, | 
|  | charge_mm); | 
|  | if (error) | 
|  | goto failed; | 
|  |  | 
|  | spin_lock_irq(&info->lock); | 
|  | info->swapped--; | 
|  | shmem_recalc_inode(inode); | 
|  | spin_unlock_irq(&info->lock); | 
|  |  | 
|  | if (sgp == SGP_WRITE) | 
|  | mark_page_accessed(page); | 
|  |  | 
|  | delete_from_swap_cache(page); | 
|  | set_page_dirty(page); | 
|  | swap_free(swap); | 
|  |  | 
|  | *pagep = page; | 
|  | return 0; | 
|  | failed: | 
|  | if (!shmem_confirm_swap(mapping, index, swap)) | 
|  | error = -EEXIST; | 
|  | unlock: | 
|  | if (page) { | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | } | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * shmem_getpage_gfp - find page in cache, or get from swap, or allocate | 
|  | * | 
|  | * If we allocate a new one we do not mark it dirty. That's up to the | 
|  | * vm. If we swap it in we mark it dirty since we also free the swap | 
|  | * entry since a page cannot live in both the swap and page cache. | 
|  | * | 
|  | * vmf and fault_type are only supplied by shmem_fault: | 
|  | * otherwise they are NULL. | 
|  | */ | 
|  | static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, | 
|  | struct page **pagep, enum sgp_type sgp, gfp_t gfp, | 
|  | struct vm_area_struct *vma, struct vm_fault *vmf, | 
|  | vm_fault_t *fault_type) | 
|  | { | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  | struct shmem_inode_info *info = SHMEM_I(inode); | 
|  | struct shmem_sb_info *sbinfo; | 
|  | struct mm_struct *charge_mm; | 
|  | struct page *page; | 
|  | enum sgp_type sgp_huge = sgp; | 
|  | pgoff_t hindex = index; | 
|  | int error; | 
|  | int once = 0; | 
|  | int alloced = 0; | 
|  |  | 
|  | if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) | 
|  | return -EFBIG; | 
|  | if (sgp == SGP_NOHUGE || sgp == SGP_HUGE) | 
|  | sgp = SGP_CACHE; | 
|  | repeat: | 
|  | if (sgp <= SGP_CACHE && | 
|  | ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | sbinfo = SHMEM_SB(inode->i_sb); | 
|  | charge_mm = vma ? vma->vm_mm : current->mm; | 
|  |  | 
|  | page = find_lock_entry(mapping, index); | 
|  | if (xa_is_value(page)) { | 
|  | error = shmem_swapin_page(inode, index, &page, | 
|  | sgp, gfp, vma, fault_type); | 
|  | if (error == -EEXIST) | 
|  | goto repeat; | 
|  |  | 
|  | *pagep = page; | 
|  | return error; | 
|  | } | 
|  |  | 
|  | if (page && sgp == SGP_WRITE) | 
|  | mark_page_accessed(page); | 
|  |  | 
|  | /* fallocated page? */ | 
|  | if (page && !PageUptodate(page)) { | 
|  | if (sgp != SGP_READ) | 
|  | goto clear; | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | page = NULL; | 
|  | } | 
|  | if (page || sgp == SGP_READ) { | 
|  | *pagep = page; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fast cache lookup did not find it: | 
|  | * bring it back from swap or allocate. | 
|  | */ | 
|  |  | 
|  | if (vma && userfaultfd_missing(vma)) { | 
|  | *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* shmem_symlink() */ | 
|  | if (mapping->a_ops != &shmem_aops) | 
|  | goto alloc_nohuge; | 
|  | if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE) | 
|  | goto alloc_nohuge; | 
|  | if (shmem_huge == SHMEM_HUGE_FORCE) | 
|  | goto alloc_huge; | 
|  | switch (sbinfo->huge) { | 
|  | case SHMEM_HUGE_NEVER: | 
|  | goto alloc_nohuge; | 
|  | case SHMEM_HUGE_WITHIN_SIZE: { | 
|  | loff_t i_size; | 
|  | pgoff_t off; | 
|  |  | 
|  | off = round_up(index, HPAGE_PMD_NR); | 
|  | i_size = round_up(i_size_read(inode), PAGE_SIZE); | 
|  | if (i_size >= HPAGE_PMD_SIZE && | 
|  | i_size >> PAGE_SHIFT >= off) | 
|  | goto alloc_huge; | 
|  |  | 
|  | fallthrough; | 
|  | } | 
|  | case SHMEM_HUGE_ADVISE: | 
|  | if (sgp_huge == SGP_HUGE) | 
|  | goto alloc_huge; | 
|  | /* TODO: implement fadvise() hints */ | 
|  | goto alloc_nohuge; | 
|  | } | 
|  |  | 
|  | alloc_huge: | 
|  | page = shmem_alloc_and_acct_page(gfp, inode, index, true); | 
|  | if (IS_ERR(page)) { | 
|  | alloc_nohuge: | 
|  | page = shmem_alloc_and_acct_page(gfp, inode, | 
|  | index, false); | 
|  | } | 
|  | if (IS_ERR(page)) { | 
|  | int retry = 5; | 
|  |  | 
|  | error = PTR_ERR(page); | 
|  | page = NULL; | 
|  | if (error != -ENOSPC) | 
|  | goto unlock; | 
|  | /* | 
|  | * Try to reclaim some space by splitting a huge page | 
|  | * beyond i_size on the filesystem. | 
|  | */ | 
|  | while (retry--) { | 
|  | int ret; | 
|  |  | 
|  | ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); | 
|  | if (ret == SHRINK_STOP) | 
|  | break; | 
|  | if (ret) | 
|  | goto alloc_nohuge; | 
|  | } | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | if (PageTransHuge(page)) | 
|  | hindex = round_down(index, HPAGE_PMD_NR); | 
|  | else | 
|  | hindex = index; | 
|  |  | 
|  | if (sgp == SGP_WRITE) | 
|  | __SetPageReferenced(page); | 
|  |  | 
|  | error = shmem_add_to_page_cache(page, mapping, hindex, | 
|  | NULL, gfp & GFP_RECLAIM_MASK, | 
|  | charge_mm); | 
|  | if (error) | 
|  | goto unacct; | 
|  | lru_cache_add(page); | 
|  |  | 
|  | spin_lock_irq(&info->lock); | 
|  | info->alloced += compound_nr(page); | 
|  | inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); | 
|  | shmem_recalc_inode(inode); | 
|  | spin_unlock_irq(&info->lock); | 
|  | alloced = true; | 
|  |  | 
|  | if (PageTransHuge(page) && | 
|  | DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < | 
|  | hindex + HPAGE_PMD_NR - 1) { | 
|  | /* | 
|  | * Part of the huge page is beyond i_size: subject | 
|  | * to shrink under memory pressure. | 
|  | */ | 
|  | spin_lock(&sbinfo->shrinklist_lock); | 
|  | /* | 
|  | * _careful to defend against unlocked access to | 
|  | * ->shrink_list in shmem_unused_huge_shrink() | 
|  | */ | 
|  | if (list_empty_careful(&info->shrinklist)) { | 
|  | list_add_tail(&info->shrinklist, | 
|  | &sbinfo->shrinklist); | 
|  | sbinfo->shrinklist_len++; | 
|  | } | 
|  | spin_unlock(&sbinfo->shrinklist_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. | 
|  | */ | 
|  | if (sgp == SGP_FALLOC) | 
|  | sgp = SGP_WRITE; | 
|  | clear: | 
|  | /* | 
|  | * Let SGP_WRITE caller clear ends if write does not fill page; | 
|  | * but SGP_FALLOC on a page fallocated earlier must initialize | 
|  | * it now, lest undo on failure cancel our earlier guarantee. | 
|  | */ | 
|  | if (sgp != SGP_WRITE && !PageUptodate(page)) { | 
|  | struct page *head = compound_head(page); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < compound_nr(head); i++) { | 
|  | clear_highpage(head + i); | 
|  | flush_dcache_page(head + i); | 
|  | } | 
|  | SetPageUptodate(head); | 
|  | } | 
|  |  | 
|  | /* Perhaps the file has been truncated since we checked */ | 
|  | if (sgp <= SGP_CACHE && | 
|  | ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { | 
|  | if (alloced) { | 
|  | ClearPageDirty(page); | 
|  | delete_from_page_cache(page); | 
|  | spin_lock_irq(&info->lock); | 
|  | shmem_recalc_inode(inode); | 
|  | spin_unlock_irq(&info->lock); | 
|  | } | 
|  | error = -EINVAL; | 
|  | goto unlock; | 
|  | } | 
|  | *pagep = page + index - hindex; | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Error recovery. | 
|  | */ | 
|  | unacct: | 
|  | shmem_inode_unacct_blocks(inode, compound_nr(page)); | 
|  |  | 
|  | if (PageTransHuge(page)) { | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | goto alloc_nohuge; | 
|  | } | 
|  | unlock: | 
|  | if (page) { | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | } | 
|  | if (error == -ENOSPC && !once++) { | 
|  | spin_lock_irq(&info->lock); | 
|  | shmem_recalc_inode(inode); | 
|  | spin_unlock_irq(&info->lock); | 
|  | goto repeat; | 
|  | } | 
|  | if (error == -EEXIST) | 
|  | goto repeat; | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is like autoremove_wake_function, but it removes the wait queue | 
|  | * entry unconditionally - even if something else had already woken the | 
|  | * target. | 
|  | */ | 
|  | static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) | 
|  | { | 
|  | int ret = default_wake_function(wait, mode, sync, key); | 
|  | list_del_init(&wait->entry); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static vm_fault_t shmem_fault(struct vm_fault *vmf) | 
|  | { | 
|  | struct vm_area_struct *vma = vmf->vma; | 
|  | struct inode *inode = file_inode(vma->vm_file); | 
|  | gfp_t gfp = mapping_gfp_mask(inode->i_mapping); | 
|  | enum sgp_type sgp; | 
|  | int err; | 
|  | vm_fault_t ret = VM_FAULT_LOCKED; | 
|  |  | 
|  | /* | 
|  | * Trinity finds that probing a hole which tmpfs is punching can | 
|  | * prevent the hole-punch from ever completing: which in turn | 
|  | * locks writers out with its hold on i_mutex.  So refrain from | 
|  | * faulting pages into the hole while it's being punched.  Although | 
|  | * shmem_undo_range() does remove the additions, it may be unable to | 
|  | * keep up, as each new page needs its own unmap_mapping_range() call, | 
|  | * and the i_mmap tree grows ever slower to scan if new vmas are added. | 
|  | * | 
|  | * It does not matter if we sometimes reach this check just before the | 
|  | * hole-punch begins, so that one fault then races with the punch: | 
|  | * we just need to make racing faults a rare case. | 
|  | * | 
|  | * The implementation below would be much simpler if we just used a | 
|  | * standard mutex or completion: but we cannot take i_mutex in fault, | 
|  | * and bloating every shmem inode for this unlikely case would be sad. | 
|  | */ | 
|  | if (unlikely(inode->i_private)) { | 
|  | struct shmem_falloc *shmem_falloc; | 
|  |  | 
|  | spin_lock(&inode->i_lock); | 
|  | shmem_falloc = inode->i_private; | 
|  | if (shmem_falloc && | 
|  | shmem_falloc->waitq && | 
|  | vmf->pgoff >= shmem_falloc->start && | 
|  | vmf->pgoff < shmem_falloc->next) { | 
|  | struct file *fpin; | 
|  | wait_queue_head_t *shmem_falloc_waitq; | 
|  | DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); | 
|  |  | 
|  | ret = VM_FAULT_NOPAGE; | 
|  | fpin = maybe_unlock_mmap_for_io(vmf, NULL); | 
|  | if (fpin) | 
|  | ret = VM_FAULT_RETRY; | 
|  |  | 
|  | shmem_falloc_waitq = shmem_falloc->waitq; | 
|  | prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, | 
|  | TASK_UNINTERRUPTIBLE); | 
|  | spin_unlock(&inode->i_lock); | 
|  | schedule(); | 
|  |  | 
|  | /* | 
|  | * shmem_falloc_waitq points into the shmem_fallocate() | 
|  | * stack of the hole-punching task: shmem_falloc_waitq | 
|  | * is usually invalid by the time we reach here, but | 
|  | * finish_wait() does not dereference it in that case; | 
|  | * though i_lock needed lest racing with wake_up_all(). | 
|  | */ | 
|  | spin_lock(&inode->i_lock); | 
|  | finish_wait(shmem_falloc_waitq, &shmem_fault_wait); | 
|  | spin_unlock(&inode->i_lock); | 
|  |  | 
|  | if (fpin) | 
|  | fput(fpin); | 
|  | return ret; | 
|  | } | 
|  | spin_unlock(&inode->i_lock); | 
|  | } | 
|  |  | 
|  | sgp = SGP_CACHE; | 
|  |  | 
|  | if ((vma->vm_flags & VM_NOHUGEPAGE) || | 
|  | test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) | 
|  | sgp = SGP_NOHUGE; | 
|  | else if (vma->vm_flags & VM_HUGEPAGE) | 
|  | sgp = SGP_HUGE; | 
|  |  | 
|  | err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp, | 
|  | gfp, vma, vmf, &ret); | 
|  | if (err) | 
|  | return vmf_error(err); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | unsigned long shmem_get_unmapped_area(struct file *file, | 
|  | unsigned long uaddr, unsigned long len, | 
|  | unsigned long pgoff, unsigned long flags) | 
|  | { | 
|  | unsigned long (*get_area)(struct file *, | 
|  | unsigned long, unsigned long, unsigned long, unsigned long); | 
|  | unsigned long addr; | 
|  | unsigned long offset; | 
|  | unsigned long inflated_len; | 
|  | unsigned long inflated_addr; | 
|  | unsigned long inflated_offset; | 
|  |  | 
|  | if (len > TASK_SIZE) | 
|  | return -ENOMEM; | 
|  |  | 
|  | get_area = current->mm->get_unmapped_area; | 
|  | addr = get_area(file, uaddr, len, pgoff, flags); | 
|  |  | 
|  | if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) | 
|  | return addr; | 
|  | if (IS_ERR_VALUE(addr)) | 
|  | return addr; | 
|  | if (addr & ~PAGE_MASK) | 
|  | return addr; | 
|  | if (addr > TASK_SIZE - len) | 
|  | return addr; | 
|  |  | 
|  | if (shmem_huge == SHMEM_HUGE_DENY) | 
|  | return addr; | 
|  | if (len < HPAGE_PMD_SIZE) | 
|  | return addr; | 
|  | if (flags & MAP_FIXED) | 
|  | return addr; | 
|  | /* | 
|  | * Our priority is to support MAP_SHARED mapped hugely; | 
|  | * and support MAP_PRIVATE mapped hugely too, until it is COWed. | 
|  | * But if caller specified an address hint and we allocated area there | 
|  | * successfully, respect that as before. | 
|  | */ | 
|  | if (uaddr == addr) | 
|  | return addr; | 
|  |  | 
|  | if (shmem_huge != SHMEM_HUGE_FORCE) { | 
|  | struct super_block *sb; | 
|  |  | 
|  | if (file) { | 
|  | VM_BUG_ON(file->f_op != &shmem_file_operations); | 
|  | sb = file_inode(file)->i_sb; | 
|  | } else { | 
|  | /* | 
|  | * Called directly from mm/mmap.c, or drivers/char/mem.c | 
|  | * for "/dev/zero", to create a shared anonymous object. | 
|  | */ | 
|  | if (IS_ERR(shm_mnt)) | 
|  | return addr; | 
|  | sb = shm_mnt->mnt_sb; | 
|  | } | 
|  | if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); | 
|  | if (offset && offset + len < 2 * HPAGE_PMD_SIZE) | 
|  | return addr; | 
|  | if ((addr & (HPAGE_PMD_SIZE-1)) == offset) | 
|  | return addr; | 
|  |  | 
|  | inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; | 
|  | if (inflated_len > TASK_SIZE) | 
|  | return addr; | 
|  | if (inflated_len < len) | 
|  | return addr; | 
|  |  | 
|  | inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); | 
|  | if (IS_ERR_VALUE(inflated_addr)) | 
|  | return addr; | 
|  | if (inflated_addr & ~PAGE_MASK) | 
|  | return addr; | 
|  |  | 
|  | inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); | 
|  | inflated_addr += offset - inflated_offset; | 
|  | if (inflated_offset > offset) | 
|  | inflated_addr += HPAGE_PMD_SIZE; | 
|  |  | 
|  | if (inflated_addr > TASK_SIZE - len) | 
|  | return addr; | 
|  | return inflated_addr; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) | 
|  | { | 
|  | struct inode *inode = file_inode(vma->vm_file); | 
|  | return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); | 
|  | } | 
|  |  | 
|  | static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, | 
|  | unsigned long addr) | 
|  | { | 
|  | struct inode *inode = file_inode(vma->vm_file); | 
|  | pgoff_t index; | 
|  |  | 
|  | index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; | 
|  | return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | int shmem_lock(struct file *file, int lock, struct user_struct *user) | 
|  | { | 
|  | struct inode *inode = file_inode(file); | 
|  | struct shmem_inode_info *info = SHMEM_I(inode); | 
|  | int retval = -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * What serializes the accesses to info->flags? | 
|  | * ipc_lock_object() when called from shmctl_do_lock(), | 
|  | * no serialization needed when called from shm_destroy(). | 
|  | */ | 
|  | if (lock && !(info->flags & VM_LOCKED)) { | 
|  | if (!user_shm_lock(inode->i_size, user)) | 
|  | goto out_nomem; | 
|  | info->flags |= VM_LOCKED; | 
|  | mapping_set_unevictable(file->f_mapping); | 
|  | } | 
|  | if (!lock && (info->flags & VM_LOCKED) && user) { | 
|  | user_shm_unlock(inode->i_size, user); | 
|  | info->flags &= ~VM_LOCKED; | 
|  | mapping_clear_unevictable(file->f_mapping); | 
|  | } | 
|  | retval = 0; | 
|  |  | 
|  | out_nomem: | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int shmem_mmap(struct file *file, struct vm_area_struct *vma) | 
|  | { | 
|  | struct shmem_inode_info *info = SHMEM_I(file_inode(file)); | 
|  |  | 
|  | if (info->seals & F_SEAL_FUTURE_WRITE) { | 
|  | /* | 
|  | * New PROT_WRITE and MAP_SHARED mmaps are not allowed when | 
|  | * "future write" seal active. | 
|  | */ | 
|  | if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) | 
|  | return -EPERM; | 
|  |  | 
|  | /* | 
|  | * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as | 
|  | * MAP_SHARED and read-only, take care to not allow mprotect to | 
|  | * revert protections on such mappings. Do this only for shared | 
|  | * mappings. For private mappings, don't need to mask | 
|  | * VM_MAYWRITE as we still want them to be COW-writable. | 
|  | */ | 
|  | if (vma->vm_flags & VM_SHARED) | 
|  | vma->vm_flags &= ~(VM_MAYWRITE); | 
|  | } | 
|  |  | 
|  | file_accessed(file); | 
|  | vma->vm_ops = &shmem_vm_ops; | 
|  | if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && | 
|  | ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < | 
|  | (vma->vm_end & HPAGE_PMD_MASK)) { | 
|  | khugepaged_enter(vma, vma->vm_flags); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, | 
|  | umode_t mode, dev_t dev, unsigned long flags) | 
|  | { | 
|  | struct inode *inode; | 
|  | struct shmem_inode_info *info; | 
|  | struct shmem_sb_info *sbinfo = SHMEM_SB(sb); | 
|  | ino_t ino; | 
|  |  | 
|  | if (shmem_reserve_inode(sb, &ino)) | 
|  | return NULL; | 
|  |  | 
|  | inode = new_inode(sb); | 
|  | if (inode) { | 
|  | inode->i_ino = ino; | 
|  | inode_init_owner(inode, dir, mode); | 
|  | inode->i_blocks = 0; | 
|  | inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); | 
|  | inode->i_generation = prandom_u32(); | 
|  | info = SHMEM_I(inode); | 
|  | memset(info, 0, (char *)inode - (char *)info); | 
|  | spin_lock_init(&info->lock); | 
|  | atomic_set(&info->stop_eviction, 0); | 
|  | info->seals = F_SEAL_SEAL; | 
|  | info->flags = flags & VM_NORESERVE; | 
|  | INIT_LIST_HEAD(&info->shrinklist); | 
|  | INIT_LIST_HEAD(&info->swaplist); | 
|  | simple_xattrs_init(&info->xattrs); | 
|  | cache_no_acl(inode); | 
|  |  | 
|  | switch (mode & S_IFMT) { | 
|  | default: | 
|  | inode->i_op = &shmem_special_inode_operations; | 
|  | init_special_inode(inode, mode, dev); | 
|  | break; | 
|  | case S_IFREG: | 
|  | inode->i_mapping->a_ops = &shmem_aops; | 
|  | inode->i_op = &shmem_inode_operations; | 
|  | inode->i_fop = &shmem_file_operations; | 
|  | mpol_shared_policy_init(&info->policy, | 
|  | shmem_get_sbmpol(sbinfo)); | 
|  | break; | 
|  | case S_IFDIR: | 
|  | inc_nlink(inode); | 
|  | /* Some things misbehave if size == 0 on a directory */ | 
|  | inode->i_size = 2 * BOGO_DIRENT_SIZE; | 
|  | inode->i_op = &shmem_dir_inode_operations; | 
|  | inode->i_fop = &simple_dir_operations; | 
|  | break; | 
|  | case S_IFLNK: | 
|  | /* | 
|  | * Must not load anything in the rbtree, | 
|  | * mpol_free_shared_policy will not be called. | 
|  | */ | 
|  | mpol_shared_policy_init(&info->policy, NULL); | 
|  | break; | 
|  | } | 
|  |  | 
|  | lockdep_annotate_inode_mutex_key(inode); | 
|  | } else | 
|  | shmem_free_inode(sb); | 
|  | return inode; | 
|  | } | 
|  |  | 
|  | bool shmem_mapping(struct address_space *mapping) | 
|  | { | 
|  | return mapping->a_ops == &shmem_aops; | 
|  | } | 
|  |  | 
|  | static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, | 
|  | pmd_t *dst_pmd, | 
|  | struct vm_area_struct *dst_vma, | 
|  | unsigned long dst_addr, | 
|  | unsigned long src_addr, | 
|  | bool zeropage, | 
|  | struct page **pagep) | 
|  | { | 
|  | struct inode *inode = file_inode(dst_vma->vm_file); | 
|  | struct shmem_inode_info *info = SHMEM_I(inode); | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  | gfp_t gfp = mapping_gfp_mask(mapping); | 
|  | pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); | 
|  | spinlock_t *ptl; | 
|  | void *page_kaddr; | 
|  | struct page *page; | 
|  | pte_t _dst_pte, *dst_pte; | 
|  | int ret; | 
|  | pgoff_t offset, max_off; | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | if (!shmem_inode_acct_block(inode, 1)) | 
|  | goto out; | 
|  |  | 
|  | if (!*pagep) { | 
|  | page = shmem_alloc_page(gfp, info, pgoff); | 
|  | if (!page) | 
|  | goto out_unacct_blocks; | 
|  |  | 
|  | if (!zeropage) {	/* mcopy_atomic */ | 
|  | page_kaddr = kmap_atomic(page); | 
|  | ret = copy_from_user(page_kaddr, | 
|  | (const void __user *)src_addr, | 
|  | PAGE_SIZE); | 
|  | kunmap_atomic(page_kaddr); | 
|  |  | 
|  | /* fallback to copy_from_user outside mmap_lock */ | 
|  | if (unlikely(ret)) { | 
|  | *pagep = page; | 
|  | shmem_inode_unacct_blocks(inode, 1); | 
|  | /* don't free the page */ | 
|  | return -ENOENT; | 
|  | } | 
|  | } else {		/* mfill_zeropage_atomic */ | 
|  | clear_highpage(page); | 
|  | } | 
|  | } else { | 
|  | page = *pagep; | 
|  | *pagep = NULL; | 
|  | } | 
|  |  | 
|  | VM_BUG_ON(PageLocked(page) || PageSwapBacked(page)); | 
|  | __SetPageLocked(page); | 
|  | __SetPageSwapBacked(page); | 
|  | __SetPageUptodate(page); | 
|  |  | 
|  | ret = -EFAULT; | 
|  | offset = linear_page_index(dst_vma, dst_addr); | 
|  | max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); | 
|  | if (unlikely(offset >= max_off)) | 
|  | goto out_release; | 
|  |  | 
|  | ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL, | 
|  | gfp & GFP_RECLAIM_MASK, dst_mm); | 
|  | if (ret) | 
|  | goto out_release; | 
|  |  | 
|  | _dst_pte = mk_pte(page, dst_vma->vm_page_prot); | 
|  | if (dst_vma->vm_flags & VM_WRITE) | 
|  | _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte)); | 
|  | else { | 
|  | /* | 
|  | * We don't set the pte dirty if the vma has no | 
|  | * VM_WRITE permission, so mark the page dirty or it | 
|  | * could be freed from under us. We could do it | 
|  | * unconditionally before unlock_page(), but doing it | 
|  | * only if VM_WRITE is not set is faster. | 
|  | */ | 
|  | set_page_dirty(page); | 
|  | } | 
|  |  | 
|  | dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl); | 
|  |  | 
|  | ret = -EFAULT; | 
|  | max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); | 
|  | if (unlikely(offset >= max_off)) | 
|  | goto out_release_unlock; | 
|  |  | 
|  | ret = -EEXIST; | 
|  | if (!pte_none(*dst_pte)) | 
|  | goto out_release_unlock; | 
|  |  | 
|  | lru_cache_add(page); | 
|  |  | 
|  | spin_lock_irq(&info->lock); | 
|  | info->alloced++; | 
|  | inode->i_blocks += BLOCKS_PER_PAGE; | 
|  | shmem_recalc_inode(inode); | 
|  | spin_unlock_irq(&info->lock); | 
|  |  | 
|  | inc_mm_counter(dst_mm, mm_counter_file(page)); | 
|  | page_add_file_rmap(page, false); | 
|  | set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); | 
|  |  | 
|  | /* No need to invalidate - it was non-present before */ | 
|  | update_mmu_cache(dst_vma, dst_addr, dst_pte); | 
|  | pte_unmap_unlock(dst_pte, ptl); | 
|  | unlock_page(page); | 
|  | ret = 0; | 
|  | out: | 
|  | return ret; | 
|  | out_release_unlock: | 
|  | pte_unmap_unlock(dst_pte, ptl); | 
|  | ClearPageDirty(page); | 
|  | delete_from_page_cache(page); | 
|  | out_release: | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | out_unacct_blocks: | 
|  | shmem_inode_unacct_blocks(inode, 1); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm, | 
|  | pmd_t *dst_pmd, | 
|  | struct vm_area_struct *dst_vma, | 
|  | unsigned long dst_addr, | 
|  | unsigned long src_addr, | 
|  | struct page **pagep) | 
|  | { | 
|  | return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, | 
|  | dst_addr, src_addr, false, pagep); | 
|  | } | 
|  |  | 
|  | int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm, | 
|  | pmd_t *dst_pmd, | 
|  | struct vm_area_struct *dst_vma, | 
|  | unsigned long dst_addr) | 
|  | { | 
|  | struct page *page = NULL; | 
|  |  | 
|  | return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, | 
|  | dst_addr, 0, true, &page); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TMPFS | 
|  | static const struct inode_operations shmem_symlink_inode_operations; | 
|  | static const struct inode_operations shmem_short_symlink_operations; | 
|  |  | 
|  | #ifdef CONFIG_TMPFS_XATTR | 
|  | static int shmem_initxattrs(struct inode *, const struct xattr *, void *); | 
|  | #else | 
|  | #define shmem_initxattrs NULL | 
|  | #endif | 
|  |  | 
|  | static int | 
|  | shmem_write_begin(struct file *file, struct address_space *mapping, | 
|  | loff_t pos, unsigned len, unsigned flags, | 
|  | struct page **pagep, void **fsdata) | 
|  | { | 
|  | struct inode *inode = mapping->host; | 
|  | struct shmem_inode_info *info = SHMEM_I(inode); | 
|  | pgoff_t index = pos >> PAGE_SHIFT; | 
|  |  | 
|  | /* i_mutex is held by caller */ | 
|  | if (unlikely(info->seals & (F_SEAL_GROW | | 
|  | F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { | 
|  | if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) | 
|  | return -EPERM; | 
|  | if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | return shmem_getpage(inode, index, pagep, SGP_WRITE); | 
|  | } | 
|  |  | 
|  | static int | 
|  | shmem_write_end(struct file *file, struct address_space *mapping, | 
|  | loff_t pos, unsigned len, unsigned copied, | 
|  | struct page *page, void *fsdata) | 
|  | { | 
|  | struct inode *inode = mapping->host; | 
|  |  | 
|  | if (pos + copied > inode->i_size) | 
|  | i_size_write(inode, pos + copied); | 
|  |  | 
|  | if (!PageUptodate(page)) { | 
|  | struct page *head = compound_head(page); | 
|  | if (PageTransCompound(page)) { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < HPAGE_PMD_NR; i++) { | 
|  | if (head + i == page) | 
|  | continue; | 
|  | clear_highpage(head + i); | 
|  | flush_dcache_page(head + i); | 
|  | } | 
|  | } | 
|  | if (copied < PAGE_SIZE) { | 
|  | unsigned from = pos & (PAGE_SIZE - 1); | 
|  | zero_user_segments(page, 0, from, | 
|  | from + copied, PAGE_SIZE); | 
|  | } | 
|  | SetPageUptodate(head); | 
|  | } | 
|  | set_page_dirty(page); | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  |  | 
|  | return copied; | 
|  | } | 
|  |  | 
|  | static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) | 
|  | { | 
|  | struct file *file = iocb->ki_filp; | 
|  | struct inode *inode = file_inode(file); | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  | pgoff_t index; | 
|  | unsigned long offset; | 
|  | enum sgp_type sgp = SGP_READ; | 
|  | int error = 0; | 
|  | ssize_t retval = 0; | 
|  | loff_t *ppos = &iocb->ki_pos; | 
|  |  | 
|  | /* | 
|  | * Might this read be for a stacking filesystem?  Then when reading | 
|  | * holes of a sparse file, we actually need to allocate those pages, | 
|  | * and even mark them dirty, so it cannot exceed the max_blocks limit. | 
|  | */ | 
|  | if (!iter_is_iovec(to)) | 
|  | sgp = SGP_CACHE; | 
|  |  | 
|  | index = *ppos >> PAGE_SHIFT; | 
|  | offset = *ppos & ~PAGE_MASK; | 
|  |  | 
|  | for (;;) { | 
|  | struct page *page = NULL; | 
|  | pgoff_t end_index; | 
|  | unsigned long nr, ret; | 
|  | loff_t i_size = i_size_read(inode); | 
|  |  | 
|  | end_index = i_size >> PAGE_SHIFT; | 
|  | if (index > end_index) | 
|  | break; | 
|  | if (index == end_index) { | 
|  | nr = i_size & ~PAGE_MASK; | 
|  | if (nr <= offset) | 
|  | break; | 
|  | } | 
|  |  | 
|  | error = shmem_getpage(inode, index, &page, sgp); | 
|  | if (error) { | 
|  | if (error == -EINVAL) | 
|  | error = 0; | 
|  | break; | 
|  | } | 
|  | if (page) { | 
|  | if (sgp == SGP_CACHE) | 
|  | set_page_dirty(page); | 
|  | unlock_page(page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We must evaluate after, since reads (unlike writes) | 
|  | * are called without i_mutex protection against truncate | 
|  | */ | 
|  | nr = PAGE_SIZE; | 
|  | i_size = i_size_read(inode); | 
|  | end_index = i_size >> PAGE_SHIFT; | 
|  | if (index == end_index) { | 
|  | nr = i_size & ~PAGE_MASK; | 
|  | if (nr <= offset) { | 
|  | if (page) | 
|  | put_page(page); | 
|  | break; | 
|  | } | 
|  | } | 
|  | nr -= offset; | 
|  |  | 
|  | if (page) { | 
|  | /* | 
|  | * If users can be writing to this page using arbitrary | 
|  | * virtual addresses, take care about potential aliasing | 
|  | * before reading the page on the kernel side. | 
|  | */ | 
|  | if (mapping_writably_mapped(mapping)) | 
|  | flush_dcache_page(page); | 
|  | /* | 
|  | * Mark the page accessed if we read the beginning. | 
|  | */ | 
|  | if (!offset) | 
|  | mark_page_accessed(page); | 
|  | } else { | 
|  | page = ZERO_PAGE(0); | 
|  | get_page(page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ok, we have the page, and it's up-to-date, so | 
|  | * now we can copy it to user space... | 
|  | */ | 
|  | ret = copy_page_to_iter(page, offset, nr, to); | 
|  | retval += ret; | 
|  | offset += ret; | 
|  | index += offset >> PAGE_SHIFT; | 
|  | offset &= ~PAGE_MASK; | 
|  |  | 
|  | put_page(page); | 
|  | if (!iov_iter_count(to)) | 
|  | break; | 
|  | if (ret < nr) { | 
|  | error = -EFAULT; | 
|  | break; | 
|  | } | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | *ppos = ((loff_t) index << PAGE_SHIFT) + offset; | 
|  | file_accessed(file); | 
|  | return retval ? retval : error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * llseek SEEK_DATA or SEEK_HOLE through the page cache. | 
|  | */ | 
|  | static pgoff_t shmem_seek_hole_data(struct address_space *mapping, | 
|  | pgoff_t index, pgoff_t end, int whence) | 
|  | { | 
|  | struct page *page; | 
|  | struct pagevec pvec; | 
|  | pgoff_t indices[PAGEVEC_SIZE]; | 
|  | bool done = false; | 
|  | int i; | 
|  |  | 
|  | pagevec_init(&pvec); | 
|  | pvec.nr = 1;		/* start small: we may be there already */ | 
|  | while (!done) { | 
|  | pvec.nr = find_get_entries(mapping, index, | 
|  | pvec.nr, pvec.pages, indices); | 
|  | if (!pvec.nr) { | 
|  | if (whence == SEEK_DATA) | 
|  | index = end; | 
|  | break; | 
|  | } | 
|  | for (i = 0; i < pvec.nr; i++, index++) { | 
|  | if (index < indices[i]) { | 
|  | if (whence == SEEK_HOLE) { | 
|  | done = true; | 
|  | break; | 
|  | } | 
|  | index = indices[i]; | 
|  | } | 
|  | page = pvec.pages[i]; | 
|  | if (page && !xa_is_value(page)) { | 
|  | if (!PageUptodate(page)) | 
|  | page = NULL; | 
|  | } | 
|  | if (index >= end || | 
|  | (page && whence == SEEK_DATA) || | 
|  | (!page && whence == SEEK_HOLE)) { | 
|  | done = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | pagevec_remove_exceptionals(&pvec); | 
|  | pagevec_release(&pvec); | 
|  | pvec.nr = PAGEVEC_SIZE; | 
|  | cond_resched(); | 
|  | } | 
|  | return index; | 
|  | } | 
|  |  | 
|  | static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) | 
|  | { | 
|  | struct address_space *mapping = file->f_mapping; | 
|  | struct inode *inode = mapping->host; | 
|  | pgoff_t start, end; | 
|  | loff_t new_offset; | 
|  |  | 
|  | if (whence != SEEK_DATA && whence != SEEK_HOLE) | 
|  | return generic_file_llseek_size(file, offset, whence, | 
|  | MAX_LFS_FILESIZE, i_size_read(inode)); | 
|  | inode_lock(inode); | 
|  | /* We're holding i_mutex so we can access i_size directly */ | 
|  |  | 
|  | if (offset < 0 || offset >= inode->i_size) | 
|  | offset = -ENXIO; | 
|  | else { | 
|  | start = offset >> PAGE_SHIFT; | 
|  | end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  | new_offset = shmem_seek_hole_data(mapping, start, end, whence); | 
|  | new_offset <<= PAGE_SHIFT; | 
|  | if (new_offset > offset) { | 
|  | if (new_offset < inode->i_size) | 
|  | offset = new_offset; | 
|  | else if (whence == SEEK_DATA) | 
|  | offset = -ENXIO; | 
|  | else | 
|  | offset = inode->i_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (offset >= 0) | 
|  | offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); | 
|  | inode_unlock(inode); | 
|  | return offset; | 
|  | } | 
|  |  | 
|  | static long shmem_fallocate(struct file *file, int mode, loff_t offset, | 
|  | loff_t len) | 
|  | { | 
|  | struct inode *inode = file_inode(file); | 
|  | struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); | 
|  | struct shmem_inode_info *info = SHMEM_I(inode); | 
|  | struct shmem_falloc shmem_falloc; | 
|  | pgoff_t start, index, end; | 
|  | int error; | 
|  |  | 
|  | if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | inode_lock(inode); | 
|  |  | 
|  | if (mode & FALLOC_FL_PUNCH_HOLE) { | 
|  | struct address_space *mapping = file->f_mapping; | 
|  | loff_t unmap_start = round_up(offset, PAGE_SIZE); | 
|  | loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; | 
|  | DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); | 
|  |  | 
|  | /* protected by i_mutex */ | 
|  | if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { | 
|  | error = -EPERM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | shmem_falloc.waitq = &shmem_falloc_waitq; | 
|  | shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; | 
|  | shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; | 
|  | spin_lock(&inode->i_lock); | 
|  | inode->i_private = &shmem_falloc; | 
|  | spin_unlock(&inode->i_lock); | 
|  |  | 
|  | if ((u64)unmap_end > (u64)unmap_start) | 
|  | unmap_mapping_range(mapping, unmap_start, | 
|  | 1 + unmap_end - unmap_start, 0); | 
|  | shmem_truncate_range(inode, offset, offset + len - 1); | 
|  | /* No need to unmap again: hole-punching leaves COWed pages */ | 
|  |  | 
|  | spin_lock(&inode->i_lock); | 
|  | inode->i_private = NULL; | 
|  | wake_up_all(&shmem_falloc_waitq); | 
|  | WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); | 
|  | spin_unlock(&inode->i_lock); | 
|  | error = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ | 
|  | error = inode_newsize_ok(inode, offset + len); | 
|  | if (error) | 
|  | goto out; | 
|  |  | 
|  | if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { | 
|  | error = -EPERM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | start = offset >> PAGE_SHIFT; | 
|  | end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  | /* Try to avoid a swapstorm if len is impossible to satisfy */ | 
|  | if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { | 
|  | error = -ENOSPC; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | shmem_falloc.waitq = NULL; | 
|  | shmem_falloc.start = start; | 
|  | shmem_falloc.next  = start; | 
|  | shmem_falloc.nr_falloced = 0; | 
|  | shmem_falloc.nr_unswapped = 0; | 
|  | spin_lock(&inode->i_lock); | 
|  | inode->i_private = &shmem_falloc; | 
|  | spin_unlock(&inode->i_lock); | 
|  |  | 
|  | for (index = start; index < end; index++) { | 
|  | struct page *page; | 
|  |  | 
|  | /* | 
|  | * Good, the fallocate(2) manpage permits EINTR: we may have | 
|  | * been interrupted because we are using up too much memory. | 
|  | */ | 
|  | if (signal_pending(current)) | 
|  | error = -EINTR; | 
|  | else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) | 
|  | error = -ENOMEM; | 
|  | else | 
|  | error = shmem_getpage(inode, index, &page, SGP_FALLOC); | 
|  | if (error) { | 
|  | /* Remove the !PageUptodate pages we added */ | 
|  | if (index > start) { | 
|  | shmem_undo_range(inode, | 
|  | (loff_t)start << PAGE_SHIFT, | 
|  | ((loff_t)index << PAGE_SHIFT) - 1, true); | 
|  | } | 
|  | goto undone; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Inform shmem_writepage() how far we have reached. | 
|  | * No need for lock or barrier: we have the page lock. | 
|  | */ | 
|  | shmem_falloc.next++; | 
|  | if (!PageUptodate(page)) | 
|  | shmem_falloc.nr_falloced++; | 
|  |  | 
|  | /* | 
|  | * If !PageUptodate, leave it that way so that freeable pages | 
|  | * can be recognized if we need to rollback on error later. | 
|  | * But set_page_dirty so that memory pressure will swap rather | 
|  | * than free the pages we are allocating (and SGP_CACHE pages | 
|  | * might still be clean: we now need to mark those dirty too). | 
|  | */ | 
|  | set_page_dirty(page); | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) | 
|  | i_size_write(inode, offset + len); | 
|  | inode->i_ctime = current_time(inode); | 
|  | undone: | 
|  | spin_lock(&inode->i_lock); | 
|  | inode->i_private = NULL; | 
|  | spin_unlock(&inode->i_lock); | 
|  | out: | 
|  | inode_unlock(inode); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) | 
|  | { | 
|  | struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); | 
|  |  | 
|  | buf->f_type = TMPFS_MAGIC; | 
|  | buf->f_bsize = PAGE_SIZE; | 
|  | buf->f_namelen = NAME_MAX; | 
|  | if (sbinfo->max_blocks) { | 
|  | buf->f_blocks = sbinfo->max_blocks; | 
|  | buf->f_bavail = | 
|  | buf->f_bfree  = sbinfo->max_blocks - | 
|  | percpu_counter_sum(&sbinfo->used_blocks); | 
|  | } | 
|  | if (sbinfo->max_inodes) { | 
|  | buf->f_files = sbinfo->max_inodes; | 
|  | buf->f_ffree = sbinfo->free_inodes; | 
|  | } | 
|  | /* else leave those fields 0 like simple_statfs */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * File creation. Allocate an inode, and we're done.. | 
|  | */ | 
|  | static int | 
|  | shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) | 
|  | { | 
|  | struct inode *inode; | 
|  | int error = -ENOSPC; | 
|  |  | 
|  | inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); | 
|  | if (inode) { | 
|  | error = simple_acl_create(dir, inode); | 
|  | if (error) | 
|  | goto out_iput; | 
|  | error = security_inode_init_security(inode, dir, | 
|  | &dentry->d_name, | 
|  | shmem_initxattrs, NULL); | 
|  | if (error && error != -EOPNOTSUPP) | 
|  | goto out_iput; | 
|  |  | 
|  | error = 0; | 
|  | dir->i_size += BOGO_DIRENT_SIZE; | 
|  | dir->i_ctime = dir->i_mtime = current_time(dir); | 
|  | d_instantiate(dentry, inode); | 
|  | dget(dentry); /* Extra count - pin the dentry in core */ | 
|  | } | 
|  | return error; | 
|  | out_iput: | 
|  | iput(inode); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static int | 
|  | shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) | 
|  | { | 
|  | struct inode *inode; | 
|  | int error = -ENOSPC; | 
|  |  | 
|  | inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); | 
|  | if (inode) { | 
|  | error = security_inode_init_security(inode, dir, | 
|  | NULL, | 
|  | shmem_initxattrs, NULL); | 
|  | if (error && error != -EOPNOTSUPP) | 
|  | goto out_iput; | 
|  | error = simple_acl_create(dir, inode); | 
|  | if (error) | 
|  | goto out_iput; | 
|  | d_tmpfile(dentry, inode); | 
|  | } | 
|  | return error; | 
|  | out_iput: | 
|  | iput(inode); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) | 
|  | { | 
|  | int error; | 
|  |  | 
|  | if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) | 
|  | return error; | 
|  | inc_nlink(dir); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, | 
|  | bool excl) | 
|  | { | 
|  | return shmem_mknod(dir, dentry, mode | S_IFREG, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Link a file.. | 
|  | */ | 
|  | static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) | 
|  | { | 
|  | struct inode *inode = d_inode(old_dentry); | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * No ordinary (disk based) filesystem counts links as inodes; | 
|  | * but each new link needs a new dentry, pinning lowmem, and | 
|  | * tmpfs dentries cannot be pruned until they are unlinked. | 
|  | * But if an O_TMPFILE file is linked into the tmpfs, the | 
|  | * first link must skip that, to get the accounting right. | 
|  | */ | 
|  | if (inode->i_nlink) { | 
|  | ret = shmem_reserve_inode(inode->i_sb, NULL); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | dir->i_size += BOGO_DIRENT_SIZE; | 
|  | inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); | 
|  | inc_nlink(inode); | 
|  | ihold(inode);	/* New dentry reference */ | 
|  | dget(dentry);		/* Extra pinning count for the created dentry */ | 
|  | d_instantiate(dentry, inode); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int shmem_unlink(struct inode *dir, struct dentry *dentry) | 
|  | { | 
|  | struct inode *inode = d_inode(dentry); | 
|  |  | 
|  | if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) | 
|  | shmem_free_inode(inode->i_sb); | 
|  |  | 
|  | dir->i_size -= BOGO_DIRENT_SIZE; | 
|  | inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); | 
|  | drop_nlink(inode); | 
|  | dput(dentry);	/* Undo the count from "create" - this does all the work */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int shmem_rmdir(struct inode *dir, struct dentry *dentry) | 
|  | { | 
|  | if (!simple_empty(dentry)) | 
|  | return -ENOTEMPTY; | 
|  |  | 
|  | drop_nlink(d_inode(dentry)); | 
|  | drop_nlink(dir); | 
|  | return shmem_unlink(dir, dentry); | 
|  | } | 
|  |  | 
|  | static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) | 
|  | { | 
|  | bool old_is_dir = d_is_dir(old_dentry); | 
|  | bool new_is_dir = d_is_dir(new_dentry); | 
|  |  | 
|  | if (old_dir != new_dir && old_is_dir != new_is_dir) { | 
|  | if (old_is_dir) { | 
|  | drop_nlink(old_dir); | 
|  | inc_nlink(new_dir); | 
|  | } else { | 
|  | drop_nlink(new_dir); | 
|  | inc_nlink(old_dir); | 
|  | } | 
|  | } | 
|  | old_dir->i_ctime = old_dir->i_mtime = | 
|  | new_dir->i_ctime = new_dir->i_mtime = | 
|  | d_inode(old_dentry)->i_ctime = | 
|  | d_inode(new_dentry)->i_ctime = current_time(old_dir); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) | 
|  | { | 
|  | struct dentry *whiteout; | 
|  | int error; | 
|  |  | 
|  | whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); | 
|  | if (!whiteout) | 
|  | return -ENOMEM; | 
|  |  | 
|  | error = shmem_mknod(old_dir, whiteout, | 
|  | S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); | 
|  | dput(whiteout); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | /* | 
|  | * Cheat and hash the whiteout while the old dentry is still in | 
|  | * place, instead of playing games with FS_RENAME_DOES_D_MOVE. | 
|  | * | 
|  | * d_lookup() will consistently find one of them at this point, | 
|  | * not sure which one, but that isn't even important. | 
|  | */ | 
|  | d_rehash(whiteout); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The VFS layer already does all the dentry stuff for rename, | 
|  | * we just have to decrement the usage count for the target if | 
|  | * it exists so that the VFS layer correctly free's it when it | 
|  | * gets overwritten. | 
|  | */ | 
|  | static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) | 
|  | { | 
|  | struct inode *inode = d_inode(old_dentry); | 
|  | int they_are_dirs = S_ISDIR(inode->i_mode); | 
|  |  | 
|  | if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (flags & RENAME_EXCHANGE) | 
|  | return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); | 
|  |  | 
|  | if (!simple_empty(new_dentry)) | 
|  | return -ENOTEMPTY; | 
|  |  | 
|  | if (flags & RENAME_WHITEOUT) { | 
|  | int error; | 
|  |  | 
|  | error = shmem_whiteout(old_dir, old_dentry); | 
|  | if (error) | 
|  | return error; | 
|  | } | 
|  |  | 
|  | if (d_really_is_positive(new_dentry)) { | 
|  | (void) shmem_unlink(new_dir, new_dentry); | 
|  | if (they_are_dirs) { | 
|  | drop_nlink(d_inode(new_dentry)); | 
|  | drop_nlink(old_dir); | 
|  | } | 
|  | } else if (they_are_dirs) { | 
|  | drop_nlink(old_dir); | 
|  | inc_nlink(new_dir); | 
|  | } | 
|  |  | 
|  | old_dir->i_size -= BOGO_DIRENT_SIZE; | 
|  | new_dir->i_size += BOGO_DIRENT_SIZE; | 
|  | old_dir->i_ctime = old_dir->i_mtime = | 
|  | new_dir->i_ctime = new_dir->i_mtime = | 
|  | inode->i_ctime = current_time(old_dir); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) | 
|  | { | 
|  | int error; | 
|  | int len; | 
|  | struct inode *inode; | 
|  | struct page *page; | 
|  |  | 
|  | len = strlen(symname) + 1; | 
|  | if (len > PAGE_SIZE) | 
|  | return -ENAMETOOLONG; | 
|  |  | 
|  | inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, | 
|  | VM_NORESERVE); | 
|  | if (!inode) | 
|  | return -ENOSPC; | 
|  |  | 
|  | error = security_inode_init_security(inode, dir, &dentry->d_name, | 
|  | shmem_initxattrs, NULL); | 
|  | if (error && error != -EOPNOTSUPP) { | 
|  | iput(inode); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | inode->i_size = len-1; | 
|  | if (len <= SHORT_SYMLINK_LEN) { | 
|  | inode->i_link = kmemdup(symname, len, GFP_KERNEL); | 
|  | if (!inode->i_link) { | 
|  | iput(inode); | 
|  | return -ENOMEM; | 
|  | } | 
|  | inode->i_op = &shmem_short_symlink_operations; | 
|  | } else { | 
|  | inode_nohighmem(inode); | 
|  | error = shmem_getpage(inode, 0, &page, SGP_WRITE); | 
|  | if (error) { | 
|  | iput(inode); | 
|  | return error; | 
|  | } | 
|  | inode->i_mapping->a_ops = &shmem_aops; | 
|  | inode->i_op = &shmem_symlink_inode_operations; | 
|  | memcpy(page_address(page), symname, len); | 
|  | SetPageUptodate(page); | 
|  | set_page_dirty(page); | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | } | 
|  | dir->i_size += BOGO_DIRENT_SIZE; | 
|  | dir->i_ctime = dir->i_mtime = current_time(dir); | 
|  | d_instantiate(dentry, inode); | 
|  | dget(dentry); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void shmem_put_link(void *arg) | 
|  | { | 
|  | mark_page_accessed(arg); | 
|  | put_page(arg); | 
|  | } | 
|  |  | 
|  | static const char *shmem_get_link(struct dentry *dentry, | 
|  | struct inode *inode, | 
|  | struct delayed_call *done) | 
|  | { | 
|  | struct page *page = NULL; | 
|  | int error; | 
|  | if (!dentry) { | 
|  | page = find_get_page(inode->i_mapping, 0); | 
|  | if (!page) | 
|  | return ERR_PTR(-ECHILD); | 
|  | if (!PageUptodate(page)) { | 
|  | put_page(page); | 
|  | return ERR_PTR(-ECHILD); | 
|  | } | 
|  | } else { | 
|  | error = shmem_getpage(inode, 0, &page, SGP_READ); | 
|  | if (error) | 
|  | return ERR_PTR(error); | 
|  | unlock_page(page); | 
|  | } | 
|  | set_delayed_call(done, shmem_put_link, page); | 
|  | return page_address(page); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TMPFS_XATTR | 
|  | /* | 
|  | * Superblocks without xattr inode operations may get some security.* xattr | 
|  | * support from the LSM "for free". As soon as we have any other xattrs | 
|  | * like ACLs, we also need to implement the security.* handlers at | 
|  | * filesystem level, though. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Callback for security_inode_init_security() for acquiring xattrs. | 
|  | */ | 
|  | static int shmem_initxattrs(struct inode *inode, | 
|  | const struct xattr *xattr_array, | 
|  | void *fs_info) | 
|  | { | 
|  | struct shmem_inode_info *info = SHMEM_I(inode); | 
|  | const struct xattr *xattr; | 
|  | struct simple_xattr *new_xattr; | 
|  | size_t len; | 
|  |  | 
|  | for (xattr = xattr_array; xattr->name != NULL; xattr++) { | 
|  | new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); | 
|  | if (!new_xattr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | len = strlen(xattr->name) + 1; | 
|  | new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, | 
|  | GFP_KERNEL); | 
|  | if (!new_xattr->name) { | 
|  | kvfree(new_xattr); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, | 
|  | XATTR_SECURITY_PREFIX_LEN); | 
|  | memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, | 
|  | xattr->name, len); | 
|  |  | 
|  | simple_xattr_list_add(&info->xattrs, new_xattr); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int shmem_xattr_handler_get(const struct xattr_handler *handler, | 
|  | struct dentry *unused, struct inode *inode, | 
|  | const char *name, void *buffer, size_t size) | 
|  | { | 
|  | struct shmem_inode_info *info = SHMEM_I(inode); | 
|  |  | 
|  | name = xattr_full_name(handler, name); | 
|  | return simple_xattr_get(&info->xattrs, name, buffer, size); | 
|  | } | 
|  |  | 
|  | static int shmem_xattr_handler_set(const struct xattr_handler *handler, | 
|  | struct dentry *unused, struct inode *inode, | 
|  | const char *name, const void *value, | 
|  | size_t size, int flags) | 
|  | { | 
|  | struct shmem_inode_info *info = SHMEM_I(inode); | 
|  |  | 
|  | name = xattr_full_name(handler, name); | 
|  | return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL); | 
|  | } | 
|  |  | 
|  | static const struct xattr_handler shmem_security_xattr_handler = { | 
|  | .prefix = XATTR_SECURITY_PREFIX, | 
|  | .get = shmem_xattr_handler_get, | 
|  | .set = shmem_xattr_handler_set, | 
|  | }; | 
|  |  | 
|  | static const struct xattr_handler shmem_trusted_xattr_handler = { | 
|  | .prefix = XATTR_TRUSTED_PREFIX, | 
|  | .get = shmem_xattr_handler_get, | 
|  | .set = shmem_xattr_handler_set, | 
|  | }; | 
|  |  | 
|  | static const struct xattr_handler *shmem_xattr_handlers[] = { | 
|  | #ifdef CONFIG_TMPFS_POSIX_ACL | 
|  | &posix_acl_access_xattr_handler, | 
|  | &posix_acl_default_xattr_handler, | 
|  | #endif | 
|  | &shmem_security_xattr_handler, | 
|  | &shmem_trusted_xattr_handler, | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) | 
|  | { | 
|  | struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); | 
|  | return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); | 
|  | } | 
|  | #endif /* CONFIG_TMPFS_XATTR */ | 
|  |  | 
|  | static const struct inode_operations shmem_short_symlink_operations = { | 
|  | .get_link	= simple_get_link, | 
|  | #ifdef CONFIG_TMPFS_XATTR | 
|  | .listxattr	= shmem_listxattr, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static const struct inode_operations shmem_symlink_inode_operations = { | 
|  | .get_link	= shmem_get_link, | 
|  | #ifdef CONFIG_TMPFS_XATTR | 
|  | .listxattr	= shmem_listxattr, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static struct dentry *shmem_get_parent(struct dentry *child) | 
|  | { | 
|  | return ERR_PTR(-ESTALE); | 
|  | } | 
|  |  | 
|  | static int shmem_match(struct inode *ino, void *vfh) | 
|  | { | 
|  | __u32 *fh = vfh; | 
|  | __u64 inum = fh[2]; | 
|  | inum = (inum << 32) | fh[1]; | 
|  | return ino->i_ino == inum && fh[0] == ino->i_generation; | 
|  | } | 
|  |  | 
|  | /* Find any alias of inode, but prefer a hashed alias */ | 
|  | static struct dentry *shmem_find_alias(struct inode *inode) | 
|  | { | 
|  | struct dentry *alias = d_find_alias(inode); | 
|  |  | 
|  | return alias ?: d_find_any_alias(inode); | 
|  | } | 
|  |  | 
|  |  | 
|  | static struct dentry *shmem_fh_to_dentry(struct super_block *sb, | 
|  | struct fid *fid, int fh_len, int fh_type) | 
|  | { | 
|  | struct inode *inode; | 
|  | struct dentry *dentry = NULL; | 
|  | u64 inum; | 
|  |  | 
|  | if (fh_len < 3) | 
|  | return NULL; | 
|  |  | 
|  | inum = fid->raw[2]; | 
|  | inum = (inum << 32) | fid->raw[1]; | 
|  |  | 
|  | inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), | 
|  | shmem_match, fid->raw); | 
|  | if (inode) { | 
|  | dentry = shmem_find_alias(inode); | 
|  | iput(inode); | 
|  | } | 
|  |  | 
|  | return dentry; | 
|  | } | 
|  |  | 
|  | static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, | 
|  | struct inode *parent) | 
|  | { | 
|  | if (*len < 3) { | 
|  | *len = 3; | 
|  | return FILEID_INVALID; | 
|  | } | 
|  |  | 
|  | if (inode_unhashed(inode)) { | 
|  | /* Unfortunately insert_inode_hash is not idempotent, | 
|  | * so as we hash inodes here rather than at creation | 
|  | * time, we need a lock to ensure we only try | 
|  | * to do it once | 
|  | */ | 
|  | static DEFINE_SPINLOCK(lock); | 
|  | spin_lock(&lock); | 
|  | if (inode_unhashed(inode)) | 
|  | __insert_inode_hash(inode, | 
|  | inode->i_ino + inode->i_generation); | 
|  | spin_unlock(&lock); | 
|  | } | 
|  |  | 
|  | fh[0] = inode->i_generation; | 
|  | fh[1] = inode->i_ino; | 
|  | fh[2] = ((__u64)inode->i_ino) >> 32; | 
|  |  | 
|  | *len = 3; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static const struct export_operations shmem_export_ops = { | 
|  | .get_parent     = shmem_get_parent, | 
|  | .encode_fh      = shmem_encode_fh, | 
|  | .fh_to_dentry	= shmem_fh_to_dentry, | 
|  | }; | 
|  |  | 
|  | enum shmem_param { | 
|  | Opt_gid, | 
|  | Opt_huge, | 
|  | Opt_mode, | 
|  | Opt_mpol, | 
|  | Opt_nr_blocks, | 
|  | Opt_nr_inodes, | 
|  | Opt_size, | 
|  | Opt_uid, | 
|  | Opt_inode32, | 
|  | Opt_inode64, | 
|  | }; | 
|  |  | 
|  | static const struct constant_table shmem_param_enums_huge[] = { | 
|  | {"never",	SHMEM_HUGE_NEVER }, | 
|  | {"always",	SHMEM_HUGE_ALWAYS }, | 
|  | {"within_size",	SHMEM_HUGE_WITHIN_SIZE }, | 
|  | {"advise",	SHMEM_HUGE_ADVISE }, | 
|  | {} | 
|  | }; | 
|  |  | 
|  | const struct fs_parameter_spec shmem_fs_parameters[] = { | 
|  | fsparam_u32   ("gid",		Opt_gid), | 
|  | fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge), | 
|  | fsparam_u32oct("mode",		Opt_mode), | 
|  | fsparam_string("mpol",		Opt_mpol), | 
|  | fsparam_string("nr_blocks",	Opt_nr_blocks), | 
|  | fsparam_string("nr_inodes",	Opt_nr_inodes), | 
|  | fsparam_string("size",		Opt_size), | 
|  | fsparam_u32   ("uid",		Opt_uid), | 
|  | fsparam_flag  ("inode32",	Opt_inode32), | 
|  | fsparam_flag  ("inode64",	Opt_inode64), | 
|  | {} | 
|  | }; | 
|  |  | 
|  | static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) | 
|  | { | 
|  | struct shmem_options *ctx = fc->fs_private; | 
|  | struct fs_parse_result result; | 
|  | unsigned long long size; | 
|  | char *rest; | 
|  | int opt; | 
|  |  | 
|  | opt = fs_parse(fc, shmem_fs_parameters, param, &result); | 
|  | if (opt < 0) | 
|  | return opt; | 
|  |  | 
|  | switch (opt) { | 
|  | case Opt_size: | 
|  | size = memparse(param->string, &rest); | 
|  | if (*rest == '%') { | 
|  | size <<= PAGE_SHIFT; | 
|  | size *= totalram_pages(); | 
|  | do_div(size, 100); | 
|  | rest++; | 
|  | } | 
|  | if (*rest) | 
|  | goto bad_value; | 
|  | ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); | 
|  | ctx->seen |= SHMEM_SEEN_BLOCKS; | 
|  | break; | 
|  | case Opt_nr_blocks: | 
|  | ctx->blocks = memparse(param->string, &rest); | 
|  | if (*rest) | 
|  | goto bad_value; | 
|  | ctx->seen |= SHMEM_SEEN_BLOCKS; | 
|  | break; | 
|  | case Opt_nr_inodes: | 
|  | ctx->inodes = memparse(param->string, &rest); | 
|  | if (*rest) | 
|  | goto bad_value; | 
|  | ctx->seen |= SHMEM_SEEN_INODES; | 
|  | break; | 
|  | case Opt_mode: | 
|  | ctx->mode = result.uint_32 & 07777; | 
|  | break; | 
|  | case Opt_uid: | 
|  | ctx->uid = make_kuid(current_user_ns(), result.uint_32); | 
|  | if (!uid_valid(ctx->uid)) | 
|  | goto bad_value; | 
|  | break; | 
|  | case Opt_gid: | 
|  | ctx->gid = make_kgid(current_user_ns(), result.uint_32); | 
|  | if (!gid_valid(ctx->gid)) | 
|  | goto bad_value; | 
|  | break; | 
|  | case Opt_huge: | 
|  | ctx->huge = result.uint_32; | 
|  | if (ctx->huge != SHMEM_HUGE_NEVER && | 
|  | !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && | 
|  | has_transparent_hugepage())) | 
|  | goto unsupported_parameter; | 
|  | ctx->seen |= SHMEM_SEEN_HUGE; | 
|  | break; | 
|  | case Opt_mpol: | 
|  | if (IS_ENABLED(CONFIG_NUMA)) { | 
|  | mpol_put(ctx->mpol); | 
|  | ctx->mpol = NULL; | 
|  | if (mpol_parse_str(param->string, &ctx->mpol)) | 
|  | goto bad_value; | 
|  | break; | 
|  | } | 
|  | goto unsupported_parameter; | 
|  | case Opt_inode32: | 
|  | ctx->full_inums = false; | 
|  | ctx->seen |= SHMEM_SEEN_INUMS; | 
|  | break; | 
|  | case Opt_inode64: | 
|  | if (sizeof(ino_t) < 8) { | 
|  | return invalfc(fc, | 
|  | "Cannot use inode64 with <64bit inums in kernel\n"); | 
|  | } | 
|  | ctx->full_inums = true; | 
|  | ctx->seen |= SHMEM_SEEN_INUMS; | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | unsupported_parameter: | 
|  | return invalfc(fc, "Unsupported parameter '%s'", param->key); | 
|  | bad_value: | 
|  | return invalfc(fc, "Bad value for '%s'", param->key); | 
|  | } | 
|  |  | 
|  | static int shmem_parse_options(struct fs_context *fc, void *data) | 
|  | { | 
|  | char *options = data; | 
|  |  | 
|  | if (options) { | 
|  | int err = security_sb_eat_lsm_opts(options, &fc->security); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | while (options != NULL) { | 
|  | char *this_char = options; | 
|  | for (;;) { | 
|  | /* | 
|  | * NUL-terminate this option: unfortunately, | 
|  | * mount options form a comma-separated list, | 
|  | * but mpol's nodelist may also contain commas. | 
|  | */ | 
|  | options = strchr(options, ','); | 
|  | if (options == NULL) | 
|  | break; | 
|  | options++; | 
|  | if (!isdigit(*options)) { | 
|  | options[-1] = '\0'; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (*this_char) { | 
|  | char *value = strchr(this_char,'='); | 
|  | size_t len = 0; | 
|  | int err; | 
|  |  | 
|  | if (value) { | 
|  | *value++ = '\0'; | 
|  | len = strlen(value); | 
|  | } | 
|  | err = vfs_parse_fs_string(fc, this_char, value, len); | 
|  | if (err < 0) | 
|  | return err; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reconfigure a shmem filesystem. | 
|  | * | 
|  | * Note that we disallow change from limited->unlimited blocks/inodes while any | 
|  | * are in use; but we must separately disallow unlimited->limited, because in | 
|  | * that case we have no record of how much is already in use. | 
|  | */ | 
|  | static int shmem_reconfigure(struct fs_context *fc) | 
|  | { | 
|  | struct shmem_options *ctx = fc->fs_private; | 
|  | struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); | 
|  | unsigned long inodes; | 
|  | const char *err; | 
|  |  | 
|  | spin_lock(&sbinfo->stat_lock); | 
|  | inodes = sbinfo->max_inodes - sbinfo->free_inodes; | 
|  | if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { | 
|  | if (!sbinfo->max_blocks) { | 
|  | err = "Cannot retroactively limit size"; | 
|  | goto out; | 
|  | } | 
|  | if (percpu_counter_compare(&sbinfo->used_blocks, | 
|  | ctx->blocks) > 0) { | 
|  | err = "Too small a size for current use"; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { | 
|  | if (!sbinfo->max_inodes) { | 
|  | err = "Cannot retroactively limit inodes"; | 
|  | goto out; | 
|  | } | 
|  | if (ctx->inodes < inodes) { | 
|  | err = "Too few inodes for current use"; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && | 
|  | sbinfo->next_ino > UINT_MAX) { | 
|  | err = "Current inum too high to switch to 32-bit inums"; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (ctx->seen & SHMEM_SEEN_HUGE) | 
|  | sbinfo->huge = ctx->huge; | 
|  | if (ctx->seen & SHMEM_SEEN_INUMS) | 
|  | sbinfo->full_inums = ctx->full_inums; | 
|  | if (ctx->seen & SHMEM_SEEN_BLOCKS) | 
|  | sbinfo->max_blocks  = ctx->blocks; | 
|  | if (ctx->seen & SHMEM_SEEN_INODES) { | 
|  | sbinfo->max_inodes  = ctx->inodes; | 
|  | sbinfo->free_inodes = ctx->inodes - inodes; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Preserve previous mempolicy unless mpol remount option was specified. | 
|  | */ | 
|  | if (ctx->mpol) { | 
|  | mpol_put(sbinfo->mpol); | 
|  | sbinfo->mpol = ctx->mpol;	/* transfers initial ref */ | 
|  | ctx->mpol = NULL; | 
|  | } | 
|  | spin_unlock(&sbinfo->stat_lock); | 
|  | return 0; | 
|  | out: | 
|  | spin_unlock(&sbinfo->stat_lock); | 
|  | return invalfc(fc, "%s", err); | 
|  | } | 
|  |  | 
|  | static int shmem_show_options(struct seq_file *seq, struct dentry *root) | 
|  | { | 
|  | struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); | 
|  |  | 
|  | if (sbinfo->max_blocks != shmem_default_max_blocks()) | 
|  | seq_printf(seq, ",size=%luk", | 
|  | sbinfo->max_blocks << (PAGE_SHIFT - 10)); | 
|  | if (sbinfo->max_inodes != shmem_default_max_inodes()) | 
|  | seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); | 
|  | if (sbinfo->mode != (0777 | S_ISVTX)) | 
|  | seq_printf(seq, ",mode=%03ho", sbinfo->mode); | 
|  | if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) | 
|  | seq_printf(seq, ",uid=%u", | 
|  | from_kuid_munged(&init_user_ns, sbinfo->uid)); | 
|  | if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) | 
|  | seq_printf(seq, ",gid=%u", | 
|  | from_kgid_munged(&init_user_ns, sbinfo->gid)); | 
|  |  | 
|  | /* | 
|  | * Showing inode{64,32} might be useful even if it's the system default, | 
|  | * since then people don't have to resort to checking both here and | 
|  | * /proc/config.gz to confirm 64-bit inums were successfully applied | 
|  | * (which may not even exist if IKCONFIG_PROC isn't enabled). | 
|  | * | 
|  | * We hide it when inode64 isn't the default and we are using 32-bit | 
|  | * inodes, since that probably just means the feature isn't even under | 
|  | * consideration. | 
|  | * | 
|  | * As such: | 
|  | * | 
|  | *                     +-----------------+-----------------+ | 
|  | *                     | TMPFS_INODE64=y | TMPFS_INODE64=n | | 
|  | *  +------------------+-----------------+-----------------+ | 
|  | *  | full_inums=true  | show            | show            | | 
|  | *  | full_inums=false | show            | hide            | | 
|  | *  +------------------+-----------------+-----------------+ | 
|  | * | 
|  | */ | 
|  | if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) | 
|  | seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ | 
|  | if (sbinfo->huge) | 
|  | seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); | 
|  | #endif | 
|  | shmem_show_mpol(seq, sbinfo->mpol); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_TMPFS */ | 
|  |  | 
|  | static void shmem_put_super(struct super_block *sb) | 
|  | { | 
|  | struct shmem_sb_info *sbinfo = SHMEM_SB(sb); | 
|  |  | 
|  | free_percpu(sbinfo->ino_batch); | 
|  | percpu_counter_destroy(&sbinfo->used_blocks); | 
|  | mpol_put(sbinfo->mpol); | 
|  | kfree(sbinfo); | 
|  | sb->s_fs_info = NULL; | 
|  | } | 
|  |  | 
|  | static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) | 
|  | { | 
|  | struct shmem_options *ctx = fc->fs_private; | 
|  | struct inode *inode; | 
|  | struct shmem_sb_info *sbinfo; | 
|  | int err = -ENOMEM; | 
|  |  | 
|  | /* Round up to L1_CACHE_BYTES to resist false sharing */ | 
|  | sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), | 
|  | L1_CACHE_BYTES), GFP_KERNEL); | 
|  | if (!sbinfo) | 
|  | return -ENOMEM; | 
|  |  | 
|  | sb->s_fs_info = sbinfo; | 
|  |  | 
|  | #ifdef CONFIG_TMPFS | 
|  | /* | 
|  | * Per default we only allow half of the physical ram per | 
|  | * tmpfs instance, limiting inodes to one per page of lowmem; | 
|  | * but the internal instance is left unlimited. | 
|  | */ | 
|  | if (!(sb->s_flags & SB_KERNMOUNT)) { | 
|  | if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) | 
|  | ctx->blocks = shmem_default_max_blocks(); | 
|  | if (!(ctx->seen & SHMEM_SEEN_INODES)) | 
|  | ctx->inodes = shmem_default_max_inodes(); | 
|  | if (!(ctx->seen & SHMEM_SEEN_INUMS)) | 
|  | ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); | 
|  | } else { | 
|  | sb->s_flags |= SB_NOUSER; | 
|  | } | 
|  | sb->s_export_op = &shmem_export_ops; | 
|  | sb->s_flags |= SB_NOSEC; | 
|  | #else | 
|  | sb->s_flags |= SB_NOUSER; | 
|  | #endif | 
|  | sbinfo->max_blocks = ctx->blocks; | 
|  | sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; | 
|  | if (sb->s_flags & SB_KERNMOUNT) { | 
|  | sbinfo->ino_batch = alloc_percpu(ino_t); | 
|  | if (!sbinfo->ino_batch) | 
|  | goto failed; | 
|  | } | 
|  | sbinfo->uid = ctx->uid; | 
|  | sbinfo->gid = ctx->gid; | 
|  | sbinfo->full_inums = ctx->full_inums; | 
|  | sbinfo->mode = ctx->mode; | 
|  | sbinfo->huge = ctx->huge; | 
|  | sbinfo->mpol = ctx->mpol; | 
|  | ctx->mpol = NULL; | 
|  |  | 
|  | spin_lock_init(&sbinfo->stat_lock); | 
|  | if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) | 
|  | goto failed; | 
|  | spin_lock_init(&sbinfo->shrinklist_lock); | 
|  | INIT_LIST_HEAD(&sbinfo->shrinklist); | 
|  |  | 
|  | sb->s_maxbytes = MAX_LFS_FILESIZE; | 
|  | sb->s_blocksize = PAGE_SIZE; | 
|  | sb->s_blocksize_bits = PAGE_SHIFT; | 
|  | sb->s_magic = TMPFS_MAGIC; | 
|  | sb->s_op = &shmem_ops; | 
|  | sb->s_time_gran = 1; | 
|  | #ifdef CONFIG_TMPFS_XATTR | 
|  | sb->s_xattr = shmem_xattr_handlers; | 
|  | #endif | 
|  | #ifdef CONFIG_TMPFS_POSIX_ACL | 
|  | sb->s_flags |= SB_POSIXACL; | 
|  | #endif | 
|  | uuid_gen(&sb->s_uuid); | 
|  |  | 
|  | inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); | 
|  | if (!inode) | 
|  | goto failed; | 
|  | inode->i_uid = sbinfo->uid; | 
|  | inode->i_gid = sbinfo->gid; | 
|  | sb->s_root = d_make_root(inode); | 
|  | if (!sb->s_root) | 
|  | goto failed; | 
|  | return 0; | 
|  |  | 
|  | failed: | 
|  | shmem_put_super(sb); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int shmem_get_tree(struct fs_context *fc) | 
|  | { | 
|  | return get_tree_nodev(fc, shmem_fill_super); | 
|  | } | 
|  |  | 
|  | static void shmem_free_fc(struct fs_context *fc) | 
|  | { | 
|  | struct shmem_options *ctx = fc->fs_private; | 
|  |  | 
|  | if (ctx) { | 
|  | mpol_put(ctx->mpol); | 
|  | kfree(ctx); | 
|  | } | 
|  | } | 
|  |  | 
|  | static const struct fs_context_operations shmem_fs_context_ops = { | 
|  | .free			= shmem_free_fc, | 
|  | .get_tree		= shmem_get_tree, | 
|  | #ifdef CONFIG_TMPFS | 
|  | .parse_monolithic	= shmem_parse_options, | 
|  | .parse_param		= shmem_parse_one, | 
|  | .reconfigure		= shmem_reconfigure, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static struct kmem_cache *shmem_inode_cachep; | 
|  |  | 
|  | static struct inode *shmem_alloc_inode(struct super_block *sb) | 
|  | { | 
|  | struct shmem_inode_info *info; | 
|  | info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); | 
|  | if (!info) | 
|  | return NULL; | 
|  | return &info->vfs_inode; | 
|  | } | 
|  |  | 
|  | static void shmem_free_in_core_inode(struct inode *inode) | 
|  | { | 
|  | if (S_ISLNK(inode->i_mode)) | 
|  | kfree(inode->i_link); | 
|  | kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); | 
|  | } | 
|  |  | 
|  | static void shmem_destroy_inode(struct inode *inode) | 
|  | { | 
|  | if (S_ISREG(inode->i_mode)) | 
|  | mpol_free_shared_policy(&SHMEM_I(inode)->policy); | 
|  | } | 
|  |  | 
|  | static void shmem_init_inode(void *foo) | 
|  | { | 
|  | struct shmem_inode_info *info = foo; | 
|  | inode_init_once(&info->vfs_inode); | 
|  | } | 
|  |  | 
|  | static void shmem_init_inodecache(void) | 
|  | { | 
|  | shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", | 
|  | sizeof(struct shmem_inode_info), | 
|  | 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); | 
|  | } | 
|  |  | 
|  | static void shmem_destroy_inodecache(void) | 
|  | { | 
|  | kmem_cache_destroy(shmem_inode_cachep); | 
|  | } | 
|  |  | 
|  | static const struct address_space_operations shmem_aops = { | 
|  | .writepage	= shmem_writepage, | 
|  | .set_page_dirty	= __set_page_dirty_no_writeback, | 
|  | #ifdef CONFIG_TMPFS | 
|  | .write_begin	= shmem_write_begin, | 
|  | .write_end	= shmem_write_end, | 
|  | #endif | 
|  | #ifdef CONFIG_MIGRATION | 
|  | .migratepage	= migrate_page, | 
|  | #endif | 
|  | .error_remove_page = generic_error_remove_page, | 
|  | }; | 
|  |  | 
|  | static const struct file_operations shmem_file_operations = { | 
|  | .mmap		= shmem_mmap, | 
|  | .get_unmapped_area = shmem_get_unmapped_area, | 
|  | #ifdef CONFIG_TMPFS | 
|  | .llseek		= shmem_file_llseek, | 
|  | .read_iter	= shmem_file_read_iter, | 
|  | .write_iter	= generic_file_write_iter, | 
|  | .fsync		= noop_fsync, | 
|  | .splice_read	= generic_file_splice_read, | 
|  | .splice_write	= iter_file_splice_write, | 
|  | .fallocate	= shmem_fallocate, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static const struct inode_operations shmem_inode_operations = { | 
|  | .getattr	= shmem_getattr, | 
|  | .setattr	= shmem_setattr, | 
|  | #ifdef CONFIG_TMPFS_XATTR | 
|  | .listxattr	= shmem_listxattr, | 
|  | .set_acl	= simple_set_acl, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static const struct inode_operations shmem_dir_inode_operations = { | 
|  | #ifdef CONFIG_TMPFS | 
|  | .create		= shmem_create, | 
|  | .lookup		= simple_lookup, | 
|  | .link		= shmem_link, | 
|  | .unlink		= shmem_unlink, | 
|  | .symlink	= shmem_symlink, | 
|  | .mkdir		= shmem_mkdir, | 
|  | .rmdir		= shmem_rmdir, | 
|  | .mknod		= shmem_mknod, | 
|  | .rename		= shmem_rename2, | 
|  | .tmpfile	= shmem_tmpfile, | 
|  | #endif | 
|  | #ifdef CONFIG_TMPFS_XATTR | 
|  | .listxattr	= shmem_listxattr, | 
|  | #endif | 
|  | #ifdef CONFIG_TMPFS_POSIX_ACL | 
|  | .setattr	= shmem_setattr, | 
|  | .set_acl	= simple_set_acl, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static const struct inode_operations shmem_special_inode_operations = { | 
|  | #ifdef CONFIG_TMPFS_XATTR | 
|  | .listxattr	= shmem_listxattr, | 
|  | #endif | 
|  | #ifdef CONFIG_TMPFS_POSIX_ACL | 
|  | .setattr	= shmem_setattr, | 
|  | .set_acl	= simple_set_acl, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static const struct super_operations shmem_ops = { | 
|  | .alloc_inode	= shmem_alloc_inode, | 
|  | .free_inode	= shmem_free_in_core_inode, | 
|  | .destroy_inode	= shmem_destroy_inode, | 
|  | #ifdef CONFIG_TMPFS | 
|  | .statfs		= shmem_statfs, | 
|  | .show_options	= shmem_show_options, | 
|  | #endif | 
|  | .evict_inode	= shmem_evict_inode, | 
|  | .drop_inode	= generic_delete_inode, | 
|  | .put_super	= shmem_put_super, | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | .nr_cached_objects	= shmem_unused_huge_count, | 
|  | .free_cached_objects	= shmem_unused_huge_scan, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static const struct vm_operations_struct shmem_vm_ops = { | 
|  | .fault		= shmem_fault, | 
|  | .map_pages	= filemap_map_pages, | 
|  | #ifdef CONFIG_NUMA | 
|  | .set_policy     = shmem_set_policy, | 
|  | .get_policy     = shmem_get_policy, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | int shmem_init_fs_context(struct fs_context *fc) | 
|  | { | 
|  | struct shmem_options *ctx; | 
|  |  | 
|  | ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); | 
|  | if (!ctx) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ctx->mode = 0777 | S_ISVTX; | 
|  | ctx->uid = current_fsuid(); | 
|  | ctx->gid = current_fsgid(); | 
|  |  | 
|  | fc->fs_private = ctx; | 
|  | fc->ops = &shmem_fs_context_ops; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct file_system_type shmem_fs_type = { | 
|  | .owner		= THIS_MODULE, | 
|  | .name		= "tmpfs", | 
|  | .init_fs_context = shmem_init_fs_context, | 
|  | #ifdef CONFIG_TMPFS | 
|  | .parameters	= shmem_fs_parameters, | 
|  | #endif | 
|  | .kill_sb	= kill_litter_super, | 
|  | .fs_flags	= FS_USERNS_MOUNT, | 
|  | }; | 
|  |  | 
|  | int __init shmem_init(void) | 
|  | { | 
|  | int error; | 
|  |  | 
|  | shmem_init_inodecache(); | 
|  |  | 
|  | error = register_filesystem(&shmem_fs_type); | 
|  | if (error) { | 
|  | pr_err("Could not register tmpfs\n"); | 
|  | goto out2; | 
|  | } | 
|  |  | 
|  | shm_mnt = kern_mount(&shmem_fs_type); | 
|  | if (IS_ERR(shm_mnt)) { | 
|  | error = PTR_ERR(shm_mnt); | 
|  | pr_err("Could not kern_mount tmpfs\n"); | 
|  | goto out1; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) | 
|  | SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; | 
|  | else | 
|  | shmem_huge = 0; /* just in case it was patched */ | 
|  | #endif | 
|  | return 0; | 
|  |  | 
|  | out1: | 
|  | unregister_filesystem(&shmem_fs_type); | 
|  | out2: | 
|  | shmem_destroy_inodecache(); | 
|  | shm_mnt = ERR_PTR(error); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) | 
|  | static ssize_t shmem_enabled_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | static const int values[] = { | 
|  | SHMEM_HUGE_ALWAYS, | 
|  | SHMEM_HUGE_WITHIN_SIZE, | 
|  | SHMEM_HUGE_ADVISE, | 
|  | SHMEM_HUGE_NEVER, | 
|  | SHMEM_HUGE_DENY, | 
|  | SHMEM_HUGE_FORCE, | 
|  | }; | 
|  | int i, count; | 
|  |  | 
|  | for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) { | 
|  | const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s "; | 
|  |  | 
|  | count += sprintf(buf + count, fmt, | 
|  | shmem_format_huge(values[i])); | 
|  | } | 
|  | buf[count - 1] = '\n'; | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t shmem_enabled_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, const char *buf, size_t count) | 
|  | { | 
|  | char tmp[16]; | 
|  | int huge; | 
|  |  | 
|  | if (count + 1 > sizeof(tmp)) | 
|  | return -EINVAL; | 
|  | memcpy(tmp, buf, count); | 
|  | tmp[count] = '\0'; | 
|  | if (count && tmp[count - 1] == '\n') | 
|  | tmp[count - 1] = '\0'; | 
|  |  | 
|  | huge = shmem_parse_huge(tmp); | 
|  | if (huge == -EINVAL) | 
|  | return -EINVAL; | 
|  | if (!has_transparent_hugepage() && | 
|  | huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) | 
|  | return -EINVAL; | 
|  |  | 
|  | shmem_huge = huge; | 
|  | if (shmem_huge > SHMEM_HUGE_DENY) | 
|  | SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; | 
|  | return count; | 
|  | } | 
|  |  | 
|  | struct kobj_attribute shmem_enabled_attr = | 
|  | __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); | 
|  | #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | bool shmem_huge_enabled(struct vm_area_struct *vma) | 
|  | { | 
|  | struct inode *inode = file_inode(vma->vm_file); | 
|  | struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); | 
|  | loff_t i_size; | 
|  | pgoff_t off; | 
|  |  | 
|  | if ((vma->vm_flags & VM_NOHUGEPAGE) || | 
|  | test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) | 
|  | return false; | 
|  | if (shmem_huge == SHMEM_HUGE_FORCE) | 
|  | return true; | 
|  | if (shmem_huge == SHMEM_HUGE_DENY) | 
|  | return false; | 
|  | switch (sbinfo->huge) { | 
|  | case SHMEM_HUGE_NEVER: | 
|  | return false; | 
|  | case SHMEM_HUGE_ALWAYS: | 
|  | return true; | 
|  | case SHMEM_HUGE_WITHIN_SIZE: | 
|  | off = round_up(vma->vm_pgoff, HPAGE_PMD_NR); | 
|  | i_size = round_up(i_size_read(inode), PAGE_SIZE); | 
|  | if (i_size >= HPAGE_PMD_SIZE && | 
|  | i_size >> PAGE_SHIFT >= off) | 
|  | return true; | 
|  | fallthrough; | 
|  | case SHMEM_HUGE_ADVISE: | 
|  | /* TODO: implement fadvise() hints */ | 
|  | return (vma->vm_flags & VM_HUGEPAGE); | 
|  | default: | 
|  | VM_BUG_ON(1); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | 
|  |  | 
|  | #else /* !CONFIG_SHMEM */ | 
|  |  | 
|  | /* | 
|  | * tiny-shmem: simple shmemfs and tmpfs using ramfs code | 
|  | * | 
|  | * This is intended for small system where the benefits of the full | 
|  | * shmem code (swap-backed and resource-limited) are outweighed by | 
|  | * their complexity. On systems without swap this code should be | 
|  | * effectively equivalent, but much lighter weight. | 
|  | */ | 
|  |  | 
|  | static struct file_system_type shmem_fs_type = { | 
|  | .name		= "tmpfs", | 
|  | .init_fs_context = ramfs_init_fs_context, | 
|  | .parameters	= ramfs_fs_parameters, | 
|  | .kill_sb	= kill_litter_super, | 
|  | .fs_flags	= FS_USERNS_MOUNT, | 
|  | }; | 
|  |  | 
|  | int __init shmem_init(void) | 
|  | { | 
|  | BUG_ON(register_filesystem(&shmem_fs_type) != 0); | 
|  |  | 
|  | shm_mnt = kern_mount(&shmem_fs_type); | 
|  | BUG_ON(IS_ERR(shm_mnt)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int shmem_unuse(unsigned int type, bool frontswap, | 
|  | unsigned long *fs_pages_to_unuse) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int shmem_lock(struct file *file, int lock, struct user_struct *user) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void shmem_unlock_mapping(struct address_space *mapping) | 
|  | { | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  | unsigned long shmem_get_unmapped_area(struct file *file, | 
|  | unsigned long addr, unsigned long len, | 
|  | unsigned long pgoff, unsigned long flags) | 
|  | { | 
|  | return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) | 
|  | { | 
|  | truncate_inode_pages_range(inode->i_mapping, lstart, lend); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(shmem_truncate_range); | 
|  |  | 
|  | #define shmem_vm_ops				generic_file_vm_ops | 
|  | #define shmem_file_operations			ramfs_file_operations | 
|  | #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev) | 
|  | #define shmem_acct_size(flags, size)		0 | 
|  | #define shmem_unacct_size(flags, size)		do {} while (0) | 
|  |  | 
|  | #endif /* CONFIG_SHMEM */ | 
|  |  | 
|  | /* common code */ | 
|  |  | 
|  | static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, | 
|  | unsigned long flags, unsigned int i_flags) | 
|  | { | 
|  | struct inode *inode; | 
|  | struct file *res; | 
|  |  | 
|  | if (IS_ERR(mnt)) | 
|  | return ERR_CAST(mnt); | 
|  |  | 
|  | if (size < 0 || size > MAX_LFS_FILESIZE) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | if (shmem_acct_size(flags, size)) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, | 
|  | flags); | 
|  | if (unlikely(!inode)) { | 
|  | shmem_unacct_size(flags, size); | 
|  | return ERR_PTR(-ENOSPC); | 
|  | } | 
|  | inode->i_flags |= i_flags; | 
|  | inode->i_size = size; | 
|  | clear_nlink(inode);	/* It is unlinked */ | 
|  | res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); | 
|  | if (!IS_ERR(res)) | 
|  | res = alloc_file_pseudo(inode, mnt, name, O_RDWR, | 
|  | &shmem_file_operations); | 
|  | if (IS_ERR(res)) | 
|  | iput(inode); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be | 
|  | * 	kernel internal.  There will be NO LSM permission checks against the | 
|  | * 	underlying inode.  So users of this interface must do LSM checks at a | 
|  | *	higher layer.  The users are the big_key and shm implementations.  LSM | 
|  | *	checks are provided at the key or shm level rather than the inode. | 
|  | * @name: name for dentry (to be seen in /proc/<pid>/maps | 
|  | * @size: size to be set for the file | 
|  | * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size | 
|  | */ | 
|  | struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) | 
|  | { | 
|  | return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * shmem_file_setup - get an unlinked file living in tmpfs | 
|  | * @name: name for dentry (to be seen in /proc/<pid>/maps | 
|  | * @size: size to be set for the file | 
|  | * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size | 
|  | */ | 
|  | struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) | 
|  | { | 
|  | return __shmem_file_setup(shm_mnt, name, size, flags, 0); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(shmem_file_setup); | 
|  |  | 
|  | /** | 
|  | * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs | 
|  | * @mnt: the tmpfs mount where the file will be created | 
|  | * @name: name for dentry (to be seen in /proc/<pid>/maps | 
|  | * @size: size to be set for the file | 
|  | * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size | 
|  | */ | 
|  | struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, | 
|  | loff_t size, unsigned long flags) | 
|  | { | 
|  | return __shmem_file_setup(mnt, name, size, flags, 0); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); | 
|  |  | 
|  | /** | 
|  | * shmem_zero_setup - setup a shared anonymous mapping | 
|  | * @vma: the vma to be mmapped is prepared by do_mmap | 
|  | */ | 
|  | int shmem_zero_setup(struct vm_area_struct *vma) | 
|  | { | 
|  | struct file *file; | 
|  | loff_t size = vma->vm_end - vma->vm_start; | 
|  |  | 
|  | /* | 
|  | * Cloning a new file under mmap_lock leads to a lock ordering conflict | 
|  | * between XFS directory reading and selinux: since this file is only | 
|  | * accessible to the user through its mapping, use S_PRIVATE flag to | 
|  | * bypass file security, in the same way as shmem_kernel_file_setup(). | 
|  | */ | 
|  | file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); | 
|  | if (IS_ERR(file)) | 
|  | return PTR_ERR(file); | 
|  |  | 
|  | if (vma->vm_file) | 
|  | fput(vma->vm_file); | 
|  | vma->vm_file = file; | 
|  | vma->vm_ops = &shmem_vm_ops; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && | 
|  | ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < | 
|  | (vma->vm_end & HPAGE_PMD_MASK)) { | 
|  | khugepaged_enter(vma, vma->vm_flags); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. | 
|  | * @mapping:	the page's address_space | 
|  | * @index:	the page index | 
|  | * @gfp:	the page allocator flags to use if allocating | 
|  | * | 
|  | * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", | 
|  | * with any new page allocations done using the specified allocation flags. | 
|  | * But read_cache_page_gfp() uses the ->readpage() method: which does not | 
|  | * suit tmpfs, since it may have pages in swapcache, and needs to find those | 
|  | * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. | 
|  | * | 
|  | * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in | 
|  | * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. | 
|  | */ | 
|  | struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, | 
|  | pgoff_t index, gfp_t gfp) | 
|  | { | 
|  | #ifdef CONFIG_SHMEM | 
|  | struct inode *inode = mapping->host; | 
|  | struct page *page; | 
|  | int error; | 
|  |  | 
|  | BUG_ON(mapping->a_ops != &shmem_aops); | 
|  | error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, | 
|  | gfp, NULL, NULL, NULL); | 
|  | if (error) | 
|  | page = ERR_PTR(error); | 
|  | else | 
|  | unlock_page(page); | 
|  | return page; | 
|  | #else | 
|  | /* | 
|  | * The tiny !SHMEM case uses ramfs without swap | 
|  | */ | 
|  | return read_cache_page_gfp(mapping, index, gfp); | 
|  | #endif | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); |