| // SPDX-License-Identifier: GPL-2.0-only | 
 | #include <linux/kernel.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/err.h> | 
 | #include <linux/spinlock.h> | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/memremap.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/rmap.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/swapops.h> | 
 | #include <linux/secretmem.h> | 
 |  | 
 | #include <linux/sched/signal.h> | 
 | #include <linux/rwsem.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/migrate.h> | 
 | #include <linux/mm_inline.h> | 
 | #include <linux/sched/mm.h> | 
 | #include <linux/shmem_fs.h> | 
 |  | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/tlbflush.h> | 
 |  | 
 | #include "internal.h" | 
 |  | 
 | struct follow_page_context { | 
 | 	struct dev_pagemap *pgmap; | 
 | 	unsigned int page_mask; | 
 | }; | 
 |  | 
 | static inline void sanity_check_pinned_pages(struct page **pages, | 
 | 					     unsigned long npages) | 
 | { | 
 | 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * We only pin anonymous pages if they are exclusive. Once pinned, we | 
 | 	 * can no longer turn them possibly shared and PageAnonExclusive() will | 
 | 	 * stick around until the page is freed. | 
 | 	 * | 
 | 	 * We'd like to verify that our pinned anonymous pages are still mapped | 
 | 	 * exclusively. The issue with anon THP is that we don't know how | 
 | 	 * they are/were mapped when pinning them. However, for anon | 
 | 	 * THP we can assume that either the given page (PTE-mapped THP) or | 
 | 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If | 
 | 	 * neither is the case, there is certainly something wrong. | 
 | 	 */ | 
 | 	for (; npages; npages--, pages++) { | 
 | 		struct page *page = *pages; | 
 | 		struct folio *folio = page_folio(page); | 
 |  | 
 | 		if (is_zero_page(page) || | 
 | 		    !folio_test_anon(folio)) | 
 | 			continue; | 
 | 		if (!folio_test_large(folio) || folio_test_hugetlb(folio)) | 
 | 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page); | 
 | 		else | 
 | 			/* Either a PTE-mapped or a PMD-mapped THP. */ | 
 | 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) && | 
 | 				       !PageAnonExclusive(page), page); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Return the folio with ref appropriately incremented, | 
 |  * or NULL if that failed. | 
 |  */ | 
 | static inline struct folio *try_get_folio(struct page *page, int refs) | 
 | { | 
 | 	struct folio *folio; | 
 |  | 
 | retry: | 
 | 	folio = page_folio(page); | 
 | 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) | 
 | 		return NULL; | 
 | 	if (unlikely(!folio_ref_try_add_rcu(folio, refs))) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * At this point we have a stable reference to the folio; but it | 
 | 	 * could be that between calling page_folio() and the refcount | 
 | 	 * increment, the folio was split, in which case we'd end up | 
 | 	 * holding a reference on a folio that has nothing to do with the page | 
 | 	 * we were given anymore. | 
 | 	 * So now that the folio is stable, recheck that the page still | 
 | 	 * belongs to this folio. | 
 | 	 */ | 
 | 	if (unlikely(page_folio(page) != folio)) { | 
 | 		if (!put_devmap_managed_page_refs(&folio->page, refs)) | 
 | 			folio_put_refs(folio, refs); | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	return folio; | 
 | } | 
 |  | 
 | /** | 
 |  * try_grab_folio() - Attempt to get or pin a folio. | 
 |  * @page:  pointer to page to be grabbed | 
 |  * @refs:  the value to (effectively) add to the folio's refcount | 
 |  * @flags: gup flags: these are the FOLL_* flag values. | 
 |  * | 
 |  * "grab" names in this file mean, "look at flags to decide whether to use | 
 |  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. | 
 |  * | 
 |  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the | 
 |  * same time. (That's true throughout the get_user_pages*() and | 
 |  * pin_user_pages*() APIs.) Cases: | 
 |  * | 
 |  *    FOLL_GET: folio's refcount will be incremented by @refs. | 
 |  * | 
 |  *    FOLL_PIN on large folios: folio's refcount will be incremented by | 
 |  *    @refs, and its pincount will be incremented by @refs. | 
 |  * | 
 |  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by | 
 |  *    @refs * GUP_PIN_COUNTING_BIAS. | 
 |  * | 
 |  * Return: The folio containing @page (with refcount appropriately | 
 |  * incremented) for success, or NULL upon failure. If neither FOLL_GET | 
 |  * nor FOLL_PIN was set, that's considered failure, and furthermore, | 
 |  * a likely bug in the caller, so a warning is also emitted. | 
 |  */ | 
 | struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags) | 
 | { | 
 | 	struct folio *folio; | 
 |  | 
 | 	if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0)) | 
 | 		return NULL; | 
 |  | 
 | 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) | 
 | 		return NULL; | 
 |  | 
 | 	if (flags & FOLL_GET) | 
 | 		return try_get_folio(page, refs); | 
 |  | 
 | 	/* FOLL_PIN is set */ | 
 |  | 
 | 	/* | 
 | 	 * Don't take a pin on the zero page - it's not going anywhere | 
 | 	 * and it is used in a *lot* of places. | 
 | 	 */ | 
 | 	if (is_zero_page(page)) | 
 | 		return page_folio(page); | 
 |  | 
 | 	folio = try_get_folio(page, refs); | 
 | 	if (!folio) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a | 
 | 	 * right zone, so fail and let the caller fall back to the slow | 
 | 	 * path. | 
 | 	 */ | 
 | 	if (unlikely((flags & FOLL_LONGTERM) && | 
 | 		     !folio_is_longterm_pinnable(folio))) { | 
 | 		if (!put_devmap_managed_page_refs(&folio->page, refs)) | 
 | 			folio_put_refs(folio, refs); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * When pinning a large folio, use an exact count to track it. | 
 | 	 * | 
 | 	 * However, be sure to *also* increment the normal folio | 
 | 	 * refcount field at least once, so that the folio really | 
 | 	 * is pinned.  That's why the refcount from the earlier | 
 | 	 * try_get_folio() is left intact. | 
 | 	 */ | 
 | 	if (folio_test_large(folio)) | 
 | 		atomic_add(refs, &folio->_pincount); | 
 | 	else | 
 | 		folio_ref_add(folio, | 
 | 				refs * (GUP_PIN_COUNTING_BIAS - 1)); | 
 | 	/* | 
 | 	 * Adjust the pincount before re-checking the PTE for changes. | 
 | 	 * This is essentially a smp_mb() and is paired with a memory | 
 | 	 * barrier in page_try_share_anon_rmap(). | 
 | 	 */ | 
 | 	smp_mb__after_atomic(); | 
 |  | 
 | 	node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); | 
 |  | 
 | 	return folio; | 
 | } | 
 |  | 
 | static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) | 
 | { | 
 | 	if (flags & FOLL_PIN) { | 
 | 		if (is_zero_folio(folio)) | 
 | 			return; | 
 | 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); | 
 | 		if (folio_test_large(folio)) | 
 | 			atomic_sub(refs, &folio->_pincount); | 
 | 		else | 
 | 			refs *= GUP_PIN_COUNTING_BIAS; | 
 | 	} | 
 |  | 
 | 	if (!put_devmap_managed_page_refs(&folio->page, refs)) | 
 | 		folio_put_refs(folio, refs); | 
 | } | 
 |  | 
 | /** | 
 |  * try_grab_page() - elevate a page's refcount by a flag-dependent amount | 
 |  * @page:    pointer to page to be grabbed | 
 |  * @flags:   gup flags: these are the FOLL_* flag values. | 
 |  * | 
 |  * This might not do anything at all, depending on the flags argument. | 
 |  * | 
 |  * "grab" names in this file mean, "look at flags to decide whether to use | 
 |  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. | 
 |  * | 
 |  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same | 
 |  * time. Cases: please see the try_grab_folio() documentation, with | 
 |  * "refs=1". | 
 |  * | 
 |  * Return: 0 for success, or if no action was required (if neither FOLL_PIN | 
 |  * nor FOLL_GET was set, nothing is done). A negative error code for failure: | 
 |  * | 
 |  *   -ENOMEM		FOLL_GET or FOLL_PIN was set, but the page could not | 
 |  *			be grabbed. | 
 |  */ | 
 | int __must_check try_grab_page(struct page *page, unsigned int flags) | 
 | { | 
 | 	struct folio *folio = page_folio(page); | 
 |  | 
 | 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) | 
 | 		return -EREMOTEIO; | 
 |  | 
 | 	if (flags & FOLL_GET) | 
 | 		folio_ref_inc(folio); | 
 | 	else if (flags & FOLL_PIN) { | 
 | 		/* | 
 | 		 * Don't take a pin on the zero page - it's not going anywhere | 
 | 		 * and it is used in a *lot* of places. | 
 | 		 */ | 
 | 		if (is_zero_page(page)) | 
 | 			return 0; | 
 |  | 
 | 		/* | 
 | 		 * Similar to try_grab_folio(): be sure to *also* | 
 | 		 * increment the normal page refcount field at least once, | 
 | 		 * so that the page really is pinned. | 
 | 		 */ | 
 | 		if (folio_test_large(folio)) { | 
 | 			folio_ref_add(folio, 1); | 
 | 			atomic_add(1, &folio->_pincount); | 
 | 		} else { | 
 | 			folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); | 
 | 		} | 
 |  | 
 | 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * unpin_user_page() - release a dma-pinned page | 
 |  * @page:            pointer to page to be released | 
 |  * | 
 |  * Pages that were pinned via pin_user_pages*() must be released via either | 
 |  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so | 
 |  * that such pages can be separately tracked and uniquely handled. In | 
 |  * particular, interactions with RDMA and filesystems need special handling. | 
 |  */ | 
 | void unpin_user_page(struct page *page) | 
 | { | 
 | 	sanity_check_pinned_pages(&page, 1); | 
 | 	gup_put_folio(page_folio(page), 1, FOLL_PIN); | 
 | } | 
 | EXPORT_SYMBOL(unpin_user_page); | 
 |  | 
 | /** | 
 |  * folio_add_pin - Try to get an additional pin on a pinned folio | 
 |  * @folio: The folio to be pinned | 
 |  * | 
 |  * Get an additional pin on a folio we already have a pin on.  Makes no change | 
 |  * if the folio is a zero_page. | 
 |  */ | 
 | void folio_add_pin(struct folio *folio) | 
 | { | 
 | 	if (is_zero_folio(folio)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Similar to try_grab_folio(): be sure to *also* increment the normal | 
 | 	 * page refcount field at least once, so that the page really is | 
 | 	 * pinned. | 
 | 	 */ | 
 | 	if (folio_test_large(folio)) { | 
 | 		WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1); | 
 | 		folio_ref_inc(folio); | 
 | 		atomic_inc(&folio->_pincount); | 
 | 	} else { | 
 | 		WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS); | 
 | 		folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); | 
 | 	} | 
 | } | 
 |  | 
 | static inline struct folio *gup_folio_range_next(struct page *start, | 
 | 		unsigned long npages, unsigned long i, unsigned int *ntails) | 
 | { | 
 | 	struct page *next = nth_page(start, i); | 
 | 	struct folio *folio = page_folio(next); | 
 | 	unsigned int nr = 1; | 
 |  | 
 | 	if (folio_test_large(folio)) | 
 | 		nr = min_t(unsigned int, npages - i, | 
 | 			   folio_nr_pages(folio) - folio_page_idx(folio, next)); | 
 |  | 
 | 	*ntails = nr; | 
 | 	return folio; | 
 | } | 
 |  | 
 | static inline struct folio *gup_folio_next(struct page **list, | 
 | 		unsigned long npages, unsigned long i, unsigned int *ntails) | 
 | { | 
 | 	struct folio *folio = page_folio(list[i]); | 
 | 	unsigned int nr; | 
 |  | 
 | 	for (nr = i + 1; nr < npages; nr++) { | 
 | 		if (page_folio(list[nr]) != folio) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	*ntails = nr - i; | 
 | 	return folio; | 
 | } | 
 |  | 
 | /** | 
 |  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages | 
 |  * @pages:  array of pages to be maybe marked dirty, and definitely released. | 
 |  * @npages: number of pages in the @pages array. | 
 |  * @make_dirty: whether to mark the pages dirty | 
 |  * | 
 |  * "gup-pinned page" refers to a page that has had one of the get_user_pages() | 
 |  * variants called on that page. | 
 |  * | 
 |  * For each page in the @pages array, make that page (or its head page, if a | 
 |  * compound page) dirty, if @make_dirty is true, and if the page was previously | 
 |  * listed as clean. In any case, releases all pages using unpin_user_page(), | 
 |  * possibly via unpin_user_pages(), for the non-dirty case. | 
 |  * | 
 |  * Please see the unpin_user_page() documentation for details. | 
 |  * | 
 |  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is | 
 |  * required, then the caller should a) verify that this is really correct, | 
 |  * because _lock() is usually required, and b) hand code it: | 
 |  * set_page_dirty_lock(), unpin_user_page(). | 
 |  * | 
 |  */ | 
 | void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, | 
 | 				 bool make_dirty) | 
 | { | 
 | 	unsigned long i; | 
 | 	struct folio *folio; | 
 | 	unsigned int nr; | 
 |  | 
 | 	if (!make_dirty) { | 
 | 		unpin_user_pages(pages, npages); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	sanity_check_pinned_pages(pages, npages); | 
 | 	for (i = 0; i < npages; i += nr) { | 
 | 		folio = gup_folio_next(pages, npages, i, &nr); | 
 | 		/* | 
 | 		 * Checking PageDirty at this point may race with | 
 | 		 * clear_page_dirty_for_io(), but that's OK. Two key | 
 | 		 * cases: | 
 | 		 * | 
 | 		 * 1) This code sees the page as already dirty, so it | 
 | 		 * skips the call to set_page_dirty(). That could happen | 
 | 		 * because clear_page_dirty_for_io() called | 
 | 		 * page_mkclean(), followed by set_page_dirty(). | 
 | 		 * However, now the page is going to get written back, | 
 | 		 * which meets the original intention of setting it | 
 | 		 * dirty, so all is well: clear_page_dirty_for_io() goes | 
 | 		 * on to call TestClearPageDirty(), and write the page | 
 | 		 * back. | 
 | 		 * | 
 | 		 * 2) This code sees the page as clean, so it calls | 
 | 		 * set_page_dirty(). The page stays dirty, despite being | 
 | 		 * written back, so it gets written back again in the | 
 | 		 * next writeback cycle. This is harmless. | 
 | 		 */ | 
 | 		if (!folio_test_dirty(folio)) { | 
 | 			folio_lock(folio); | 
 | 			folio_mark_dirty(folio); | 
 | 			folio_unlock(folio); | 
 | 		} | 
 | 		gup_put_folio(folio, nr, FOLL_PIN); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(unpin_user_pages_dirty_lock); | 
 |  | 
 | /** | 
 |  * unpin_user_page_range_dirty_lock() - release and optionally dirty | 
 |  * gup-pinned page range | 
 |  * | 
 |  * @page:  the starting page of a range maybe marked dirty, and definitely released. | 
 |  * @npages: number of consecutive pages to release. | 
 |  * @make_dirty: whether to mark the pages dirty | 
 |  * | 
 |  * "gup-pinned page range" refers to a range of pages that has had one of the | 
 |  * pin_user_pages() variants called on that page. | 
 |  * | 
 |  * For the page ranges defined by [page .. page+npages], make that range (or | 
 |  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the | 
 |  * page range was previously listed as clean. | 
 |  * | 
 |  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is | 
 |  * required, then the caller should a) verify that this is really correct, | 
 |  * because _lock() is usually required, and b) hand code it: | 
 |  * set_page_dirty_lock(), unpin_user_page(). | 
 |  * | 
 |  */ | 
 | void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, | 
 | 				      bool make_dirty) | 
 | { | 
 | 	unsigned long i; | 
 | 	struct folio *folio; | 
 | 	unsigned int nr; | 
 |  | 
 | 	for (i = 0; i < npages; i += nr) { | 
 | 		folio = gup_folio_range_next(page, npages, i, &nr); | 
 | 		if (make_dirty && !folio_test_dirty(folio)) { | 
 | 			folio_lock(folio); | 
 | 			folio_mark_dirty(folio); | 
 | 			folio_unlock(folio); | 
 | 		} | 
 | 		gup_put_folio(folio, nr, FOLL_PIN); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); | 
 |  | 
 | static void unpin_user_pages_lockless(struct page **pages, unsigned long npages) | 
 | { | 
 | 	unsigned long i; | 
 | 	struct folio *folio; | 
 | 	unsigned int nr; | 
 |  | 
 | 	/* | 
 | 	 * Don't perform any sanity checks because we might have raced with | 
 | 	 * fork() and some anonymous pages might now actually be shared -- | 
 | 	 * which is why we're unpinning after all. | 
 | 	 */ | 
 | 	for (i = 0; i < npages; i += nr) { | 
 | 		folio = gup_folio_next(pages, npages, i, &nr); | 
 | 		gup_put_folio(folio, nr, FOLL_PIN); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * unpin_user_pages() - release an array of gup-pinned pages. | 
 |  * @pages:  array of pages to be marked dirty and released. | 
 |  * @npages: number of pages in the @pages array. | 
 |  * | 
 |  * For each page in the @pages array, release the page using unpin_user_page(). | 
 |  * | 
 |  * Please see the unpin_user_page() documentation for details. | 
 |  */ | 
 | void unpin_user_pages(struct page **pages, unsigned long npages) | 
 | { | 
 | 	unsigned long i; | 
 | 	struct folio *folio; | 
 | 	unsigned int nr; | 
 |  | 
 | 	/* | 
 | 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by | 
 | 	 * leaving them pinned), but probably not. More likely, gup/pup returned | 
 | 	 * a hard -ERRNO error to the caller, who erroneously passed it here. | 
 | 	 */ | 
 | 	if (WARN_ON(IS_ERR_VALUE(npages))) | 
 | 		return; | 
 |  | 
 | 	sanity_check_pinned_pages(pages, npages); | 
 | 	for (i = 0; i < npages; i += nr) { | 
 | 		folio = gup_folio_next(pages, npages, i, &nr); | 
 | 		gup_put_folio(folio, nr, FOLL_PIN); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(unpin_user_pages); | 
 |  | 
 | /* | 
 |  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's | 
 |  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write | 
 |  * cache bouncing on large SMP machines for concurrent pinned gups. | 
 |  */ | 
 | static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) | 
 | { | 
 | 	if (!test_bit(MMF_HAS_PINNED, mm_flags)) | 
 | 		set_bit(MMF_HAS_PINNED, mm_flags); | 
 | } | 
 |  | 
 | #ifdef CONFIG_MMU | 
 | static struct page *no_page_table(struct vm_area_struct *vma, | 
 | 		unsigned int flags) | 
 | { | 
 | 	/* | 
 | 	 * When core dumping an enormous anonymous area that nobody | 
 | 	 * has touched so far, we don't want to allocate unnecessary pages or | 
 | 	 * page tables.  Return error instead of NULL to skip handle_mm_fault, | 
 | 	 * then get_dump_page() will return NULL to leave a hole in the dump. | 
 | 	 * But we can only make this optimization where a hole would surely | 
 | 	 * be zero-filled if handle_mm_fault() actually did handle it. | 
 | 	 */ | 
 | 	if ((flags & FOLL_DUMP) && | 
 | 			(vma_is_anonymous(vma) || !vma->vm_ops->fault)) | 
 | 		return ERR_PTR(-EFAULT); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, | 
 | 		pte_t *pte, unsigned int flags) | 
 | { | 
 | 	if (flags & FOLL_TOUCH) { | 
 | 		pte_t orig_entry = ptep_get(pte); | 
 | 		pte_t entry = orig_entry; | 
 |  | 
 | 		if (flags & FOLL_WRITE) | 
 | 			entry = pte_mkdirty(entry); | 
 | 		entry = pte_mkyoung(entry); | 
 |  | 
 | 		if (!pte_same(orig_entry, entry)) { | 
 | 			set_pte_at(vma->vm_mm, address, pte, entry); | 
 | 			update_mmu_cache(vma, address, pte); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Proper page table entry exists, but no corresponding struct page */ | 
 | 	return -EEXIST; | 
 | } | 
 |  | 
 | /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */ | 
 | static inline bool can_follow_write_pte(pte_t pte, struct page *page, | 
 | 					struct vm_area_struct *vma, | 
 | 					unsigned int flags) | 
 | { | 
 | 	/* If the pte is writable, we can write to the page. */ | 
 | 	if (pte_write(pte)) | 
 | 		return true; | 
 |  | 
 | 	/* Maybe FOLL_FORCE is set to override it? */ | 
 | 	if (!(flags & FOLL_FORCE)) | 
 | 		return false; | 
 |  | 
 | 	/* But FOLL_FORCE has no effect on shared mappings */ | 
 | 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) | 
 | 		return false; | 
 |  | 
 | 	/* ... or read-only private ones */ | 
 | 	if (!(vma->vm_flags & VM_MAYWRITE)) | 
 | 		return false; | 
 |  | 
 | 	/* ... or already writable ones that just need to take a write fault */ | 
 | 	if (vma->vm_flags & VM_WRITE) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * See can_change_pte_writable(): we broke COW and could map the page | 
 | 	 * writable if we have an exclusive anonymous page ... | 
 | 	 */ | 
 | 	if (!page || !PageAnon(page) || !PageAnonExclusive(page)) | 
 | 		return false; | 
 |  | 
 | 	/* ... and a write-fault isn't required for other reasons. */ | 
 | 	if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte)) | 
 | 		return false; | 
 | 	return !userfaultfd_pte_wp(vma, pte); | 
 | } | 
 |  | 
 | static struct page *follow_page_pte(struct vm_area_struct *vma, | 
 | 		unsigned long address, pmd_t *pmd, unsigned int flags, | 
 | 		struct dev_pagemap **pgmap) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	struct page *page; | 
 | 	spinlock_t *ptl; | 
 | 	pte_t *ptep, pte; | 
 | 	int ret; | 
 |  | 
 | 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */ | 
 | 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == | 
 | 			 (FOLL_PIN | FOLL_GET))) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl); | 
 | 	if (!ptep) | 
 | 		return no_page_table(vma, flags); | 
 | 	pte = ptep_get(ptep); | 
 | 	if (!pte_present(pte)) | 
 | 		goto no_page; | 
 | 	if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags)) | 
 | 		goto no_page; | 
 |  | 
 | 	page = vm_normal_page(vma, address, pte); | 
 |  | 
 | 	/* | 
 | 	 * We only care about anon pages in can_follow_write_pte() and don't | 
 | 	 * have to worry about pte_devmap() because they are never anon. | 
 | 	 */ | 
 | 	if ((flags & FOLL_WRITE) && | 
 | 	    !can_follow_write_pte(pte, page, vma, flags)) { | 
 | 		page = NULL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { | 
 | 		/* | 
 | 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN | 
 | 		 * case since they are only valid while holding the pgmap | 
 | 		 * reference. | 
 | 		 */ | 
 | 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); | 
 | 		if (*pgmap) | 
 | 			page = pte_page(pte); | 
 | 		else | 
 | 			goto no_page; | 
 | 	} else if (unlikely(!page)) { | 
 | 		if (flags & FOLL_DUMP) { | 
 | 			/* Avoid special (like zero) pages in core dumps */ | 
 | 			page = ERR_PTR(-EFAULT); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		if (is_zero_pfn(pte_pfn(pte))) { | 
 | 			page = pte_page(pte); | 
 | 		} else { | 
 | 			ret = follow_pfn_pte(vma, address, ptep, flags); | 
 | 			page = ERR_PTR(ret); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) { | 
 | 		page = ERR_PTR(-EMLINK); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && | 
 | 		       !PageAnonExclusive(page), page); | 
 |  | 
 | 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ | 
 | 	ret = try_grab_page(page, flags); | 
 | 	if (unlikely(ret)) { | 
 | 		page = ERR_PTR(ret); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We need to make the page accessible if and only if we are going | 
 | 	 * to access its content (the FOLL_PIN case).  Please see | 
 | 	 * Documentation/core-api/pin_user_pages.rst for details. | 
 | 	 */ | 
 | 	if (flags & FOLL_PIN) { | 
 | 		ret = arch_make_page_accessible(page); | 
 | 		if (ret) { | 
 | 			unpin_user_page(page); | 
 | 			page = ERR_PTR(ret); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 | 	if (flags & FOLL_TOUCH) { | 
 | 		if ((flags & FOLL_WRITE) && | 
 | 		    !pte_dirty(pte) && !PageDirty(page)) | 
 | 			set_page_dirty(page); | 
 | 		/* | 
 | 		 * pte_mkyoung() would be more correct here, but atomic care | 
 | 		 * is needed to avoid losing the dirty bit: it is easier to use | 
 | 		 * mark_page_accessed(). | 
 | 		 */ | 
 | 		mark_page_accessed(page); | 
 | 	} | 
 | out: | 
 | 	pte_unmap_unlock(ptep, ptl); | 
 | 	return page; | 
 | no_page: | 
 | 	pte_unmap_unlock(ptep, ptl); | 
 | 	if (!pte_none(pte)) | 
 | 		return NULL; | 
 | 	return no_page_table(vma, flags); | 
 | } | 
 |  | 
 | static struct page *follow_pmd_mask(struct vm_area_struct *vma, | 
 | 				    unsigned long address, pud_t *pudp, | 
 | 				    unsigned int flags, | 
 | 				    struct follow_page_context *ctx) | 
 | { | 
 | 	pmd_t *pmd, pmdval; | 
 | 	spinlock_t *ptl; | 
 | 	struct page *page; | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 |  | 
 | 	pmd = pmd_offset(pudp, address); | 
 | 	pmdval = pmdp_get_lockless(pmd); | 
 | 	if (pmd_none(pmdval)) | 
 | 		return no_page_table(vma, flags); | 
 | 	if (!pmd_present(pmdval)) | 
 | 		return no_page_table(vma, flags); | 
 | 	if (pmd_devmap(pmdval)) { | 
 | 		ptl = pmd_lock(mm, pmd); | 
 | 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); | 
 | 		spin_unlock(ptl); | 
 | 		if (page) | 
 | 			return page; | 
 | 	} | 
 | 	if (likely(!pmd_trans_huge(pmdval))) | 
 | 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); | 
 |  | 
 | 	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags)) | 
 | 		return no_page_table(vma, flags); | 
 |  | 
 | 	ptl = pmd_lock(mm, pmd); | 
 | 	if (unlikely(!pmd_present(*pmd))) { | 
 | 		spin_unlock(ptl); | 
 | 		return no_page_table(vma, flags); | 
 | 	} | 
 | 	if (unlikely(!pmd_trans_huge(*pmd))) { | 
 | 		spin_unlock(ptl); | 
 | 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); | 
 | 	} | 
 | 	if (flags & FOLL_SPLIT_PMD) { | 
 | 		spin_unlock(ptl); | 
 | 		split_huge_pmd(vma, pmd, address); | 
 | 		/* If pmd was left empty, stuff a page table in there quickly */ | 
 | 		return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) : | 
 | 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); | 
 | 	} | 
 | 	page = follow_trans_huge_pmd(vma, address, pmd, flags); | 
 | 	spin_unlock(ptl); | 
 | 	ctx->page_mask = HPAGE_PMD_NR - 1; | 
 | 	return page; | 
 | } | 
 |  | 
 | static struct page *follow_pud_mask(struct vm_area_struct *vma, | 
 | 				    unsigned long address, p4d_t *p4dp, | 
 | 				    unsigned int flags, | 
 | 				    struct follow_page_context *ctx) | 
 | { | 
 | 	pud_t *pud; | 
 | 	spinlock_t *ptl; | 
 | 	struct page *page; | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 |  | 
 | 	pud = pud_offset(p4dp, address); | 
 | 	if (pud_none(*pud)) | 
 | 		return no_page_table(vma, flags); | 
 | 	if (pud_devmap(*pud)) { | 
 | 		ptl = pud_lock(mm, pud); | 
 | 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); | 
 | 		spin_unlock(ptl); | 
 | 		if (page) | 
 | 			return page; | 
 | 	} | 
 | 	if (unlikely(pud_bad(*pud))) | 
 | 		return no_page_table(vma, flags); | 
 |  | 
 | 	return follow_pmd_mask(vma, address, pud, flags, ctx); | 
 | } | 
 |  | 
 | static struct page *follow_p4d_mask(struct vm_area_struct *vma, | 
 | 				    unsigned long address, pgd_t *pgdp, | 
 | 				    unsigned int flags, | 
 | 				    struct follow_page_context *ctx) | 
 | { | 
 | 	p4d_t *p4d; | 
 |  | 
 | 	p4d = p4d_offset(pgdp, address); | 
 | 	if (p4d_none(*p4d)) | 
 | 		return no_page_table(vma, flags); | 
 | 	BUILD_BUG_ON(p4d_huge(*p4d)); | 
 | 	if (unlikely(p4d_bad(*p4d))) | 
 | 		return no_page_table(vma, flags); | 
 |  | 
 | 	return follow_pud_mask(vma, address, p4d, flags, ctx); | 
 | } | 
 |  | 
 | /** | 
 |  * follow_page_mask - look up a page descriptor from a user-virtual address | 
 |  * @vma: vm_area_struct mapping @address | 
 |  * @address: virtual address to look up | 
 |  * @flags: flags modifying lookup behaviour | 
 |  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a | 
 |  *       pointer to output page_mask | 
 |  * | 
 |  * @flags can have FOLL_ flags set, defined in <linux/mm.h> | 
 |  * | 
 |  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches | 
 |  * the device's dev_pagemap metadata to avoid repeating expensive lookups. | 
 |  * | 
 |  * When getting an anonymous page and the caller has to trigger unsharing | 
 |  * of a shared anonymous page first, -EMLINK is returned. The caller should | 
 |  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only | 
 |  * relevant with FOLL_PIN and !FOLL_WRITE. | 
 |  * | 
 |  * On output, the @ctx->page_mask is set according to the size of the page. | 
 |  * | 
 |  * Return: the mapped (struct page *), %NULL if no mapping exists, or | 
 |  * an error pointer if there is a mapping to something not represented | 
 |  * by a page descriptor (see also vm_normal_page()). | 
 |  */ | 
 | static struct page *follow_page_mask(struct vm_area_struct *vma, | 
 | 			      unsigned long address, unsigned int flags, | 
 | 			      struct follow_page_context *ctx) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 |  | 
 | 	ctx->page_mask = 0; | 
 |  | 
 | 	/* | 
 | 	 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use | 
 | 	 * special hugetlb page table walking code.  This eliminates the | 
 | 	 * need to check for hugetlb entries in the general walking code. | 
 | 	 */ | 
 | 	if (is_vm_hugetlb_page(vma)) | 
 | 		return hugetlb_follow_page_mask(vma, address, flags, | 
 | 						&ctx->page_mask); | 
 |  | 
 | 	pgd = pgd_offset(mm, address); | 
 |  | 
 | 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | 
 | 		return no_page_table(vma, flags); | 
 |  | 
 | 	return follow_p4d_mask(vma, address, pgd, flags, ctx); | 
 | } | 
 |  | 
 | struct page *follow_page(struct vm_area_struct *vma, unsigned long address, | 
 | 			 unsigned int foll_flags) | 
 | { | 
 | 	struct follow_page_context ctx = { NULL }; | 
 | 	struct page *page; | 
 |  | 
 | 	if (vma_is_secretmem(vma)) | 
 | 		return NULL; | 
 |  | 
 | 	if (WARN_ON_ONCE(foll_flags & FOLL_PIN)) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * We never set FOLL_HONOR_NUMA_FAULT because callers don't expect | 
 | 	 * to fail on PROT_NONE-mapped pages. | 
 | 	 */ | 
 | 	page = follow_page_mask(vma, address, foll_flags, &ctx); | 
 | 	if (ctx.pgmap) | 
 | 		put_dev_pagemap(ctx.pgmap); | 
 | 	return page; | 
 | } | 
 |  | 
 | static int get_gate_page(struct mm_struct *mm, unsigned long address, | 
 | 		unsigned int gup_flags, struct vm_area_struct **vma, | 
 | 		struct page **page) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	p4d_t *p4d; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 | 	pte_t *pte; | 
 | 	pte_t entry; | 
 | 	int ret = -EFAULT; | 
 |  | 
 | 	/* user gate pages are read-only */ | 
 | 	if (gup_flags & FOLL_WRITE) | 
 | 		return -EFAULT; | 
 | 	if (address > TASK_SIZE) | 
 | 		pgd = pgd_offset_k(address); | 
 | 	else | 
 | 		pgd = pgd_offset_gate(mm, address); | 
 | 	if (pgd_none(*pgd)) | 
 | 		return -EFAULT; | 
 | 	p4d = p4d_offset(pgd, address); | 
 | 	if (p4d_none(*p4d)) | 
 | 		return -EFAULT; | 
 | 	pud = pud_offset(p4d, address); | 
 | 	if (pud_none(*pud)) | 
 | 		return -EFAULT; | 
 | 	pmd = pmd_offset(pud, address); | 
 | 	if (!pmd_present(*pmd)) | 
 | 		return -EFAULT; | 
 | 	pte = pte_offset_map(pmd, address); | 
 | 	if (!pte) | 
 | 		return -EFAULT; | 
 | 	entry = ptep_get(pte); | 
 | 	if (pte_none(entry)) | 
 | 		goto unmap; | 
 | 	*vma = get_gate_vma(mm); | 
 | 	if (!page) | 
 | 		goto out; | 
 | 	*page = vm_normal_page(*vma, address, entry); | 
 | 	if (!*page) { | 
 | 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry))) | 
 | 			goto unmap; | 
 | 		*page = pte_page(entry); | 
 | 	} | 
 | 	ret = try_grab_page(*page, gup_flags); | 
 | 	if (unlikely(ret)) | 
 | 		goto unmap; | 
 | out: | 
 | 	ret = 0; | 
 | unmap: | 
 | 	pte_unmap(pte); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * mmap_lock must be held on entry.  If @flags has FOLL_UNLOCKABLE but not | 
 |  * FOLL_NOWAIT, the mmap_lock may be released.  If it is, *@locked will be set | 
 |  * to 0 and -EBUSY returned. | 
 |  */ | 
 | static int faultin_page(struct vm_area_struct *vma, | 
 | 		unsigned long address, unsigned int *flags, bool unshare, | 
 | 		int *locked) | 
 | { | 
 | 	unsigned int fault_flags = 0; | 
 | 	vm_fault_t ret; | 
 |  | 
 | 	if (*flags & FOLL_NOFAULT) | 
 | 		return -EFAULT; | 
 | 	if (*flags & FOLL_WRITE) | 
 | 		fault_flags |= FAULT_FLAG_WRITE; | 
 | 	if (*flags & FOLL_REMOTE) | 
 | 		fault_flags |= FAULT_FLAG_REMOTE; | 
 | 	if (*flags & FOLL_UNLOCKABLE) { | 
 | 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; | 
 | 		/* | 
 | 		 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set | 
 | 		 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE. | 
 | 		 * That's because some callers may not be prepared to | 
 | 		 * handle early exits caused by non-fatal signals. | 
 | 		 */ | 
 | 		if (*flags & FOLL_INTERRUPTIBLE) | 
 | 			fault_flags |= FAULT_FLAG_INTERRUPTIBLE; | 
 | 	} | 
 | 	if (*flags & FOLL_NOWAIT) | 
 | 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; | 
 | 	if (*flags & FOLL_TRIED) { | 
 | 		/* | 
 | 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED | 
 | 		 * can co-exist | 
 | 		 */ | 
 | 		fault_flags |= FAULT_FLAG_TRIED; | 
 | 	} | 
 | 	if (unshare) { | 
 | 		fault_flags |= FAULT_FLAG_UNSHARE; | 
 | 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ | 
 | 		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE); | 
 | 	} | 
 |  | 
 | 	ret = handle_mm_fault(vma, address, fault_flags, NULL); | 
 |  | 
 | 	if (ret & VM_FAULT_COMPLETED) { | 
 | 		/* | 
 | 		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the | 
 | 		 * mmap lock in the page fault handler. Sanity check this. | 
 | 		 */ | 
 | 		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); | 
 | 		*locked = 0; | 
 |  | 
 | 		/* | 
 | 		 * We should do the same as VM_FAULT_RETRY, but let's not | 
 | 		 * return -EBUSY since that's not reflecting the reality of | 
 | 		 * what has happened - we've just fully completed a page | 
 | 		 * fault, with the mmap lock released.  Use -EAGAIN to show | 
 | 		 * that we want to take the mmap lock _again_. | 
 | 		 */ | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	if (ret & VM_FAULT_ERROR) { | 
 | 		int err = vm_fault_to_errno(ret, *flags); | 
 |  | 
 | 		if (err) | 
 | 			return err; | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	if (ret & VM_FAULT_RETRY) { | 
 | 		if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) | 
 | 			*locked = 0; | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Writing to file-backed mappings which require folio dirty tracking using GUP | 
 |  * is a fundamentally broken operation, as kernel write access to GUP mappings | 
 |  * do not adhere to the semantics expected by a file system. | 
 |  * | 
 |  * Consider the following scenario:- | 
 |  * | 
 |  * 1. A folio is written to via GUP which write-faults the memory, notifying | 
 |  *    the file system and dirtying the folio. | 
 |  * 2. Later, writeback is triggered, resulting in the folio being cleaned and | 
 |  *    the PTE being marked read-only. | 
 |  * 3. The GUP caller writes to the folio, as it is mapped read/write via the | 
 |  *    direct mapping. | 
 |  * 4. The GUP caller, now done with the page, unpins it and sets it dirty | 
 |  *    (though it does not have to). | 
 |  * | 
 |  * This results in both data being written to a folio without writenotify, and | 
 |  * the folio being dirtied unexpectedly (if the caller decides to do so). | 
 |  */ | 
 | static bool writable_file_mapping_allowed(struct vm_area_struct *vma, | 
 | 					  unsigned long gup_flags) | 
 | { | 
 | 	/* | 
 | 	 * If we aren't pinning then no problematic write can occur. A long term | 
 | 	 * pin is the most egregious case so this is the case we disallow. | 
 | 	 */ | 
 | 	if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) != | 
 | 	    (FOLL_PIN | FOLL_LONGTERM)) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * If the VMA does not require dirty tracking then no problematic write | 
 | 	 * can occur either. | 
 | 	 */ | 
 | 	return !vma_needs_dirty_tracking(vma); | 
 | } | 
 |  | 
 | static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) | 
 | { | 
 | 	vm_flags_t vm_flags = vma->vm_flags; | 
 | 	int write = (gup_flags & FOLL_WRITE); | 
 | 	int foreign = (gup_flags & FOLL_REMOTE); | 
 | 	bool vma_anon = vma_is_anonymous(vma); | 
 |  | 
 | 	if (vm_flags & (VM_IO | VM_PFNMAP)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if ((gup_flags & FOLL_ANON) && !vma_anon) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	if (vma_is_secretmem(vma)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if (write) { | 
 | 		if (!vma_anon && | 
 | 		    !writable_file_mapping_allowed(vma, gup_flags)) | 
 | 			return -EFAULT; | 
 |  | 
 | 		if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) { | 
 | 			if (!(gup_flags & FOLL_FORCE)) | 
 | 				return -EFAULT; | 
 | 			/* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */ | 
 | 			if (is_vm_hugetlb_page(vma)) | 
 | 				return -EFAULT; | 
 | 			/* | 
 | 			 * We used to let the write,force case do COW in a | 
 | 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could | 
 | 			 * set a breakpoint in a read-only mapping of an | 
 | 			 * executable, without corrupting the file (yet only | 
 | 			 * when that file had been opened for writing!). | 
 | 			 * Anon pages in shared mappings are surprising: now | 
 | 			 * just reject it. | 
 | 			 */ | 
 | 			if (!is_cow_mapping(vm_flags)) | 
 | 				return -EFAULT; | 
 | 		} | 
 | 	} else if (!(vm_flags & VM_READ)) { | 
 | 		if (!(gup_flags & FOLL_FORCE)) | 
 | 			return -EFAULT; | 
 | 		/* | 
 | 		 * Is there actually any vma we can reach here which does not | 
 | 		 * have VM_MAYREAD set? | 
 | 		 */ | 
 | 		if (!(vm_flags & VM_MAYREAD)) | 
 | 			return -EFAULT; | 
 | 	} | 
 | 	/* | 
 | 	 * gups are always data accesses, not instruction | 
 | 	 * fetches, so execute=false here | 
 | 	 */ | 
 | 	if (!arch_vma_access_permitted(vma, write, false, foreign)) | 
 | 		return -EFAULT; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This is "vma_lookup()", but with a warning if we would have | 
 |  * historically expanded the stack in the GUP code. | 
 |  */ | 
 | static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm, | 
 | 	 unsigned long addr) | 
 | { | 
 | #ifdef CONFIG_STACK_GROWSUP | 
 | 	return vma_lookup(mm, addr); | 
 | #else | 
 | 	static volatile unsigned long next_warn; | 
 | 	struct vm_area_struct *vma; | 
 | 	unsigned long now, next; | 
 |  | 
 | 	vma = find_vma(mm, addr); | 
 | 	if (!vma || (addr >= vma->vm_start)) | 
 | 		return vma; | 
 |  | 
 | 	/* Only warn for half-way relevant accesses */ | 
 | 	if (!(vma->vm_flags & VM_GROWSDOWN)) | 
 | 		return NULL; | 
 | 	if (vma->vm_start - addr > 65536) | 
 | 		return NULL; | 
 |  | 
 | 	/* Let's not warn more than once an hour.. */ | 
 | 	now = jiffies; next = next_warn; | 
 | 	if (next && time_before(now, next)) | 
 | 		return NULL; | 
 | 	next_warn = now + 60*60*HZ; | 
 |  | 
 | 	/* Let people know things may have changed. */ | 
 | 	pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n", | 
 | 		current->comm, task_pid_nr(current), | 
 | 		vma->vm_start, vma->vm_end, addr); | 
 | 	dump_stack(); | 
 | 	return NULL; | 
 | #endif | 
 | } | 
 |  | 
 | /** | 
 |  * __get_user_pages() - pin user pages in memory | 
 |  * @mm:		mm_struct of target mm | 
 |  * @start:	starting user address | 
 |  * @nr_pages:	number of pages from start to pin | 
 |  * @gup_flags:	flags modifying pin behaviour | 
 |  * @pages:	array that receives pointers to the pages pinned. | 
 |  *		Should be at least nr_pages long. Or NULL, if caller | 
 |  *		only intends to ensure the pages are faulted in. | 
 |  * @locked:     whether we're still with the mmap_lock held | 
 |  * | 
 |  * Returns either number of pages pinned (which may be less than the | 
 |  * number requested), or an error. Details about the return value: | 
 |  * | 
 |  * -- If nr_pages is 0, returns 0. | 
 |  * -- If nr_pages is >0, but no pages were pinned, returns -errno. | 
 |  * -- If nr_pages is >0, and some pages were pinned, returns the number of | 
 |  *    pages pinned. Again, this may be less than nr_pages. | 
 |  * -- 0 return value is possible when the fault would need to be retried. | 
 |  * | 
 |  * The caller is responsible for releasing returned @pages, via put_page(). | 
 |  * | 
 |  * Must be called with mmap_lock held.  It may be released.  See below. | 
 |  * | 
 |  * __get_user_pages walks a process's page tables and takes a reference to | 
 |  * each struct page that each user address corresponds to at a given | 
 |  * instant. That is, it takes the page that would be accessed if a user | 
 |  * thread accesses the given user virtual address at that instant. | 
 |  * | 
 |  * This does not guarantee that the page exists in the user mappings when | 
 |  * __get_user_pages returns, and there may even be a completely different | 
 |  * page there in some cases (eg. if mmapped pagecache has been invalidated | 
 |  * and subsequently re-faulted). However it does guarantee that the page | 
 |  * won't be freed completely. And mostly callers simply care that the page | 
 |  * contains data that was valid *at some point in time*. Typically, an IO | 
 |  * or similar operation cannot guarantee anything stronger anyway because | 
 |  * locks can't be held over the syscall boundary. | 
 |  * | 
 |  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If | 
 |  * the page is written to, set_page_dirty (or set_page_dirty_lock, as | 
 |  * appropriate) must be called after the page is finished with, and | 
 |  * before put_page is called. | 
 |  * | 
 |  * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may | 
 |  * be released. If this happens *@locked will be set to 0 on return. | 
 |  * | 
 |  * A caller using such a combination of @gup_flags must therefore hold the | 
 |  * mmap_lock for reading only, and recognize when it's been released. Otherwise, | 
 |  * it must be held for either reading or writing and will not be released. | 
 |  * | 
 |  * In most cases, get_user_pages or get_user_pages_fast should be used | 
 |  * instead of __get_user_pages. __get_user_pages should be used only if | 
 |  * you need some special @gup_flags. | 
 |  */ | 
 | static long __get_user_pages(struct mm_struct *mm, | 
 | 		unsigned long start, unsigned long nr_pages, | 
 | 		unsigned int gup_flags, struct page **pages, | 
 | 		int *locked) | 
 | { | 
 | 	long ret = 0, i = 0; | 
 | 	struct vm_area_struct *vma = NULL; | 
 | 	struct follow_page_context ctx = { NULL }; | 
 |  | 
 | 	if (!nr_pages) | 
 | 		return 0; | 
 |  | 
 | 	start = untagged_addr_remote(mm, start); | 
 |  | 
 | 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); | 
 |  | 
 | 	do { | 
 | 		struct page *page; | 
 | 		unsigned int foll_flags = gup_flags; | 
 | 		unsigned int page_increm; | 
 |  | 
 | 		/* first iteration or cross vma bound */ | 
 | 		if (!vma || start >= vma->vm_end) { | 
 | 			vma = gup_vma_lookup(mm, start); | 
 | 			if (!vma && in_gate_area(mm, start)) { | 
 | 				ret = get_gate_page(mm, start & PAGE_MASK, | 
 | 						gup_flags, &vma, | 
 | 						pages ? &page : NULL); | 
 | 				if (ret) | 
 | 					goto out; | 
 | 				ctx.page_mask = 0; | 
 | 				goto next_page; | 
 | 			} | 
 |  | 
 | 			if (!vma) { | 
 | 				ret = -EFAULT; | 
 | 				goto out; | 
 | 			} | 
 | 			ret = check_vma_flags(vma, gup_flags); | 
 | 			if (ret) | 
 | 				goto out; | 
 | 		} | 
 | retry: | 
 | 		/* | 
 | 		 * If we have a pending SIGKILL, don't keep faulting pages and | 
 | 		 * potentially allocating memory. | 
 | 		 */ | 
 | 		if (fatal_signal_pending(current)) { | 
 | 			ret = -EINTR; | 
 | 			goto out; | 
 | 		} | 
 | 		cond_resched(); | 
 |  | 
 | 		page = follow_page_mask(vma, start, foll_flags, &ctx); | 
 | 		if (!page || PTR_ERR(page) == -EMLINK) { | 
 | 			ret = faultin_page(vma, start, &foll_flags, | 
 | 					   PTR_ERR(page) == -EMLINK, locked); | 
 | 			switch (ret) { | 
 | 			case 0: | 
 | 				goto retry; | 
 | 			case -EBUSY: | 
 | 			case -EAGAIN: | 
 | 				ret = 0; | 
 | 				fallthrough; | 
 | 			case -EFAULT: | 
 | 			case -ENOMEM: | 
 | 			case -EHWPOISON: | 
 | 				goto out; | 
 | 			} | 
 | 			BUG(); | 
 | 		} else if (PTR_ERR(page) == -EEXIST) { | 
 | 			/* | 
 | 			 * Proper page table entry exists, but no corresponding | 
 | 			 * struct page. If the caller expects **pages to be | 
 | 			 * filled in, bail out now, because that can't be done | 
 | 			 * for this page. | 
 | 			 */ | 
 | 			if (pages) { | 
 | 				ret = PTR_ERR(page); | 
 | 				goto out; | 
 | 			} | 
 | 		} else if (IS_ERR(page)) { | 
 | 			ret = PTR_ERR(page); | 
 | 			goto out; | 
 | 		} | 
 | next_page: | 
 | 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); | 
 | 		if (page_increm > nr_pages) | 
 | 			page_increm = nr_pages; | 
 |  | 
 | 		if (pages) { | 
 | 			struct page *subpage; | 
 | 			unsigned int j; | 
 |  | 
 | 			/* | 
 | 			 * This must be a large folio (and doesn't need to | 
 | 			 * be the whole folio; it can be part of it), do | 
 | 			 * the refcount work for all the subpages too. | 
 | 			 * | 
 | 			 * NOTE: here the page may not be the head page | 
 | 			 * e.g. when start addr is not thp-size aligned. | 
 | 			 * try_grab_folio() should have taken care of tail | 
 | 			 * pages. | 
 | 			 */ | 
 | 			if (page_increm > 1) { | 
 | 				struct folio *folio; | 
 |  | 
 | 				/* | 
 | 				 * Since we already hold refcount on the | 
 | 				 * large folio, this should never fail. | 
 | 				 */ | 
 | 				folio = try_grab_folio(page, page_increm - 1, | 
 | 						       foll_flags); | 
 | 				if (WARN_ON_ONCE(!folio)) { | 
 | 					/* | 
 | 					 * Release the 1st page ref if the | 
 | 					 * folio is problematic, fail hard. | 
 | 					 */ | 
 | 					gup_put_folio(page_folio(page), 1, | 
 | 						      foll_flags); | 
 | 					ret = -EFAULT; | 
 | 					goto out; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			for (j = 0; j < page_increm; j++) { | 
 | 				subpage = nth_page(page, j); | 
 | 				pages[i + j] = subpage; | 
 | 				flush_anon_page(vma, subpage, start + j * PAGE_SIZE); | 
 | 				flush_dcache_page(subpage); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		i += page_increm; | 
 | 		start += page_increm * PAGE_SIZE; | 
 | 		nr_pages -= page_increm; | 
 | 	} while (nr_pages); | 
 | out: | 
 | 	if (ctx.pgmap) | 
 | 		put_dev_pagemap(ctx.pgmap); | 
 | 	return i ? i : ret; | 
 | } | 
 |  | 
 | static bool vma_permits_fault(struct vm_area_struct *vma, | 
 | 			      unsigned int fault_flags) | 
 | { | 
 | 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE); | 
 | 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); | 
 | 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; | 
 |  | 
 | 	if (!(vm_flags & vma->vm_flags)) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * The architecture might have a hardware protection | 
 | 	 * mechanism other than read/write that can deny access. | 
 | 	 * | 
 | 	 * gup always represents data access, not instruction | 
 | 	 * fetches, so execute=false here: | 
 | 	 */ | 
 | 	if (!arch_vma_access_permitted(vma, write, false, foreign)) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /** | 
 |  * fixup_user_fault() - manually resolve a user page fault | 
 |  * @mm:		mm_struct of target mm | 
 |  * @address:	user address | 
 |  * @fault_flags:flags to pass down to handle_mm_fault() | 
 |  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller | 
 |  *		does not allow retry. If NULL, the caller must guarantee | 
 |  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. | 
 |  * | 
 |  * This is meant to be called in the specific scenario where for locking reasons | 
 |  * we try to access user memory in atomic context (within a pagefault_disable() | 
 |  * section), this returns -EFAULT, and we want to resolve the user fault before | 
 |  * trying again. | 
 |  * | 
 |  * Typically this is meant to be used by the futex code. | 
 |  * | 
 |  * The main difference with get_user_pages() is that this function will | 
 |  * unconditionally call handle_mm_fault() which will in turn perform all the | 
 |  * necessary SW fixup of the dirty and young bits in the PTE, while | 
 |  * get_user_pages() only guarantees to update these in the struct page. | 
 |  * | 
 |  * This is important for some architectures where those bits also gate the | 
 |  * access permission to the page because they are maintained in software.  On | 
 |  * such architectures, gup() will not be enough to make a subsequent access | 
 |  * succeed. | 
 |  * | 
 |  * This function will not return with an unlocked mmap_lock. So it has not the | 
 |  * same semantics wrt the @mm->mmap_lock as does filemap_fault(). | 
 |  */ | 
 | int fixup_user_fault(struct mm_struct *mm, | 
 | 		     unsigned long address, unsigned int fault_flags, | 
 | 		     bool *unlocked) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 | 	vm_fault_t ret; | 
 |  | 
 | 	address = untagged_addr_remote(mm, address); | 
 |  | 
 | 	if (unlocked) | 
 | 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; | 
 |  | 
 | retry: | 
 | 	vma = gup_vma_lookup(mm, address); | 
 | 	if (!vma) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if (!vma_permits_fault(vma, fault_flags)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if ((fault_flags & FAULT_FLAG_KILLABLE) && | 
 | 	    fatal_signal_pending(current)) | 
 | 		return -EINTR; | 
 |  | 
 | 	ret = handle_mm_fault(vma, address, fault_flags, NULL); | 
 |  | 
 | 	if (ret & VM_FAULT_COMPLETED) { | 
 | 		/* | 
 | 		 * NOTE: it's a pity that we need to retake the lock here | 
 | 		 * to pair with the unlock() in the callers. Ideally we | 
 | 		 * could tell the callers so they do not need to unlock. | 
 | 		 */ | 
 | 		mmap_read_lock(mm); | 
 | 		*unlocked = true; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (ret & VM_FAULT_ERROR) { | 
 | 		int err = vm_fault_to_errno(ret, 0); | 
 |  | 
 | 		if (err) | 
 | 			return err; | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	if (ret & VM_FAULT_RETRY) { | 
 | 		mmap_read_lock(mm); | 
 | 		*unlocked = true; | 
 | 		fault_flags |= FAULT_FLAG_TRIED; | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(fixup_user_fault); | 
 |  | 
 | /* | 
 |  * GUP always responds to fatal signals.  When FOLL_INTERRUPTIBLE is | 
 |  * specified, it'll also respond to generic signals.  The caller of GUP | 
 |  * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption. | 
 |  */ | 
 | static bool gup_signal_pending(unsigned int flags) | 
 | { | 
 | 	if (fatal_signal_pending(current)) | 
 | 		return true; | 
 |  | 
 | 	if (!(flags & FOLL_INTERRUPTIBLE)) | 
 | 		return false; | 
 |  | 
 | 	return signal_pending(current); | 
 | } | 
 |  | 
 | /* | 
 |  * Locking: (*locked == 1) means that the mmap_lock has already been acquired by | 
 |  * the caller. This function may drop the mmap_lock. If it does so, then it will | 
 |  * set (*locked = 0). | 
 |  * | 
 |  * (*locked == 0) means that the caller expects this function to acquire and | 
 |  * drop the mmap_lock. Therefore, the value of *locked will still be zero when | 
 |  * the function returns, even though it may have changed temporarily during | 
 |  * function execution. | 
 |  * | 
 |  * Please note that this function, unlike __get_user_pages(), will not return 0 | 
 |  * for nr_pages > 0, unless FOLL_NOWAIT is used. | 
 |  */ | 
 | static __always_inline long __get_user_pages_locked(struct mm_struct *mm, | 
 | 						unsigned long start, | 
 | 						unsigned long nr_pages, | 
 | 						struct page **pages, | 
 | 						int *locked, | 
 | 						unsigned int flags) | 
 | { | 
 | 	long ret, pages_done; | 
 | 	bool must_unlock = false; | 
 |  | 
 | 	if (!nr_pages) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * The internal caller expects GUP to manage the lock internally and the | 
 | 	 * lock must be released when this returns. | 
 | 	 */ | 
 | 	if (!*locked) { | 
 | 		if (mmap_read_lock_killable(mm)) | 
 | 			return -EAGAIN; | 
 | 		must_unlock = true; | 
 | 		*locked = 1; | 
 | 	} | 
 | 	else | 
 | 		mmap_assert_locked(mm); | 
 |  | 
 | 	if (flags & FOLL_PIN) | 
 | 		mm_set_has_pinned_flag(&mm->flags); | 
 |  | 
 | 	/* | 
 | 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior | 
 | 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has | 
 | 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only | 
 | 	 * for FOLL_GET, not for the newer FOLL_PIN. | 
 | 	 * | 
 | 	 * FOLL_PIN always expects pages to be non-null, but no need to assert | 
 | 	 * that here, as any failures will be obvious enough. | 
 | 	 */ | 
 | 	if (pages && !(flags & FOLL_PIN)) | 
 | 		flags |= FOLL_GET; | 
 |  | 
 | 	pages_done = 0; | 
 | 	for (;;) { | 
 | 		ret = __get_user_pages(mm, start, nr_pages, flags, pages, | 
 | 				       locked); | 
 | 		if (!(flags & FOLL_UNLOCKABLE)) { | 
 | 			/* VM_FAULT_RETRY couldn't trigger, bypass */ | 
 | 			pages_done = ret; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ | 
 | 		if (!*locked) { | 
 | 			BUG_ON(ret < 0); | 
 | 			BUG_ON(ret >= nr_pages); | 
 | 		} | 
 |  | 
 | 		if (ret > 0) { | 
 | 			nr_pages -= ret; | 
 | 			pages_done += ret; | 
 | 			if (!nr_pages) | 
 | 				break; | 
 | 		} | 
 | 		if (*locked) { | 
 | 			/* | 
 | 			 * VM_FAULT_RETRY didn't trigger or it was a | 
 | 			 * FOLL_NOWAIT. | 
 | 			 */ | 
 | 			if (!pages_done) | 
 | 				pages_done = ret; | 
 | 			break; | 
 | 		} | 
 | 		/* | 
 | 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset. | 
 | 		 * For the prefault case (!pages) we only update counts. | 
 | 		 */ | 
 | 		if (likely(pages)) | 
 | 			pages += ret; | 
 | 		start += ret << PAGE_SHIFT; | 
 |  | 
 | 		/* The lock was temporarily dropped, so we must unlock later */ | 
 | 		must_unlock = true; | 
 |  | 
 | retry: | 
 | 		/* | 
 | 		 * Repeat on the address that fired VM_FAULT_RETRY | 
 | 		 * with both FAULT_FLAG_ALLOW_RETRY and | 
 | 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted | 
 | 		 * by fatal signals of even common signals, depending on | 
 | 		 * the caller's request. So we need to check it before we | 
 | 		 * start trying again otherwise it can loop forever. | 
 | 		 */ | 
 | 		if (gup_signal_pending(flags)) { | 
 | 			if (!pages_done) | 
 | 				pages_done = -EINTR; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		ret = mmap_read_lock_killable(mm); | 
 | 		if (ret) { | 
 | 			BUG_ON(ret > 0); | 
 | 			if (!pages_done) | 
 | 				pages_done = ret; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		*locked = 1; | 
 | 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, | 
 | 				       pages, locked); | 
 | 		if (!*locked) { | 
 | 			/* Continue to retry until we succeeded */ | 
 | 			BUG_ON(ret != 0); | 
 | 			goto retry; | 
 | 		} | 
 | 		if (ret != 1) { | 
 | 			BUG_ON(ret > 1); | 
 | 			if (!pages_done) | 
 | 				pages_done = ret; | 
 | 			break; | 
 | 		} | 
 | 		nr_pages--; | 
 | 		pages_done++; | 
 | 		if (!nr_pages) | 
 | 			break; | 
 | 		if (likely(pages)) | 
 | 			pages++; | 
 | 		start += PAGE_SIZE; | 
 | 	} | 
 | 	if (must_unlock && *locked) { | 
 | 		/* | 
 | 		 * We either temporarily dropped the lock, or the caller | 
 | 		 * requested that we both acquire and drop the lock. Either way, | 
 | 		 * we must now unlock, and notify the caller of that state. | 
 | 		 */ | 
 | 		mmap_read_unlock(mm); | 
 | 		*locked = 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Failing to pin anything implies something has gone wrong (except when | 
 | 	 * FOLL_NOWAIT is specified). | 
 | 	 */ | 
 | 	if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	return pages_done; | 
 | } | 
 |  | 
 | /** | 
 |  * populate_vma_page_range() -  populate a range of pages in the vma. | 
 |  * @vma:   target vma | 
 |  * @start: start address | 
 |  * @end:   end address | 
 |  * @locked: whether the mmap_lock is still held | 
 |  * | 
 |  * This takes care of mlocking the pages too if VM_LOCKED is set. | 
 |  * | 
 |  * Return either number of pages pinned in the vma, or a negative error | 
 |  * code on error. | 
 |  * | 
 |  * vma->vm_mm->mmap_lock must be held. | 
 |  * | 
 |  * If @locked is NULL, it may be held for read or write and will | 
 |  * be unperturbed. | 
 |  * | 
 |  * If @locked is non-NULL, it must held for read only and may be | 
 |  * released.  If it's released, *@locked will be set to 0. | 
 |  */ | 
 | long populate_vma_page_range(struct vm_area_struct *vma, | 
 | 		unsigned long start, unsigned long end, int *locked) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	unsigned long nr_pages = (end - start) / PAGE_SIZE; | 
 | 	int local_locked = 1; | 
 | 	int gup_flags; | 
 | 	long ret; | 
 |  | 
 | 	VM_BUG_ON(!PAGE_ALIGNED(start)); | 
 | 	VM_BUG_ON(!PAGE_ALIGNED(end)); | 
 | 	VM_BUG_ON_VMA(start < vma->vm_start, vma); | 
 | 	VM_BUG_ON_VMA(end   > vma->vm_end, vma); | 
 | 	mmap_assert_locked(mm); | 
 |  | 
 | 	/* | 
 | 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used | 
 | 	 * faultin_page() to break COW, so it has no work to do here. | 
 | 	 */ | 
 | 	if (vma->vm_flags & VM_LOCKONFAULT) | 
 | 		return nr_pages; | 
 |  | 
 | 	gup_flags = FOLL_TOUCH; | 
 | 	/* | 
 | 	 * We want to touch writable mappings with a write fault in order | 
 | 	 * to break COW, except for shared mappings because these don't COW | 
 | 	 * and we would not want to dirty them for nothing. | 
 | 	 */ | 
 | 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) | 
 | 		gup_flags |= FOLL_WRITE; | 
 |  | 
 | 	/* | 
 | 	 * We want mlock to succeed for regions that have any permissions | 
 | 	 * other than PROT_NONE. | 
 | 	 */ | 
 | 	if (vma_is_accessible(vma)) | 
 | 		gup_flags |= FOLL_FORCE; | 
 |  | 
 | 	if (locked) | 
 | 		gup_flags |= FOLL_UNLOCKABLE; | 
 |  | 
 | 	/* | 
 | 	 * We made sure addr is within a VMA, so the following will | 
 | 	 * not result in a stack expansion that recurses back here. | 
 | 	 */ | 
 | 	ret = __get_user_pages(mm, start, nr_pages, gup_flags, | 
 | 			       NULL, locked ? locked : &local_locked); | 
 | 	lru_add_drain(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * faultin_vma_page_range() - populate (prefault) page tables inside the | 
 |  *			      given VMA range readable/writable | 
 |  * | 
 |  * This takes care of mlocking the pages, too, if VM_LOCKED is set. | 
 |  * | 
 |  * @vma: target vma | 
 |  * @start: start address | 
 |  * @end: end address | 
 |  * @write: whether to prefault readable or writable | 
 |  * @locked: whether the mmap_lock is still held | 
 |  * | 
 |  * Returns either number of processed pages in the vma, or a negative error | 
 |  * code on error (see __get_user_pages()). | 
 |  * | 
 |  * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and | 
 |  * covered by the VMA. If it's released, *@locked will be set to 0. | 
 |  */ | 
 | long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start, | 
 | 			    unsigned long end, bool write, int *locked) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	unsigned long nr_pages = (end - start) / PAGE_SIZE; | 
 | 	int gup_flags; | 
 | 	long ret; | 
 |  | 
 | 	VM_BUG_ON(!PAGE_ALIGNED(start)); | 
 | 	VM_BUG_ON(!PAGE_ALIGNED(end)); | 
 | 	VM_BUG_ON_VMA(start < vma->vm_start, vma); | 
 | 	VM_BUG_ON_VMA(end > vma->vm_end, vma); | 
 | 	mmap_assert_locked(mm); | 
 |  | 
 | 	/* | 
 | 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark | 
 | 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a | 
 | 	 *	       difference with !FOLL_FORCE, because the page is writable | 
 | 	 *	       in the page table. | 
 | 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit | 
 | 	 *		  a poisoned page. | 
 | 	 * !FOLL_FORCE: Require proper access permissions. | 
 | 	 */ | 
 | 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE; | 
 | 	if (write) | 
 | 		gup_flags |= FOLL_WRITE; | 
 |  | 
 | 	/* | 
 | 	 * We want to report -EINVAL instead of -EFAULT for any permission | 
 | 	 * problems or incompatible mappings. | 
 | 	 */ | 
 | 	if (check_vma_flags(vma, gup_flags)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ret = __get_user_pages(mm, start, nr_pages, gup_flags, | 
 | 			       NULL, locked); | 
 | 	lru_add_drain(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * __mm_populate - populate and/or mlock pages within a range of address space. | 
 |  * | 
 |  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap | 
 |  * flags. VMAs must be already marked with the desired vm_flags, and | 
 |  * mmap_lock must not be held. | 
 |  */ | 
 | int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) | 
 | { | 
 | 	struct mm_struct *mm = current->mm; | 
 | 	unsigned long end, nstart, nend; | 
 | 	struct vm_area_struct *vma = NULL; | 
 | 	int locked = 0; | 
 | 	long ret = 0; | 
 |  | 
 | 	end = start + len; | 
 |  | 
 | 	for (nstart = start; nstart < end; nstart = nend) { | 
 | 		/* | 
 | 		 * We want to fault in pages for [nstart; end) address range. | 
 | 		 * Find first corresponding VMA. | 
 | 		 */ | 
 | 		if (!locked) { | 
 | 			locked = 1; | 
 | 			mmap_read_lock(mm); | 
 | 			vma = find_vma_intersection(mm, nstart, end); | 
 | 		} else if (nstart >= vma->vm_end) | 
 | 			vma = find_vma_intersection(mm, vma->vm_end, end); | 
 |  | 
 | 		if (!vma) | 
 | 			break; | 
 | 		/* | 
 | 		 * Set [nstart; nend) to intersection of desired address | 
 | 		 * range with the first VMA. Also, skip undesirable VMA types. | 
 | 		 */ | 
 | 		nend = min(end, vma->vm_end); | 
 | 		if (vma->vm_flags & (VM_IO | VM_PFNMAP)) | 
 | 			continue; | 
 | 		if (nstart < vma->vm_start) | 
 | 			nstart = vma->vm_start; | 
 | 		/* | 
 | 		 * Now fault in a range of pages. populate_vma_page_range() | 
 | 		 * double checks the vma flags, so that it won't mlock pages | 
 | 		 * if the vma was already munlocked. | 
 | 		 */ | 
 | 		ret = populate_vma_page_range(vma, nstart, nend, &locked); | 
 | 		if (ret < 0) { | 
 | 			if (ignore_errors) { | 
 | 				ret = 0; | 
 | 				continue;	/* continue at next VMA */ | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		nend = nstart + ret * PAGE_SIZE; | 
 | 		ret = 0; | 
 | 	} | 
 | 	if (locked) | 
 | 		mmap_read_unlock(mm); | 
 | 	return ret;	/* 0 or negative error code */ | 
 | } | 
 | #else /* CONFIG_MMU */ | 
 | static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, | 
 | 		unsigned long nr_pages, struct page **pages, | 
 | 		int *locked, unsigned int foll_flags) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 | 	bool must_unlock = false; | 
 | 	unsigned long vm_flags; | 
 | 	long i; | 
 |  | 
 | 	if (!nr_pages) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * The internal caller expects GUP to manage the lock internally and the | 
 | 	 * lock must be released when this returns. | 
 | 	 */ | 
 | 	if (!*locked) { | 
 | 		if (mmap_read_lock_killable(mm)) | 
 | 			return -EAGAIN; | 
 | 		must_unlock = true; | 
 | 		*locked = 1; | 
 | 	} | 
 |  | 
 | 	/* calculate required read or write permissions. | 
 | 	 * If FOLL_FORCE is set, we only require the "MAY" flags. | 
 | 	 */ | 
 | 	vm_flags  = (foll_flags & FOLL_WRITE) ? | 
 | 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); | 
 | 	vm_flags &= (foll_flags & FOLL_FORCE) ? | 
 | 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); | 
 |  | 
 | 	for (i = 0; i < nr_pages; i++) { | 
 | 		vma = find_vma(mm, start); | 
 | 		if (!vma) | 
 | 			break; | 
 |  | 
 | 		/* protect what we can, including chardevs */ | 
 | 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || | 
 | 		    !(vm_flags & vma->vm_flags)) | 
 | 			break; | 
 |  | 
 | 		if (pages) { | 
 | 			pages[i] = virt_to_page((void *)start); | 
 | 			if (pages[i]) | 
 | 				get_page(pages[i]); | 
 | 		} | 
 |  | 
 | 		start = (start + PAGE_SIZE) & PAGE_MASK; | 
 | 	} | 
 |  | 
 | 	if (must_unlock && *locked) { | 
 | 		mmap_read_unlock(mm); | 
 | 		*locked = 0; | 
 | 	} | 
 |  | 
 | 	return i ? : -EFAULT; | 
 | } | 
 | #endif /* !CONFIG_MMU */ | 
 |  | 
 | /** | 
 |  * fault_in_writeable - fault in userspace address range for writing | 
 |  * @uaddr: start of address range | 
 |  * @size: size of address range | 
 |  * | 
 |  * Returns the number of bytes not faulted in (like copy_to_user() and | 
 |  * copy_from_user()). | 
 |  */ | 
 | size_t fault_in_writeable(char __user *uaddr, size_t size) | 
 | { | 
 | 	char __user *start = uaddr, *end; | 
 |  | 
 | 	if (unlikely(size == 0)) | 
 | 		return 0; | 
 | 	if (!user_write_access_begin(uaddr, size)) | 
 | 		return size; | 
 | 	if (!PAGE_ALIGNED(uaddr)) { | 
 | 		unsafe_put_user(0, uaddr, out); | 
 | 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); | 
 | 	} | 
 | 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size); | 
 | 	if (unlikely(end < start)) | 
 | 		end = NULL; | 
 | 	while (uaddr != end) { | 
 | 		unsafe_put_user(0, uaddr, out); | 
 | 		uaddr += PAGE_SIZE; | 
 | 	} | 
 |  | 
 | out: | 
 | 	user_write_access_end(); | 
 | 	if (size > uaddr - start) | 
 | 		return size - (uaddr - start); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(fault_in_writeable); | 
 |  | 
 | /** | 
 |  * fault_in_subpage_writeable - fault in an address range for writing | 
 |  * @uaddr: start of address range | 
 |  * @size: size of address range | 
 |  * | 
 |  * Fault in a user address range for writing while checking for permissions at | 
 |  * sub-page granularity (e.g. arm64 MTE). This function should be used when | 
 |  * the caller cannot guarantee forward progress of a copy_to_user() loop. | 
 |  * | 
 |  * Returns the number of bytes not faulted in (like copy_to_user() and | 
 |  * copy_from_user()). | 
 |  */ | 
 | size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) | 
 | { | 
 | 	size_t faulted_in; | 
 |  | 
 | 	/* | 
 | 	 * Attempt faulting in at page granularity first for page table | 
 | 	 * permission checking. The arch-specific probe_subpage_writeable() | 
 | 	 * functions may not check for this. | 
 | 	 */ | 
 | 	faulted_in = size - fault_in_writeable(uaddr, size); | 
 | 	if (faulted_in) | 
 | 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in); | 
 |  | 
 | 	return size - faulted_in; | 
 | } | 
 | EXPORT_SYMBOL(fault_in_subpage_writeable); | 
 |  | 
 | /* | 
 |  * fault_in_safe_writeable - fault in an address range for writing | 
 |  * @uaddr: start of address range | 
 |  * @size: length of address range | 
 |  * | 
 |  * Faults in an address range for writing.  This is primarily useful when we | 
 |  * already know that some or all of the pages in the address range aren't in | 
 |  * memory. | 
 |  * | 
 |  * Unlike fault_in_writeable(), this function is non-destructive. | 
 |  * | 
 |  * Note that we don't pin or otherwise hold the pages referenced that we fault | 
 |  * in.  There's no guarantee that they'll stay in memory for any duration of | 
 |  * time. | 
 |  * | 
 |  * Returns the number of bytes not faulted in, like copy_to_user() and | 
 |  * copy_from_user(). | 
 |  */ | 
 | size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) | 
 | { | 
 | 	unsigned long start = (unsigned long)uaddr, end; | 
 | 	struct mm_struct *mm = current->mm; | 
 | 	bool unlocked = false; | 
 |  | 
 | 	if (unlikely(size == 0)) | 
 | 		return 0; | 
 | 	end = PAGE_ALIGN(start + size); | 
 | 	if (end < start) | 
 | 		end = 0; | 
 |  | 
 | 	mmap_read_lock(mm); | 
 | 	do { | 
 | 		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked)) | 
 | 			break; | 
 | 		start = (start + PAGE_SIZE) & PAGE_MASK; | 
 | 	} while (start != end); | 
 | 	mmap_read_unlock(mm); | 
 |  | 
 | 	if (size > (unsigned long)uaddr - start) | 
 | 		return size - ((unsigned long)uaddr - start); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(fault_in_safe_writeable); | 
 |  | 
 | /** | 
 |  * fault_in_readable - fault in userspace address range for reading | 
 |  * @uaddr: start of user address range | 
 |  * @size: size of user address range | 
 |  * | 
 |  * Returns the number of bytes not faulted in (like copy_to_user() and | 
 |  * copy_from_user()). | 
 |  */ | 
 | size_t fault_in_readable(const char __user *uaddr, size_t size) | 
 | { | 
 | 	const char __user *start = uaddr, *end; | 
 | 	volatile char c; | 
 |  | 
 | 	if (unlikely(size == 0)) | 
 | 		return 0; | 
 | 	if (!user_read_access_begin(uaddr, size)) | 
 | 		return size; | 
 | 	if (!PAGE_ALIGNED(uaddr)) { | 
 | 		unsafe_get_user(c, uaddr, out); | 
 | 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); | 
 | 	} | 
 | 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); | 
 | 	if (unlikely(end < start)) | 
 | 		end = NULL; | 
 | 	while (uaddr != end) { | 
 | 		unsafe_get_user(c, uaddr, out); | 
 | 		uaddr += PAGE_SIZE; | 
 | 	} | 
 |  | 
 | out: | 
 | 	user_read_access_end(); | 
 | 	(void)c; | 
 | 	if (size > uaddr - start) | 
 | 		return size - (uaddr - start); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(fault_in_readable); | 
 |  | 
 | /** | 
 |  * get_dump_page() - pin user page in memory while writing it to core dump | 
 |  * @addr: user address | 
 |  * | 
 |  * Returns struct page pointer of user page pinned for dump, | 
 |  * to be freed afterwards by put_page(). | 
 |  * | 
 |  * Returns NULL on any kind of failure - a hole must then be inserted into | 
 |  * the corefile, to preserve alignment with its headers; and also returns | 
 |  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - | 
 |  * allowing a hole to be left in the corefile to save disk space. | 
 |  * | 
 |  * Called without mmap_lock (takes and releases the mmap_lock by itself). | 
 |  */ | 
 | #ifdef CONFIG_ELF_CORE | 
 | struct page *get_dump_page(unsigned long addr) | 
 | { | 
 | 	struct page *page; | 
 | 	int locked = 0; | 
 | 	int ret; | 
 |  | 
 | 	ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked, | 
 | 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET); | 
 | 	return (ret == 1) ? page : NULL; | 
 | } | 
 | #endif /* CONFIG_ELF_CORE */ | 
 |  | 
 | #ifdef CONFIG_MIGRATION | 
 | /* | 
 |  * Returns the number of collected pages. Return value is always >= 0. | 
 |  */ | 
 | static unsigned long collect_longterm_unpinnable_pages( | 
 | 					struct list_head *movable_page_list, | 
 | 					unsigned long nr_pages, | 
 | 					struct page **pages) | 
 | { | 
 | 	unsigned long i, collected = 0; | 
 | 	struct folio *prev_folio = NULL; | 
 | 	bool drain_allow = true; | 
 |  | 
 | 	for (i = 0; i < nr_pages; i++) { | 
 | 		struct folio *folio = page_folio(pages[i]); | 
 |  | 
 | 		if (folio == prev_folio) | 
 | 			continue; | 
 | 		prev_folio = folio; | 
 |  | 
 | 		if (folio_is_longterm_pinnable(folio)) | 
 | 			continue; | 
 |  | 
 | 		collected++; | 
 |  | 
 | 		if (folio_is_device_coherent(folio)) | 
 | 			continue; | 
 |  | 
 | 		if (folio_test_hugetlb(folio)) { | 
 | 			isolate_hugetlb(folio, movable_page_list); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (!folio_test_lru(folio) && drain_allow) { | 
 | 			lru_add_drain_all(); | 
 | 			drain_allow = false; | 
 | 		} | 
 |  | 
 | 		if (!folio_isolate_lru(folio)) | 
 | 			continue; | 
 |  | 
 | 		list_add_tail(&folio->lru, movable_page_list); | 
 | 		node_stat_mod_folio(folio, | 
 | 				    NR_ISOLATED_ANON + folio_is_file_lru(folio), | 
 | 				    folio_nr_pages(folio)); | 
 | 	} | 
 |  | 
 | 	return collected; | 
 | } | 
 |  | 
 | /* | 
 |  * Unpins all pages and migrates device coherent pages and movable_page_list. | 
 |  * Returns -EAGAIN if all pages were successfully migrated or -errno for failure | 
 |  * (or partial success). | 
 |  */ | 
 | static int migrate_longterm_unpinnable_pages( | 
 | 					struct list_head *movable_page_list, | 
 | 					unsigned long nr_pages, | 
 | 					struct page **pages) | 
 | { | 
 | 	int ret; | 
 | 	unsigned long i; | 
 |  | 
 | 	for (i = 0; i < nr_pages; i++) { | 
 | 		struct folio *folio = page_folio(pages[i]); | 
 |  | 
 | 		if (folio_is_device_coherent(folio)) { | 
 | 			/* | 
 | 			 * Migration will fail if the page is pinned, so convert | 
 | 			 * the pin on the source page to a normal reference. | 
 | 			 */ | 
 | 			pages[i] = NULL; | 
 | 			folio_get(folio); | 
 | 			gup_put_folio(folio, 1, FOLL_PIN); | 
 |  | 
 | 			if (migrate_device_coherent_page(&folio->page)) { | 
 | 				ret = -EBUSY; | 
 | 				goto err; | 
 | 			} | 
 |  | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * We can't migrate pages with unexpected references, so drop | 
 | 		 * the reference obtained by __get_user_pages_locked(). | 
 | 		 * Migrating pages have been added to movable_page_list after | 
 | 		 * calling folio_isolate_lru() which takes a reference so the | 
 | 		 * page won't be freed if it's migrating. | 
 | 		 */ | 
 | 		unpin_user_page(pages[i]); | 
 | 		pages[i] = NULL; | 
 | 	} | 
 |  | 
 | 	if (!list_empty(movable_page_list)) { | 
 | 		struct migration_target_control mtc = { | 
 | 			.nid = NUMA_NO_NODE, | 
 | 			.gfp_mask = GFP_USER | __GFP_NOWARN, | 
 | 		}; | 
 |  | 
 | 		if (migrate_pages(movable_page_list, alloc_migration_target, | 
 | 				  NULL, (unsigned long)&mtc, MIGRATE_SYNC, | 
 | 				  MR_LONGTERM_PIN, NULL)) { | 
 | 			ret = -ENOMEM; | 
 | 			goto err; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	putback_movable_pages(movable_page_list); | 
 |  | 
 | 	return -EAGAIN; | 
 |  | 
 | err: | 
 | 	for (i = 0; i < nr_pages; i++) | 
 | 		if (pages[i]) | 
 | 			unpin_user_page(pages[i]); | 
 | 	putback_movable_pages(movable_page_list); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Check whether all pages are *allowed* to be pinned. Rather confusingly, all | 
 |  * pages in the range are required to be pinned via FOLL_PIN, before calling | 
 |  * this routine. | 
 |  * | 
 |  * If any pages in the range are not allowed to be pinned, then this routine | 
 |  * will migrate those pages away, unpin all the pages in the range and return | 
 |  * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then | 
 |  * call this routine again. | 
 |  * | 
 |  * If an error other than -EAGAIN occurs, this indicates a migration failure. | 
 |  * The caller should give up, and propagate the error back up the call stack. | 
 |  * | 
 |  * If everything is OK and all pages in the range are allowed to be pinned, then | 
 |  * this routine leaves all pages pinned and returns zero for success. | 
 |  */ | 
 | static long check_and_migrate_movable_pages(unsigned long nr_pages, | 
 | 					    struct page **pages) | 
 | { | 
 | 	unsigned long collected; | 
 | 	LIST_HEAD(movable_page_list); | 
 |  | 
 | 	collected = collect_longterm_unpinnable_pages(&movable_page_list, | 
 | 						nr_pages, pages); | 
 | 	if (!collected) | 
 | 		return 0; | 
 |  | 
 | 	return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages, | 
 | 						pages); | 
 | } | 
 | #else | 
 | static long check_and_migrate_movable_pages(unsigned long nr_pages, | 
 | 					    struct page **pages) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif /* CONFIG_MIGRATION */ | 
 |  | 
 | /* | 
 |  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which | 
 |  * allows us to process the FOLL_LONGTERM flag. | 
 |  */ | 
 | static long __gup_longterm_locked(struct mm_struct *mm, | 
 | 				  unsigned long start, | 
 | 				  unsigned long nr_pages, | 
 | 				  struct page **pages, | 
 | 				  int *locked, | 
 | 				  unsigned int gup_flags) | 
 | { | 
 | 	unsigned int flags; | 
 | 	long rc, nr_pinned_pages; | 
 |  | 
 | 	if (!(gup_flags & FOLL_LONGTERM)) | 
 | 		return __get_user_pages_locked(mm, start, nr_pages, pages, | 
 | 					       locked, gup_flags); | 
 |  | 
 | 	flags = memalloc_pin_save(); | 
 | 	do { | 
 | 		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages, | 
 | 							  pages, locked, | 
 | 							  gup_flags); | 
 | 		if (nr_pinned_pages <= 0) { | 
 | 			rc = nr_pinned_pages; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* FOLL_LONGTERM implies FOLL_PIN */ | 
 | 		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages); | 
 | 	} while (rc == -EAGAIN); | 
 | 	memalloc_pin_restore(flags); | 
 | 	return rc ? rc : nr_pinned_pages; | 
 | } | 
 |  | 
 | /* | 
 |  * Check that the given flags are valid for the exported gup/pup interface, and | 
 |  * update them with the required flags that the caller must have set. | 
 |  */ | 
 | static bool is_valid_gup_args(struct page **pages, int *locked, | 
 | 			      unsigned int *gup_flags_p, unsigned int to_set) | 
 | { | 
 | 	unsigned int gup_flags = *gup_flags_p; | 
 |  | 
 | 	/* | 
 | 	 * These flags not allowed to be specified externally to the gup | 
 | 	 * interfaces: | 
 | 	 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only | 
 | 	 * - FOLL_REMOTE is internal only and used on follow_page() | 
 | 	 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL | 
 | 	 */ | 
 | 	if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS)) | 
 | 		return false; | 
 |  | 
 | 	gup_flags |= to_set; | 
 | 	if (locked) { | 
 | 		/* At the external interface locked must be set */ | 
 | 		if (WARN_ON_ONCE(*locked != 1)) | 
 | 			return false; | 
 |  | 
 | 		gup_flags |= FOLL_UNLOCKABLE; | 
 | 	} | 
 |  | 
 | 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */ | 
 | 	if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) == | 
 | 			 (FOLL_PIN | FOLL_GET))) | 
 | 		return false; | 
 |  | 
 | 	/* LONGTERM can only be specified when pinning */ | 
 | 	if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM))) | 
 | 		return false; | 
 |  | 
 | 	/* Pages input must be given if using GET/PIN */ | 
 | 	if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages)) | 
 | 		return false; | 
 |  | 
 | 	/* We want to allow the pgmap to be hot-unplugged at all times */ | 
 | 	if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) && | 
 | 			 (gup_flags & FOLL_PCI_P2PDMA))) | 
 | 		return false; | 
 |  | 
 | 	*gup_flags_p = gup_flags; | 
 | 	return true; | 
 | } | 
 |  | 
 | #ifdef CONFIG_MMU | 
 | /** | 
 |  * get_user_pages_remote() - pin user pages in memory | 
 |  * @mm:		mm_struct of target mm | 
 |  * @start:	starting user address | 
 |  * @nr_pages:	number of pages from start to pin | 
 |  * @gup_flags:	flags modifying lookup behaviour | 
 |  * @pages:	array that receives pointers to the pages pinned. | 
 |  *		Should be at least nr_pages long. Or NULL, if caller | 
 |  *		only intends to ensure the pages are faulted in. | 
 |  * @locked:	pointer to lock flag indicating whether lock is held and | 
 |  *		subsequently whether VM_FAULT_RETRY functionality can be | 
 |  *		utilised. Lock must initially be held. | 
 |  * | 
 |  * Returns either number of pages pinned (which may be less than the | 
 |  * number requested), or an error. Details about the return value: | 
 |  * | 
 |  * -- If nr_pages is 0, returns 0. | 
 |  * -- If nr_pages is >0, but no pages were pinned, returns -errno. | 
 |  * -- If nr_pages is >0, and some pages were pinned, returns the number of | 
 |  *    pages pinned. Again, this may be less than nr_pages. | 
 |  * | 
 |  * The caller is responsible for releasing returned @pages, via put_page(). | 
 |  * | 
 |  * Must be called with mmap_lock held for read or write. | 
 |  * | 
 |  * get_user_pages_remote walks a process's page tables and takes a reference | 
 |  * to each struct page that each user address corresponds to at a given | 
 |  * instant. That is, it takes the page that would be accessed if a user | 
 |  * thread accesses the given user virtual address at that instant. | 
 |  * | 
 |  * This does not guarantee that the page exists in the user mappings when | 
 |  * get_user_pages_remote returns, and there may even be a completely different | 
 |  * page there in some cases (eg. if mmapped pagecache has been invalidated | 
 |  * and subsequently re-faulted). However it does guarantee that the page | 
 |  * won't be freed completely. And mostly callers simply care that the page | 
 |  * contains data that was valid *at some point in time*. Typically, an IO | 
 |  * or similar operation cannot guarantee anything stronger anyway because | 
 |  * locks can't be held over the syscall boundary. | 
 |  * | 
 |  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page | 
 |  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must | 
 |  * be called after the page is finished with, and before put_page is called. | 
 |  * | 
 |  * get_user_pages_remote is typically used for fewer-copy IO operations, | 
 |  * to get a handle on the memory by some means other than accesses | 
 |  * via the user virtual addresses. The pages may be submitted for | 
 |  * DMA to devices or accessed via their kernel linear mapping (via the | 
 |  * kmap APIs). Care should be taken to use the correct cache flushing APIs. | 
 |  * | 
 |  * See also get_user_pages_fast, for performance critical applications. | 
 |  * | 
 |  * get_user_pages_remote should be phased out in favor of | 
 |  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing | 
 |  * should use get_user_pages_remote because it cannot pass | 
 |  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. | 
 |  */ | 
 | long get_user_pages_remote(struct mm_struct *mm, | 
 | 		unsigned long start, unsigned long nr_pages, | 
 | 		unsigned int gup_flags, struct page **pages, | 
 | 		int *locked) | 
 | { | 
 | 	int local_locked = 1; | 
 |  | 
 | 	if (!is_valid_gup_args(pages, locked, &gup_flags, | 
 | 			       FOLL_TOUCH | FOLL_REMOTE)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return __get_user_pages_locked(mm, start, nr_pages, pages, | 
 | 				       locked ? locked : &local_locked, | 
 | 				       gup_flags); | 
 | } | 
 | EXPORT_SYMBOL(get_user_pages_remote); | 
 |  | 
 | #else /* CONFIG_MMU */ | 
 | long get_user_pages_remote(struct mm_struct *mm, | 
 | 			   unsigned long start, unsigned long nr_pages, | 
 | 			   unsigned int gup_flags, struct page **pages, | 
 | 			   int *locked) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif /* !CONFIG_MMU */ | 
 |  | 
 | /** | 
 |  * get_user_pages() - pin user pages in memory | 
 |  * @start:      starting user address | 
 |  * @nr_pages:   number of pages from start to pin | 
 |  * @gup_flags:  flags modifying lookup behaviour | 
 |  * @pages:      array that receives pointers to the pages pinned. | 
 |  *              Should be at least nr_pages long. Or NULL, if caller | 
 |  *              only intends to ensure the pages are faulted in. | 
 |  * | 
 |  * This is the same as get_user_pages_remote(), just with a less-flexible | 
 |  * calling convention where we assume that the mm being operated on belongs to | 
 |  * the current task, and doesn't allow passing of a locked parameter.  We also | 
 |  * obviously don't pass FOLL_REMOTE in here. | 
 |  */ | 
 | long get_user_pages(unsigned long start, unsigned long nr_pages, | 
 | 		    unsigned int gup_flags, struct page **pages) | 
 | { | 
 | 	int locked = 1; | 
 |  | 
 | 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return __get_user_pages_locked(current->mm, start, nr_pages, pages, | 
 | 				       &locked, gup_flags); | 
 | } | 
 | EXPORT_SYMBOL(get_user_pages); | 
 |  | 
 | /* | 
 |  * get_user_pages_unlocked() is suitable to replace the form: | 
 |  * | 
 |  *      mmap_read_lock(mm); | 
 |  *      get_user_pages(mm, ..., pages, NULL); | 
 |  *      mmap_read_unlock(mm); | 
 |  * | 
 |  *  with: | 
 |  * | 
 |  *      get_user_pages_unlocked(mm, ..., pages); | 
 |  * | 
 |  * It is functionally equivalent to get_user_pages_fast so | 
 |  * get_user_pages_fast should be used instead if specific gup_flags | 
 |  * (e.g. FOLL_FORCE) are not required. | 
 |  */ | 
 | long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, | 
 | 			     struct page **pages, unsigned int gup_flags) | 
 | { | 
 | 	int locked = 0; | 
 |  | 
 | 	if (!is_valid_gup_args(pages, NULL, &gup_flags, | 
 | 			       FOLL_TOUCH | FOLL_UNLOCKABLE)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return __get_user_pages_locked(current->mm, start, nr_pages, pages, | 
 | 				       &locked, gup_flags); | 
 | } | 
 | EXPORT_SYMBOL(get_user_pages_unlocked); | 
 |  | 
 | /* | 
 |  * Fast GUP | 
 |  * | 
 |  * get_user_pages_fast attempts to pin user pages by walking the page | 
 |  * tables directly and avoids taking locks. Thus the walker needs to be | 
 |  * protected from page table pages being freed from under it, and should | 
 |  * block any THP splits. | 
 |  * | 
 |  * One way to achieve this is to have the walker disable interrupts, and | 
 |  * rely on IPIs from the TLB flushing code blocking before the page table | 
 |  * pages are freed. This is unsuitable for architectures that do not need | 
 |  * to broadcast an IPI when invalidating TLBs. | 
 |  * | 
 |  * Another way to achieve this is to batch up page table containing pages | 
 |  * belonging to more than one mm_user, then rcu_sched a callback to free those | 
 |  * pages. Disabling interrupts will allow the fast_gup walker to both block | 
 |  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs | 
 |  * (which is a relatively rare event). The code below adopts this strategy. | 
 |  * | 
 |  * Before activating this code, please be aware that the following assumptions | 
 |  * are currently made: | 
 |  * | 
 |  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to | 
 |  *  free pages containing page tables or TLB flushing requires IPI broadcast. | 
 |  * | 
 |  *  *) ptes can be read atomically by the architecture. | 
 |  * | 
 |  *  *) access_ok is sufficient to validate userspace address ranges. | 
 |  * | 
 |  * The last two assumptions can be relaxed by the addition of helper functions. | 
 |  * | 
 |  * This code is based heavily on the PowerPC implementation by Nick Piggin. | 
 |  */ | 
 | #ifdef CONFIG_HAVE_FAST_GUP | 
 |  | 
 | /* | 
 |  * Used in the GUP-fast path to determine whether a pin is permitted for a | 
 |  * specific folio. | 
 |  * | 
 |  * This call assumes the caller has pinned the folio, that the lowest page table | 
 |  * level still points to this folio, and that interrupts have been disabled. | 
 |  * | 
 |  * Writing to pinned file-backed dirty tracked folios is inherently problematic | 
 |  * (see comment describing the writable_file_mapping_allowed() function). We | 
 |  * therefore try to avoid the most egregious case of a long-term mapping doing | 
 |  * so. | 
 |  * | 
 |  * This function cannot be as thorough as that one as the VMA is not available | 
 |  * in the fast path, so instead we whitelist known good cases and if in doubt, | 
 |  * fall back to the slow path. | 
 |  */ | 
 | static bool folio_fast_pin_allowed(struct folio *folio, unsigned int flags) | 
 | { | 
 | 	struct address_space *mapping; | 
 | 	unsigned long mapping_flags; | 
 |  | 
 | 	/* | 
 | 	 * If we aren't pinning then no problematic write can occur. A long term | 
 | 	 * pin is the most egregious case so this is the one we disallow. | 
 | 	 */ | 
 | 	if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) != | 
 | 	    (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) | 
 | 		return true; | 
 |  | 
 | 	/* The folio is pinned, so we can safely access folio fields. */ | 
 |  | 
 | 	if (WARN_ON_ONCE(folio_test_slab(folio))) | 
 | 		return false; | 
 |  | 
 | 	/* hugetlb mappings do not require dirty-tracking. */ | 
 | 	if (folio_test_hugetlb(folio)) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods | 
 | 	 * cannot proceed, which means no actions performed under RCU can | 
 | 	 * proceed either. | 
 | 	 * | 
 | 	 * inodes and thus their mappings are freed under RCU, which means the | 
 | 	 * mapping cannot be freed beneath us and thus we can safely dereference | 
 | 	 * it. | 
 | 	 */ | 
 | 	lockdep_assert_irqs_disabled(); | 
 |  | 
 | 	/* | 
 | 	 * However, there may be operations which _alter_ the mapping, so ensure | 
 | 	 * we read it once and only once. | 
 | 	 */ | 
 | 	mapping = READ_ONCE(folio->mapping); | 
 |  | 
 | 	/* | 
 | 	 * The mapping may have been truncated, in any case we cannot determine | 
 | 	 * if this mapping is safe - fall back to slow path to determine how to | 
 | 	 * proceed. | 
 | 	 */ | 
 | 	if (!mapping) | 
 | 		return false; | 
 |  | 
 | 	/* Anonymous folios pose no problem. */ | 
 | 	mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS; | 
 | 	if (mapping_flags) | 
 | 		return mapping_flags & PAGE_MAPPING_ANON; | 
 |  | 
 | 	/* | 
 | 	 * At this point, we know the mapping is non-null and points to an | 
 | 	 * address_space object. The only remaining whitelisted file system is | 
 | 	 * shmem. | 
 | 	 */ | 
 | 	return shmem_mapping(mapping); | 
 | } | 
 |  | 
 | static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, | 
 | 					    unsigned int flags, | 
 | 					    struct page **pages) | 
 | { | 
 | 	while ((*nr) - nr_start) { | 
 | 		struct page *page = pages[--(*nr)]; | 
 |  | 
 | 		ClearPageReferenced(page); | 
 | 		if (flags & FOLL_PIN) | 
 | 			unpin_user_page(page); | 
 | 		else | 
 | 			put_page(page); | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL | 
 | /* | 
 |  * Fast-gup relies on pte change detection to avoid concurrent pgtable | 
 |  * operations. | 
 |  * | 
 |  * To pin the page, fast-gup needs to do below in order: | 
 |  * (1) pin the page (by prefetching pte), then (2) check pte not changed. | 
 |  * | 
 |  * For the rest of pgtable operations where pgtable updates can be racy | 
 |  * with fast-gup, we need to do (1) clear pte, then (2) check whether page | 
 |  * is pinned. | 
 |  * | 
 |  * Above will work for all pte-level operations, including THP split. | 
 |  * | 
 |  * For THP collapse, it's a bit more complicated because fast-gup may be | 
 |  * walking a pgtable page that is being freed (pte is still valid but pmd | 
 |  * can be cleared already).  To avoid race in such condition, we need to | 
 |  * also check pmd here to make sure pmd doesn't change (corresponds to | 
 |  * pmdp_collapse_flush() in the THP collapse code path). | 
 |  */ | 
 | static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, | 
 | 			 unsigned long end, unsigned int flags, | 
 | 			 struct page **pages, int *nr) | 
 | { | 
 | 	struct dev_pagemap *pgmap = NULL; | 
 | 	int nr_start = *nr, ret = 0; | 
 | 	pte_t *ptep, *ptem; | 
 |  | 
 | 	ptem = ptep = pte_offset_map(&pmd, addr); | 
 | 	if (!ptep) | 
 | 		return 0; | 
 | 	do { | 
 | 		pte_t pte = ptep_get_lockless(ptep); | 
 | 		struct page *page; | 
 | 		struct folio *folio; | 
 |  | 
 | 		/* | 
 | 		 * Always fallback to ordinary GUP on PROT_NONE-mapped pages: | 
 | 		 * pte_access_permitted() better should reject these pages | 
 | 		 * either way: otherwise, GUP-fast might succeed in | 
 | 		 * cases where ordinary GUP would fail due to VMA access | 
 | 		 * permissions. | 
 | 		 */ | 
 | 		if (pte_protnone(pte)) | 
 | 			goto pte_unmap; | 
 |  | 
 | 		if (!pte_access_permitted(pte, flags & FOLL_WRITE)) | 
 | 			goto pte_unmap; | 
 |  | 
 | 		if (pte_devmap(pte)) { | 
 | 			if (unlikely(flags & FOLL_LONGTERM)) | 
 | 				goto pte_unmap; | 
 |  | 
 | 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); | 
 | 			if (unlikely(!pgmap)) { | 
 | 				undo_dev_pagemap(nr, nr_start, flags, pages); | 
 | 				goto pte_unmap; | 
 | 			} | 
 | 		} else if (pte_special(pte)) | 
 | 			goto pte_unmap; | 
 |  | 
 | 		VM_BUG_ON(!pfn_valid(pte_pfn(pte))); | 
 | 		page = pte_page(pte); | 
 |  | 
 | 		folio = try_grab_folio(page, 1, flags); | 
 | 		if (!folio) | 
 | 			goto pte_unmap; | 
 |  | 
 | 		if (unlikely(folio_is_secretmem(folio))) { | 
 | 			gup_put_folio(folio, 1, flags); | 
 | 			goto pte_unmap; | 
 | 		} | 
 |  | 
 | 		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) || | 
 | 		    unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { | 
 | 			gup_put_folio(folio, 1, flags); | 
 | 			goto pte_unmap; | 
 | 		} | 
 |  | 
 | 		if (!folio_fast_pin_allowed(folio, flags)) { | 
 | 			gup_put_folio(folio, 1, flags); | 
 | 			goto pte_unmap; | 
 | 		} | 
 |  | 
 | 		if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) { | 
 | 			gup_put_folio(folio, 1, flags); | 
 | 			goto pte_unmap; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * We need to make the page accessible if and only if we are | 
 | 		 * going to access its content (the FOLL_PIN case).  Please | 
 | 		 * see Documentation/core-api/pin_user_pages.rst for | 
 | 		 * details. | 
 | 		 */ | 
 | 		if (flags & FOLL_PIN) { | 
 | 			ret = arch_make_page_accessible(page); | 
 | 			if (ret) { | 
 | 				gup_put_folio(folio, 1, flags); | 
 | 				goto pte_unmap; | 
 | 			} | 
 | 		} | 
 | 		folio_set_referenced(folio); | 
 | 		pages[*nr] = page; | 
 | 		(*nr)++; | 
 | 	} while (ptep++, addr += PAGE_SIZE, addr != end); | 
 |  | 
 | 	ret = 1; | 
 |  | 
 | pte_unmap: | 
 | 	if (pgmap) | 
 | 		put_dev_pagemap(pgmap); | 
 | 	pte_unmap(ptem); | 
 | 	return ret; | 
 | } | 
 | #else | 
 |  | 
 | /* | 
 |  * If we can't determine whether or not a pte is special, then fail immediately | 
 |  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not | 
 |  * to be special. | 
 |  * | 
 |  * For a futex to be placed on a THP tail page, get_futex_key requires a | 
 |  * get_user_pages_fast_only implementation that can pin pages. Thus it's still | 
 |  * useful to have gup_huge_pmd even if we can't operate on ptes. | 
 |  */ | 
 | static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, | 
 | 			 unsigned long end, unsigned int flags, | 
 | 			 struct page **pages, int *nr) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ | 
 |  | 
 | #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) | 
 | static int __gup_device_huge(unsigned long pfn, unsigned long addr, | 
 | 			     unsigned long end, unsigned int flags, | 
 | 			     struct page **pages, int *nr) | 
 | { | 
 | 	int nr_start = *nr; | 
 | 	struct dev_pagemap *pgmap = NULL; | 
 |  | 
 | 	do { | 
 | 		struct page *page = pfn_to_page(pfn); | 
 |  | 
 | 		pgmap = get_dev_pagemap(pfn, pgmap); | 
 | 		if (unlikely(!pgmap)) { | 
 | 			undo_dev_pagemap(nr, nr_start, flags, pages); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) { | 
 | 			undo_dev_pagemap(nr, nr_start, flags, pages); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		SetPageReferenced(page); | 
 | 		pages[*nr] = page; | 
 | 		if (unlikely(try_grab_page(page, flags))) { | 
 | 			undo_dev_pagemap(nr, nr_start, flags, pages); | 
 | 			break; | 
 | 		} | 
 | 		(*nr)++; | 
 | 		pfn++; | 
 | 	} while (addr += PAGE_SIZE, addr != end); | 
 |  | 
 | 	put_dev_pagemap(pgmap); | 
 | 	return addr == end; | 
 | } | 
 |  | 
 | static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, | 
 | 				 unsigned long end, unsigned int flags, | 
 | 				 struct page **pages, int *nr) | 
 | { | 
 | 	unsigned long fault_pfn; | 
 | 	int nr_start = *nr; | 
 |  | 
 | 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); | 
 | 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) | 
 | 		return 0; | 
 |  | 
 | 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { | 
 | 		undo_dev_pagemap(nr, nr_start, flags, pages); | 
 | 		return 0; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, | 
 | 				 unsigned long end, unsigned int flags, | 
 | 				 struct page **pages, int *nr) | 
 | { | 
 | 	unsigned long fault_pfn; | 
 | 	int nr_start = *nr; | 
 |  | 
 | 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); | 
 | 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) | 
 | 		return 0; | 
 |  | 
 | 	if (unlikely(pud_val(orig) != pud_val(*pudp))) { | 
 | 		undo_dev_pagemap(nr, nr_start, flags, pages); | 
 | 		return 0; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 | #else | 
 | static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, | 
 | 				 unsigned long end, unsigned int flags, | 
 | 				 struct page **pages, int *nr) | 
 | { | 
 | 	BUILD_BUG(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, | 
 | 				 unsigned long end, unsigned int flags, | 
 | 				 struct page **pages, int *nr) | 
 | { | 
 | 	BUILD_BUG(); | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static int record_subpages(struct page *page, unsigned long addr, | 
 | 			   unsigned long end, struct page **pages) | 
 | { | 
 | 	int nr; | 
 |  | 
 | 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) | 
 | 		pages[nr] = nth_page(page, nr); | 
 |  | 
 | 	return nr; | 
 | } | 
 |  | 
 | #ifdef CONFIG_ARCH_HAS_HUGEPD | 
 | static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, | 
 | 				      unsigned long sz) | 
 | { | 
 | 	unsigned long __boundary = (addr + sz) & ~(sz-1); | 
 | 	return (__boundary - 1 < end - 1) ? __boundary : end; | 
 | } | 
 |  | 
 | static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, | 
 | 		       unsigned long end, unsigned int flags, | 
 | 		       struct page **pages, int *nr) | 
 | { | 
 | 	unsigned long pte_end; | 
 | 	struct page *page; | 
 | 	struct folio *folio; | 
 | 	pte_t pte; | 
 | 	int refs; | 
 |  | 
 | 	pte_end = (addr + sz) & ~(sz-1); | 
 | 	if (pte_end < end) | 
 | 		end = pte_end; | 
 |  | 
 | 	pte = huge_ptep_get(ptep); | 
 |  | 
 | 	if (!pte_access_permitted(pte, flags & FOLL_WRITE)) | 
 | 		return 0; | 
 |  | 
 | 	/* hugepages are never "special" */ | 
 | 	VM_BUG_ON(!pfn_valid(pte_pfn(pte))); | 
 |  | 
 | 	page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT); | 
 | 	refs = record_subpages(page, addr, end, pages + *nr); | 
 |  | 
 | 	folio = try_grab_folio(page, refs, flags); | 
 | 	if (!folio) | 
 | 		return 0; | 
 |  | 
 | 	if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { | 
 | 		gup_put_folio(folio, refs, flags); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (!folio_fast_pin_allowed(folio, flags)) { | 
 | 		gup_put_folio(folio, refs, flags); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) { | 
 | 		gup_put_folio(folio, refs, flags); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	*nr += refs; | 
 | 	folio_set_referenced(folio); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, | 
 | 		unsigned int pdshift, unsigned long end, unsigned int flags, | 
 | 		struct page **pages, int *nr) | 
 | { | 
 | 	pte_t *ptep; | 
 | 	unsigned long sz = 1UL << hugepd_shift(hugepd); | 
 | 	unsigned long next; | 
 |  | 
 | 	ptep = hugepte_offset(hugepd, addr, pdshift); | 
 | 	do { | 
 | 		next = hugepte_addr_end(addr, end, sz); | 
 | 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) | 
 | 			return 0; | 
 | 	} while (ptep++, addr = next, addr != end); | 
 |  | 
 | 	return 1; | 
 | } | 
 | #else | 
 | static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, | 
 | 		unsigned int pdshift, unsigned long end, unsigned int flags, | 
 | 		struct page **pages, int *nr) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif /* CONFIG_ARCH_HAS_HUGEPD */ | 
 |  | 
 | static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, | 
 | 			unsigned long end, unsigned int flags, | 
 | 			struct page **pages, int *nr) | 
 | { | 
 | 	struct page *page; | 
 | 	struct folio *folio; | 
 | 	int refs; | 
 |  | 
 | 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) | 
 | 		return 0; | 
 |  | 
 | 	if (pmd_devmap(orig)) { | 
 | 		if (unlikely(flags & FOLL_LONGTERM)) | 
 | 			return 0; | 
 | 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, | 
 | 					     pages, nr); | 
 | 	} | 
 |  | 
 | 	page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT); | 
 | 	refs = record_subpages(page, addr, end, pages + *nr); | 
 |  | 
 | 	folio = try_grab_folio(page, refs, flags); | 
 | 	if (!folio) | 
 | 		return 0; | 
 |  | 
 | 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { | 
 | 		gup_put_folio(folio, refs, flags); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (!folio_fast_pin_allowed(folio, flags)) { | 
 | 		gup_put_folio(folio, refs, flags); | 
 | 		return 0; | 
 | 	} | 
 | 	if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { | 
 | 		gup_put_folio(folio, refs, flags); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	*nr += refs; | 
 | 	folio_set_referenced(folio); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, | 
 | 			unsigned long end, unsigned int flags, | 
 | 			struct page **pages, int *nr) | 
 | { | 
 | 	struct page *page; | 
 | 	struct folio *folio; | 
 | 	int refs; | 
 |  | 
 | 	if (!pud_access_permitted(orig, flags & FOLL_WRITE)) | 
 | 		return 0; | 
 |  | 
 | 	if (pud_devmap(orig)) { | 
 | 		if (unlikely(flags & FOLL_LONGTERM)) | 
 | 			return 0; | 
 | 		return __gup_device_huge_pud(orig, pudp, addr, end, flags, | 
 | 					     pages, nr); | 
 | 	} | 
 |  | 
 | 	page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT); | 
 | 	refs = record_subpages(page, addr, end, pages + *nr); | 
 |  | 
 | 	folio = try_grab_folio(page, refs, flags); | 
 | 	if (!folio) | 
 | 		return 0; | 
 |  | 
 | 	if (unlikely(pud_val(orig) != pud_val(*pudp))) { | 
 | 		gup_put_folio(folio, refs, flags); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (!folio_fast_pin_allowed(folio, flags)) { | 
 | 		gup_put_folio(folio, refs, flags); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { | 
 | 		gup_put_folio(folio, refs, flags); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	*nr += refs; | 
 | 	folio_set_referenced(folio); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, | 
 | 			unsigned long end, unsigned int flags, | 
 | 			struct page **pages, int *nr) | 
 | { | 
 | 	int refs; | 
 | 	struct page *page; | 
 | 	struct folio *folio; | 
 |  | 
 | 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) | 
 | 		return 0; | 
 |  | 
 | 	BUILD_BUG_ON(pgd_devmap(orig)); | 
 |  | 
 | 	page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT); | 
 | 	refs = record_subpages(page, addr, end, pages + *nr); | 
 |  | 
 | 	folio = try_grab_folio(page, refs, flags); | 
 | 	if (!folio) | 
 | 		return 0; | 
 |  | 
 | 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { | 
 | 		gup_put_folio(folio, refs, flags); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { | 
 | 		gup_put_folio(folio, refs, flags); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (!folio_fast_pin_allowed(folio, flags)) { | 
 | 		gup_put_folio(folio, refs, flags); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	*nr += refs; | 
 | 	folio_set_referenced(folio); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, | 
 | 		unsigned int flags, struct page **pages, int *nr) | 
 | { | 
 | 	unsigned long next; | 
 | 	pmd_t *pmdp; | 
 |  | 
 | 	pmdp = pmd_offset_lockless(pudp, pud, addr); | 
 | 	do { | 
 | 		pmd_t pmd = pmdp_get_lockless(pmdp); | 
 |  | 
 | 		next = pmd_addr_end(addr, end); | 
 | 		if (!pmd_present(pmd)) | 
 | 			return 0; | 
 |  | 
 | 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || | 
 | 			     pmd_devmap(pmd))) { | 
 | 			/* See gup_pte_range() */ | 
 | 			if (pmd_protnone(pmd)) | 
 | 				return 0; | 
 |  | 
 | 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, | 
 | 				pages, nr)) | 
 | 				return 0; | 
 |  | 
 | 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { | 
 | 			/* | 
 | 			 * architecture have different format for hugetlbfs | 
 | 			 * pmd format and THP pmd format | 
 | 			 */ | 
 | 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, | 
 | 					 PMD_SHIFT, next, flags, pages, nr)) | 
 | 				return 0; | 
 | 		} else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr)) | 
 | 			return 0; | 
 | 	} while (pmdp++, addr = next, addr != end); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, | 
 | 			 unsigned int flags, struct page **pages, int *nr) | 
 | { | 
 | 	unsigned long next; | 
 | 	pud_t *pudp; | 
 |  | 
 | 	pudp = pud_offset_lockless(p4dp, p4d, addr); | 
 | 	do { | 
 | 		pud_t pud = READ_ONCE(*pudp); | 
 |  | 
 | 		next = pud_addr_end(addr, end); | 
 | 		if (unlikely(!pud_present(pud))) | 
 | 			return 0; | 
 | 		if (unlikely(pud_huge(pud) || pud_devmap(pud))) { | 
 | 			if (!gup_huge_pud(pud, pudp, addr, next, flags, | 
 | 					  pages, nr)) | 
 | 				return 0; | 
 | 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { | 
 | 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, | 
 | 					 PUD_SHIFT, next, flags, pages, nr)) | 
 | 				return 0; | 
 | 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) | 
 | 			return 0; | 
 | 	} while (pudp++, addr = next, addr != end); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, | 
 | 			 unsigned int flags, struct page **pages, int *nr) | 
 | { | 
 | 	unsigned long next; | 
 | 	p4d_t *p4dp; | 
 |  | 
 | 	p4dp = p4d_offset_lockless(pgdp, pgd, addr); | 
 | 	do { | 
 | 		p4d_t p4d = READ_ONCE(*p4dp); | 
 |  | 
 | 		next = p4d_addr_end(addr, end); | 
 | 		if (p4d_none(p4d)) | 
 | 			return 0; | 
 | 		BUILD_BUG_ON(p4d_huge(p4d)); | 
 | 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { | 
 | 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, | 
 | 					 P4D_SHIFT, next, flags, pages, nr)) | 
 | 				return 0; | 
 | 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) | 
 | 			return 0; | 
 | 	} while (p4dp++, addr = next, addr != end); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void gup_pgd_range(unsigned long addr, unsigned long end, | 
 | 		unsigned int flags, struct page **pages, int *nr) | 
 | { | 
 | 	unsigned long next; | 
 | 	pgd_t *pgdp; | 
 |  | 
 | 	pgdp = pgd_offset(current->mm, addr); | 
 | 	do { | 
 | 		pgd_t pgd = READ_ONCE(*pgdp); | 
 |  | 
 | 		next = pgd_addr_end(addr, end); | 
 | 		if (pgd_none(pgd)) | 
 | 			return; | 
 | 		if (unlikely(pgd_huge(pgd))) { | 
 | 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, | 
 | 					  pages, nr)) | 
 | 				return; | 
 | 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { | 
 | 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, | 
 | 					 PGDIR_SHIFT, next, flags, pages, nr)) | 
 | 				return; | 
 | 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) | 
 | 			return; | 
 | 	} while (pgdp++, addr = next, addr != end); | 
 | } | 
 | #else | 
 | static inline void gup_pgd_range(unsigned long addr, unsigned long end, | 
 | 		unsigned int flags, struct page **pages, int *nr) | 
 | { | 
 | } | 
 | #endif /* CONFIG_HAVE_FAST_GUP */ | 
 |  | 
 | #ifndef gup_fast_permitted | 
 | /* | 
 |  * Check if it's allowed to use get_user_pages_fast_only() for the range, or | 
 |  * we need to fall back to the slow version: | 
 |  */ | 
 | static bool gup_fast_permitted(unsigned long start, unsigned long end) | 
 | { | 
 | 	return true; | 
 | } | 
 | #endif | 
 |  | 
 | static unsigned long lockless_pages_from_mm(unsigned long start, | 
 | 					    unsigned long end, | 
 | 					    unsigned int gup_flags, | 
 | 					    struct page **pages) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int nr_pinned = 0; | 
 | 	unsigned seq; | 
 |  | 
 | 	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) || | 
 | 	    !gup_fast_permitted(start, end)) | 
 | 		return 0; | 
 |  | 
 | 	if (gup_flags & FOLL_PIN) { | 
 | 		seq = raw_read_seqcount(¤t->mm->write_protect_seq); | 
 | 		if (seq & 1) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Disable interrupts. The nested form is used, in order to allow full, | 
 | 	 * general purpose use of this routine. | 
 | 	 * | 
 | 	 * With interrupts disabled, we block page table pages from being freed | 
 | 	 * from under us. See struct mmu_table_batch comments in | 
 | 	 * include/asm-generic/tlb.h for more details. | 
 | 	 * | 
 | 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs | 
 | 	 * that come from THPs splitting. | 
 | 	 */ | 
 | 	local_irq_save(flags); | 
 | 	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	/* | 
 | 	 * When pinning pages for DMA there could be a concurrent write protect | 
 | 	 * from fork() via copy_page_range(), in this case always fail fast GUP. | 
 | 	 */ | 
 | 	if (gup_flags & FOLL_PIN) { | 
 | 		if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { | 
 | 			unpin_user_pages_lockless(pages, nr_pinned); | 
 | 			return 0; | 
 | 		} else { | 
 | 			sanity_check_pinned_pages(pages, nr_pinned); | 
 | 		} | 
 | 	} | 
 | 	return nr_pinned; | 
 | } | 
 |  | 
 | static int internal_get_user_pages_fast(unsigned long start, | 
 | 					unsigned long nr_pages, | 
 | 					unsigned int gup_flags, | 
 | 					struct page **pages) | 
 | { | 
 | 	unsigned long len, end; | 
 | 	unsigned long nr_pinned; | 
 | 	int locked = 0; | 
 | 	int ret; | 
 |  | 
 | 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | | 
 | 				       FOLL_FORCE | FOLL_PIN | FOLL_GET | | 
 | 				       FOLL_FAST_ONLY | FOLL_NOFAULT | | 
 | 				       FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (gup_flags & FOLL_PIN) | 
 | 		mm_set_has_pinned_flag(¤t->mm->flags); | 
 |  | 
 | 	if (!(gup_flags & FOLL_FAST_ONLY)) | 
 | 		might_lock_read(¤t->mm->mmap_lock); | 
 |  | 
 | 	start = untagged_addr(start) & PAGE_MASK; | 
 | 	len = nr_pages << PAGE_SHIFT; | 
 | 	if (check_add_overflow(start, len, &end)) | 
 | 		return -EOVERFLOW; | 
 | 	if (end > TASK_SIZE_MAX) | 
 | 		return -EFAULT; | 
 | 	if (unlikely(!access_ok((void __user *)start, len))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); | 
 | 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) | 
 | 		return nr_pinned; | 
 |  | 
 | 	/* Slow path: try to get the remaining pages with get_user_pages */ | 
 | 	start += nr_pinned << PAGE_SHIFT; | 
 | 	pages += nr_pinned; | 
 | 	ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned, | 
 | 				    pages, &locked, | 
 | 				    gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE); | 
 | 	if (ret < 0) { | 
 | 		/* | 
 | 		 * The caller has to unpin the pages we already pinned so | 
 | 		 * returning -errno is not an option | 
 | 		 */ | 
 | 		if (nr_pinned) | 
 | 			return nr_pinned; | 
 | 		return ret; | 
 | 	} | 
 | 	return ret + nr_pinned; | 
 | } | 
 |  | 
 | /** | 
 |  * get_user_pages_fast_only() - pin user pages in memory | 
 |  * @start:      starting user address | 
 |  * @nr_pages:   number of pages from start to pin | 
 |  * @gup_flags:  flags modifying pin behaviour | 
 |  * @pages:      array that receives pointers to the pages pinned. | 
 |  *              Should be at least nr_pages long. | 
 |  * | 
 |  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to | 
 |  * the regular GUP. | 
 |  * | 
 |  * If the architecture does not support this function, simply return with no | 
 |  * pages pinned. | 
 |  * | 
 |  * Careful, careful! COW breaking can go either way, so a non-write | 
 |  * access can get ambiguous page results. If you call this function without | 
 |  * 'write' set, you'd better be sure that you're ok with that ambiguity. | 
 |  */ | 
 | int get_user_pages_fast_only(unsigned long start, int nr_pages, | 
 | 			     unsigned int gup_flags, struct page **pages) | 
 | { | 
 | 	/* | 
 | 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, | 
 | 	 * because gup fast is always a "pin with a +1 page refcount" request. | 
 | 	 * | 
 | 	 * FOLL_FAST_ONLY is required in order to match the API description of | 
 | 	 * this routine: no fall back to regular ("slow") GUP. | 
 | 	 */ | 
 | 	if (!is_valid_gup_args(pages, NULL, &gup_flags, | 
 | 			       FOLL_GET | FOLL_FAST_ONLY)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); | 
 | } | 
 | EXPORT_SYMBOL_GPL(get_user_pages_fast_only); | 
 |  | 
 | /** | 
 |  * get_user_pages_fast() - pin user pages in memory | 
 |  * @start:      starting user address | 
 |  * @nr_pages:   number of pages from start to pin | 
 |  * @gup_flags:  flags modifying pin behaviour | 
 |  * @pages:      array that receives pointers to the pages pinned. | 
 |  *              Should be at least nr_pages long. | 
 |  * | 
 |  * Attempt to pin user pages in memory without taking mm->mmap_lock. | 
 |  * If not successful, it will fall back to taking the lock and | 
 |  * calling get_user_pages(). | 
 |  * | 
 |  * Returns number of pages pinned. This may be fewer than the number requested. | 
 |  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns | 
 |  * -errno. | 
 |  */ | 
 | int get_user_pages_fast(unsigned long start, int nr_pages, | 
 | 			unsigned int gup_flags, struct page **pages) | 
 | { | 
 | 	/* | 
 | 	 * The caller may or may not have explicitly set FOLL_GET; either way is | 
 | 	 * OK. However, internally (within mm/gup.c), gup fast variants must set | 
 | 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" | 
 | 	 * request. | 
 | 	 */ | 
 | 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET)) | 
 | 		return -EINVAL; | 
 | 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); | 
 | } | 
 | EXPORT_SYMBOL_GPL(get_user_pages_fast); | 
 |  | 
 | /** | 
 |  * pin_user_pages_fast() - pin user pages in memory without taking locks | 
 |  * | 
 |  * @start:      starting user address | 
 |  * @nr_pages:   number of pages from start to pin | 
 |  * @gup_flags:  flags modifying pin behaviour | 
 |  * @pages:      array that receives pointers to the pages pinned. | 
 |  *              Should be at least nr_pages long. | 
 |  * | 
 |  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See | 
 |  * get_user_pages_fast() for documentation on the function arguments, because | 
 |  * the arguments here are identical. | 
 |  * | 
 |  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please | 
 |  * see Documentation/core-api/pin_user_pages.rst for further details. | 
 |  * | 
 |  * Note that if a zero_page is amongst the returned pages, it will not have | 
 |  * pins in it and unpin_user_page() will not remove pins from it. | 
 |  */ | 
 | int pin_user_pages_fast(unsigned long start, int nr_pages, | 
 | 			unsigned int gup_flags, struct page **pages) | 
 | { | 
 | 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) | 
 | 		return -EINVAL; | 
 | 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); | 
 | } | 
 | EXPORT_SYMBOL_GPL(pin_user_pages_fast); | 
 |  | 
 | /** | 
 |  * pin_user_pages_remote() - pin pages of a remote process | 
 |  * | 
 |  * @mm:		mm_struct of target mm | 
 |  * @start:	starting user address | 
 |  * @nr_pages:	number of pages from start to pin | 
 |  * @gup_flags:	flags modifying lookup behaviour | 
 |  * @pages:	array that receives pointers to the pages pinned. | 
 |  *		Should be at least nr_pages long. | 
 |  * @locked:	pointer to lock flag indicating whether lock is held and | 
 |  *		subsequently whether VM_FAULT_RETRY functionality can be | 
 |  *		utilised. Lock must initially be held. | 
 |  * | 
 |  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See | 
 |  * get_user_pages_remote() for documentation on the function arguments, because | 
 |  * the arguments here are identical. | 
 |  * | 
 |  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please | 
 |  * see Documentation/core-api/pin_user_pages.rst for details. | 
 |  * | 
 |  * Note that if a zero_page is amongst the returned pages, it will not have | 
 |  * pins in it and unpin_user_page*() will not remove pins from it. | 
 |  */ | 
 | long pin_user_pages_remote(struct mm_struct *mm, | 
 | 			   unsigned long start, unsigned long nr_pages, | 
 | 			   unsigned int gup_flags, struct page **pages, | 
 | 			   int *locked) | 
 | { | 
 | 	int local_locked = 1; | 
 |  | 
 | 	if (!is_valid_gup_args(pages, locked, &gup_flags, | 
 | 			       FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE)) | 
 | 		return 0; | 
 | 	return __gup_longterm_locked(mm, start, nr_pages, pages, | 
 | 				     locked ? locked : &local_locked, | 
 | 				     gup_flags); | 
 | } | 
 | EXPORT_SYMBOL(pin_user_pages_remote); | 
 |  | 
 | /** | 
 |  * pin_user_pages() - pin user pages in memory for use by other devices | 
 |  * | 
 |  * @start:	starting user address | 
 |  * @nr_pages:	number of pages from start to pin | 
 |  * @gup_flags:	flags modifying lookup behaviour | 
 |  * @pages:	array that receives pointers to the pages pinned. | 
 |  *		Should be at least nr_pages long. | 
 |  * | 
 |  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and | 
 |  * FOLL_PIN is set. | 
 |  * | 
 |  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please | 
 |  * see Documentation/core-api/pin_user_pages.rst for details. | 
 |  * | 
 |  * Note that if a zero_page is amongst the returned pages, it will not have | 
 |  * pins in it and unpin_user_page*() will not remove pins from it. | 
 |  */ | 
 | long pin_user_pages(unsigned long start, unsigned long nr_pages, | 
 | 		    unsigned int gup_flags, struct page **pages) | 
 | { | 
 | 	int locked = 1; | 
 |  | 
 | 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) | 
 | 		return 0; | 
 | 	return __gup_longterm_locked(current->mm, start, nr_pages, | 
 | 				     pages, &locked, gup_flags); | 
 | } | 
 | EXPORT_SYMBOL(pin_user_pages); | 
 |  | 
 | /* | 
 |  * pin_user_pages_unlocked() is the FOLL_PIN variant of | 
 |  * get_user_pages_unlocked(). Behavior is the same, except that this one sets | 
 |  * FOLL_PIN and rejects FOLL_GET. | 
 |  * | 
 |  * Note that if a zero_page is amongst the returned pages, it will not have | 
 |  * pins in it and unpin_user_page*() will not remove pins from it. | 
 |  */ | 
 | long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, | 
 | 			     struct page **pages, unsigned int gup_flags) | 
 | { | 
 | 	int locked = 0; | 
 |  | 
 | 	if (!is_valid_gup_args(pages, NULL, &gup_flags, | 
 | 			       FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE)) | 
 | 		return 0; | 
 |  | 
 | 	return __gup_longterm_locked(current->mm, start, nr_pages, pages, | 
 | 				     &locked, gup_flags); | 
 | } | 
 | EXPORT_SYMBOL(pin_user_pages_unlocked); |