|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | * acpi-cpufreq.c - ACPI Processor P-States Driver | 
|  | * | 
|  | *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> | 
|  | *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> | 
|  | *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de> | 
|  | *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com> | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/cpufreq.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/dmi.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/string_helpers.h> | 
|  | #include <linux/platform_device.h> | 
|  |  | 
|  | #include <linux/acpi.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/uaccess.h> | 
|  |  | 
|  | #include <acpi/processor.h> | 
|  | #include <acpi/cppc_acpi.h> | 
|  |  | 
|  | #include <asm/msr.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/cpufeature.h> | 
|  | #include <asm/cpu_device_id.h> | 
|  |  | 
|  | MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski"); | 
|  | MODULE_DESCRIPTION("ACPI Processor P-States Driver"); | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  | enum { | 
|  | UNDEFINED_CAPABLE = 0, | 
|  | SYSTEM_INTEL_MSR_CAPABLE, | 
|  | SYSTEM_AMD_MSR_CAPABLE, | 
|  | SYSTEM_IO_CAPABLE, | 
|  | }; | 
|  |  | 
|  | #define INTEL_MSR_RANGE		(0xffff) | 
|  | #define AMD_MSR_RANGE		(0x7) | 
|  | #define HYGON_MSR_RANGE		(0x7) | 
|  |  | 
|  | #define MSR_K7_HWCR_CPB_DIS	(1ULL << 25) | 
|  |  | 
|  | struct acpi_cpufreq_data { | 
|  | unsigned int resume; | 
|  | unsigned int cpu_feature; | 
|  | unsigned int acpi_perf_cpu; | 
|  | cpumask_var_t freqdomain_cpus; | 
|  | void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val); | 
|  | u32 (*cpu_freq_read)(struct acpi_pct_register *reg); | 
|  | }; | 
|  |  | 
|  | /* acpi_perf_data is a pointer to percpu data. */ | 
|  | static struct acpi_processor_performance __percpu *acpi_perf_data; | 
|  |  | 
|  | static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data) | 
|  | { | 
|  | return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu); | 
|  | } | 
|  |  | 
|  | static struct cpufreq_driver acpi_cpufreq_driver; | 
|  |  | 
|  | static unsigned int acpi_pstate_strict; | 
|  |  | 
|  | static bool boost_state(unsigned int cpu) | 
|  | { | 
|  | u32 lo, hi; | 
|  | u64 msr; | 
|  |  | 
|  | switch (boot_cpu_data.x86_vendor) { | 
|  | case X86_VENDOR_INTEL: | 
|  | case X86_VENDOR_CENTAUR: | 
|  | case X86_VENDOR_ZHAOXIN: | 
|  | rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi); | 
|  | msr = lo | ((u64)hi << 32); | 
|  | return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE); | 
|  | case X86_VENDOR_HYGON: | 
|  | case X86_VENDOR_AMD: | 
|  | rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi); | 
|  | msr = lo | ((u64)hi << 32); | 
|  | return !(msr & MSR_K7_HWCR_CPB_DIS); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int boost_set_msr(bool enable) | 
|  | { | 
|  | u32 msr_addr; | 
|  | u64 msr_mask, val; | 
|  |  | 
|  | switch (boot_cpu_data.x86_vendor) { | 
|  | case X86_VENDOR_INTEL: | 
|  | case X86_VENDOR_CENTAUR: | 
|  | case X86_VENDOR_ZHAOXIN: | 
|  | msr_addr = MSR_IA32_MISC_ENABLE; | 
|  | msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE; | 
|  | break; | 
|  | case X86_VENDOR_HYGON: | 
|  | case X86_VENDOR_AMD: | 
|  | msr_addr = MSR_K7_HWCR; | 
|  | msr_mask = MSR_K7_HWCR_CPB_DIS; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | rdmsrl(msr_addr, val); | 
|  |  | 
|  | if (enable) | 
|  | val &= ~msr_mask; | 
|  | else | 
|  | val |= msr_mask; | 
|  |  | 
|  | wrmsrl(msr_addr, val); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void boost_set_msr_each(void *p_en) | 
|  | { | 
|  | bool enable = (bool) p_en; | 
|  |  | 
|  | boost_set_msr(enable); | 
|  | } | 
|  |  | 
|  | static int set_boost(struct cpufreq_policy *policy, int val) | 
|  | { | 
|  | on_each_cpu_mask(policy->cpus, boost_set_msr_each, | 
|  | (void *)(long)val, 1); | 
|  | pr_debug("CPU %*pbl: Core Boosting %s.\n", | 
|  | cpumask_pr_args(policy->cpus), str_enabled_disabled(val)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf) | 
|  | { | 
|  | struct acpi_cpufreq_data *data = policy->driver_data; | 
|  |  | 
|  | if (unlikely(!data)) | 
|  | return -ENODEV; | 
|  |  | 
|  | return cpufreq_show_cpus(data->freqdomain_cpus, buf); | 
|  | } | 
|  |  | 
|  | cpufreq_freq_attr_ro(freqdomain_cpus); | 
|  |  | 
|  | #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB | 
|  | static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf, | 
|  | size_t count) | 
|  | { | 
|  | int ret; | 
|  | unsigned int val = 0; | 
|  |  | 
|  | if (!acpi_cpufreq_driver.set_boost) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = kstrtouint(buf, 10, &val); | 
|  | if (ret || val > 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | cpus_read_lock(); | 
|  | set_boost(policy, val); | 
|  | cpus_read_unlock(); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled); | 
|  | } | 
|  |  | 
|  | cpufreq_freq_attr_rw(cpb); | 
|  | #endif | 
|  |  | 
|  | static int check_est_cpu(unsigned int cpuid) | 
|  | { | 
|  | struct cpuinfo_x86 *cpu = &cpu_data(cpuid); | 
|  |  | 
|  | return cpu_has(cpu, X86_FEATURE_EST); | 
|  | } | 
|  |  | 
|  | static int check_amd_hwpstate_cpu(unsigned int cpuid) | 
|  | { | 
|  | struct cpuinfo_x86 *cpu = &cpu_data(cpuid); | 
|  |  | 
|  | return cpu_has(cpu, X86_FEATURE_HW_PSTATE); | 
|  | } | 
|  |  | 
|  | static unsigned extract_io(struct cpufreq_policy *policy, u32 value) | 
|  | { | 
|  | struct acpi_cpufreq_data *data = policy->driver_data; | 
|  | struct acpi_processor_performance *perf; | 
|  | int i; | 
|  |  | 
|  | perf = to_perf_data(data); | 
|  |  | 
|  | for (i = 0; i < perf->state_count; i++) { | 
|  | if (value == perf->states[i].status) | 
|  | return policy->freq_table[i].frequency; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr) | 
|  | { | 
|  | struct acpi_cpufreq_data *data = policy->driver_data; | 
|  | struct cpufreq_frequency_table *pos; | 
|  | struct acpi_processor_performance *perf; | 
|  |  | 
|  | if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) | 
|  | msr &= AMD_MSR_RANGE; | 
|  | else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) | 
|  | msr &= HYGON_MSR_RANGE; | 
|  | else | 
|  | msr &= INTEL_MSR_RANGE; | 
|  |  | 
|  | perf = to_perf_data(data); | 
|  |  | 
|  | cpufreq_for_each_entry(pos, policy->freq_table) | 
|  | if (msr == perf->states[pos->driver_data].status) | 
|  | return pos->frequency; | 
|  | return policy->freq_table[0].frequency; | 
|  | } | 
|  |  | 
|  | static unsigned extract_freq(struct cpufreq_policy *policy, u32 val) | 
|  | { | 
|  | struct acpi_cpufreq_data *data = policy->driver_data; | 
|  |  | 
|  | switch (data->cpu_feature) { | 
|  | case SYSTEM_INTEL_MSR_CAPABLE: | 
|  | case SYSTEM_AMD_MSR_CAPABLE: | 
|  | return extract_msr(policy, val); | 
|  | case SYSTEM_IO_CAPABLE: | 
|  | return extract_io(policy, val); | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used) | 
|  | { | 
|  | u32 val, dummy __always_unused; | 
|  |  | 
|  | rdmsr(MSR_IA32_PERF_CTL, val, dummy); | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val) | 
|  | { | 
|  | u32 lo, hi; | 
|  |  | 
|  | rdmsr(MSR_IA32_PERF_CTL, lo, hi); | 
|  | lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE); | 
|  | wrmsr(MSR_IA32_PERF_CTL, lo, hi); | 
|  | } | 
|  |  | 
|  | static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used) | 
|  | { | 
|  | u32 val, dummy __always_unused; | 
|  |  | 
|  | rdmsr(MSR_AMD_PERF_CTL, val, dummy); | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val) | 
|  | { | 
|  | wrmsr(MSR_AMD_PERF_CTL, val, 0); | 
|  | } | 
|  |  | 
|  | static u32 cpu_freq_read_io(struct acpi_pct_register *reg) | 
|  | { | 
|  | u32 val; | 
|  |  | 
|  | acpi_os_read_port(reg->address, &val, reg->bit_width); | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val) | 
|  | { | 
|  | acpi_os_write_port(reg->address, val, reg->bit_width); | 
|  | } | 
|  |  | 
|  | struct drv_cmd { | 
|  | struct acpi_pct_register *reg; | 
|  | u32 val; | 
|  | union { | 
|  | void (*write)(struct acpi_pct_register *reg, u32 val); | 
|  | u32 (*read)(struct acpi_pct_register *reg); | 
|  | } func; | 
|  | }; | 
|  |  | 
|  | /* Called via smp_call_function_single(), on the target CPU */ | 
|  | static void do_drv_read(void *_cmd) | 
|  | { | 
|  | struct drv_cmd *cmd = _cmd; | 
|  |  | 
|  | cmd->val = cmd->func.read(cmd->reg); | 
|  | } | 
|  |  | 
|  | static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask) | 
|  | { | 
|  | struct acpi_processor_performance *perf = to_perf_data(data); | 
|  | struct drv_cmd cmd = { | 
|  | .reg = &perf->control_register, | 
|  | .func.read = data->cpu_freq_read, | 
|  | }; | 
|  | int err; | 
|  |  | 
|  | err = smp_call_function_any(mask, do_drv_read, &cmd, 1); | 
|  | WARN_ON_ONCE(err);	/* smp_call_function_any() was buggy? */ | 
|  | return cmd.val; | 
|  | } | 
|  |  | 
|  | /* Called via smp_call_function_many(), on the target CPUs */ | 
|  | static void do_drv_write(void *_cmd) | 
|  | { | 
|  | struct drv_cmd *cmd = _cmd; | 
|  |  | 
|  | cmd->func.write(cmd->reg, cmd->val); | 
|  | } | 
|  |  | 
|  | static void drv_write(struct acpi_cpufreq_data *data, | 
|  | const struct cpumask *mask, u32 val) | 
|  | { | 
|  | struct acpi_processor_performance *perf = to_perf_data(data); | 
|  | struct drv_cmd cmd = { | 
|  | .reg = &perf->control_register, | 
|  | .val = val, | 
|  | .func.write = data->cpu_freq_write, | 
|  | }; | 
|  | int this_cpu; | 
|  |  | 
|  | this_cpu = get_cpu(); | 
|  | if (cpumask_test_cpu(this_cpu, mask)) | 
|  | do_drv_write(&cmd); | 
|  |  | 
|  | smp_call_function_many(mask, do_drv_write, &cmd, 1); | 
|  | put_cpu(); | 
|  | } | 
|  |  | 
|  | static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data) | 
|  | { | 
|  | u32 val; | 
|  |  | 
|  | if (unlikely(cpumask_empty(mask))) | 
|  | return 0; | 
|  |  | 
|  | val = drv_read(data, mask); | 
|  |  | 
|  | pr_debug("%s = %u\n", __func__, val); | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static unsigned int get_cur_freq_on_cpu(unsigned int cpu) | 
|  | { | 
|  | struct acpi_cpufreq_data *data; | 
|  | struct cpufreq_policy *policy; | 
|  | unsigned int freq; | 
|  | unsigned int cached_freq; | 
|  |  | 
|  | pr_debug("%s (%d)\n", __func__, cpu); | 
|  |  | 
|  | policy = cpufreq_cpu_get_raw(cpu); | 
|  | if (unlikely(!policy)) | 
|  | return 0; | 
|  |  | 
|  | data = policy->driver_data; | 
|  | if (unlikely(!data || !policy->freq_table)) | 
|  | return 0; | 
|  |  | 
|  | cached_freq = policy->freq_table[to_perf_data(data)->state].frequency; | 
|  | freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data)); | 
|  | if (freq != cached_freq) { | 
|  | /* | 
|  | * The dreaded BIOS frequency change behind our back. | 
|  | * Force set the frequency on next target call. | 
|  | */ | 
|  | data->resume = 1; | 
|  | } | 
|  |  | 
|  | pr_debug("cur freq = %u\n", freq); | 
|  |  | 
|  | return freq; | 
|  | } | 
|  |  | 
|  | static unsigned int check_freqs(struct cpufreq_policy *policy, | 
|  | const struct cpumask *mask, unsigned int freq) | 
|  | { | 
|  | struct acpi_cpufreq_data *data = policy->driver_data; | 
|  | unsigned int cur_freq; | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < 100; i++) { | 
|  | cur_freq = extract_freq(policy, get_cur_val(mask, data)); | 
|  | if (cur_freq == freq) | 
|  | return 1; | 
|  | udelay(10); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int acpi_cpufreq_target(struct cpufreq_policy *policy, | 
|  | unsigned int index) | 
|  | { | 
|  | struct acpi_cpufreq_data *data = policy->driver_data; | 
|  | struct acpi_processor_performance *perf; | 
|  | const struct cpumask *mask; | 
|  | unsigned int next_perf_state = 0; /* Index into perf table */ | 
|  | int result = 0; | 
|  |  | 
|  | if (unlikely(!data)) { | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | perf = to_perf_data(data); | 
|  | next_perf_state = policy->freq_table[index].driver_data; | 
|  | if (perf->state == next_perf_state) { | 
|  | if (unlikely(data->resume)) { | 
|  | pr_debug("Called after resume, resetting to P%d\n", | 
|  | next_perf_state); | 
|  | data->resume = 0; | 
|  | } else { | 
|  | pr_debug("Already at target state (P%d)\n", | 
|  | next_perf_state); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The core won't allow CPUs to go away until the governor has been | 
|  | * stopped, so we can rely on the stability of policy->cpus. | 
|  | */ | 
|  | mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ? | 
|  | cpumask_of(policy->cpu) : policy->cpus; | 
|  |  | 
|  | drv_write(data, mask, perf->states[next_perf_state].control); | 
|  |  | 
|  | if (acpi_pstate_strict) { | 
|  | if (!check_freqs(policy, mask, | 
|  | policy->freq_table[index].frequency)) { | 
|  | pr_debug("%s (%d)\n", __func__, policy->cpu); | 
|  | result = -EAGAIN; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!result) | 
|  | perf->state = next_perf_state; | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy, | 
|  | unsigned int target_freq) | 
|  | { | 
|  | struct acpi_cpufreq_data *data = policy->driver_data; | 
|  | struct acpi_processor_performance *perf; | 
|  | struct cpufreq_frequency_table *entry; | 
|  | unsigned int next_perf_state, next_freq, index; | 
|  |  | 
|  | /* | 
|  | * Find the closest frequency above target_freq. | 
|  | */ | 
|  | if (policy->cached_target_freq == target_freq) | 
|  | index = policy->cached_resolved_idx; | 
|  | else | 
|  | index = cpufreq_table_find_index_dl(policy, target_freq, | 
|  | false); | 
|  |  | 
|  | entry = &policy->freq_table[index]; | 
|  | next_freq = entry->frequency; | 
|  | next_perf_state = entry->driver_data; | 
|  |  | 
|  | perf = to_perf_data(data); | 
|  | if (perf->state == next_perf_state) { | 
|  | if (unlikely(data->resume)) | 
|  | data->resume = 0; | 
|  | else | 
|  | return next_freq; | 
|  | } | 
|  |  | 
|  | data->cpu_freq_write(&perf->control_register, | 
|  | perf->states[next_perf_state].control); | 
|  | perf->state = next_perf_state; | 
|  | return next_freq; | 
|  | } | 
|  |  | 
|  | static unsigned long | 
|  | acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu) | 
|  | { | 
|  | struct acpi_processor_performance *perf; | 
|  |  | 
|  | perf = to_perf_data(data); | 
|  | if (cpu_khz) { | 
|  | /* search the closest match to cpu_khz */ | 
|  | unsigned int i; | 
|  | unsigned long freq; | 
|  | unsigned long freqn = perf->states[0].core_frequency * 1000; | 
|  |  | 
|  | for (i = 0; i < (perf->state_count-1); i++) { | 
|  | freq = freqn; | 
|  | freqn = perf->states[i+1].core_frequency * 1000; | 
|  | if ((2 * cpu_khz) > (freqn + freq)) { | 
|  | perf->state = i; | 
|  | return freq; | 
|  | } | 
|  | } | 
|  | perf->state = perf->state_count-1; | 
|  | return freqn; | 
|  | } else { | 
|  | /* assume CPU is at P0... */ | 
|  | perf->state = 0; | 
|  | return perf->states[0].core_frequency * 1000; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void free_acpi_perf_data(void) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */ | 
|  | for_each_possible_cpu(i) | 
|  | free_cpumask_var(per_cpu_ptr(acpi_perf_data, i) | 
|  | ->shared_cpu_map); | 
|  | free_percpu(acpi_perf_data); | 
|  | } | 
|  |  | 
|  | static int cpufreq_boost_down_prep(unsigned int cpu) | 
|  | { | 
|  | /* | 
|  | * Clear the boost-disable bit on the CPU_DOWN path so that | 
|  | * this cpu cannot block the remaining ones from boosting. | 
|  | */ | 
|  | return boost_set_msr(1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * acpi_cpufreq_early_init - initialize ACPI P-States library | 
|  | * | 
|  | * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c) | 
|  | * in order to determine correct frequency and voltage pairings. We can | 
|  | * do _PDC and _PSD and find out the processor dependency for the | 
|  | * actual init that will happen later... | 
|  | */ | 
|  | static int __init acpi_cpufreq_early_init(void) | 
|  | { | 
|  | unsigned int i; | 
|  | pr_debug("%s\n", __func__); | 
|  |  | 
|  | acpi_perf_data = alloc_percpu(struct acpi_processor_performance); | 
|  | if (!acpi_perf_data) { | 
|  | pr_debug("Memory allocation error for acpi_perf_data.\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | for_each_possible_cpu(i) { | 
|  | if (!zalloc_cpumask_var_node( | 
|  | &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map, | 
|  | GFP_KERNEL, cpu_to_node(i))) { | 
|  |  | 
|  | /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */ | 
|  | free_acpi_perf_data(); | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Do initialization in ACPI core */ | 
|  | acpi_processor_preregister_performance(acpi_perf_data); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * Some BIOSes do SW_ANY coordination internally, either set it up in hw | 
|  | * or do it in BIOS firmware and won't inform about it to OS. If not | 
|  | * detected, this has a side effect of making CPU run at a different speed | 
|  | * than OS intended it to run at. Detect it and handle it cleanly. | 
|  | */ | 
|  | static int bios_with_sw_any_bug; | 
|  |  | 
|  | static int sw_any_bug_found(const struct dmi_system_id *d) | 
|  | { | 
|  | bios_with_sw_any_bug = 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct dmi_system_id sw_any_bug_dmi_table[] = { | 
|  | { | 
|  | .callback = sw_any_bug_found, | 
|  | .ident = "Supermicro Server X6DLP", | 
|  | .matches = { | 
|  | DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"), | 
|  | DMI_MATCH(DMI_BIOS_VERSION, "080010"), | 
|  | DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"), | 
|  | }, | 
|  | }, | 
|  | { } | 
|  | }; | 
|  |  | 
|  | static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c) | 
|  | { | 
|  | /* Intel Xeon Processor 7100 Series Specification Update | 
|  | * https://www.intel.com/Assets/PDF/specupdate/314554.pdf | 
|  | * AL30: A Machine Check Exception (MCE) Occurring during an | 
|  | * Enhanced Intel SpeedStep Technology Ratio Change May Cause | 
|  | * Both Processor Cores to Lock Up. */ | 
|  | if (c->x86_vendor == X86_VENDOR_INTEL) { | 
|  | if ((c->x86 == 15) && | 
|  | (c->x86_model == 6) && | 
|  | (c->x86_stepping == 8)) { | 
|  | pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_ACPI_CPPC_LIB | 
|  | static u64 get_max_boost_ratio(unsigned int cpu) | 
|  | { | 
|  | struct cppc_perf_caps perf_caps; | 
|  | u64 highest_perf, nominal_perf; | 
|  | int ret; | 
|  |  | 
|  | if (acpi_pstate_strict) | 
|  | return 0; | 
|  |  | 
|  | ret = cppc_get_perf_caps(cpu, &perf_caps); | 
|  | if (ret) { | 
|  | pr_debug("CPU%d: Unable to get performance capabilities (%d)\n", | 
|  | cpu, ret); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) | 
|  | highest_perf = amd_get_highest_perf(); | 
|  | else | 
|  | highest_perf = perf_caps.highest_perf; | 
|  |  | 
|  | nominal_perf = perf_caps.nominal_perf; | 
|  |  | 
|  | if (!highest_perf || !nominal_perf) { | 
|  | pr_debug("CPU%d: highest or nominal performance missing\n", cpu); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (highest_perf < nominal_perf) { | 
|  | pr_debug("CPU%d: nominal performance above highest\n", cpu); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return div_u64(highest_perf << SCHED_CAPACITY_SHIFT, nominal_perf); | 
|  | } | 
|  | #else | 
|  | static inline u64 get_max_boost_ratio(unsigned int cpu) { return 0; } | 
|  | #endif | 
|  |  | 
|  | static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy) | 
|  | { | 
|  | struct cpufreq_frequency_table *freq_table; | 
|  | struct acpi_processor_performance *perf; | 
|  | struct acpi_cpufreq_data *data; | 
|  | unsigned int cpu = policy->cpu; | 
|  | struct cpuinfo_x86 *c = &cpu_data(cpu); | 
|  | unsigned int valid_states = 0; | 
|  | unsigned int result = 0; | 
|  | u64 max_boost_ratio; | 
|  | unsigned int i; | 
|  | #ifdef CONFIG_SMP | 
|  | static int blacklisted; | 
|  | #endif | 
|  |  | 
|  | pr_debug("%s\n", __func__); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | if (blacklisted) | 
|  | return blacklisted; | 
|  | blacklisted = acpi_cpufreq_blacklist(c); | 
|  | if (blacklisted) | 
|  | return blacklisted; | 
|  | #endif | 
|  |  | 
|  | data = kzalloc(sizeof(*data), GFP_KERNEL); | 
|  | if (!data) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) { | 
|  | result = -ENOMEM; | 
|  | goto err_free; | 
|  | } | 
|  |  | 
|  | perf = per_cpu_ptr(acpi_perf_data, cpu); | 
|  | data->acpi_perf_cpu = cpu; | 
|  | policy->driver_data = data; | 
|  |  | 
|  | if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) | 
|  | acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS; | 
|  |  | 
|  | result = acpi_processor_register_performance(perf, cpu); | 
|  | if (result) | 
|  | goto err_free_mask; | 
|  |  | 
|  | policy->shared_type = perf->shared_type; | 
|  |  | 
|  | /* | 
|  | * Will let policy->cpus know about dependency only when software | 
|  | * coordination is required. | 
|  | */ | 
|  | if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL || | 
|  | policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) { | 
|  | cpumask_copy(policy->cpus, perf->shared_cpu_map); | 
|  | } | 
|  | cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | dmi_check_system(sw_any_bug_dmi_table); | 
|  | if (bios_with_sw_any_bug && !policy_is_shared(policy)) { | 
|  | policy->shared_type = CPUFREQ_SHARED_TYPE_ALL; | 
|  | cpumask_copy(policy->cpus, topology_core_cpumask(cpu)); | 
|  | } | 
|  |  | 
|  | if (check_amd_hwpstate_cpu(cpu) && boot_cpu_data.x86 < 0x19 && | 
|  | !acpi_pstate_strict) { | 
|  | cpumask_clear(policy->cpus); | 
|  | cpumask_set_cpu(cpu, policy->cpus); | 
|  | cpumask_copy(data->freqdomain_cpus, | 
|  | topology_sibling_cpumask(cpu)); | 
|  | policy->shared_type = CPUFREQ_SHARED_TYPE_HW; | 
|  | pr_info_once("overriding BIOS provided _PSD data\n"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* capability check */ | 
|  | if (perf->state_count <= 1) { | 
|  | pr_debug("No P-States\n"); | 
|  | result = -ENODEV; | 
|  | goto err_unreg; | 
|  | } | 
|  |  | 
|  | if (perf->control_register.space_id != perf->status_register.space_id) { | 
|  | result = -ENODEV; | 
|  | goto err_unreg; | 
|  | } | 
|  |  | 
|  | switch (perf->control_register.space_id) { | 
|  | case ACPI_ADR_SPACE_SYSTEM_IO: | 
|  | if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD && | 
|  | boot_cpu_data.x86 == 0xf) { | 
|  | pr_debug("AMD K8 systems must use native drivers.\n"); | 
|  | result = -ENODEV; | 
|  | goto err_unreg; | 
|  | } | 
|  | pr_debug("SYSTEM IO addr space\n"); | 
|  | data->cpu_feature = SYSTEM_IO_CAPABLE; | 
|  | data->cpu_freq_read = cpu_freq_read_io; | 
|  | data->cpu_freq_write = cpu_freq_write_io; | 
|  | break; | 
|  | case ACPI_ADR_SPACE_FIXED_HARDWARE: | 
|  | pr_debug("HARDWARE addr space\n"); | 
|  | if (check_est_cpu(cpu)) { | 
|  | data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE; | 
|  | data->cpu_freq_read = cpu_freq_read_intel; | 
|  | data->cpu_freq_write = cpu_freq_write_intel; | 
|  | break; | 
|  | } | 
|  | if (check_amd_hwpstate_cpu(cpu)) { | 
|  | data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE; | 
|  | data->cpu_freq_read = cpu_freq_read_amd; | 
|  | data->cpu_freq_write = cpu_freq_write_amd; | 
|  | break; | 
|  | } | 
|  | result = -ENODEV; | 
|  | goto err_unreg; | 
|  | default: | 
|  | pr_debug("Unknown addr space %d\n", | 
|  | (u32) (perf->control_register.space_id)); | 
|  | result = -ENODEV; | 
|  | goto err_unreg; | 
|  | } | 
|  |  | 
|  | freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table), | 
|  | GFP_KERNEL); | 
|  | if (!freq_table) { | 
|  | result = -ENOMEM; | 
|  | goto err_unreg; | 
|  | } | 
|  |  | 
|  | /* detect transition latency */ | 
|  | policy->cpuinfo.transition_latency = 0; | 
|  | for (i = 0; i < perf->state_count; i++) { | 
|  | if ((perf->states[i].transition_latency * 1000) > | 
|  | policy->cpuinfo.transition_latency) | 
|  | policy->cpuinfo.transition_latency = | 
|  | perf->states[i].transition_latency * 1000; | 
|  | } | 
|  |  | 
|  | /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */ | 
|  | if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE && | 
|  | policy->cpuinfo.transition_latency > 20 * 1000) { | 
|  | policy->cpuinfo.transition_latency = 20 * 1000; | 
|  | pr_info_once("P-state transition latency capped at 20 uS\n"); | 
|  | } | 
|  |  | 
|  | /* table init */ | 
|  | for (i = 0; i < perf->state_count; i++) { | 
|  | if (i > 0 && perf->states[i].core_frequency >= | 
|  | freq_table[valid_states-1].frequency / 1000) | 
|  | continue; | 
|  |  | 
|  | freq_table[valid_states].driver_data = i; | 
|  | freq_table[valid_states].frequency = | 
|  | perf->states[i].core_frequency * 1000; | 
|  | valid_states++; | 
|  | } | 
|  | freq_table[valid_states].frequency = CPUFREQ_TABLE_END; | 
|  |  | 
|  | max_boost_ratio = get_max_boost_ratio(cpu); | 
|  | if (max_boost_ratio) { | 
|  | unsigned int freq = freq_table[0].frequency; | 
|  |  | 
|  | /* | 
|  | * Because the loop above sorts the freq_table entries in the | 
|  | * descending order, freq is the maximum frequency in the table. | 
|  | * Assume that it corresponds to the CPPC nominal frequency and | 
|  | * use it to set cpuinfo.max_freq. | 
|  | */ | 
|  | policy->cpuinfo.max_freq = freq * max_boost_ratio >> SCHED_CAPACITY_SHIFT; | 
|  | } else { | 
|  | /* | 
|  | * If the maximum "boost" frequency is unknown, ask the arch | 
|  | * scale-invariance code to use the "nominal" performance for | 
|  | * CPU utilization scaling so as to prevent the schedutil | 
|  | * governor from selecting inadequate CPU frequencies. | 
|  | */ | 
|  | arch_set_max_freq_ratio(true); | 
|  | } | 
|  |  | 
|  | policy->freq_table = freq_table; | 
|  | perf->state = 0; | 
|  |  | 
|  | switch (perf->control_register.space_id) { | 
|  | case ACPI_ADR_SPACE_SYSTEM_IO: | 
|  | /* | 
|  | * The core will not set policy->cur, because | 
|  | * cpufreq_driver->get is NULL, so we need to set it here. | 
|  | * However, we have to guess it, because the current speed is | 
|  | * unknown and not detectable via IO ports. | 
|  | */ | 
|  | policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu); | 
|  | break; | 
|  | case ACPI_ADR_SPACE_FIXED_HARDWARE: | 
|  | acpi_cpufreq_driver.get = get_cur_freq_on_cpu; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* notify BIOS that we exist */ | 
|  | acpi_processor_notify_smm(THIS_MODULE); | 
|  |  | 
|  | pr_debug("CPU%u - ACPI performance management activated.\n", cpu); | 
|  | for (i = 0; i < perf->state_count; i++) | 
|  | pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n", | 
|  | (i == perf->state ? '*' : ' '), i, | 
|  | (u32) perf->states[i].core_frequency, | 
|  | (u32) perf->states[i].power, | 
|  | (u32) perf->states[i].transition_latency); | 
|  |  | 
|  | /* | 
|  | * the first call to ->target() should result in us actually | 
|  | * writing something to the appropriate registers. | 
|  | */ | 
|  | data->resume = 1; | 
|  |  | 
|  | policy->fast_switch_possible = !acpi_pstate_strict && | 
|  | !(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY); | 
|  |  | 
|  | if (perf->states[0].core_frequency * 1000 != freq_table[0].frequency) | 
|  | pr_warn(FW_WARN "P-state 0 is not max freq\n"); | 
|  |  | 
|  | if (acpi_cpufreq_driver.set_boost) | 
|  | set_boost(policy, acpi_cpufreq_driver.boost_enabled); | 
|  |  | 
|  | return result; | 
|  |  | 
|  | err_unreg: | 
|  | acpi_processor_unregister_performance(cpu); | 
|  | err_free_mask: | 
|  | free_cpumask_var(data->freqdomain_cpus); | 
|  | err_free: | 
|  | kfree(data); | 
|  | policy->driver_data = NULL; | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy) | 
|  | { | 
|  | struct acpi_cpufreq_data *data = policy->driver_data; | 
|  |  | 
|  | pr_debug("%s\n", __func__); | 
|  |  | 
|  | cpufreq_boost_down_prep(policy->cpu); | 
|  | policy->fast_switch_possible = false; | 
|  | policy->driver_data = NULL; | 
|  | acpi_processor_unregister_performance(data->acpi_perf_cpu); | 
|  | free_cpumask_var(data->freqdomain_cpus); | 
|  | kfree(policy->freq_table); | 
|  | kfree(data); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int acpi_cpufreq_resume(struct cpufreq_policy *policy) | 
|  | { | 
|  | struct acpi_cpufreq_data *data = policy->driver_data; | 
|  |  | 
|  | pr_debug("%s\n", __func__); | 
|  |  | 
|  | data->resume = 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct freq_attr *acpi_cpufreq_attr[] = { | 
|  | &cpufreq_freq_attr_scaling_available_freqs, | 
|  | &freqdomain_cpus, | 
|  | #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB | 
|  | &cpb, | 
|  | #endif | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static struct cpufreq_driver acpi_cpufreq_driver = { | 
|  | .verify		= cpufreq_generic_frequency_table_verify, | 
|  | .target_index	= acpi_cpufreq_target, | 
|  | .fast_switch	= acpi_cpufreq_fast_switch, | 
|  | .bios_limit	= acpi_processor_get_bios_limit, | 
|  | .init		= acpi_cpufreq_cpu_init, | 
|  | .exit		= acpi_cpufreq_cpu_exit, | 
|  | .resume		= acpi_cpufreq_resume, | 
|  | .name		= "acpi-cpufreq", | 
|  | .attr		= acpi_cpufreq_attr, | 
|  | }; | 
|  |  | 
|  | static void __init acpi_cpufreq_boost_init(void) | 
|  | { | 
|  | if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) { | 
|  | pr_debug("Boost capabilities not present in the processor\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | acpi_cpufreq_driver.set_boost = set_boost; | 
|  | acpi_cpufreq_driver.boost_enabled = boost_state(0); | 
|  | } | 
|  |  | 
|  | static int __init acpi_cpufreq_probe(struct platform_device *pdev) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (acpi_disabled) | 
|  | return -ENODEV; | 
|  |  | 
|  | /* don't keep reloading if cpufreq_driver exists */ | 
|  | if (cpufreq_get_current_driver()) | 
|  | return -ENODEV; | 
|  |  | 
|  | pr_debug("%s\n", __func__); | 
|  |  | 
|  | ret = acpi_cpufreq_early_init(); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB | 
|  | /* this is a sysfs file with a strange name and an even stranger | 
|  | * semantic - per CPU instantiation, but system global effect. | 
|  | * Lets enable it only on AMD CPUs for compatibility reasons and | 
|  | * only if configured. This is considered legacy code, which | 
|  | * will probably be removed at some point in the future. | 
|  | */ | 
|  | if (!check_amd_hwpstate_cpu(0)) { | 
|  | struct freq_attr **attr; | 
|  |  | 
|  | pr_debug("CPB unsupported, do not expose it\n"); | 
|  |  | 
|  | for (attr = acpi_cpufreq_attr; *attr; attr++) | 
|  | if (*attr == &cpb) { | 
|  | *attr = NULL; | 
|  | break; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | acpi_cpufreq_boost_init(); | 
|  |  | 
|  | ret = cpufreq_register_driver(&acpi_cpufreq_driver); | 
|  | if (ret) { | 
|  | free_acpi_perf_data(); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void acpi_cpufreq_remove(struct platform_device *pdev) | 
|  | { | 
|  | pr_debug("%s\n", __func__); | 
|  |  | 
|  | cpufreq_unregister_driver(&acpi_cpufreq_driver); | 
|  |  | 
|  | free_acpi_perf_data(); | 
|  | } | 
|  |  | 
|  | static struct platform_driver acpi_cpufreq_platdrv = { | 
|  | .driver = { | 
|  | .name	= "acpi-cpufreq", | 
|  | }, | 
|  | .remove_new	= acpi_cpufreq_remove, | 
|  | }; | 
|  |  | 
|  | static int __init acpi_cpufreq_init(void) | 
|  | { | 
|  | return platform_driver_probe(&acpi_cpufreq_platdrv, acpi_cpufreq_probe); | 
|  | } | 
|  |  | 
|  | static void __exit acpi_cpufreq_exit(void) | 
|  | { | 
|  | platform_driver_unregister(&acpi_cpufreq_platdrv); | 
|  | } | 
|  |  | 
|  | module_param(acpi_pstate_strict, uint, 0644); | 
|  | MODULE_PARM_DESC(acpi_pstate_strict, | 
|  | "value 0 or non-zero. non-zero -> strict ACPI checks are " | 
|  | "performed during frequency changes."); | 
|  |  | 
|  | late_initcall(acpi_cpufreq_init); | 
|  | module_exit(acpi_cpufreq_exit); | 
|  |  | 
|  | MODULE_ALIAS("platform:acpi-cpufreq"); |