|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | * Glue code for AES implementation for SPE instructions (PPC) | 
|  | * | 
|  | * Based on generic implementation. The assembler module takes care | 
|  | * about the SPE registers so it can run from interrupt context. | 
|  | * | 
|  | * Copyright (c) 2015 Markus Stockhausen <stockhausen@collogia.de> | 
|  | */ | 
|  |  | 
|  | #include <crypto/aes.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/crypto.h> | 
|  | #include <asm/byteorder.h> | 
|  | #include <asm/switch_to.h> | 
|  | #include <crypto/algapi.h> | 
|  | #include <crypto/internal/skcipher.h> | 
|  | #include <crypto/xts.h> | 
|  | #include <crypto/gf128mul.h> | 
|  | #include <crypto/scatterwalk.h> | 
|  |  | 
|  | /* | 
|  | * MAX_BYTES defines the number of bytes that are allowed to be processed | 
|  | * between preempt_disable() and preempt_enable(). e500 cores can issue two | 
|  | * instructions per clock cycle using one 32/64 bit unit (SU1) and one 32 | 
|  | * bit unit (SU2). One of these can be a memory access that is executed via | 
|  | * a single load and store unit (LSU). XTS-AES-256 takes ~780 operations per | 
|  | * 16 byte block or 25 cycles per byte. Thus 768 bytes of input data | 
|  | * will need an estimated maximum of 20,000 cycles. Headroom for cache misses | 
|  | * included. Even with the low end model clocked at 667 MHz this equals to a | 
|  | * critical time window of less than 30us. The value has been chosen to | 
|  | * process a 512 byte disk block in one or a large 1400 bytes IPsec network | 
|  | * packet in two runs. | 
|  | * | 
|  | */ | 
|  | #define MAX_BYTES 768 | 
|  |  | 
|  | struct ppc_aes_ctx { | 
|  | u32 key_enc[AES_MAX_KEYLENGTH_U32]; | 
|  | u32 key_dec[AES_MAX_KEYLENGTH_U32]; | 
|  | u32 rounds; | 
|  | }; | 
|  |  | 
|  | struct ppc_xts_ctx { | 
|  | u32 key_enc[AES_MAX_KEYLENGTH_U32]; | 
|  | u32 key_dec[AES_MAX_KEYLENGTH_U32]; | 
|  | u32 key_twk[AES_MAX_KEYLENGTH_U32]; | 
|  | u32 rounds; | 
|  | }; | 
|  |  | 
|  | extern void ppc_encrypt_aes(u8 *out, const u8 *in, u32 *key_enc, u32 rounds); | 
|  | extern void ppc_decrypt_aes(u8 *out, const u8 *in, u32 *key_dec, u32 rounds); | 
|  | extern void ppc_encrypt_ecb(u8 *out, const u8 *in, u32 *key_enc, u32 rounds, | 
|  | u32 bytes); | 
|  | extern void ppc_decrypt_ecb(u8 *out, const u8 *in, u32 *key_dec, u32 rounds, | 
|  | u32 bytes); | 
|  | extern void ppc_encrypt_cbc(u8 *out, const u8 *in, u32 *key_enc, u32 rounds, | 
|  | u32 bytes, u8 *iv); | 
|  | extern void ppc_decrypt_cbc(u8 *out, const u8 *in, u32 *key_dec, u32 rounds, | 
|  | u32 bytes, u8 *iv); | 
|  | extern void ppc_crypt_ctr  (u8 *out, const u8 *in, u32 *key_enc, u32 rounds, | 
|  | u32 bytes, u8 *iv); | 
|  | extern void ppc_encrypt_xts(u8 *out, const u8 *in, u32 *key_enc, u32 rounds, | 
|  | u32 bytes, u8 *iv, u32 *key_twk); | 
|  | extern void ppc_decrypt_xts(u8 *out, const u8 *in, u32 *key_dec, u32 rounds, | 
|  | u32 bytes, u8 *iv, u32 *key_twk); | 
|  |  | 
|  | extern void ppc_expand_key_128(u32 *key_enc, const u8 *key); | 
|  | extern void ppc_expand_key_192(u32 *key_enc, const u8 *key); | 
|  | extern void ppc_expand_key_256(u32 *key_enc, const u8 *key); | 
|  |  | 
|  | extern void ppc_generate_decrypt_key(u32 *key_dec,u32 *key_enc, | 
|  | unsigned int key_len); | 
|  |  | 
|  | static void spe_begin(void) | 
|  | { | 
|  | /* disable preemption and save users SPE registers if required */ | 
|  | preempt_disable(); | 
|  | enable_kernel_spe(); | 
|  | } | 
|  |  | 
|  | static void spe_end(void) | 
|  | { | 
|  | disable_kernel_spe(); | 
|  | /* reenable preemption */ | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | static int ppc_aes_setkey(struct crypto_tfm *tfm, const u8 *in_key, | 
|  | unsigned int key_len) | 
|  | { | 
|  | struct ppc_aes_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  |  | 
|  | switch (key_len) { | 
|  | case AES_KEYSIZE_128: | 
|  | ctx->rounds = 4; | 
|  | ppc_expand_key_128(ctx->key_enc, in_key); | 
|  | break; | 
|  | case AES_KEYSIZE_192: | 
|  | ctx->rounds = 5; | 
|  | ppc_expand_key_192(ctx->key_enc, in_key); | 
|  | break; | 
|  | case AES_KEYSIZE_256: | 
|  | ctx->rounds = 6; | 
|  | ppc_expand_key_256(ctx->key_enc, in_key); | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ppc_generate_decrypt_key(ctx->key_dec, ctx->key_enc, key_len); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ppc_aes_setkey_skcipher(struct crypto_skcipher *tfm, | 
|  | const u8 *in_key, unsigned int key_len) | 
|  | { | 
|  | return ppc_aes_setkey(crypto_skcipher_tfm(tfm), in_key, key_len); | 
|  | } | 
|  |  | 
|  | static int ppc_xts_setkey(struct crypto_skcipher *tfm, const u8 *in_key, | 
|  | unsigned int key_len) | 
|  | { | 
|  | struct ppc_xts_ctx *ctx = crypto_skcipher_ctx(tfm); | 
|  | int err; | 
|  |  | 
|  | err = xts_verify_key(tfm, in_key, key_len); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | key_len >>= 1; | 
|  |  | 
|  | switch (key_len) { | 
|  | case AES_KEYSIZE_128: | 
|  | ctx->rounds = 4; | 
|  | ppc_expand_key_128(ctx->key_enc, in_key); | 
|  | ppc_expand_key_128(ctx->key_twk, in_key + AES_KEYSIZE_128); | 
|  | break; | 
|  | case AES_KEYSIZE_192: | 
|  | ctx->rounds = 5; | 
|  | ppc_expand_key_192(ctx->key_enc, in_key); | 
|  | ppc_expand_key_192(ctx->key_twk, in_key + AES_KEYSIZE_192); | 
|  | break; | 
|  | case AES_KEYSIZE_256: | 
|  | ctx->rounds = 6; | 
|  | ppc_expand_key_256(ctx->key_enc, in_key); | 
|  | ppc_expand_key_256(ctx->key_twk, in_key + AES_KEYSIZE_256); | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ppc_generate_decrypt_key(ctx->key_dec, ctx->key_enc, key_len); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void ppc_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) | 
|  | { | 
|  | struct ppc_aes_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  |  | 
|  | spe_begin(); | 
|  | ppc_encrypt_aes(out, in, ctx->key_enc, ctx->rounds); | 
|  | spe_end(); | 
|  | } | 
|  |  | 
|  | static void ppc_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) | 
|  | { | 
|  | struct ppc_aes_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  |  | 
|  | spe_begin(); | 
|  | ppc_decrypt_aes(out, in, ctx->key_dec, ctx->rounds); | 
|  | spe_end(); | 
|  | } | 
|  |  | 
|  | static int ppc_ecb_crypt(struct skcipher_request *req, bool enc) | 
|  | { | 
|  | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); | 
|  | struct ppc_aes_ctx *ctx = crypto_skcipher_ctx(tfm); | 
|  | struct skcipher_walk walk; | 
|  | unsigned int nbytes; | 
|  | int err; | 
|  |  | 
|  | err = skcipher_walk_virt(&walk, req, false); | 
|  |  | 
|  | while ((nbytes = walk.nbytes) != 0) { | 
|  | nbytes = min_t(unsigned int, nbytes, MAX_BYTES); | 
|  | nbytes = round_down(nbytes, AES_BLOCK_SIZE); | 
|  |  | 
|  | spe_begin(); | 
|  | if (enc) | 
|  | ppc_encrypt_ecb(walk.dst.virt.addr, walk.src.virt.addr, | 
|  | ctx->key_enc, ctx->rounds, nbytes); | 
|  | else | 
|  | ppc_decrypt_ecb(walk.dst.virt.addr, walk.src.virt.addr, | 
|  | ctx->key_dec, ctx->rounds, nbytes); | 
|  | spe_end(); | 
|  |  | 
|  | err = skcipher_walk_done(&walk, walk.nbytes - nbytes); | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int ppc_ecb_encrypt(struct skcipher_request *req) | 
|  | { | 
|  | return ppc_ecb_crypt(req, true); | 
|  | } | 
|  |  | 
|  | static int ppc_ecb_decrypt(struct skcipher_request *req) | 
|  | { | 
|  | return ppc_ecb_crypt(req, false); | 
|  | } | 
|  |  | 
|  | static int ppc_cbc_crypt(struct skcipher_request *req, bool enc) | 
|  | { | 
|  | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); | 
|  | struct ppc_aes_ctx *ctx = crypto_skcipher_ctx(tfm); | 
|  | struct skcipher_walk walk; | 
|  | unsigned int nbytes; | 
|  | int err; | 
|  |  | 
|  | err = skcipher_walk_virt(&walk, req, false); | 
|  |  | 
|  | while ((nbytes = walk.nbytes) != 0) { | 
|  | nbytes = min_t(unsigned int, nbytes, MAX_BYTES); | 
|  | nbytes = round_down(nbytes, AES_BLOCK_SIZE); | 
|  |  | 
|  | spe_begin(); | 
|  | if (enc) | 
|  | ppc_encrypt_cbc(walk.dst.virt.addr, walk.src.virt.addr, | 
|  | ctx->key_enc, ctx->rounds, nbytes, | 
|  | walk.iv); | 
|  | else | 
|  | ppc_decrypt_cbc(walk.dst.virt.addr, walk.src.virt.addr, | 
|  | ctx->key_dec, ctx->rounds, nbytes, | 
|  | walk.iv); | 
|  | spe_end(); | 
|  |  | 
|  | err = skcipher_walk_done(&walk, walk.nbytes - nbytes); | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int ppc_cbc_encrypt(struct skcipher_request *req) | 
|  | { | 
|  | return ppc_cbc_crypt(req, true); | 
|  | } | 
|  |  | 
|  | static int ppc_cbc_decrypt(struct skcipher_request *req) | 
|  | { | 
|  | return ppc_cbc_crypt(req, false); | 
|  | } | 
|  |  | 
|  | static int ppc_ctr_crypt(struct skcipher_request *req) | 
|  | { | 
|  | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); | 
|  | struct ppc_aes_ctx *ctx = crypto_skcipher_ctx(tfm); | 
|  | struct skcipher_walk walk; | 
|  | unsigned int nbytes; | 
|  | int err; | 
|  |  | 
|  | err = skcipher_walk_virt(&walk, req, false); | 
|  |  | 
|  | while ((nbytes = walk.nbytes) != 0) { | 
|  | nbytes = min_t(unsigned int, nbytes, MAX_BYTES); | 
|  | if (nbytes < walk.total) | 
|  | nbytes = round_down(nbytes, AES_BLOCK_SIZE); | 
|  |  | 
|  | spe_begin(); | 
|  | ppc_crypt_ctr(walk.dst.virt.addr, walk.src.virt.addr, | 
|  | ctx->key_enc, ctx->rounds, nbytes, walk.iv); | 
|  | spe_end(); | 
|  |  | 
|  | err = skcipher_walk_done(&walk, walk.nbytes - nbytes); | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int ppc_xts_crypt(struct skcipher_request *req, bool enc) | 
|  | { | 
|  | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); | 
|  | struct ppc_xts_ctx *ctx = crypto_skcipher_ctx(tfm); | 
|  | struct skcipher_walk walk; | 
|  | unsigned int nbytes; | 
|  | int err; | 
|  | u32 *twk; | 
|  |  | 
|  | err = skcipher_walk_virt(&walk, req, false); | 
|  | twk = ctx->key_twk; | 
|  |  | 
|  | while ((nbytes = walk.nbytes) != 0) { | 
|  | nbytes = min_t(unsigned int, nbytes, MAX_BYTES); | 
|  | nbytes = round_down(nbytes, AES_BLOCK_SIZE); | 
|  |  | 
|  | spe_begin(); | 
|  | if (enc) | 
|  | ppc_encrypt_xts(walk.dst.virt.addr, walk.src.virt.addr, | 
|  | ctx->key_enc, ctx->rounds, nbytes, | 
|  | walk.iv, twk); | 
|  | else | 
|  | ppc_decrypt_xts(walk.dst.virt.addr, walk.src.virt.addr, | 
|  | ctx->key_dec, ctx->rounds, nbytes, | 
|  | walk.iv, twk); | 
|  | spe_end(); | 
|  |  | 
|  | twk = NULL; | 
|  | err = skcipher_walk_done(&walk, walk.nbytes - nbytes); | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int ppc_xts_encrypt(struct skcipher_request *req) | 
|  | { | 
|  | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); | 
|  | struct ppc_xts_ctx *ctx = crypto_skcipher_ctx(tfm); | 
|  | int tail = req->cryptlen % AES_BLOCK_SIZE; | 
|  | int offset = req->cryptlen - tail - AES_BLOCK_SIZE; | 
|  | struct skcipher_request subreq; | 
|  | u8 b[2][AES_BLOCK_SIZE]; | 
|  | int err; | 
|  |  | 
|  | if (req->cryptlen < AES_BLOCK_SIZE) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (tail) { | 
|  | subreq = *req; | 
|  | skcipher_request_set_crypt(&subreq, req->src, req->dst, | 
|  | req->cryptlen - tail, req->iv); | 
|  | req = &subreq; | 
|  | } | 
|  |  | 
|  | err = ppc_xts_crypt(req, true); | 
|  | if (err || !tail) | 
|  | return err; | 
|  |  | 
|  | scatterwalk_map_and_copy(b[0], req->dst, offset, AES_BLOCK_SIZE, 0); | 
|  | memcpy(b[1], b[0], tail); | 
|  | scatterwalk_map_and_copy(b[0], req->src, offset + AES_BLOCK_SIZE, tail, 0); | 
|  |  | 
|  | spe_begin(); | 
|  | ppc_encrypt_xts(b[0], b[0], ctx->key_enc, ctx->rounds, AES_BLOCK_SIZE, | 
|  | req->iv, NULL); | 
|  | spe_end(); | 
|  |  | 
|  | scatterwalk_map_and_copy(b[0], req->dst, offset, AES_BLOCK_SIZE + tail, 1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ppc_xts_decrypt(struct skcipher_request *req) | 
|  | { | 
|  | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); | 
|  | struct ppc_xts_ctx *ctx = crypto_skcipher_ctx(tfm); | 
|  | int tail = req->cryptlen % AES_BLOCK_SIZE; | 
|  | int offset = req->cryptlen - tail - AES_BLOCK_SIZE; | 
|  | struct skcipher_request subreq; | 
|  | u8 b[3][AES_BLOCK_SIZE]; | 
|  | le128 twk; | 
|  | int err; | 
|  |  | 
|  | if (req->cryptlen < AES_BLOCK_SIZE) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (tail) { | 
|  | subreq = *req; | 
|  | skcipher_request_set_crypt(&subreq, req->src, req->dst, | 
|  | offset, req->iv); | 
|  | req = &subreq; | 
|  | } | 
|  |  | 
|  | err = ppc_xts_crypt(req, false); | 
|  | if (err || !tail) | 
|  | return err; | 
|  |  | 
|  | scatterwalk_map_and_copy(b[1], req->src, offset, AES_BLOCK_SIZE + tail, 0); | 
|  |  | 
|  | spe_begin(); | 
|  | if (!offset) | 
|  | ppc_encrypt_ecb(req->iv, req->iv, ctx->key_twk, ctx->rounds, | 
|  | AES_BLOCK_SIZE); | 
|  |  | 
|  | gf128mul_x_ble(&twk, (le128 *)req->iv); | 
|  |  | 
|  | ppc_decrypt_xts(b[1], b[1], ctx->key_dec, ctx->rounds, AES_BLOCK_SIZE, | 
|  | (u8 *)&twk, NULL); | 
|  | memcpy(b[0], b[2], tail); | 
|  | memcpy(b[0] + tail, b[1] + tail, AES_BLOCK_SIZE - tail); | 
|  | ppc_decrypt_xts(b[0], b[0], ctx->key_dec, ctx->rounds, AES_BLOCK_SIZE, | 
|  | req->iv, NULL); | 
|  | spe_end(); | 
|  |  | 
|  | scatterwalk_map_and_copy(b[0], req->dst, offset, AES_BLOCK_SIZE + tail, 1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Algorithm definitions. Disabling alignment (cra_alignmask=0) was chosen | 
|  | * because the e500 platform can handle unaligned reads/writes very efficiently. | 
|  | * This improves IPsec thoughput by another few percent. Additionally we assume | 
|  | * that AES context is always aligned to at least 8 bytes because it is created | 
|  | * with kmalloc() in the crypto infrastructure | 
|  | */ | 
|  |  | 
|  | static struct crypto_alg aes_cipher_alg = { | 
|  | .cra_name		=	"aes", | 
|  | .cra_driver_name	=	"aes-ppc-spe", | 
|  | .cra_priority		=	300, | 
|  | .cra_flags		=	CRYPTO_ALG_TYPE_CIPHER, | 
|  | .cra_blocksize		=	AES_BLOCK_SIZE, | 
|  | .cra_ctxsize		=	sizeof(struct ppc_aes_ctx), | 
|  | .cra_alignmask		=	0, | 
|  | .cra_module		=	THIS_MODULE, | 
|  | .cra_u			=	{ | 
|  | .cipher = { | 
|  | .cia_min_keysize	=	AES_MIN_KEY_SIZE, | 
|  | .cia_max_keysize	=	AES_MAX_KEY_SIZE, | 
|  | .cia_setkey		=	ppc_aes_setkey, | 
|  | .cia_encrypt		=	ppc_aes_encrypt, | 
|  | .cia_decrypt		=	ppc_aes_decrypt | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | static struct skcipher_alg aes_skcipher_algs[] = { | 
|  | { | 
|  | .base.cra_name		=	"ecb(aes)", | 
|  | .base.cra_driver_name	=	"ecb-ppc-spe", | 
|  | .base.cra_priority	=	300, | 
|  | .base.cra_blocksize	=	AES_BLOCK_SIZE, | 
|  | .base.cra_ctxsize	=	sizeof(struct ppc_aes_ctx), | 
|  | .base.cra_module	=	THIS_MODULE, | 
|  | .min_keysize		=	AES_MIN_KEY_SIZE, | 
|  | .max_keysize		=	AES_MAX_KEY_SIZE, | 
|  | .setkey			=	ppc_aes_setkey_skcipher, | 
|  | .encrypt		=	ppc_ecb_encrypt, | 
|  | .decrypt		=	ppc_ecb_decrypt, | 
|  | }, { | 
|  | .base.cra_name		=	"cbc(aes)", | 
|  | .base.cra_driver_name	=	"cbc-ppc-spe", | 
|  | .base.cra_priority	=	300, | 
|  | .base.cra_blocksize	=	AES_BLOCK_SIZE, | 
|  | .base.cra_ctxsize	=	sizeof(struct ppc_aes_ctx), | 
|  | .base.cra_module	=	THIS_MODULE, | 
|  | .min_keysize		=	AES_MIN_KEY_SIZE, | 
|  | .max_keysize		=	AES_MAX_KEY_SIZE, | 
|  | .ivsize			=	AES_BLOCK_SIZE, | 
|  | .setkey			=	ppc_aes_setkey_skcipher, | 
|  | .encrypt		=	ppc_cbc_encrypt, | 
|  | .decrypt		=	ppc_cbc_decrypt, | 
|  | }, { | 
|  | .base.cra_name		=	"ctr(aes)", | 
|  | .base.cra_driver_name	=	"ctr-ppc-spe", | 
|  | .base.cra_priority	=	300, | 
|  | .base.cra_blocksize	=	1, | 
|  | .base.cra_ctxsize	=	sizeof(struct ppc_aes_ctx), | 
|  | .base.cra_module	=	THIS_MODULE, | 
|  | .min_keysize		=	AES_MIN_KEY_SIZE, | 
|  | .max_keysize		=	AES_MAX_KEY_SIZE, | 
|  | .ivsize			=	AES_BLOCK_SIZE, | 
|  | .setkey			=	ppc_aes_setkey_skcipher, | 
|  | .encrypt		=	ppc_ctr_crypt, | 
|  | .decrypt		=	ppc_ctr_crypt, | 
|  | .chunksize		=	AES_BLOCK_SIZE, | 
|  | }, { | 
|  | .base.cra_name		=	"xts(aes)", | 
|  | .base.cra_driver_name	=	"xts-ppc-spe", | 
|  | .base.cra_priority	=	300, | 
|  | .base.cra_blocksize	=	AES_BLOCK_SIZE, | 
|  | .base.cra_ctxsize	=	sizeof(struct ppc_xts_ctx), | 
|  | .base.cra_module	=	THIS_MODULE, | 
|  | .min_keysize		=	AES_MIN_KEY_SIZE * 2, | 
|  | .max_keysize		=	AES_MAX_KEY_SIZE * 2, | 
|  | .ivsize			=	AES_BLOCK_SIZE, | 
|  | .setkey			=	ppc_xts_setkey, | 
|  | .encrypt		=	ppc_xts_encrypt, | 
|  | .decrypt		=	ppc_xts_decrypt, | 
|  | } | 
|  | }; | 
|  |  | 
|  | static int __init ppc_aes_mod_init(void) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = crypto_register_alg(&aes_cipher_alg); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = crypto_register_skciphers(aes_skcipher_algs, | 
|  | ARRAY_SIZE(aes_skcipher_algs)); | 
|  | if (err) | 
|  | crypto_unregister_alg(&aes_cipher_alg); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void __exit ppc_aes_mod_fini(void) | 
|  | { | 
|  | crypto_unregister_alg(&aes_cipher_alg); | 
|  | crypto_unregister_skciphers(aes_skcipher_algs, | 
|  | ARRAY_SIZE(aes_skcipher_algs)); | 
|  | } | 
|  |  | 
|  | module_init(ppc_aes_mod_init); | 
|  | module_exit(ppc_aes_mod_fini); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS, SPE optimized"); | 
|  |  | 
|  | MODULE_ALIAS_CRYPTO("aes"); | 
|  | MODULE_ALIAS_CRYPTO("ecb(aes)"); | 
|  | MODULE_ALIAS_CRYPTO("cbc(aes)"); | 
|  | MODULE_ALIAS_CRYPTO("ctr(aes)"); | 
|  | MODULE_ALIAS_CRYPTO("xts(aes)"); | 
|  | MODULE_ALIAS_CRYPTO("aes-ppc-spe"); |