|  | /* | 
|  | * TI EDMA DMA engine driver | 
|  | * | 
|  | * Copyright 2012 Texas Instruments | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as | 
|  | * published by the Free Software Foundation version 2. | 
|  | * | 
|  | * This program is distributed "as is" WITHOUT ANY WARRANTY of any | 
|  | * kind, whether express or implied; without even the implied warranty | 
|  | * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | */ | 
|  |  | 
|  | #include <linux/dmaengine.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/edma.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/of_dma.h> | 
|  | #include <linux/of_irq.h> | 
|  | #include <linux/of_address.h> | 
|  | #include <linux/of_device.h> | 
|  | #include <linux/pm_runtime.h> | 
|  |  | 
|  | #include <linux/platform_data/edma.h> | 
|  |  | 
|  | #include "dmaengine.h" | 
|  | #include "virt-dma.h" | 
|  |  | 
|  | /* Offsets matching "struct edmacc_param" */ | 
|  | #define PARM_OPT		0x00 | 
|  | #define PARM_SRC		0x04 | 
|  | #define PARM_A_B_CNT		0x08 | 
|  | #define PARM_DST		0x0c | 
|  | #define PARM_SRC_DST_BIDX	0x10 | 
|  | #define PARM_LINK_BCNTRLD	0x14 | 
|  | #define PARM_SRC_DST_CIDX	0x18 | 
|  | #define PARM_CCNT		0x1c | 
|  |  | 
|  | #define PARM_SIZE		0x20 | 
|  |  | 
|  | /* Offsets for EDMA CC global channel registers and their shadows */ | 
|  | #define SH_ER			0x00	/* 64 bits */ | 
|  | #define SH_ECR			0x08	/* 64 bits */ | 
|  | #define SH_ESR			0x10	/* 64 bits */ | 
|  | #define SH_CER			0x18	/* 64 bits */ | 
|  | #define SH_EER			0x20	/* 64 bits */ | 
|  | #define SH_EECR			0x28	/* 64 bits */ | 
|  | #define SH_EESR			0x30	/* 64 bits */ | 
|  | #define SH_SER			0x38	/* 64 bits */ | 
|  | #define SH_SECR			0x40	/* 64 bits */ | 
|  | #define SH_IER			0x50	/* 64 bits */ | 
|  | #define SH_IECR			0x58	/* 64 bits */ | 
|  | #define SH_IESR			0x60	/* 64 bits */ | 
|  | #define SH_IPR			0x68	/* 64 bits */ | 
|  | #define SH_ICR			0x70	/* 64 bits */ | 
|  | #define SH_IEVAL		0x78 | 
|  | #define SH_QER			0x80 | 
|  | #define SH_QEER			0x84 | 
|  | #define SH_QEECR		0x88 | 
|  | #define SH_QEESR		0x8c | 
|  | #define SH_QSER			0x90 | 
|  | #define SH_QSECR		0x94 | 
|  | #define SH_SIZE			0x200 | 
|  |  | 
|  | /* Offsets for EDMA CC global registers */ | 
|  | #define EDMA_REV		0x0000 | 
|  | #define EDMA_CCCFG		0x0004 | 
|  | #define EDMA_QCHMAP		0x0200	/* 8 registers */ | 
|  | #define EDMA_DMAQNUM		0x0240	/* 8 registers (4 on OMAP-L1xx) */ | 
|  | #define EDMA_QDMAQNUM		0x0260 | 
|  | #define EDMA_QUETCMAP		0x0280 | 
|  | #define EDMA_QUEPRI		0x0284 | 
|  | #define EDMA_EMR		0x0300	/* 64 bits */ | 
|  | #define EDMA_EMCR		0x0308	/* 64 bits */ | 
|  | #define EDMA_QEMR		0x0310 | 
|  | #define EDMA_QEMCR		0x0314 | 
|  | #define EDMA_CCERR		0x0318 | 
|  | #define EDMA_CCERRCLR		0x031c | 
|  | #define EDMA_EEVAL		0x0320 | 
|  | #define EDMA_DRAE		0x0340	/* 4 x 64 bits*/ | 
|  | #define EDMA_QRAE		0x0380	/* 4 registers */ | 
|  | #define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */ | 
|  | #define EDMA_QSTAT		0x0600	/* 2 registers */ | 
|  | #define EDMA_QWMTHRA		0x0620 | 
|  | #define EDMA_QWMTHRB		0x0624 | 
|  | #define EDMA_CCSTAT		0x0640 | 
|  |  | 
|  | #define EDMA_M			0x1000	/* global channel registers */ | 
|  | #define EDMA_ECR		0x1008 | 
|  | #define EDMA_ECRH		0x100C | 
|  | #define EDMA_SHADOW0		0x2000	/* 4 shadow regions */ | 
|  | #define EDMA_PARM		0x4000	/* PaRAM entries */ | 
|  |  | 
|  | #define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5)) | 
|  |  | 
|  | #define EDMA_DCHMAP		0x0100  /* 64 registers */ | 
|  |  | 
|  | /* CCCFG register */ | 
|  | #define GET_NUM_DMACH(x)	(x & 0x7) /* bits 0-2 */ | 
|  | #define GET_NUM_QDMACH(x)	((x & 0x70) >> 4) /* bits 4-6 */ | 
|  | #define GET_NUM_PAENTRY(x)	((x & 0x7000) >> 12) /* bits 12-14 */ | 
|  | #define GET_NUM_EVQUE(x)	((x & 0x70000) >> 16) /* bits 16-18 */ | 
|  | #define GET_NUM_REGN(x)		((x & 0x300000) >> 20) /* bits 20-21 */ | 
|  | #define CHMAP_EXIST		BIT(24) | 
|  |  | 
|  | /* CCSTAT register */ | 
|  | #define EDMA_CCSTAT_ACTV	BIT(4) | 
|  |  | 
|  | /* | 
|  | * Max of 20 segments per channel to conserve PaRAM slots | 
|  | * Also note that MAX_NR_SG should be atleast the no.of periods | 
|  | * that are required for ASoC, otherwise DMA prep calls will | 
|  | * fail. Today davinci-pcm is the only user of this driver and | 
|  | * requires atleast 17 slots, so we setup the default to 20. | 
|  | */ | 
|  | #define MAX_NR_SG		20 | 
|  | #define EDMA_MAX_SLOTS		MAX_NR_SG | 
|  | #define EDMA_DESCRIPTORS	16 | 
|  |  | 
|  | #define EDMA_CHANNEL_ANY		-1	/* for edma_alloc_channel() */ | 
|  | #define EDMA_SLOT_ANY			-1	/* for edma_alloc_slot() */ | 
|  | #define EDMA_CONT_PARAMS_ANY		 1001 | 
|  | #define EDMA_CONT_PARAMS_FIXED_EXACT	 1002 | 
|  | #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003 | 
|  |  | 
|  | /* PaRAM slots are laid out like this */ | 
|  | struct edmacc_param { | 
|  | u32 opt; | 
|  | u32 src; | 
|  | u32 a_b_cnt; | 
|  | u32 dst; | 
|  | u32 src_dst_bidx; | 
|  | u32 link_bcntrld; | 
|  | u32 src_dst_cidx; | 
|  | u32 ccnt; | 
|  | } __packed; | 
|  |  | 
|  | /* fields in edmacc_param.opt */ | 
|  | #define SAM		BIT(0) | 
|  | #define DAM		BIT(1) | 
|  | #define SYNCDIM		BIT(2) | 
|  | #define STATIC		BIT(3) | 
|  | #define EDMA_FWID	(0x07 << 8) | 
|  | #define TCCMODE		BIT(11) | 
|  | #define EDMA_TCC(t)	((t) << 12) | 
|  | #define TCINTEN		BIT(20) | 
|  | #define ITCINTEN	BIT(21) | 
|  | #define TCCHEN		BIT(22) | 
|  | #define ITCCHEN		BIT(23) | 
|  |  | 
|  | struct edma_pset { | 
|  | u32				len; | 
|  | dma_addr_t			addr; | 
|  | struct edmacc_param		param; | 
|  | }; | 
|  |  | 
|  | struct edma_desc { | 
|  | struct virt_dma_desc		vdesc; | 
|  | struct list_head		node; | 
|  | enum dma_transfer_direction	direction; | 
|  | int				cyclic; | 
|  | int				absync; | 
|  | int				pset_nr; | 
|  | struct edma_chan		*echan; | 
|  | int				processed; | 
|  |  | 
|  | /* | 
|  | * The following 4 elements are used for residue accounting. | 
|  | * | 
|  | * - processed_stat: the number of SG elements we have traversed | 
|  | * so far to cover accounting. This is updated directly to processed | 
|  | * during edma_callback and is always <= processed, because processed | 
|  | * refers to the number of pending transfer (programmed to EDMA | 
|  | * controller), where as processed_stat tracks number of transfers | 
|  | * accounted for so far. | 
|  | * | 
|  | * - residue: The amount of bytes we have left to transfer for this desc | 
|  | * | 
|  | * - residue_stat: The residue in bytes of data we have covered | 
|  | * so far for accounting. This is updated directly to residue | 
|  | * during callbacks to keep it current. | 
|  | * | 
|  | * - sg_len: Tracks the length of the current intermediate transfer, | 
|  | * this is required to update the residue during intermediate transfer | 
|  | * completion callback. | 
|  | */ | 
|  | int				processed_stat; | 
|  | u32				sg_len; | 
|  | u32				residue; | 
|  | u32				residue_stat; | 
|  |  | 
|  | struct edma_pset		pset[0]; | 
|  | }; | 
|  |  | 
|  | struct edma_cc; | 
|  |  | 
|  | struct edma_tc { | 
|  | struct device_node		*node; | 
|  | u16				id; | 
|  | }; | 
|  |  | 
|  | struct edma_chan { | 
|  | struct virt_dma_chan		vchan; | 
|  | struct list_head		node; | 
|  | struct edma_desc		*edesc; | 
|  | struct edma_cc			*ecc; | 
|  | struct edma_tc			*tc; | 
|  | int				ch_num; | 
|  | bool				alloced; | 
|  | bool				hw_triggered; | 
|  | int				slot[EDMA_MAX_SLOTS]; | 
|  | int				missed; | 
|  | struct dma_slave_config		cfg; | 
|  | }; | 
|  |  | 
|  | struct edma_cc { | 
|  | struct device			*dev; | 
|  | struct edma_soc_info		*info; | 
|  | void __iomem			*base; | 
|  | int				id; | 
|  | bool				legacy_mode; | 
|  |  | 
|  | /* eDMA3 resource information */ | 
|  | unsigned			num_channels; | 
|  | unsigned			num_qchannels; | 
|  | unsigned			num_region; | 
|  | unsigned			num_slots; | 
|  | unsigned			num_tc; | 
|  | bool				chmap_exist; | 
|  | enum dma_event_q		default_queue; | 
|  |  | 
|  | unsigned int			ccint; | 
|  | unsigned int			ccerrint; | 
|  |  | 
|  | /* | 
|  | * The slot_inuse bit for each PaRAM slot is clear unless the slot is | 
|  | * in use by Linux or if it is allocated to be used by DSP. | 
|  | */ | 
|  | unsigned long *slot_inuse; | 
|  |  | 
|  | struct dma_device		dma_slave; | 
|  | struct dma_device		*dma_memcpy; | 
|  | struct edma_chan		*slave_chans; | 
|  | struct edma_tc			*tc_list; | 
|  | int				dummy_slot; | 
|  | }; | 
|  |  | 
|  | /* dummy param set used to (re)initialize parameter RAM slots */ | 
|  | static const struct edmacc_param dummy_paramset = { | 
|  | .link_bcntrld = 0xffff, | 
|  | .ccnt = 1, | 
|  | }; | 
|  |  | 
|  | #define EDMA_BINDING_LEGACY	0 | 
|  | #define EDMA_BINDING_TPCC	1 | 
|  | static const u32 edma_binding_type[] = { | 
|  | [EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY, | 
|  | [EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC, | 
|  | }; | 
|  |  | 
|  | static const struct of_device_id edma_of_ids[] = { | 
|  | { | 
|  | .compatible = "ti,edma3", | 
|  | .data = &edma_binding_type[EDMA_BINDING_LEGACY], | 
|  | }, | 
|  | { | 
|  | .compatible = "ti,edma3-tpcc", | 
|  | .data = &edma_binding_type[EDMA_BINDING_TPCC], | 
|  | }, | 
|  | {} | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(of, edma_of_ids); | 
|  |  | 
|  | static const struct of_device_id edma_tptc_of_ids[] = { | 
|  | { .compatible = "ti,edma3-tptc", }, | 
|  | {} | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(of, edma_tptc_of_ids); | 
|  |  | 
|  | static inline unsigned int edma_read(struct edma_cc *ecc, int offset) | 
|  | { | 
|  | return (unsigned int)__raw_readl(ecc->base + offset); | 
|  | } | 
|  |  | 
|  | static inline void edma_write(struct edma_cc *ecc, int offset, int val) | 
|  | { | 
|  | __raw_writel(val, ecc->base + offset); | 
|  | } | 
|  |  | 
|  | static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and, | 
|  | unsigned or) | 
|  | { | 
|  | unsigned val = edma_read(ecc, offset); | 
|  |  | 
|  | val &= and; | 
|  | val |= or; | 
|  | edma_write(ecc, offset, val); | 
|  | } | 
|  |  | 
|  | static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and) | 
|  | { | 
|  | unsigned val = edma_read(ecc, offset); | 
|  |  | 
|  | val &= and; | 
|  | edma_write(ecc, offset, val); | 
|  | } | 
|  |  | 
|  | static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or) | 
|  | { | 
|  | unsigned val = edma_read(ecc, offset); | 
|  |  | 
|  | val |= or; | 
|  | edma_write(ecc, offset, val); | 
|  | } | 
|  |  | 
|  | static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset, | 
|  | int i) | 
|  | { | 
|  | return edma_read(ecc, offset + (i << 2)); | 
|  | } | 
|  |  | 
|  | static inline void edma_write_array(struct edma_cc *ecc, int offset, int i, | 
|  | unsigned val) | 
|  | { | 
|  | edma_write(ecc, offset + (i << 2), val); | 
|  | } | 
|  |  | 
|  | static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i, | 
|  | unsigned and, unsigned or) | 
|  | { | 
|  | edma_modify(ecc, offset + (i << 2), and, or); | 
|  | } | 
|  |  | 
|  | static inline void edma_or_array(struct edma_cc *ecc, int offset, int i, | 
|  | unsigned or) | 
|  | { | 
|  | edma_or(ecc, offset + (i << 2), or); | 
|  | } | 
|  |  | 
|  | static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j, | 
|  | unsigned or) | 
|  | { | 
|  | edma_or(ecc, offset + ((i * 2 + j) << 2), or); | 
|  | } | 
|  |  | 
|  | static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i, | 
|  | int j, unsigned val) | 
|  | { | 
|  | edma_write(ecc, offset + ((i * 2 + j) << 2), val); | 
|  | } | 
|  |  | 
|  | static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset) | 
|  | { | 
|  | return edma_read(ecc, EDMA_SHADOW0 + offset); | 
|  | } | 
|  |  | 
|  | static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc, | 
|  | int offset, int i) | 
|  | { | 
|  | return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2)); | 
|  | } | 
|  |  | 
|  | static inline void edma_shadow0_write(struct edma_cc *ecc, int offset, | 
|  | unsigned val) | 
|  | { | 
|  | edma_write(ecc, EDMA_SHADOW0 + offset, val); | 
|  | } | 
|  |  | 
|  | static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset, | 
|  | int i, unsigned val) | 
|  | { | 
|  | edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val); | 
|  | } | 
|  |  | 
|  | static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset, | 
|  | int param_no) | 
|  | { | 
|  | return edma_read(ecc, EDMA_PARM + offset + (param_no << 5)); | 
|  | } | 
|  |  | 
|  | static inline void edma_param_write(struct edma_cc *ecc, int offset, | 
|  | int param_no, unsigned val) | 
|  | { | 
|  | edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val); | 
|  | } | 
|  |  | 
|  | static inline void edma_param_modify(struct edma_cc *ecc, int offset, | 
|  | int param_no, unsigned and, unsigned or) | 
|  | { | 
|  | edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or); | 
|  | } | 
|  |  | 
|  | static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no, | 
|  | unsigned and) | 
|  | { | 
|  | edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and); | 
|  | } | 
|  |  | 
|  | static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no, | 
|  | unsigned or) | 
|  | { | 
|  | edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or); | 
|  | } | 
|  |  | 
|  | static inline void edma_set_bits(int offset, int len, unsigned long *p) | 
|  | { | 
|  | for (; len > 0; len--) | 
|  | set_bit(offset + (len - 1), p); | 
|  | } | 
|  |  | 
|  | static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no, | 
|  | int priority) | 
|  | { | 
|  | int bit = queue_no * 4; | 
|  |  | 
|  | edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit)); | 
|  | } | 
|  |  | 
|  | static void edma_set_chmap(struct edma_chan *echan, int slot) | 
|  | { | 
|  | struct edma_cc *ecc = echan->ecc; | 
|  | int channel = EDMA_CHAN_SLOT(echan->ch_num); | 
|  |  | 
|  | if (ecc->chmap_exist) { | 
|  | slot = EDMA_CHAN_SLOT(slot); | 
|  | edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void edma_setup_interrupt(struct edma_chan *echan, bool enable) | 
|  | { | 
|  | struct edma_cc *ecc = echan->ecc; | 
|  | int channel = EDMA_CHAN_SLOT(echan->ch_num); | 
|  |  | 
|  | if (enable) { | 
|  | edma_shadow0_write_array(ecc, SH_ICR, channel >> 5, | 
|  | BIT(channel & 0x1f)); | 
|  | edma_shadow0_write_array(ecc, SH_IESR, channel >> 5, | 
|  | BIT(channel & 0x1f)); | 
|  | } else { | 
|  | edma_shadow0_write_array(ecc, SH_IECR, channel >> 5, | 
|  | BIT(channel & 0x1f)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * paRAM slot management functions | 
|  | */ | 
|  | static void edma_write_slot(struct edma_cc *ecc, unsigned slot, | 
|  | const struct edmacc_param *param) | 
|  | { | 
|  | slot = EDMA_CHAN_SLOT(slot); | 
|  | if (slot >= ecc->num_slots) | 
|  | return; | 
|  | memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE); | 
|  | } | 
|  |  | 
|  | static int edma_read_slot(struct edma_cc *ecc, unsigned slot, | 
|  | struct edmacc_param *param) | 
|  | { | 
|  | slot = EDMA_CHAN_SLOT(slot); | 
|  | if (slot >= ecc->num_slots) | 
|  | return -EINVAL; | 
|  | memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * edma_alloc_slot - allocate DMA parameter RAM | 
|  | * @ecc: pointer to edma_cc struct | 
|  | * @slot: specific slot to allocate; negative for "any unused slot" | 
|  | * | 
|  | * This allocates a parameter RAM slot, initializing it to hold a | 
|  | * dummy transfer.  Slots allocated using this routine have not been | 
|  | * mapped to a hardware DMA channel, and will normally be used by | 
|  | * linking to them from a slot associated with a DMA channel. | 
|  | * | 
|  | * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific | 
|  | * slots may be allocated on behalf of DSP firmware. | 
|  | * | 
|  | * Returns the number of the slot, else negative errno. | 
|  | */ | 
|  | static int edma_alloc_slot(struct edma_cc *ecc, int slot) | 
|  | { | 
|  | if (slot >= 0) { | 
|  | slot = EDMA_CHAN_SLOT(slot); | 
|  | /* Requesting entry paRAM slot for a HW triggered channel. */ | 
|  | if (ecc->chmap_exist && slot < ecc->num_channels) | 
|  | slot = EDMA_SLOT_ANY; | 
|  | } | 
|  |  | 
|  | if (slot < 0) { | 
|  | if (ecc->chmap_exist) | 
|  | slot = 0; | 
|  | else | 
|  | slot = ecc->num_channels; | 
|  | for (;;) { | 
|  | slot = find_next_zero_bit(ecc->slot_inuse, | 
|  | ecc->num_slots, | 
|  | slot); | 
|  | if (slot == ecc->num_slots) | 
|  | return -ENOMEM; | 
|  | if (!test_and_set_bit(slot, ecc->slot_inuse)) | 
|  | break; | 
|  | } | 
|  | } else if (slot >= ecc->num_slots) { | 
|  | return -EINVAL; | 
|  | } else if (test_and_set_bit(slot, ecc->slot_inuse)) { | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | edma_write_slot(ecc, slot, &dummy_paramset); | 
|  |  | 
|  | return EDMA_CTLR_CHAN(ecc->id, slot); | 
|  | } | 
|  |  | 
|  | static void edma_free_slot(struct edma_cc *ecc, unsigned slot) | 
|  | { | 
|  | slot = EDMA_CHAN_SLOT(slot); | 
|  | if (slot >= ecc->num_slots) | 
|  | return; | 
|  |  | 
|  | edma_write_slot(ecc, slot, &dummy_paramset); | 
|  | clear_bit(slot, ecc->slot_inuse); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * edma_link - link one parameter RAM slot to another | 
|  | * @ecc: pointer to edma_cc struct | 
|  | * @from: parameter RAM slot originating the link | 
|  | * @to: parameter RAM slot which is the link target | 
|  | * | 
|  | * The originating slot should not be part of any active DMA transfer. | 
|  | */ | 
|  | static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to) | 
|  | { | 
|  | if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to))) | 
|  | dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n"); | 
|  |  | 
|  | from = EDMA_CHAN_SLOT(from); | 
|  | to = EDMA_CHAN_SLOT(to); | 
|  | if (from >= ecc->num_slots || to >= ecc->num_slots) | 
|  | return; | 
|  |  | 
|  | edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000, | 
|  | PARM_OFFSET(to)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * edma_get_position - returns the current transfer point | 
|  | * @ecc: pointer to edma_cc struct | 
|  | * @slot: parameter RAM slot being examined | 
|  | * @dst:  true selects the dest position, false the source | 
|  | * | 
|  | * Returns the position of the current active slot | 
|  | */ | 
|  | static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot, | 
|  | bool dst) | 
|  | { | 
|  | u32 offs; | 
|  |  | 
|  | slot = EDMA_CHAN_SLOT(slot); | 
|  | offs = PARM_OFFSET(slot); | 
|  | offs += dst ? PARM_DST : PARM_SRC; | 
|  |  | 
|  | return edma_read(ecc, offs); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Channels with event associations will be triggered by their hardware | 
|  | * events, and channels without such associations will be triggered by | 
|  | * software.  (At this writing there is no interface for using software | 
|  | * triggers except with channels that don't support hardware triggers.) | 
|  | */ | 
|  | static void edma_start(struct edma_chan *echan) | 
|  | { | 
|  | struct edma_cc *ecc = echan->ecc; | 
|  | int channel = EDMA_CHAN_SLOT(echan->ch_num); | 
|  | int j = (channel >> 5); | 
|  | unsigned int mask = BIT(channel & 0x1f); | 
|  |  | 
|  | if (!echan->hw_triggered) { | 
|  | /* EDMA channels without event association */ | 
|  | dev_dbg(ecc->dev, "ESR%d %08x\n", j, | 
|  | edma_shadow0_read_array(ecc, SH_ESR, j)); | 
|  | edma_shadow0_write_array(ecc, SH_ESR, j, mask); | 
|  | } else { | 
|  | /* EDMA channel with event association */ | 
|  | dev_dbg(ecc->dev, "ER%d %08x\n", j, | 
|  | edma_shadow0_read_array(ecc, SH_ER, j)); | 
|  | /* Clear any pending event or error */ | 
|  | edma_write_array(ecc, EDMA_ECR, j, mask); | 
|  | edma_write_array(ecc, EDMA_EMCR, j, mask); | 
|  | /* Clear any SER */ | 
|  | edma_shadow0_write_array(ecc, SH_SECR, j, mask); | 
|  | edma_shadow0_write_array(ecc, SH_EESR, j, mask); | 
|  | dev_dbg(ecc->dev, "EER%d %08x\n", j, | 
|  | edma_shadow0_read_array(ecc, SH_EER, j)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void edma_stop(struct edma_chan *echan) | 
|  | { | 
|  | struct edma_cc *ecc = echan->ecc; | 
|  | int channel = EDMA_CHAN_SLOT(echan->ch_num); | 
|  | int j = (channel >> 5); | 
|  | unsigned int mask = BIT(channel & 0x1f); | 
|  |  | 
|  | edma_shadow0_write_array(ecc, SH_EECR, j, mask); | 
|  | edma_shadow0_write_array(ecc, SH_ECR, j, mask); | 
|  | edma_shadow0_write_array(ecc, SH_SECR, j, mask); | 
|  | edma_write_array(ecc, EDMA_EMCR, j, mask); | 
|  |  | 
|  | /* clear possibly pending completion interrupt */ | 
|  | edma_shadow0_write_array(ecc, SH_ICR, j, mask); | 
|  |  | 
|  | dev_dbg(ecc->dev, "EER%d %08x\n", j, | 
|  | edma_shadow0_read_array(ecc, SH_EER, j)); | 
|  |  | 
|  | /* REVISIT:  consider guarding against inappropriate event | 
|  | * chaining by overwriting with dummy_paramset. | 
|  | */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Temporarily disable EDMA hardware events on the specified channel, | 
|  | * preventing them from triggering new transfers | 
|  | */ | 
|  | static void edma_pause(struct edma_chan *echan) | 
|  | { | 
|  | int channel = EDMA_CHAN_SLOT(echan->ch_num); | 
|  | unsigned int mask = BIT(channel & 0x1f); | 
|  |  | 
|  | edma_shadow0_write_array(echan->ecc, SH_EECR, channel >> 5, mask); | 
|  | } | 
|  |  | 
|  | /* Re-enable EDMA hardware events on the specified channel.  */ | 
|  | static void edma_resume(struct edma_chan *echan) | 
|  | { | 
|  | int channel = EDMA_CHAN_SLOT(echan->ch_num); | 
|  | unsigned int mask = BIT(channel & 0x1f); | 
|  |  | 
|  | edma_shadow0_write_array(echan->ecc, SH_EESR, channel >> 5, mask); | 
|  | } | 
|  |  | 
|  | static void edma_trigger_channel(struct edma_chan *echan) | 
|  | { | 
|  | struct edma_cc *ecc = echan->ecc; | 
|  | int channel = EDMA_CHAN_SLOT(echan->ch_num); | 
|  | unsigned int mask = BIT(channel & 0x1f); | 
|  |  | 
|  | edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask); | 
|  |  | 
|  | dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5), | 
|  | edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5))); | 
|  | } | 
|  |  | 
|  | static void edma_clean_channel(struct edma_chan *echan) | 
|  | { | 
|  | struct edma_cc *ecc = echan->ecc; | 
|  | int channel = EDMA_CHAN_SLOT(echan->ch_num); | 
|  | int j = (channel >> 5); | 
|  | unsigned int mask = BIT(channel & 0x1f); | 
|  |  | 
|  | dev_dbg(ecc->dev, "EMR%d %08x\n", j, edma_read_array(ecc, EDMA_EMR, j)); | 
|  | edma_shadow0_write_array(ecc, SH_ECR, j, mask); | 
|  | /* Clear the corresponding EMR bits */ | 
|  | edma_write_array(ecc, EDMA_EMCR, j, mask); | 
|  | /* Clear any SER */ | 
|  | edma_shadow0_write_array(ecc, SH_SECR, j, mask); | 
|  | edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0)); | 
|  | } | 
|  |  | 
|  | /* Move channel to a specific event queue */ | 
|  | static void edma_assign_channel_eventq(struct edma_chan *echan, | 
|  | enum dma_event_q eventq_no) | 
|  | { | 
|  | struct edma_cc *ecc = echan->ecc; | 
|  | int channel = EDMA_CHAN_SLOT(echan->ch_num); | 
|  | int bit = (channel & 0x7) * 4; | 
|  |  | 
|  | /* default to low priority queue */ | 
|  | if (eventq_no == EVENTQ_DEFAULT) | 
|  | eventq_no = ecc->default_queue; | 
|  | if (eventq_no >= ecc->num_tc) | 
|  | return; | 
|  |  | 
|  | eventq_no &= 7; | 
|  | edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit), | 
|  | eventq_no << bit); | 
|  | } | 
|  |  | 
|  | static int edma_alloc_channel(struct edma_chan *echan, | 
|  | enum dma_event_q eventq_no) | 
|  | { | 
|  | struct edma_cc *ecc = echan->ecc; | 
|  | int channel = EDMA_CHAN_SLOT(echan->ch_num); | 
|  |  | 
|  | /* ensure access through shadow region 0 */ | 
|  | edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f)); | 
|  |  | 
|  | /* ensure no events are pending */ | 
|  | edma_stop(echan); | 
|  |  | 
|  | edma_setup_interrupt(echan, true); | 
|  |  | 
|  | edma_assign_channel_eventq(echan, eventq_no); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void edma_free_channel(struct edma_chan *echan) | 
|  | { | 
|  | /* ensure no events are pending */ | 
|  | edma_stop(echan); | 
|  | /* REVISIT should probably take out of shadow region 0 */ | 
|  | edma_setup_interrupt(echan, false); | 
|  | } | 
|  |  | 
|  | static inline struct edma_cc *to_edma_cc(struct dma_device *d) | 
|  | { | 
|  | return container_of(d, struct edma_cc, dma_slave); | 
|  | } | 
|  |  | 
|  | static inline struct edma_chan *to_edma_chan(struct dma_chan *c) | 
|  | { | 
|  | return container_of(c, struct edma_chan, vchan.chan); | 
|  | } | 
|  |  | 
|  | static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx) | 
|  | { | 
|  | return container_of(tx, struct edma_desc, vdesc.tx); | 
|  | } | 
|  |  | 
|  | static void edma_desc_free(struct virt_dma_desc *vdesc) | 
|  | { | 
|  | kfree(container_of(vdesc, struct edma_desc, vdesc)); | 
|  | } | 
|  |  | 
|  | /* Dispatch a queued descriptor to the controller (caller holds lock) */ | 
|  | static void edma_execute(struct edma_chan *echan) | 
|  | { | 
|  | struct edma_cc *ecc = echan->ecc; | 
|  | struct virt_dma_desc *vdesc; | 
|  | struct edma_desc *edesc; | 
|  | struct device *dev = echan->vchan.chan.device->dev; | 
|  | int i, j, left, nslots; | 
|  |  | 
|  | if (!echan->edesc) { | 
|  | /* Setup is needed for the first transfer */ | 
|  | vdesc = vchan_next_desc(&echan->vchan); | 
|  | if (!vdesc) | 
|  | return; | 
|  | list_del(&vdesc->node); | 
|  | echan->edesc = to_edma_desc(&vdesc->tx); | 
|  | } | 
|  |  | 
|  | edesc = echan->edesc; | 
|  |  | 
|  | /* Find out how many left */ | 
|  | left = edesc->pset_nr - edesc->processed; | 
|  | nslots = min(MAX_NR_SG, left); | 
|  | edesc->sg_len = 0; | 
|  |  | 
|  | /* Write descriptor PaRAM set(s) */ | 
|  | for (i = 0; i < nslots; i++) { | 
|  | j = i + edesc->processed; | 
|  | edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param); | 
|  | edesc->sg_len += edesc->pset[j].len; | 
|  | dev_vdbg(dev, | 
|  | "\n pset[%d]:\n" | 
|  | "  chnum\t%d\n" | 
|  | "  slot\t%d\n" | 
|  | "  opt\t%08x\n" | 
|  | "  src\t%08x\n" | 
|  | "  dst\t%08x\n" | 
|  | "  abcnt\t%08x\n" | 
|  | "  ccnt\t%08x\n" | 
|  | "  bidx\t%08x\n" | 
|  | "  cidx\t%08x\n" | 
|  | "  lkrld\t%08x\n", | 
|  | j, echan->ch_num, echan->slot[i], | 
|  | edesc->pset[j].param.opt, | 
|  | edesc->pset[j].param.src, | 
|  | edesc->pset[j].param.dst, | 
|  | edesc->pset[j].param.a_b_cnt, | 
|  | edesc->pset[j].param.ccnt, | 
|  | edesc->pset[j].param.src_dst_bidx, | 
|  | edesc->pset[j].param.src_dst_cidx, | 
|  | edesc->pset[j].param.link_bcntrld); | 
|  | /* Link to the previous slot if not the last set */ | 
|  | if (i != (nslots - 1)) | 
|  | edma_link(ecc, echan->slot[i], echan->slot[i + 1]); | 
|  | } | 
|  |  | 
|  | edesc->processed += nslots; | 
|  |  | 
|  | /* | 
|  | * If this is either the last set in a set of SG-list transactions | 
|  | * then setup a link to the dummy slot, this results in all future | 
|  | * events being absorbed and that's OK because we're done | 
|  | */ | 
|  | if (edesc->processed == edesc->pset_nr) { | 
|  | if (edesc->cyclic) | 
|  | edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]); | 
|  | else | 
|  | edma_link(ecc, echan->slot[nslots - 1], | 
|  | echan->ecc->dummy_slot); | 
|  | } | 
|  |  | 
|  | if (echan->missed) { | 
|  | /* | 
|  | * This happens due to setup times between intermediate | 
|  | * transfers in long SG lists which have to be broken up into | 
|  | * transfers of MAX_NR_SG | 
|  | */ | 
|  | dev_dbg(dev, "missed event on channel %d\n", echan->ch_num); | 
|  | edma_clean_channel(echan); | 
|  | edma_stop(echan); | 
|  | edma_start(echan); | 
|  | edma_trigger_channel(echan); | 
|  | echan->missed = 0; | 
|  | } else if (edesc->processed <= MAX_NR_SG) { | 
|  | dev_dbg(dev, "first transfer starting on channel %d\n", | 
|  | echan->ch_num); | 
|  | edma_start(echan); | 
|  | } else { | 
|  | dev_dbg(dev, "chan: %d: completed %d elements, resuming\n", | 
|  | echan->ch_num, edesc->processed); | 
|  | edma_resume(echan); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int edma_terminate_all(struct dma_chan *chan) | 
|  | { | 
|  | struct edma_chan *echan = to_edma_chan(chan); | 
|  | unsigned long flags; | 
|  | LIST_HEAD(head); | 
|  |  | 
|  | spin_lock_irqsave(&echan->vchan.lock, flags); | 
|  |  | 
|  | /* | 
|  | * Stop DMA activity: we assume the callback will not be called | 
|  | * after edma_dma() returns (even if it does, it will see | 
|  | * echan->edesc is NULL and exit.) | 
|  | */ | 
|  | if (echan->edesc) { | 
|  | edma_stop(echan); | 
|  | /* Move the cyclic channel back to default queue */ | 
|  | if (!echan->tc && echan->edesc->cyclic) | 
|  | edma_assign_channel_eventq(echan, EVENTQ_DEFAULT); | 
|  | /* | 
|  | * free the running request descriptor | 
|  | * since it is not in any of the vdesc lists | 
|  | */ | 
|  | edma_desc_free(&echan->edesc->vdesc); | 
|  | echan->edesc = NULL; | 
|  | } | 
|  |  | 
|  | vchan_get_all_descriptors(&echan->vchan, &head); | 
|  | spin_unlock_irqrestore(&echan->vchan.lock, flags); | 
|  | vchan_dma_desc_free_list(&echan->vchan, &head); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void edma_synchronize(struct dma_chan *chan) | 
|  | { | 
|  | struct edma_chan *echan = to_edma_chan(chan); | 
|  |  | 
|  | vchan_synchronize(&echan->vchan); | 
|  | } | 
|  |  | 
|  | static int edma_slave_config(struct dma_chan *chan, | 
|  | struct dma_slave_config *cfg) | 
|  | { | 
|  | struct edma_chan *echan = to_edma_chan(chan); | 
|  |  | 
|  | if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES || | 
|  | cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES) | 
|  | return -EINVAL; | 
|  |  | 
|  | memcpy(&echan->cfg, cfg, sizeof(echan->cfg)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int edma_dma_pause(struct dma_chan *chan) | 
|  | { | 
|  | struct edma_chan *echan = to_edma_chan(chan); | 
|  |  | 
|  | if (!echan->edesc) | 
|  | return -EINVAL; | 
|  |  | 
|  | edma_pause(echan); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int edma_dma_resume(struct dma_chan *chan) | 
|  | { | 
|  | struct edma_chan *echan = to_edma_chan(chan); | 
|  |  | 
|  | edma_resume(echan); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A PaRAM set configuration abstraction used by other modes | 
|  | * @chan: Channel who's PaRAM set we're configuring | 
|  | * @pset: PaRAM set to initialize and setup. | 
|  | * @src_addr: Source address of the DMA | 
|  | * @dst_addr: Destination address of the DMA | 
|  | * @burst: In units of dev_width, how much to send | 
|  | * @dev_width: How much is the dev_width | 
|  | * @dma_length: Total length of the DMA transfer | 
|  | * @direction: Direction of the transfer | 
|  | */ | 
|  | static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset, | 
|  | dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst, | 
|  | unsigned int acnt, unsigned int dma_length, | 
|  | enum dma_transfer_direction direction) | 
|  | { | 
|  | struct edma_chan *echan = to_edma_chan(chan); | 
|  | struct device *dev = chan->device->dev; | 
|  | struct edmacc_param *param = &epset->param; | 
|  | int bcnt, ccnt, cidx; | 
|  | int src_bidx, dst_bidx, src_cidx, dst_cidx; | 
|  | int absync; | 
|  |  | 
|  | /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */ | 
|  | if (!burst) | 
|  | burst = 1; | 
|  | /* | 
|  | * If the maxburst is equal to the fifo width, use | 
|  | * A-synced transfers. This allows for large contiguous | 
|  | * buffer transfers using only one PaRAM set. | 
|  | */ | 
|  | if (burst == 1) { | 
|  | /* | 
|  | * For the A-sync case, bcnt and ccnt are the remainder | 
|  | * and quotient respectively of the division of: | 
|  | * (dma_length / acnt) by (SZ_64K -1). This is so | 
|  | * that in case bcnt over flows, we have ccnt to use. | 
|  | * Note: In A-sync tranfer only, bcntrld is used, but it | 
|  | * only applies for sg_dma_len(sg) >= SZ_64K. | 
|  | * In this case, the best way adopted is- bccnt for the | 
|  | * first frame will be the remainder below. Then for | 
|  | * every successive frame, bcnt will be SZ_64K-1. This | 
|  | * is assured as bcntrld = 0xffff in end of function. | 
|  | */ | 
|  | absync = false; | 
|  | ccnt = dma_length / acnt / (SZ_64K - 1); | 
|  | bcnt = dma_length / acnt - ccnt * (SZ_64K - 1); | 
|  | /* | 
|  | * If bcnt is non-zero, we have a remainder and hence an | 
|  | * extra frame to transfer, so increment ccnt. | 
|  | */ | 
|  | if (bcnt) | 
|  | ccnt++; | 
|  | else | 
|  | bcnt = SZ_64K - 1; | 
|  | cidx = acnt; | 
|  | } else { | 
|  | /* | 
|  | * If maxburst is greater than the fifo address_width, | 
|  | * use AB-synced transfers where A count is the fifo | 
|  | * address_width and B count is the maxburst. In this | 
|  | * case, we are limited to transfers of C count frames | 
|  | * of (address_width * maxburst) where C count is limited | 
|  | * to SZ_64K-1. This places an upper bound on the length | 
|  | * of an SG segment that can be handled. | 
|  | */ | 
|  | absync = true; | 
|  | bcnt = burst; | 
|  | ccnt = dma_length / (acnt * bcnt); | 
|  | if (ccnt > (SZ_64K - 1)) { | 
|  | dev_err(dev, "Exceeded max SG segment size\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | cidx = acnt * bcnt; | 
|  | } | 
|  |  | 
|  | epset->len = dma_length; | 
|  |  | 
|  | if (direction == DMA_MEM_TO_DEV) { | 
|  | src_bidx = acnt; | 
|  | src_cidx = cidx; | 
|  | dst_bidx = 0; | 
|  | dst_cidx = 0; | 
|  | epset->addr = src_addr; | 
|  | } else if (direction == DMA_DEV_TO_MEM)  { | 
|  | src_bidx = 0; | 
|  | src_cidx = 0; | 
|  | dst_bidx = acnt; | 
|  | dst_cidx = cidx; | 
|  | epset->addr = dst_addr; | 
|  | } else if (direction == DMA_MEM_TO_MEM)  { | 
|  | src_bidx = acnt; | 
|  | src_cidx = cidx; | 
|  | dst_bidx = acnt; | 
|  | dst_cidx = cidx; | 
|  | } else { | 
|  | dev_err(dev, "%s: direction not implemented yet\n", __func__); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num)); | 
|  | /* Configure A or AB synchronized transfers */ | 
|  | if (absync) | 
|  | param->opt |= SYNCDIM; | 
|  |  | 
|  | param->src = src_addr; | 
|  | param->dst = dst_addr; | 
|  |  | 
|  | param->src_dst_bidx = (dst_bidx << 16) | src_bidx; | 
|  | param->src_dst_cidx = (dst_cidx << 16) | src_cidx; | 
|  |  | 
|  | param->a_b_cnt = bcnt << 16 | acnt; | 
|  | param->ccnt = ccnt; | 
|  | /* | 
|  | * Only time when (bcntrld) auto reload is required is for | 
|  | * A-sync case, and in this case, a requirement of reload value | 
|  | * of SZ_64K-1 only is assured. 'link' is initially set to NULL | 
|  | * and then later will be populated by edma_execute. | 
|  | */ | 
|  | param->link_bcntrld = 0xffffffff; | 
|  | return absync; | 
|  | } | 
|  |  | 
|  | static struct dma_async_tx_descriptor *edma_prep_slave_sg( | 
|  | struct dma_chan *chan, struct scatterlist *sgl, | 
|  | unsigned int sg_len, enum dma_transfer_direction direction, | 
|  | unsigned long tx_flags, void *context) | 
|  | { | 
|  | struct edma_chan *echan = to_edma_chan(chan); | 
|  | struct device *dev = chan->device->dev; | 
|  | struct edma_desc *edesc; | 
|  | dma_addr_t src_addr = 0, dst_addr = 0; | 
|  | enum dma_slave_buswidth dev_width; | 
|  | u32 burst; | 
|  | struct scatterlist *sg; | 
|  | int i, nslots, ret; | 
|  |  | 
|  | if (unlikely(!echan || !sgl || !sg_len)) | 
|  | return NULL; | 
|  |  | 
|  | if (direction == DMA_DEV_TO_MEM) { | 
|  | src_addr = echan->cfg.src_addr; | 
|  | dev_width = echan->cfg.src_addr_width; | 
|  | burst = echan->cfg.src_maxburst; | 
|  | } else if (direction == DMA_MEM_TO_DEV) { | 
|  | dst_addr = echan->cfg.dst_addr; | 
|  | dev_width = echan->cfg.dst_addr_width; | 
|  | burst = echan->cfg.dst_maxburst; | 
|  | } else { | 
|  | dev_err(dev, "%s: bad direction: %d\n", __func__, direction); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { | 
|  | dev_err(dev, "%s: Undefined slave buswidth\n", __func__); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | edesc = kzalloc(sizeof(*edesc) + sg_len * sizeof(edesc->pset[0]), | 
|  | GFP_ATOMIC); | 
|  | if (!edesc) | 
|  | return NULL; | 
|  |  | 
|  | edesc->pset_nr = sg_len; | 
|  | edesc->residue = 0; | 
|  | edesc->direction = direction; | 
|  | edesc->echan = echan; | 
|  |  | 
|  | /* Allocate a PaRAM slot, if needed */ | 
|  | nslots = min_t(unsigned, MAX_NR_SG, sg_len); | 
|  |  | 
|  | for (i = 0; i < nslots; i++) { | 
|  | if (echan->slot[i] < 0) { | 
|  | echan->slot[i] = | 
|  | edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY); | 
|  | if (echan->slot[i] < 0) { | 
|  | kfree(edesc); | 
|  | dev_err(dev, "%s: Failed to allocate slot\n", | 
|  | __func__); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Configure PaRAM sets for each SG */ | 
|  | for_each_sg(sgl, sg, sg_len, i) { | 
|  | /* Get address for each SG */ | 
|  | if (direction == DMA_DEV_TO_MEM) | 
|  | dst_addr = sg_dma_address(sg); | 
|  | else | 
|  | src_addr = sg_dma_address(sg); | 
|  |  | 
|  | ret = edma_config_pset(chan, &edesc->pset[i], src_addr, | 
|  | dst_addr, burst, dev_width, | 
|  | sg_dma_len(sg), direction); | 
|  | if (ret < 0) { | 
|  | kfree(edesc); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | edesc->absync = ret; | 
|  | edesc->residue += sg_dma_len(sg); | 
|  |  | 
|  | if (i == sg_len - 1) | 
|  | /* Enable completion interrupt */ | 
|  | edesc->pset[i].param.opt |= TCINTEN; | 
|  | else if (!((i+1) % MAX_NR_SG)) | 
|  | /* | 
|  | * Enable early completion interrupt for the | 
|  | * intermediateset. In this case the driver will be | 
|  | * notified when the paRAM set is submitted to TC. This | 
|  | * will allow more time to set up the next set of slots. | 
|  | */ | 
|  | edesc->pset[i].param.opt |= (TCINTEN | TCCMODE); | 
|  | } | 
|  | edesc->residue_stat = edesc->residue; | 
|  |  | 
|  | return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); | 
|  | } | 
|  |  | 
|  | static struct dma_async_tx_descriptor *edma_prep_dma_memcpy( | 
|  | struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, | 
|  | size_t len, unsigned long tx_flags) | 
|  | { | 
|  | int ret, nslots; | 
|  | struct edma_desc *edesc; | 
|  | struct device *dev = chan->device->dev; | 
|  | struct edma_chan *echan = to_edma_chan(chan); | 
|  | unsigned int width, pset_len; | 
|  |  | 
|  | if (unlikely(!echan || !len)) | 
|  | return NULL; | 
|  |  | 
|  | if (len < SZ_64K) { | 
|  | /* | 
|  | * Transfer size less than 64K can be handled with one paRAM | 
|  | * slot and with one burst. | 
|  | * ACNT = length | 
|  | */ | 
|  | width = len; | 
|  | pset_len = len; | 
|  | nslots = 1; | 
|  | } else { | 
|  | /* | 
|  | * Transfer size bigger than 64K will be handled with maximum of | 
|  | * two paRAM slots. | 
|  | * slot1: (full_length / 32767) times 32767 bytes bursts. | 
|  | *	  ACNT = 32767, length1: (full_length / 32767) * 32767 | 
|  | * slot2: the remaining amount of data after slot1. | 
|  | *	  ACNT = full_length - length1, length2 = ACNT | 
|  | * | 
|  | * When the full_length is multibple of 32767 one slot can be | 
|  | * used to complete the transfer. | 
|  | */ | 
|  | width = SZ_32K - 1; | 
|  | pset_len = rounddown(len, width); | 
|  | /* One slot is enough for lengths multiple of (SZ_32K -1) */ | 
|  | if (unlikely(pset_len == len)) | 
|  | nslots = 1; | 
|  | else | 
|  | nslots = 2; | 
|  | } | 
|  |  | 
|  | edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]), | 
|  | GFP_ATOMIC); | 
|  | if (!edesc) | 
|  | return NULL; | 
|  |  | 
|  | edesc->pset_nr = nslots; | 
|  | edesc->residue = edesc->residue_stat = len; | 
|  | edesc->direction = DMA_MEM_TO_MEM; | 
|  | edesc->echan = echan; | 
|  |  | 
|  | ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1, | 
|  | width, pset_len, DMA_MEM_TO_MEM); | 
|  | if (ret < 0) { | 
|  | kfree(edesc); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | edesc->absync = ret; | 
|  |  | 
|  | edesc->pset[0].param.opt |= ITCCHEN; | 
|  | if (nslots == 1) { | 
|  | /* Enable transfer complete interrupt */ | 
|  | edesc->pset[0].param.opt |= TCINTEN; | 
|  | } else { | 
|  | /* Enable transfer complete chaining for the first slot */ | 
|  | edesc->pset[0].param.opt |= TCCHEN; | 
|  |  | 
|  | if (echan->slot[1] < 0) { | 
|  | echan->slot[1] = edma_alloc_slot(echan->ecc, | 
|  | EDMA_SLOT_ANY); | 
|  | if (echan->slot[1] < 0) { | 
|  | kfree(edesc); | 
|  | dev_err(dev, "%s: Failed to allocate slot\n", | 
|  | __func__); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  | dest += pset_len; | 
|  | src += pset_len; | 
|  | pset_len = width = len % (SZ_32K - 1); | 
|  |  | 
|  | ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1, | 
|  | width, pset_len, DMA_MEM_TO_MEM); | 
|  | if (ret < 0) { | 
|  | kfree(edesc); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | edesc->pset[1].param.opt |= ITCCHEN; | 
|  | edesc->pset[1].param.opt |= TCINTEN; | 
|  | } | 
|  |  | 
|  | return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); | 
|  | } | 
|  |  | 
|  | static struct dma_async_tx_descriptor *edma_prep_dma_cyclic( | 
|  | struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, | 
|  | size_t period_len, enum dma_transfer_direction direction, | 
|  | unsigned long tx_flags) | 
|  | { | 
|  | struct edma_chan *echan = to_edma_chan(chan); | 
|  | struct device *dev = chan->device->dev; | 
|  | struct edma_desc *edesc; | 
|  | dma_addr_t src_addr, dst_addr; | 
|  | enum dma_slave_buswidth dev_width; | 
|  | bool use_intermediate = false; | 
|  | u32 burst; | 
|  | int i, ret, nslots; | 
|  |  | 
|  | if (unlikely(!echan || !buf_len || !period_len)) | 
|  | return NULL; | 
|  |  | 
|  | if (direction == DMA_DEV_TO_MEM) { | 
|  | src_addr = echan->cfg.src_addr; | 
|  | dst_addr = buf_addr; | 
|  | dev_width = echan->cfg.src_addr_width; | 
|  | burst = echan->cfg.src_maxburst; | 
|  | } else if (direction == DMA_MEM_TO_DEV) { | 
|  | src_addr = buf_addr; | 
|  | dst_addr = echan->cfg.dst_addr; | 
|  | dev_width = echan->cfg.dst_addr_width; | 
|  | burst = echan->cfg.dst_maxburst; | 
|  | } else { | 
|  | dev_err(dev, "%s: bad direction: %d\n", __func__, direction); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { | 
|  | dev_err(dev, "%s: Undefined slave buswidth\n", __func__); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (unlikely(buf_len % period_len)) { | 
|  | dev_err(dev, "Period should be multiple of Buffer length\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | nslots = (buf_len / period_len) + 1; | 
|  |  | 
|  | /* | 
|  | * Cyclic DMA users such as audio cannot tolerate delays introduced | 
|  | * by cases where the number of periods is more than the maximum | 
|  | * number of SGs the EDMA driver can handle at a time. For DMA types | 
|  | * such as Slave SGs, such delays are tolerable and synchronized, | 
|  | * but the synchronization is difficult to achieve with Cyclic and | 
|  | * cannot be guaranteed, so we error out early. | 
|  | */ | 
|  | if (nslots > MAX_NR_SG) { | 
|  | /* | 
|  | * If the burst and period sizes are the same, we can put | 
|  | * the full buffer into a single period and activate | 
|  | * intermediate interrupts. This will produce interrupts | 
|  | * after each burst, which is also after each desired period. | 
|  | */ | 
|  | if (burst == period_len) { | 
|  | period_len = buf_len; | 
|  | nslots = 2; | 
|  | use_intermediate = true; | 
|  | } else { | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]), | 
|  | GFP_ATOMIC); | 
|  | if (!edesc) | 
|  | return NULL; | 
|  |  | 
|  | edesc->cyclic = 1; | 
|  | edesc->pset_nr = nslots; | 
|  | edesc->residue = edesc->residue_stat = buf_len; | 
|  | edesc->direction = direction; | 
|  | edesc->echan = echan; | 
|  |  | 
|  | dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n", | 
|  | __func__, echan->ch_num, nslots, period_len, buf_len); | 
|  |  | 
|  | for (i = 0; i < nslots; i++) { | 
|  | /* Allocate a PaRAM slot, if needed */ | 
|  | if (echan->slot[i] < 0) { | 
|  | echan->slot[i] = | 
|  | edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY); | 
|  | if (echan->slot[i] < 0) { | 
|  | kfree(edesc); | 
|  | dev_err(dev, "%s: Failed to allocate slot\n", | 
|  | __func__); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (i == nslots - 1) { | 
|  | memcpy(&edesc->pset[i], &edesc->pset[0], | 
|  | sizeof(edesc->pset[0])); | 
|  | break; | 
|  | } | 
|  |  | 
|  | ret = edma_config_pset(chan, &edesc->pset[i], src_addr, | 
|  | dst_addr, burst, dev_width, period_len, | 
|  | direction); | 
|  | if (ret < 0) { | 
|  | kfree(edesc); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (direction == DMA_DEV_TO_MEM) | 
|  | dst_addr += period_len; | 
|  | else | 
|  | src_addr += period_len; | 
|  |  | 
|  | dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i); | 
|  | dev_vdbg(dev, | 
|  | "\n pset[%d]:\n" | 
|  | "  chnum\t%d\n" | 
|  | "  slot\t%d\n" | 
|  | "  opt\t%08x\n" | 
|  | "  src\t%08x\n" | 
|  | "  dst\t%08x\n" | 
|  | "  abcnt\t%08x\n" | 
|  | "  ccnt\t%08x\n" | 
|  | "  bidx\t%08x\n" | 
|  | "  cidx\t%08x\n" | 
|  | "  lkrld\t%08x\n", | 
|  | i, echan->ch_num, echan->slot[i], | 
|  | edesc->pset[i].param.opt, | 
|  | edesc->pset[i].param.src, | 
|  | edesc->pset[i].param.dst, | 
|  | edesc->pset[i].param.a_b_cnt, | 
|  | edesc->pset[i].param.ccnt, | 
|  | edesc->pset[i].param.src_dst_bidx, | 
|  | edesc->pset[i].param.src_dst_cidx, | 
|  | edesc->pset[i].param.link_bcntrld); | 
|  |  | 
|  | edesc->absync = ret; | 
|  |  | 
|  | /* | 
|  | * Enable period interrupt only if it is requested | 
|  | */ | 
|  | if (tx_flags & DMA_PREP_INTERRUPT) { | 
|  | edesc->pset[i].param.opt |= TCINTEN; | 
|  |  | 
|  | /* Also enable intermediate interrupts if necessary */ | 
|  | if (use_intermediate) | 
|  | edesc->pset[i].param.opt |= ITCINTEN; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Place the cyclic channel to highest priority queue */ | 
|  | if (!echan->tc) | 
|  | edma_assign_channel_eventq(echan, EVENTQ_0); | 
|  |  | 
|  | return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); | 
|  | } | 
|  |  | 
|  | static void edma_completion_handler(struct edma_chan *echan) | 
|  | { | 
|  | struct device *dev = echan->vchan.chan.device->dev; | 
|  | struct edma_desc *edesc; | 
|  |  | 
|  | spin_lock(&echan->vchan.lock); | 
|  | edesc = echan->edesc; | 
|  | if (edesc) { | 
|  | if (edesc->cyclic) { | 
|  | vchan_cyclic_callback(&edesc->vdesc); | 
|  | spin_unlock(&echan->vchan.lock); | 
|  | return; | 
|  | } else if (edesc->processed == edesc->pset_nr) { | 
|  | edesc->residue = 0; | 
|  | edma_stop(echan); | 
|  | vchan_cookie_complete(&edesc->vdesc); | 
|  | echan->edesc = NULL; | 
|  |  | 
|  | dev_dbg(dev, "Transfer completed on channel %d\n", | 
|  | echan->ch_num); | 
|  | } else { | 
|  | dev_dbg(dev, "Sub transfer completed on channel %d\n", | 
|  | echan->ch_num); | 
|  |  | 
|  | edma_pause(echan); | 
|  |  | 
|  | /* Update statistics for tx_status */ | 
|  | edesc->residue -= edesc->sg_len; | 
|  | edesc->residue_stat = edesc->residue; | 
|  | edesc->processed_stat = edesc->processed; | 
|  | } | 
|  | edma_execute(echan); | 
|  | } | 
|  |  | 
|  | spin_unlock(&echan->vchan.lock); | 
|  | } | 
|  |  | 
|  | /* eDMA interrupt handler */ | 
|  | static irqreturn_t dma_irq_handler(int irq, void *data) | 
|  | { | 
|  | struct edma_cc *ecc = data; | 
|  | int ctlr; | 
|  | u32 sh_ier; | 
|  | u32 sh_ipr; | 
|  | u32 bank; | 
|  |  | 
|  | ctlr = ecc->id; | 
|  | if (ctlr < 0) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | dev_vdbg(ecc->dev, "dma_irq_handler\n"); | 
|  |  | 
|  | sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0); | 
|  | if (!sh_ipr) { | 
|  | sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1); | 
|  | if (!sh_ipr) | 
|  | return IRQ_NONE; | 
|  | sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1); | 
|  | bank = 1; | 
|  | } else { | 
|  | sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0); | 
|  | bank = 0; | 
|  | } | 
|  |  | 
|  | do { | 
|  | u32 slot; | 
|  | u32 channel; | 
|  |  | 
|  | slot = __ffs(sh_ipr); | 
|  | sh_ipr &= ~(BIT(slot)); | 
|  |  | 
|  | if (sh_ier & BIT(slot)) { | 
|  | channel = (bank << 5) | slot; | 
|  | /* Clear the corresponding IPR bits */ | 
|  | edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot)); | 
|  | edma_completion_handler(&ecc->slave_chans[channel]); | 
|  | } | 
|  | } while (sh_ipr); | 
|  |  | 
|  | edma_shadow0_write(ecc, SH_IEVAL, 1); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static void edma_error_handler(struct edma_chan *echan) | 
|  | { | 
|  | struct edma_cc *ecc = echan->ecc; | 
|  | struct device *dev = echan->vchan.chan.device->dev; | 
|  | struct edmacc_param p; | 
|  | int err; | 
|  |  | 
|  | if (!echan->edesc) | 
|  | return; | 
|  |  | 
|  | spin_lock(&echan->vchan.lock); | 
|  |  | 
|  | err = edma_read_slot(ecc, echan->slot[0], &p); | 
|  |  | 
|  | /* | 
|  | * Issue later based on missed flag which will be sure | 
|  | * to happen as: | 
|  | * (1) we finished transmitting an intermediate slot and | 
|  | *     edma_execute is coming up. | 
|  | * (2) or we finished current transfer and issue will | 
|  | *     call edma_execute. | 
|  | * | 
|  | * Important note: issuing can be dangerous here and | 
|  | * lead to some nasty recursion when we are in a NULL | 
|  | * slot. So we avoid doing so and set the missed flag. | 
|  | */ | 
|  | if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) { | 
|  | dev_dbg(dev, "Error on null slot, setting miss\n"); | 
|  | echan->missed = 1; | 
|  | } else { | 
|  | /* | 
|  | * The slot is already programmed but the event got | 
|  | * missed, so its safe to issue it here. | 
|  | */ | 
|  | dev_dbg(dev, "Missed event, TRIGGERING\n"); | 
|  | edma_clean_channel(echan); | 
|  | edma_stop(echan); | 
|  | edma_start(echan); | 
|  | edma_trigger_channel(echan); | 
|  | } | 
|  | spin_unlock(&echan->vchan.lock); | 
|  | } | 
|  |  | 
|  | static inline bool edma_error_pending(struct edma_cc *ecc) | 
|  | { | 
|  | if (edma_read_array(ecc, EDMA_EMR, 0) || | 
|  | edma_read_array(ecc, EDMA_EMR, 1) || | 
|  | edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* eDMA error interrupt handler */ | 
|  | static irqreturn_t dma_ccerr_handler(int irq, void *data) | 
|  | { | 
|  | struct edma_cc *ecc = data; | 
|  | int i, j; | 
|  | int ctlr; | 
|  | unsigned int cnt = 0; | 
|  | unsigned int val; | 
|  |  | 
|  | ctlr = ecc->id; | 
|  | if (ctlr < 0) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | dev_vdbg(ecc->dev, "dma_ccerr_handler\n"); | 
|  |  | 
|  | if (!edma_error_pending(ecc)) { | 
|  | /* | 
|  | * The registers indicate no pending error event but the irq | 
|  | * handler has been called. | 
|  | * Ask eDMA to re-evaluate the error registers. | 
|  | */ | 
|  | dev_err(ecc->dev, "%s: Error interrupt without error event!\n", | 
|  | __func__); | 
|  | edma_write(ecc, EDMA_EEVAL, 1); | 
|  | return IRQ_NONE; | 
|  | } | 
|  |  | 
|  | while (1) { | 
|  | /* Event missed register(s) */ | 
|  | for (j = 0; j < 2; j++) { | 
|  | unsigned long emr; | 
|  |  | 
|  | val = edma_read_array(ecc, EDMA_EMR, j); | 
|  | if (!val) | 
|  | continue; | 
|  |  | 
|  | dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val); | 
|  | emr = val; | 
|  | for (i = find_next_bit(&emr, 32, 0); i < 32; | 
|  | i = find_next_bit(&emr, 32, i + 1)) { | 
|  | int k = (j << 5) + i; | 
|  |  | 
|  | /* Clear the corresponding EMR bits */ | 
|  | edma_write_array(ecc, EDMA_EMCR, j, BIT(i)); | 
|  | /* Clear any SER */ | 
|  | edma_shadow0_write_array(ecc, SH_SECR, j, | 
|  | BIT(i)); | 
|  | edma_error_handler(&ecc->slave_chans[k]); | 
|  | } | 
|  | } | 
|  |  | 
|  | val = edma_read(ecc, EDMA_QEMR); | 
|  | if (val) { | 
|  | dev_dbg(ecc->dev, "QEMR 0x%02x\n", val); | 
|  | /* Not reported, just clear the interrupt reason. */ | 
|  | edma_write(ecc, EDMA_QEMCR, val); | 
|  | edma_shadow0_write(ecc, SH_QSECR, val); | 
|  | } | 
|  |  | 
|  | val = edma_read(ecc, EDMA_CCERR); | 
|  | if (val) { | 
|  | dev_warn(ecc->dev, "CCERR 0x%08x\n", val); | 
|  | /* Not reported, just clear the interrupt reason. */ | 
|  | edma_write(ecc, EDMA_CCERRCLR, val); | 
|  | } | 
|  |  | 
|  | if (!edma_error_pending(ecc)) | 
|  | break; | 
|  | cnt++; | 
|  | if (cnt > 10) | 
|  | break; | 
|  | } | 
|  | edma_write(ecc, EDMA_EEVAL, 1); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* Alloc channel resources */ | 
|  | static int edma_alloc_chan_resources(struct dma_chan *chan) | 
|  | { | 
|  | struct edma_chan *echan = to_edma_chan(chan); | 
|  | struct edma_cc *ecc = echan->ecc; | 
|  | struct device *dev = ecc->dev; | 
|  | enum dma_event_q eventq_no = EVENTQ_DEFAULT; | 
|  | int ret; | 
|  |  | 
|  | if (echan->tc) { | 
|  | eventq_no = echan->tc->id; | 
|  | } else if (ecc->tc_list) { | 
|  | /* memcpy channel */ | 
|  | echan->tc = &ecc->tc_list[ecc->info->default_queue]; | 
|  | eventq_no = echan->tc->id; | 
|  | } | 
|  |  | 
|  | ret = edma_alloc_channel(echan, eventq_no); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num); | 
|  | if (echan->slot[0] < 0) { | 
|  | dev_err(dev, "Entry slot allocation failed for channel %u\n", | 
|  | EDMA_CHAN_SLOT(echan->ch_num)); | 
|  | ret = echan->slot[0]; | 
|  | goto err_slot; | 
|  | } | 
|  |  | 
|  | /* Set up channel -> slot mapping for the entry slot */ | 
|  | edma_set_chmap(echan, echan->slot[0]); | 
|  | echan->alloced = true; | 
|  |  | 
|  | dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n", | 
|  | EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id, | 
|  | echan->hw_triggered ? "HW" : "SW"); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_slot: | 
|  | edma_free_channel(echan); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Free channel resources */ | 
|  | static void edma_free_chan_resources(struct dma_chan *chan) | 
|  | { | 
|  | struct edma_chan *echan = to_edma_chan(chan); | 
|  | struct device *dev = echan->ecc->dev; | 
|  | int i; | 
|  |  | 
|  | /* Terminate transfers */ | 
|  | edma_stop(echan); | 
|  |  | 
|  | vchan_free_chan_resources(&echan->vchan); | 
|  |  | 
|  | /* Free EDMA PaRAM slots */ | 
|  | for (i = 0; i < EDMA_MAX_SLOTS; i++) { | 
|  | if (echan->slot[i] >= 0) { | 
|  | edma_free_slot(echan->ecc, echan->slot[i]); | 
|  | echan->slot[i] = -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Set entry slot to the dummy slot */ | 
|  | edma_set_chmap(echan, echan->ecc->dummy_slot); | 
|  |  | 
|  | /* Free EDMA channel */ | 
|  | if (echan->alloced) { | 
|  | edma_free_channel(echan); | 
|  | echan->alloced = false; | 
|  | } | 
|  |  | 
|  | echan->tc = NULL; | 
|  | echan->hw_triggered = false; | 
|  |  | 
|  | dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n", | 
|  | EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id); | 
|  | } | 
|  |  | 
|  | /* Send pending descriptor to hardware */ | 
|  | static void edma_issue_pending(struct dma_chan *chan) | 
|  | { | 
|  | struct edma_chan *echan = to_edma_chan(chan); | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&echan->vchan.lock, flags); | 
|  | if (vchan_issue_pending(&echan->vchan) && !echan->edesc) | 
|  | edma_execute(echan); | 
|  | spin_unlock_irqrestore(&echan->vchan.lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This limit exists to avoid a possible infinite loop when waiting for proof | 
|  | * that a particular transfer is completed. This limit can be hit if there | 
|  | * are large bursts to/from slow devices or the CPU is never able to catch | 
|  | * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART | 
|  | * RX-FIFO, as many as 55 loops have been seen. | 
|  | */ | 
|  | #define EDMA_MAX_TR_WAIT_LOOPS 1000 | 
|  |  | 
|  | static u32 edma_residue(struct edma_desc *edesc) | 
|  | { | 
|  | bool dst = edesc->direction == DMA_DEV_TO_MEM; | 
|  | int loop_count = EDMA_MAX_TR_WAIT_LOOPS; | 
|  | struct edma_chan *echan = edesc->echan; | 
|  | struct edma_pset *pset = edesc->pset; | 
|  | dma_addr_t done, pos; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * We always read the dst/src position from the first RamPar | 
|  | * pset. That's the one which is active now. | 
|  | */ | 
|  | pos = edma_get_position(echan->ecc, echan->slot[0], dst); | 
|  |  | 
|  | /* | 
|  | * "pos" may represent a transfer request that is still being | 
|  | * processed by the EDMACC or EDMATC. We will busy wait until | 
|  | * any one of the situations occurs: | 
|  | *   1. the DMA hardware is idle | 
|  | *   2. a new transfer request is setup | 
|  | *   3. we hit the loop limit | 
|  | */ | 
|  | while (edma_read(echan->ecc, EDMA_CCSTAT) & EDMA_CCSTAT_ACTV) { | 
|  | /* check if a new transfer request is setup */ | 
|  | if (edma_get_position(echan->ecc, | 
|  | echan->slot[0], dst) != pos) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!--loop_count) { | 
|  | dev_dbg_ratelimited(echan->vchan.chan.device->dev, | 
|  | "%s: timeout waiting for PaRAM update\n", | 
|  | __func__); | 
|  | break; | 
|  | } | 
|  |  | 
|  | cpu_relax(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Cyclic is simple. Just subtract pset[0].addr from pos. | 
|  | * | 
|  | * We never update edesc->residue in the cyclic case, so we | 
|  | * can tell the remaining room to the end of the circular | 
|  | * buffer. | 
|  | */ | 
|  | if (edesc->cyclic) { | 
|  | done = pos - pset->addr; | 
|  | edesc->residue_stat = edesc->residue - done; | 
|  | return edesc->residue_stat; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For SG operation we catch up with the last processed | 
|  | * status. | 
|  | */ | 
|  | pset += edesc->processed_stat; | 
|  |  | 
|  | for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) { | 
|  | /* | 
|  | * If we are inside this pset address range, we know | 
|  | * this is the active one. Get the current delta and | 
|  | * stop walking the psets. | 
|  | */ | 
|  | if (pos >= pset->addr && pos < pset->addr + pset->len) | 
|  | return edesc->residue_stat - (pos - pset->addr); | 
|  |  | 
|  | /* Otherwise mark it done and update residue_stat. */ | 
|  | edesc->processed_stat++; | 
|  | edesc->residue_stat -= pset->len; | 
|  | } | 
|  | return edesc->residue_stat; | 
|  | } | 
|  |  | 
|  | /* Check request completion status */ | 
|  | static enum dma_status edma_tx_status(struct dma_chan *chan, | 
|  | dma_cookie_t cookie, | 
|  | struct dma_tx_state *txstate) | 
|  | { | 
|  | struct edma_chan *echan = to_edma_chan(chan); | 
|  | struct virt_dma_desc *vdesc; | 
|  | enum dma_status ret; | 
|  | unsigned long flags; | 
|  |  | 
|  | ret = dma_cookie_status(chan, cookie, txstate); | 
|  | if (ret == DMA_COMPLETE || !txstate) | 
|  | return ret; | 
|  |  | 
|  | spin_lock_irqsave(&echan->vchan.lock, flags); | 
|  | if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) | 
|  | txstate->residue = edma_residue(echan->edesc); | 
|  | else if ((vdesc = vchan_find_desc(&echan->vchan, cookie))) | 
|  | txstate->residue = to_edma_desc(&vdesc->tx)->residue; | 
|  | spin_unlock_irqrestore(&echan->vchan.lock, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels) | 
|  | { | 
|  | if (!memcpy_channels) | 
|  | return false; | 
|  | while (*memcpy_channels != -1) { | 
|  | if (*memcpy_channels == ch_num) | 
|  | return true; | 
|  | memcpy_channels++; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #define EDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ | 
|  | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ | 
|  | BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \ | 
|  | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) | 
|  |  | 
|  | static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode) | 
|  | { | 
|  | struct dma_device *s_ddev = &ecc->dma_slave; | 
|  | struct dma_device *m_ddev = NULL; | 
|  | s32 *memcpy_channels = ecc->info->memcpy_channels; | 
|  | int i, j; | 
|  |  | 
|  | dma_cap_zero(s_ddev->cap_mask); | 
|  | dma_cap_set(DMA_SLAVE, s_ddev->cap_mask); | 
|  | dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask); | 
|  | if (ecc->legacy_mode && !memcpy_channels) { | 
|  | dev_warn(ecc->dev, | 
|  | "Legacy memcpy is enabled, things might not work\n"); | 
|  |  | 
|  | dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask); | 
|  | s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy; | 
|  | s_ddev->directions = BIT(DMA_MEM_TO_MEM); | 
|  | } | 
|  |  | 
|  | s_ddev->device_prep_slave_sg = edma_prep_slave_sg; | 
|  | s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic; | 
|  | s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources; | 
|  | s_ddev->device_free_chan_resources = edma_free_chan_resources; | 
|  | s_ddev->device_issue_pending = edma_issue_pending; | 
|  | s_ddev->device_tx_status = edma_tx_status; | 
|  | s_ddev->device_config = edma_slave_config; | 
|  | s_ddev->device_pause = edma_dma_pause; | 
|  | s_ddev->device_resume = edma_dma_resume; | 
|  | s_ddev->device_terminate_all = edma_terminate_all; | 
|  | s_ddev->device_synchronize = edma_synchronize; | 
|  |  | 
|  | s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS; | 
|  | s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS; | 
|  | s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV)); | 
|  | s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; | 
|  |  | 
|  | s_ddev->dev = ecc->dev; | 
|  | INIT_LIST_HEAD(&s_ddev->channels); | 
|  |  | 
|  | if (memcpy_channels) { | 
|  | m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL); | 
|  | ecc->dma_memcpy = m_ddev; | 
|  |  | 
|  | dma_cap_zero(m_ddev->cap_mask); | 
|  | dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask); | 
|  |  | 
|  | m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy; | 
|  | m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources; | 
|  | m_ddev->device_free_chan_resources = edma_free_chan_resources; | 
|  | m_ddev->device_issue_pending = edma_issue_pending; | 
|  | m_ddev->device_tx_status = edma_tx_status; | 
|  | m_ddev->device_config = edma_slave_config; | 
|  | m_ddev->device_pause = edma_dma_pause; | 
|  | m_ddev->device_resume = edma_dma_resume; | 
|  | m_ddev->device_terminate_all = edma_terminate_all; | 
|  | m_ddev->device_synchronize = edma_synchronize; | 
|  |  | 
|  | m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS; | 
|  | m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS; | 
|  | m_ddev->directions = BIT(DMA_MEM_TO_MEM); | 
|  | m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; | 
|  |  | 
|  | m_ddev->dev = ecc->dev; | 
|  | INIT_LIST_HEAD(&m_ddev->channels); | 
|  | } else if (!ecc->legacy_mode) { | 
|  | dev_info(ecc->dev, "memcpy is disabled\n"); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < ecc->num_channels; i++) { | 
|  | struct edma_chan *echan = &ecc->slave_chans[i]; | 
|  | echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i); | 
|  | echan->ecc = ecc; | 
|  | echan->vchan.desc_free = edma_desc_free; | 
|  |  | 
|  | if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels)) | 
|  | vchan_init(&echan->vchan, m_ddev); | 
|  | else | 
|  | vchan_init(&echan->vchan, s_ddev); | 
|  |  | 
|  | INIT_LIST_HEAD(&echan->node); | 
|  | for (j = 0; j < EDMA_MAX_SLOTS; j++) | 
|  | echan->slot[j] = -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata, | 
|  | struct edma_cc *ecc) | 
|  | { | 
|  | int i; | 
|  | u32 value, cccfg; | 
|  | s8 (*queue_priority_map)[2]; | 
|  |  | 
|  | /* Decode the eDMA3 configuration from CCCFG register */ | 
|  | cccfg = edma_read(ecc, EDMA_CCCFG); | 
|  |  | 
|  | value = GET_NUM_REGN(cccfg); | 
|  | ecc->num_region = BIT(value); | 
|  |  | 
|  | value = GET_NUM_DMACH(cccfg); | 
|  | ecc->num_channels = BIT(value + 1); | 
|  |  | 
|  | value = GET_NUM_QDMACH(cccfg); | 
|  | ecc->num_qchannels = value * 2; | 
|  |  | 
|  | value = GET_NUM_PAENTRY(cccfg); | 
|  | ecc->num_slots = BIT(value + 4); | 
|  |  | 
|  | value = GET_NUM_EVQUE(cccfg); | 
|  | ecc->num_tc = value + 1; | 
|  |  | 
|  | ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false; | 
|  |  | 
|  | dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg); | 
|  | dev_dbg(dev, "num_region: %u\n", ecc->num_region); | 
|  | dev_dbg(dev, "num_channels: %u\n", ecc->num_channels); | 
|  | dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels); | 
|  | dev_dbg(dev, "num_slots: %u\n", ecc->num_slots); | 
|  | dev_dbg(dev, "num_tc: %u\n", ecc->num_tc); | 
|  | dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no"); | 
|  |  | 
|  | /* Nothing need to be done if queue priority is provided */ | 
|  | if (pdata->queue_priority_mapping) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Configure TC/queue priority as follows: | 
|  | * Q0 - priority 0 | 
|  | * Q1 - priority 1 | 
|  | * Q2 - priority 2 | 
|  | * ... | 
|  | * The meaning of priority numbers: 0 highest priority, 7 lowest | 
|  | * priority. So Q0 is the highest priority queue and the last queue has | 
|  | * the lowest priority. | 
|  | */ | 
|  | queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8), | 
|  | GFP_KERNEL); | 
|  | if (!queue_priority_map) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (i = 0; i < ecc->num_tc; i++) { | 
|  | queue_priority_map[i][0] = i; | 
|  | queue_priority_map[i][1] = i; | 
|  | } | 
|  | queue_priority_map[i][0] = -1; | 
|  | queue_priority_map[i][1] = -1; | 
|  |  | 
|  | pdata->queue_priority_mapping = queue_priority_map; | 
|  | /* Default queue has the lowest priority */ | 
|  | pdata->default_queue = i - 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_OF) | 
|  | static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata, | 
|  | size_t sz) | 
|  | { | 
|  | const char pname[] = "ti,edma-xbar-event-map"; | 
|  | struct resource res; | 
|  | void __iomem *xbar; | 
|  | s16 (*xbar_chans)[2]; | 
|  | size_t nelm = sz / sizeof(s16); | 
|  | u32 shift, offset, mux; | 
|  | int ret, i; | 
|  |  | 
|  | xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL); | 
|  | if (!xbar_chans) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = of_address_to_resource(dev->of_node, 1, &res); | 
|  | if (ret) | 
|  | return -ENOMEM; | 
|  |  | 
|  | xbar = devm_ioremap(dev, res.start, resource_size(&res)); | 
|  | if (!xbar) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans, | 
|  | nelm); | 
|  | if (ret) | 
|  | return -EIO; | 
|  |  | 
|  | /* Invalidate last entry for the other user of this mess */ | 
|  | nelm >>= 1; | 
|  | xbar_chans[nelm][0] = -1; | 
|  | xbar_chans[nelm][1] = -1; | 
|  |  | 
|  | for (i = 0; i < nelm; i++) { | 
|  | shift = (xbar_chans[i][1] & 0x03) << 3; | 
|  | offset = xbar_chans[i][1] & 0xfffffffc; | 
|  | mux = readl(xbar + offset); | 
|  | mux &= ~(0xff << shift); | 
|  | mux |= xbar_chans[i][0] << shift; | 
|  | writel(mux, (xbar + offset)); | 
|  | } | 
|  |  | 
|  | pdata->xbar_chans = (const s16 (*)[2]) xbar_chans; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev, | 
|  | bool legacy_mode) | 
|  | { | 
|  | struct edma_soc_info *info; | 
|  | struct property *prop; | 
|  | int sz, ret; | 
|  |  | 
|  | info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL); | 
|  | if (!info) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | if (legacy_mode) { | 
|  | prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map", | 
|  | &sz); | 
|  | if (prop) { | 
|  | ret = edma_xbar_event_map(dev, info, sz); | 
|  | if (ret) | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  | return info; | 
|  | } | 
|  |  | 
|  | /* Get the list of channels allocated to be used for memcpy */ | 
|  | prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz); | 
|  | if (prop) { | 
|  | const char pname[] = "ti,edma-memcpy-channels"; | 
|  | size_t nelm = sz / sizeof(s32); | 
|  | s32 *memcpy_ch; | 
|  |  | 
|  | memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32), | 
|  | GFP_KERNEL); | 
|  | if (!memcpy_ch) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | ret = of_property_read_u32_array(dev->of_node, pname, | 
|  | (u32 *)memcpy_ch, nelm); | 
|  | if (ret) | 
|  | return ERR_PTR(ret); | 
|  |  | 
|  | memcpy_ch[nelm] = -1; | 
|  | info->memcpy_channels = memcpy_ch; | 
|  | } | 
|  |  | 
|  | prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges", | 
|  | &sz); | 
|  | if (prop) { | 
|  | const char pname[] = "ti,edma-reserved-slot-ranges"; | 
|  | u32 (*tmp)[2]; | 
|  | s16 (*rsv_slots)[2]; | 
|  | size_t nelm = sz / sizeof(*tmp); | 
|  | struct edma_rsv_info *rsv_info; | 
|  | int i; | 
|  |  | 
|  | if (!nelm) | 
|  | return info; | 
|  |  | 
|  | tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL); | 
|  | if (!tmp) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL); | 
|  | if (!rsv_info) { | 
|  | kfree(tmp); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots), | 
|  | GFP_KERNEL); | 
|  | if (!rsv_slots) { | 
|  | kfree(tmp); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | ret = of_property_read_u32_array(dev->of_node, pname, | 
|  | (u32 *)tmp, nelm * 2); | 
|  | if (ret) { | 
|  | kfree(tmp); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < nelm; i++) { | 
|  | rsv_slots[i][0] = tmp[i][0]; | 
|  | rsv_slots[i][1] = tmp[i][1]; | 
|  | } | 
|  | rsv_slots[nelm][0] = -1; | 
|  | rsv_slots[nelm][1] = -1; | 
|  |  | 
|  | info->rsv = rsv_info; | 
|  | info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots; | 
|  |  | 
|  | kfree(tmp); | 
|  | } | 
|  |  | 
|  | return info; | 
|  | } | 
|  |  | 
|  | static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec, | 
|  | struct of_dma *ofdma) | 
|  | { | 
|  | struct edma_cc *ecc = ofdma->of_dma_data; | 
|  | struct dma_chan *chan = NULL; | 
|  | struct edma_chan *echan; | 
|  | int i; | 
|  |  | 
|  | if (!ecc || dma_spec->args_count < 1) | 
|  | return NULL; | 
|  |  | 
|  | for (i = 0; i < ecc->num_channels; i++) { | 
|  | echan = &ecc->slave_chans[i]; | 
|  | if (echan->ch_num == dma_spec->args[0]) { | 
|  | chan = &echan->vchan.chan; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!chan) | 
|  | return NULL; | 
|  |  | 
|  | if (echan->ecc->legacy_mode && dma_spec->args_count == 1) | 
|  | goto out; | 
|  |  | 
|  | if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 && | 
|  | dma_spec->args[1] < echan->ecc->num_tc) { | 
|  | echan->tc = &echan->ecc->tc_list[dma_spec->args[1]]; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | out: | 
|  | /* The channel is going to be used as HW synchronized */ | 
|  | echan->hw_triggered = true; | 
|  | return dma_get_slave_channel(chan); | 
|  | } | 
|  | #else | 
|  | static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev, | 
|  | bool legacy_mode) | 
|  | { | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec, | 
|  | struct of_dma *ofdma) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int edma_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct edma_soc_info	*info = pdev->dev.platform_data; | 
|  | s8			(*queue_priority_mapping)[2]; | 
|  | int			i, off, ln; | 
|  | const s16		(*rsv_slots)[2]; | 
|  | const s16		(*xbar_chans)[2]; | 
|  | int			irq; | 
|  | char			*irq_name; | 
|  | struct resource		*mem; | 
|  | struct device_node	*node = pdev->dev.of_node; | 
|  | struct device		*dev = &pdev->dev; | 
|  | struct edma_cc		*ecc; | 
|  | bool			legacy_mode = true; | 
|  | int ret; | 
|  |  | 
|  | if (node) { | 
|  | const struct of_device_id *match; | 
|  |  | 
|  | match = of_match_node(edma_of_ids, node); | 
|  | if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC) | 
|  | legacy_mode = false; | 
|  |  | 
|  | info = edma_setup_info_from_dt(dev, legacy_mode); | 
|  | if (IS_ERR(info)) { | 
|  | dev_err(dev, "failed to get DT data\n"); | 
|  | return PTR_ERR(info); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!info) | 
|  | return -ENODEV; | 
|  |  | 
|  | pm_runtime_enable(dev); | 
|  | ret = pm_runtime_get_sync(dev); | 
|  | if (ret < 0) { | 
|  | dev_err(dev, "pm_runtime_get_sync() failed\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL); | 
|  | if (!ecc) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ecc->dev = dev; | 
|  | ecc->id = pdev->id; | 
|  | ecc->legacy_mode = legacy_mode; | 
|  | /* When booting with DT the pdev->id is -1 */ | 
|  | if (ecc->id < 0) | 
|  | ecc->id = 0; | 
|  |  | 
|  | mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc"); | 
|  | if (!mem) { | 
|  | dev_dbg(dev, "mem resource not found, using index 0\n"); | 
|  | mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
|  | if (!mem) { | 
|  | dev_err(dev, "no mem resource?\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  | } | 
|  | ecc->base = devm_ioremap_resource(dev, mem); | 
|  | if (IS_ERR(ecc->base)) | 
|  | return PTR_ERR(ecc->base); | 
|  |  | 
|  | platform_set_drvdata(pdev, ecc); | 
|  |  | 
|  | /* Get eDMA3 configuration from IP */ | 
|  | ret = edma_setup_from_hw(dev, info, ecc); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Allocate memory based on the information we got from the IP */ | 
|  | ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels, | 
|  | sizeof(*ecc->slave_chans), GFP_KERNEL); | 
|  | if (!ecc->slave_chans) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots), | 
|  | sizeof(unsigned long), GFP_KERNEL); | 
|  | if (!ecc->slot_inuse) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ecc->default_queue = info->default_queue; | 
|  |  | 
|  | for (i = 0; i < ecc->num_slots; i++) | 
|  | edma_write_slot(ecc, i, &dummy_paramset); | 
|  |  | 
|  | if (info->rsv) { | 
|  | /* Set the reserved slots in inuse list */ | 
|  | rsv_slots = info->rsv->rsv_slots; | 
|  | if (rsv_slots) { | 
|  | for (i = 0; rsv_slots[i][0] != -1; i++) { | 
|  | off = rsv_slots[i][0]; | 
|  | ln = rsv_slots[i][1]; | 
|  | edma_set_bits(off, ln, ecc->slot_inuse); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Clear the xbar mapped channels in unused list */ | 
|  | xbar_chans = info->xbar_chans; | 
|  | if (xbar_chans) { | 
|  | for (i = 0; xbar_chans[i][1] != -1; i++) { | 
|  | off = xbar_chans[i][1]; | 
|  | } | 
|  | } | 
|  |  | 
|  | irq = platform_get_irq_byname(pdev, "edma3_ccint"); | 
|  | if (irq < 0 && node) | 
|  | irq = irq_of_parse_and_map(node, 0); | 
|  |  | 
|  | if (irq >= 0) { | 
|  | irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint", | 
|  | dev_name(dev)); | 
|  | ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name, | 
|  | ecc); | 
|  | if (ret) { | 
|  | dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret); | 
|  | return ret; | 
|  | } | 
|  | ecc->ccint = irq; | 
|  | } | 
|  |  | 
|  | irq = platform_get_irq_byname(pdev, "edma3_ccerrint"); | 
|  | if (irq < 0 && node) | 
|  | irq = irq_of_parse_and_map(node, 2); | 
|  |  | 
|  | if (irq >= 0) { | 
|  | irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint", | 
|  | dev_name(dev)); | 
|  | ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name, | 
|  | ecc); | 
|  | if (ret) { | 
|  | dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret); | 
|  | return ret; | 
|  | } | 
|  | ecc->ccerrint = irq; | 
|  | } | 
|  |  | 
|  | ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY); | 
|  | if (ecc->dummy_slot < 0) { | 
|  | dev_err(dev, "Can't allocate PaRAM dummy slot\n"); | 
|  | return ecc->dummy_slot; | 
|  | } | 
|  |  | 
|  | queue_priority_mapping = info->queue_priority_mapping; | 
|  |  | 
|  | if (!ecc->legacy_mode) { | 
|  | int lowest_priority = 0; | 
|  | struct of_phandle_args tc_args; | 
|  |  | 
|  | ecc->tc_list = devm_kcalloc(dev, ecc->num_tc, | 
|  | sizeof(*ecc->tc_list), GFP_KERNEL); | 
|  | if (!ecc->tc_list) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (i = 0;; i++) { | 
|  | ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs", | 
|  | 1, i, &tc_args); | 
|  | if (ret || i == ecc->num_tc) | 
|  | break; | 
|  |  | 
|  | ecc->tc_list[i].node = tc_args.np; | 
|  | ecc->tc_list[i].id = i; | 
|  | queue_priority_mapping[i][1] = tc_args.args[0]; | 
|  | if (queue_priority_mapping[i][1] > lowest_priority) { | 
|  | lowest_priority = queue_priority_mapping[i][1]; | 
|  | info->default_queue = i; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Event queue priority mapping */ | 
|  | for (i = 0; queue_priority_mapping[i][0] != -1; i++) | 
|  | edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0], | 
|  | queue_priority_mapping[i][1]); | 
|  |  | 
|  | for (i = 0; i < ecc->num_region; i++) { | 
|  | edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0); | 
|  | edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0); | 
|  | edma_write_array(ecc, EDMA_QRAE, i, 0x0); | 
|  | } | 
|  | ecc->info = info; | 
|  |  | 
|  | /* Init the dma device and channels */ | 
|  | edma_dma_init(ecc, legacy_mode); | 
|  |  | 
|  | for (i = 0; i < ecc->num_channels; i++) { | 
|  | /* Assign all channels to the default queue */ | 
|  | edma_assign_channel_eventq(&ecc->slave_chans[i], | 
|  | info->default_queue); | 
|  | /* Set entry slot to the dummy slot */ | 
|  | edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot); | 
|  | } | 
|  |  | 
|  | ecc->dma_slave.filter.map = info->slave_map; | 
|  | ecc->dma_slave.filter.mapcnt = info->slavecnt; | 
|  | ecc->dma_slave.filter.fn = edma_filter_fn; | 
|  |  | 
|  | ret = dma_async_device_register(&ecc->dma_slave); | 
|  | if (ret) { | 
|  | dev_err(dev, "slave ddev registration failed (%d)\n", ret); | 
|  | goto err_reg1; | 
|  | } | 
|  |  | 
|  | if (ecc->dma_memcpy) { | 
|  | ret = dma_async_device_register(ecc->dma_memcpy); | 
|  | if (ret) { | 
|  | dev_err(dev, "memcpy ddev registration failed (%d)\n", | 
|  | ret); | 
|  | dma_async_device_unregister(&ecc->dma_slave); | 
|  | goto err_reg1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (node) | 
|  | of_dma_controller_register(node, of_edma_xlate, ecc); | 
|  |  | 
|  | dev_info(dev, "TI EDMA DMA engine driver\n"); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_reg1: | 
|  | edma_free_slot(ecc, ecc->dummy_slot); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void edma_cleanupp_vchan(struct dma_device *dmadev) | 
|  | { | 
|  | struct edma_chan *echan, *_echan; | 
|  |  | 
|  | list_for_each_entry_safe(echan, _echan, | 
|  | &dmadev->channels, vchan.chan.device_node) { | 
|  | list_del(&echan->vchan.chan.device_node); | 
|  | tasklet_kill(&echan->vchan.task); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int edma_remove(struct platform_device *pdev) | 
|  | { | 
|  | struct device *dev = &pdev->dev; | 
|  | struct edma_cc *ecc = dev_get_drvdata(dev); | 
|  |  | 
|  | devm_free_irq(dev, ecc->ccint, ecc); | 
|  | devm_free_irq(dev, ecc->ccerrint, ecc); | 
|  |  | 
|  | edma_cleanupp_vchan(&ecc->dma_slave); | 
|  |  | 
|  | if (dev->of_node) | 
|  | of_dma_controller_free(dev->of_node); | 
|  | dma_async_device_unregister(&ecc->dma_slave); | 
|  | if (ecc->dma_memcpy) | 
|  | dma_async_device_unregister(ecc->dma_memcpy); | 
|  | edma_free_slot(ecc, ecc->dummy_slot); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM_SLEEP | 
|  | static int edma_pm_suspend(struct device *dev) | 
|  | { | 
|  | struct edma_cc *ecc = dev_get_drvdata(dev); | 
|  | struct edma_chan *echan = ecc->slave_chans; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ecc->num_channels; i++) { | 
|  | if (echan[i].alloced) | 
|  | edma_setup_interrupt(&echan[i], false); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int edma_pm_resume(struct device *dev) | 
|  | { | 
|  | struct edma_cc *ecc = dev_get_drvdata(dev); | 
|  | struct edma_chan *echan = ecc->slave_chans; | 
|  | int i; | 
|  | s8 (*queue_priority_mapping)[2]; | 
|  |  | 
|  | /* re initialize dummy slot to dummy param set */ | 
|  | edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset); | 
|  |  | 
|  | queue_priority_mapping = ecc->info->queue_priority_mapping; | 
|  |  | 
|  | /* Event queue priority mapping */ | 
|  | for (i = 0; queue_priority_mapping[i][0] != -1; i++) | 
|  | edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0], | 
|  | queue_priority_mapping[i][1]); | 
|  |  | 
|  | for (i = 0; i < ecc->num_channels; i++) { | 
|  | if (echan[i].alloced) { | 
|  | /* ensure access through shadow region 0 */ | 
|  | edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5, | 
|  | BIT(i & 0x1f)); | 
|  |  | 
|  | edma_setup_interrupt(&echan[i], true); | 
|  |  | 
|  | /* Set up channel -> slot mapping for the entry slot */ | 
|  | edma_set_chmap(&echan[i], echan[i].slot[0]); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static const struct dev_pm_ops edma_pm_ops = { | 
|  | SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume) | 
|  | }; | 
|  |  | 
|  | static struct platform_driver edma_driver = { | 
|  | .probe		= edma_probe, | 
|  | .remove		= edma_remove, | 
|  | .driver = { | 
|  | .name	= "edma", | 
|  | .pm	= &edma_pm_ops, | 
|  | .of_match_table = edma_of_ids, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static int edma_tptc_probe(struct platform_device *pdev) | 
|  | { | 
|  | pm_runtime_enable(&pdev->dev); | 
|  | return pm_runtime_get_sync(&pdev->dev); | 
|  | } | 
|  |  | 
|  | static struct platform_driver edma_tptc_driver = { | 
|  | .probe		= edma_tptc_probe, | 
|  | .driver = { | 
|  | .name	= "edma3-tptc", | 
|  | .of_match_table = edma_tptc_of_ids, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | bool edma_filter_fn(struct dma_chan *chan, void *param) | 
|  | { | 
|  | bool match = false; | 
|  |  | 
|  | if (chan->device->dev->driver == &edma_driver.driver) { | 
|  | struct edma_chan *echan = to_edma_chan(chan); | 
|  | unsigned ch_req = *(unsigned *)param; | 
|  | if (ch_req == echan->ch_num) { | 
|  | /* The channel is going to be used as HW synchronized */ | 
|  | echan->hw_triggered = true; | 
|  | match = true; | 
|  | } | 
|  | } | 
|  | return match; | 
|  | } | 
|  | EXPORT_SYMBOL(edma_filter_fn); | 
|  |  | 
|  | static int edma_init(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = platform_driver_register(&edma_tptc_driver); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return platform_driver_register(&edma_driver); | 
|  | } | 
|  | subsys_initcall(edma_init); | 
|  |  | 
|  | static void __exit edma_exit(void) | 
|  | { | 
|  | platform_driver_unregister(&edma_driver); | 
|  | platform_driver_unregister(&edma_tptc_driver); | 
|  | } | 
|  | module_exit(edma_exit); | 
|  |  | 
|  | MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>"); | 
|  | MODULE_DESCRIPTION("TI EDMA DMA engine driver"); | 
|  | MODULE_LICENSE("GPL v2"); |