| /* | 
 |  * This file is part of UBIFS. | 
 |  * | 
 |  * Copyright (C) 2006-2008 Nokia Corporation. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify it | 
 |  * under the terms of the GNU General Public License version 2 as published by | 
 |  * the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, but WITHOUT | 
 |  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
 |  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
 |  * more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License along with | 
 |  * this program; if not, write to the Free Software Foundation, Inc., 51 | 
 |  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | 
 |  * | 
 |  * Authors: Adrian Hunter | 
 |  *          Artem Bityutskiy (Битюцкий Артём) | 
 |  */ | 
 |  | 
 | /* | 
 |  * This file implements the LEB properties tree (LPT) area. The LPT area | 
 |  * contains the LEB properties tree, a table of LPT area eraseblocks (ltab), and | 
 |  * (for the "big" model) a table of saved LEB numbers (lsave). The LPT area sits | 
 |  * between the log and the orphan area. | 
 |  * | 
 |  * The LPT area is like a miniature self-contained file system. It is required | 
 |  * that it never runs out of space, is fast to access and update, and scales | 
 |  * logarithmically. The LEB properties tree is implemented as a wandering tree | 
 |  * much like the TNC, and the LPT area has its own garbage collection. | 
 |  * | 
 |  * The LPT has two slightly different forms called the "small model" and the | 
 |  * "big model". The small model is used when the entire LEB properties table | 
 |  * can be written into a single eraseblock. In that case, garbage collection | 
 |  * consists of just writing the whole table, which therefore makes all other | 
 |  * eraseblocks reusable. In the case of the big model, dirty eraseblocks are | 
 |  * selected for garbage collection, which consists of marking the clean nodes in | 
 |  * that LEB as dirty, and then only the dirty nodes are written out. Also, in | 
 |  * the case of the big model, a table of LEB numbers is saved so that the entire | 
 |  * LPT does not to be scanned looking for empty eraseblocks when UBIFS is first | 
 |  * mounted. | 
 |  */ | 
 |  | 
 | #include "ubifs.h" | 
 | #include <linux/crc16.h> | 
 | #include <linux/math64.h> | 
 | #include <linux/slab.h> | 
 |  | 
 | /** | 
 |  * do_calc_lpt_geom - calculate sizes for the LPT area. | 
 |  * @c: the UBIFS file-system description object | 
 |  * | 
 |  * Calculate the sizes of LPT bit fields, nodes, and tree, based on the | 
 |  * properties of the flash and whether LPT is "big" (c->big_lpt). | 
 |  */ | 
 | static void do_calc_lpt_geom(struct ubifs_info *c) | 
 | { | 
 | 	int i, n, bits, per_leb_wastage, max_pnode_cnt; | 
 | 	long long sz, tot_wastage; | 
 |  | 
 | 	n = c->main_lebs + c->max_leb_cnt - c->leb_cnt; | 
 | 	max_pnode_cnt = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT); | 
 |  | 
 | 	c->lpt_hght = 1; | 
 | 	n = UBIFS_LPT_FANOUT; | 
 | 	while (n < max_pnode_cnt) { | 
 | 		c->lpt_hght += 1; | 
 | 		n <<= UBIFS_LPT_FANOUT_SHIFT; | 
 | 	} | 
 |  | 
 | 	c->pnode_cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT); | 
 |  | 
 | 	n = DIV_ROUND_UP(c->pnode_cnt, UBIFS_LPT_FANOUT); | 
 | 	c->nnode_cnt = n; | 
 | 	for (i = 1; i < c->lpt_hght; i++) { | 
 | 		n = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT); | 
 | 		c->nnode_cnt += n; | 
 | 	} | 
 |  | 
 | 	c->space_bits = fls(c->leb_size) - 3; | 
 | 	c->lpt_lnum_bits = fls(c->lpt_lebs); | 
 | 	c->lpt_offs_bits = fls(c->leb_size - 1); | 
 | 	c->lpt_spc_bits = fls(c->leb_size); | 
 |  | 
 | 	n = DIV_ROUND_UP(c->max_leb_cnt, UBIFS_LPT_FANOUT); | 
 | 	c->pcnt_bits = fls(n - 1); | 
 |  | 
 | 	c->lnum_bits = fls(c->max_leb_cnt - 1); | 
 |  | 
 | 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS + | 
 | 	       (c->big_lpt ? c->pcnt_bits : 0) + | 
 | 	       (c->space_bits * 2 + 1) * UBIFS_LPT_FANOUT; | 
 | 	c->pnode_sz = (bits + 7) / 8; | 
 |  | 
 | 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS + | 
 | 	       (c->big_lpt ? c->pcnt_bits : 0) + | 
 | 	       (c->lpt_lnum_bits + c->lpt_offs_bits) * UBIFS_LPT_FANOUT; | 
 | 	c->nnode_sz = (bits + 7) / 8; | 
 |  | 
 | 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS + | 
 | 	       c->lpt_lebs * c->lpt_spc_bits * 2; | 
 | 	c->ltab_sz = (bits + 7) / 8; | 
 |  | 
 | 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS + | 
 | 	       c->lnum_bits * c->lsave_cnt; | 
 | 	c->lsave_sz = (bits + 7) / 8; | 
 |  | 
 | 	/* Calculate the minimum LPT size */ | 
 | 	c->lpt_sz = (long long)c->pnode_cnt * c->pnode_sz; | 
 | 	c->lpt_sz += (long long)c->nnode_cnt * c->nnode_sz; | 
 | 	c->lpt_sz += c->ltab_sz; | 
 | 	if (c->big_lpt) | 
 | 		c->lpt_sz += c->lsave_sz; | 
 |  | 
 | 	/* Add wastage */ | 
 | 	sz = c->lpt_sz; | 
 | 	per_leb_wastage = max_t(int, c->pnode_sz, c->nnode_sz); | 
 | 	sz += per_leb_wastage; | 
 | 	tot_wastage = per_leb_wastage; | 
 | 	while (sz > c->leb_size) { | 
 | 		sz += per_leb_wastage; | 
 | 		sz -= c->leb_size; | 
 | 		tot_wastage += per_leb_wastage; | 
 | 	} | 
 | 	tot_wastage += ALIGN(sz, c->min_io_size) - sz; | 
 | 	c->lpt_sz += tot_wastage; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_calc_lpt_geom - calculate and check sizes for the LPT area. | 
 |  * @c: the UBIFS file-system description object | 
 |  * | 
 |  * This function returns %0 on success and a negative error code on failure. | 
 |  */ | 
 | int ubifs_calc_lpt_geom(struct ubifs_info *c) | 
 | { | 
 | 	int lebs_needed; | 
 | 	long long sz; | 
 |  | 
 | 	do_calc_lpt_geom(c); | 
 |  | 
 | 	/* Verify that lpt_lebs is big enough */ | 
 | 	sz = c->lpt_sz * 2; /* Must have at least 2 times the size */ | 
 | 	lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size); | 
 | 	if (lebs_needed > c->lpt_lebs) { | 
 | 		ubifs_err(c, "too few LPT LEBs"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Verify that ltab fits in a single LEB (since ltab is a single node */ | 
 | 	if (c->ltab_sz > c->leb_size) { | 
 | 		ubifs_err(c, "LPT ltab too big"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	c->check_lpt_free = c->big_lpt; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * calc_dflt_lpt_geom - calculate default LPT geometry. | 
 |  * @c: the UBIFS file-system description object | 
 |  * @main_lebs: number of main area LEBs is passed and returned here | 
 |  * @big_lpt: whether the LPT area is "big" is returned here | 
 |  * | 
 |  * The size of the LPT area depends on parameters that themselves are dependent | 
 |  * on the size of the LPT area. This function, successively recalculates the LPT | 
 |  * area geometry until the parameters and resultant geometry are consistent. | 
 |  * | 
 |  * This function returns %0 on success and a negative error code on failure. | 
 |  */ | 
 | static int calc_dflt_lpt_geom(struct ubifs_info *c, int *main_lebs, | 
 | 			      int *big_lpt) | 
 | { | 
 | 	int i, lebs_needed; | 
 | 	long long sz; | 
 |  | 
 | 	/* Start by assuming the minimum number of LPT LEBs */ | 
 | 	c->lpt_lebs = UBIFS_MIN_LPT_LEBS; | 
 | 	c->main_lebs = *main_lebs - c->lpt_lebs; | 
 | 	if (c->main_lebs <= 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* And assume we will use the small LPT model */ | 
 | 	c->big_lpt = 0; | 
 |  | 
 | 	/* | 
 | 	 * Calculate the geometry based on assumptions above and then see if it | 
 | 	 * makes sense | 
 | 	 */ | 
 | 	do_calc_lpt_geom(c); | 
 |  | 
 | 	/* Small LPT model must have lpt_sz < leb_size */ | 
 | 	if (c->lpt_sz > c->leb_size) { | 
 | 		/* Nope, so try again using big LPT model */ | 
 | 		c->big_lpt = 1; | 
 | 		do_calc_lpt_geom(c); | 
 | 	} | 
 |  | 
 | 	/* Now check there are enough LPT LEBs */ | 
 | 	for (i = 0; i < 64 ; i++) { | 
 | 		sz = c->lpt_sz * 4; /* Allow 4 times the size */ | 
 | 		lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size); | 
 | 		if (lebs_needed > c->lpt_lebs) { | 
 | 			/* Not enough LPT LEBs so try again with more */ | 
 | 			c->lpt_lebs = lebs_needed; | 
 | 			c->main_lebs = *main_lebs - c->lpt_lebs; | 
 | 			if (c->main_lebs <= 0) | 
 | 				return -EINVAL; | 
 | 			do_calc_lpt_geom(c); | 
 | 			continue; | 
 | 		} | 
 | 		if (c->ltab_sz > c->leb_size) { | 
 | 			ubifs_err(c, "LPT ltab too big"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		*main_lebs = c->main_lebs; | 
 | 		*big_lpt = c->big_lpt; | 
 | 		return 0; | 
 | 	} | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | /** | 
 |  * pack_bits - pack bit fields end-to-end. | 
 |  * @addr: address at which to pack (passed and next address returned) | 
 |  * @pos: bit position at which to pack (passed and next position returned) | 
 |  * @val: value to pack | 
 |  * @nrbits: number of bits of value to pack (1-32) | 
 |  */ | 
 | static void pack_bits(uint8_t **addr, int *pos, uint32_t val, int nrbits) | 
 | { | 
 | 	uint8_t *p = *addr; | 
 | 	int b = *pos; | 
 |  | 
 | 	ubifs_assert(nrbits > 0); | 
 | 	ubifs_assert(nrbits <= 32); | 
 | 	ubifs_assert(*pos >= 0); | 
 | 	ubifs_assert(*pos < 8); | 
 | 	ubifs_assert((val >> nrbits) == 0 || nrbits == 32); | 
 | 	if (b) { | 
 | 		*p |= ((uint8_t)val) << b; | 
 | 		nrbits += b; | 
 | 		if (nrbits > 8) { | 
 | 			*++p = (uint8_t)(val >>= (8 - b)); | 
 | 			if (nrbits > 16) { | 
 | 				*++p = (uint8_t)(val >>= 8); | 
 | 				if (nrbits > 24) { | 
 | 					*++p = (uint8_t)(val >>= 8); | 
 | 					if (nrbits > 32) | 
 | 						*++p = (uint8_t)(val >>= 8); | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	} else { | 
 | 		*p = (uint8_t)val; | 
 | 		if (nrbits > 8) { | 
 | 			*++p = (uint8_t)(val >>= 8); | 
 | 			if (nrbits > 16) { | 
 | 				*++p = (uint8_t)(val >>= 8); | 
 | 				if (nrbits > 24) | 
 | 					*++p = (uint8_t)(val >>= 8); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	b = nrbits & 7; | 
 | 	if (b == 0) | 
 | 		p++; | 
 | 	*addr = p; | 
 | 	*pos = b; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_unpack_bits - unpack bit fields. | 
 |  * @addr: address at which to unpack (passed and next address returned) | 
 |  * @pos: bit position at which to unpack (passed and next position returned) | 
 |  * @nrbits: number of bits of value to unpack (1-32) | 
 |  * | 
 |  * This functions returns the value unpacked. | 
 |  */ | 
 | uint32_t ubifs_unpack_bits(uint8_t **addr, int *pos, int nrbits) | 
 | { | 
 | 	const int k = 32 - nrbits; | 
 | 	uint8_t *p = *addr; | 
 | 	int b = *pos; | 
 | 	uint32_t uninitialized_var(val); | 
 | 	const int bytes = (nrbits + b + 7) >> 3; | 
 |  | 
 | 	ubifs_assert(nrbits > 0); | 
 | 	ubifs_assert(nrbits <= 32); | 
 | 	ubifs_assert(*pos >= 0); | 
 | 	ubifs_assert(*pos < 8); | 
 | 	if (b) { | 
 | 		switch (bytes) { | 
 | 		case 2: | 
 | 			val = p[1]; | 
 | 			break; | 
 | 		case 3: | 
 | 			val = p[1] | ((uint32_t)p[2] << 8); | 
 | 			break; | 
 | 		case 4: | 
 | 			val = p[1] | ((uint32_t)p[2] << 8) | | 
 | 				     ((uint32_t)p[3] << 16); | 
 | 			break; | 
 | 		case 5: | 
 | 			val = p[1] | ((uint32_t)p[2] << 8) | | 
 | 				     ((uint32_t)p[3] << 16) | | 
 | 				     ((uint32_t)p[4] << 24); | 
 | 		} | 
 | 		val <<= (8 - b); | 
 | 		val |= *p >> b; | 
 | 		nrbits += b; | 
 | 	} else { | 
 | 		switch (bytes) { | 
 | 		case 1: | 
 | 			val = p[0]; | 
 | 			break; | 
 | 		case 2: | 
 | 			val = p[0] | ((uint32_t)p[1] << 8); | 
 | 			break; | 
 | 		case 3: | 
 | 			val = p[0] | ((uint32_t)p[1] << 8) | | 
 | 				     ((uint32_t)p[2] << 16); | 
 | 			break; | 
 | 		case 4: | 
 | 			val = p[0] | ((uint32_t)p[1] << 8) | | 
 | 				     ((uint32_t)p[2] << 16) | | 
 | 				     ((uint32_t)p[3] << 24); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	val <<= k; | 
 | 	val >>= k; | 
 | 	b = nrbits & 7; | 
 | 	p += nrbits >> 3; | 
 | 	*addr = p; | 
 | 	*pos = b; | 
 | 	ubifs_assert((val >> nrbits) == 0 || nrbits - b == 32); | 
 | 	return val; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_pack_pnode - pack all the bit fields of a pnode. | 
 |  * @c: UBIFS file-system description object | 
 |  * @buf: buffer into which to pack | 
 |  * @pnode: pnode to pack | 
 |  */ | 
 | void ubifs_pack_pnode(struct ubifs_info *c, void *buf, | 
 | 		      struct ubifs_pnode *pnode) | 
 | { | 
 | 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; | 
 | 	int i, pos = 0; | 
 | 	uint16_t crc; | 
 |  | 
 | 	pack_bits(&addr, &pos, UBIFS_LPT_PNODE, UBIFS_LPT_TYPE_BITS); | 
 | 	if (c->big_lpt) | 
 | 		pack_bits(&addr, &pos, pnode->num, c->pcnt_bits); | 
 | 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) { | 
 | 		pack_bits(&addr, &pos, pnode->lprops[i].free >> 3, | 
 | 			  c->space_bits); | 
 | 		pack_bits(&addr, &pos, pnode->lprops[i].dirty >> 3, | 
 | 			  c->space_bits); | 
 | 		if (pnode->lprops[i].flags & LPROPS_INDEX) | 
 | 			pack_bits(&addr, &pos, 1, 1); | 
 | 		else | 
 | 			pack_bits(&addr, &pos, 0, 1); | 
 | 	} | 
 | 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, | 
 | 		    c->pnode_sz - UBIFS_LPT_CRC_BYTES); | 
 | 	addr = buf; | 
 | 	pos = 0; | 
 | 	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS); | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_pack_nnode - pack all the bit fields of a nnode. | 
 |  * @c: UBIFS file-system description object | 
 |  * @buf: buffer into which to pack | 
 |  * @nnode: nnode to pack | 
 |  */ | 
 | void ubifs_pack_nnode(struct ubifs_info *c, void *buf, | 
 | 		      struct ubifs_nnode *nnode) | 
 | { | 
 | 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; | 
 | 	int i, pos = 0; | 
 | 	uint16_t crc; | 
 |  | 
 | 	pack_bits(&addr, &pos, UBIFS_LPT_NNODE, UBIFS_LPT_TYPE_BITS); | 
 | 	if (c->big_lpt) | 
 | 		pack_bits(&addr, &pos, nnode->num, c->pcnt_bits); | 
 | 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) { | 
 | 		int lnum = nnode->nbranch[i].lnum; | 
 |  | 
 | 		if (lnum == 0) | 
 | 			lnum = c->lpt_last + 1; | 
 | 		pack_bits(&addr, &pos, lnum - c->lpt_first, c->lpt_lnum_bits); | 
 | 		pack_bits(&addr, &pos, nnode->nbranch[i].offs, | 
 | 			  c->lpt_offs_bits); | 
 | 	} | 
 | 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, | 
 | 		    c->nnode_sz - UBIFS_LPT_CRC_BYTES); | 
 | 	addr = buf; | 
 | 	pos = 0; | 
 | 	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS); | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_pack_ltab - pack the LPT's own lprops table. | 
 |  * @c: UBIFS file-system description object | 
 |  * @buf: buffer into which to pack | 
 |  * @ltab: LPT's own lprops table to pack | 
 |  */ | 
 | void ubifs_pack_ltab(struct ubifs_info *c, void *buf, | 
 | 		     struct ubifs_lpt_lprops *ltab) | 
 | { | 
 | 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; | 
 | 	int i, pos = 0; | 
 | 	uint16_t crc; | 
 |  | 
 | 	pack_bits(&addr, &pos, UBIFS_LPT_LTAB, UBIFS_LPT_TYPE_BITS); | 
 | 	for (i = 0; i < c->lpt_lebs; i++) { | 
 | 		pack_bits(&addr, &pos, ltab[i].free, c->lpt_spc_bits); | 
 | 		pack_bits(&addr, &pos, ltab[i].dirty, c->lpt_spc_bits); | 
 | 	} | 
 | 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, | 
 | 		    c->ltab_sz - UBIFS_LPT_CRC_BYTES); | 
 | 	addr = buf; | 
 | 	pos = 0; | 
 | 	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS); | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_pack_lsave - pack the LPT's save table. | 
 |  * @c: UBIFS file-system description object | 
 |  * @buf: buffer into which to pack | 
 |  * @lsave: LPT's save table to pack | 
 |  */ | 
 | void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave) | 
 | { | 
 | 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; | 
 | 	int i, pos = 0; | 
 | 	uint16_t crc; | 
 |  | 
 | 	pack_bits(&addr, &pos, UBIFS_LPT_LSAVE, UBIFS_LPT_TYPE_BITS); | 
 | 	for (i = 0; i < c->lsave_cnt; i++) | 
 | 		pack_bits(&addr, &pos, lsave[i], c->lnum_bits); | 
 | 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, | 
 | 		    c->lsave_sz - UBIFS_LPT_CRC_BYTES); | 
 | 	addr = buf; | 
 | 	pos = 0; | 
 | 	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS); | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_add_lpt_dirt - add dirty space to LPT LEB properties. | 
 |  * @c: UBIFS file-system description object | 
 |  * @lnum: LEB number to which to add dirty space | 
 |  * @dirty: amount of dirty space to add | 
 |  */ | 
 | void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty) | 
 | { | 
 | 	if (!dirty || !lnum) | 
 | 		return; | 
 | 	dbg_lp("LEB %d add %d to %d", | 
 | 	       lnum, dirty, c->ltab[lnum - c->lpt_first].dirty); | 
 | 	ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last); | 
 | 	c->ltab[lnum - c->lpt_first].dirty += dirty; | 
 | } | 
 |  | 
 | /** | 
 |  * set_ltab - set LPT LEB properties. | 
 |  * @c: UBIFS file-system description object | 
 |  * @lnum: LEB number | 
 |  * @free: amount of free space | 
 |  * @dirty: amount of dirty space | 
 |  */ | 
 | static void set_ltab(struct ubifs_info *c, int lnum, int free, int dirty) | 
 | { | 
 | 	dbg_lp("LEB %d free %d dirty %d to %d %d", | 
 | 	       lnum, c->ltab[lnum - c->lpt_first].free, | 
 | 	       c->ltab[lnum - c->lpt_first].dirty, free, dirty); | 
 | 	ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last); | 
 | 	c->ltab[lnum - c->lpt_first].free = free; | 
 | 	c->ltab[lnum - c->lpt_first].dirty = dirty; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_add_nnode_dirt - add dirty space to LPT LEB properties. | 
 |  * @c: UBIFS file-system description object | 
 |  * @nnode: nnode for which to add dirt | 
 |  */ | 
 | void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode) | 
 | { | 
 | 	struct ubifs_nnode *np = nnode->parent; | 
 |  | 
 | 	if (np) | 
 | 		ubifs_add_lpt_dirt(c, np->nbranch[nnode->iip].lnum, | 
 | 				   c->nnode_sz); | 
 | 	else { | 
 | 		ubifs_add_lpt_dirt(c, c->lpt_lnum, c->nnode_sz); | 
 | 		if (!(c->lpt_drty_flgs & LTAB_DIRTY)) { | 
 | 			c->lpt_drty_flgs |= LTAB_DIRTY; | 
 | 			ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * add_pnode_dirt - add dirty space to LPT LEB properties. | 
 |  * @c: UBIFS file-system description object | 
 |  * @pnode: pnode for which to add dirt | 
 |  */ | 
 | static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode) | 
 | { | 
 | 	ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum, | 
 | 			   c->pnode_sz); | 
 | } | 
 |  | 
 | /** | 
 |  * calc_nnode_num - calculate nnode number. | 
 |  * @row: the row in the tree (root is zero) | 
 |  * @col: the column in the row (leftmost is zero) | 
 |  * | 
 |  * The nnode number is a number that uniquely identifies a nnode and can be used | 
 |  * easily to traverse the tree from the root to that nnode. | 
 |  * | 
 |  * This function calculates and returns the nnode number for the nnode at @row | 
 |  * and @col. | 
 |  */ | 
 | static int calc_nnode_num(int row, int col) | 
 | { | 
 | 	int num, bits; | 
 |  | 
 | 	num = 1; | 
 | 	while (row--) { | 
 | 		bits = (col & (UBIFS_LPT_FANOUT - 1)); | 
 | 		col >>= UBIFS_LPT_FANOUT_SHIFT; | 
 | 		num <<= UBIFS_LPT_FANOUT_SHIFT; | 
 | 		num |= bits; | 
 | 	} | 
 | 	return num; | 
 | } | 
 |  | 
 | /** | 
 |  * calc_nnode_num_from_parent - calculate nnode number. | 
 |  * @c: UBIFS file-system description object | 
 |  * @parent: parent nnode | 
 |  * @iip: index in parent | 
 |  * | 
 |  * The nnode number is a number that uniquely identifies a nnode and can be used | 
 |  * easily to traverse the tree from the root to that nnode. | 
 |  * | 
 |  * This function calculates and returns the nnode number based on the parent's | 
 |  * nnode number and the index in parent. | 
 |  */ | 
 | static int calc_nnode_num_from_parent(const struct ubifs_info *c, | 
 | 				      struct ubifs_nnode *parent, int iip) | 
 | { | 
 | 	int num, shft; | 
 |  | 
 | 	if (!parent) | 
 | 		return 1; | 
 | 	shft = (c->lpt_hght - parent->level) * UBIFS_LPT_FANOUT_SHIFT; | 
 | 	num = parent->num ^ (1 << shft); | 
 | 	num |= (UBIFS_LPT_FANOUT + iip) << shft; | 
 | 	return num; | 
 | } | 
 |  | 
 | /** | 
 |  * calc_pnode_num_from_parent - calculate pnode number. | 
 |  * @c: UBIFS file-system description object | 
 |  * @parent: parent nnode | 
 |  * @iip: index in parent | 
 |  * | 
 |  * The pnode number is a number that uniquely identifies a pnode and can be used | 
 |  * easily to traverse the tree from the root to that pnode. | 
 |  * | 
 |  * This function calculates and returns the pnode number based on the parent's | 
 |  * nnode number and the index in parent. | 
 |  */ | 
 | static int calc_pnode_num_from_parent(const struct ubifs_info *c, | 
 | 				      struct ubifs_nnode *parent, int iip) | 
 | { | 
 | 	int i, n = c->lpt_hght - 1, pnum = parent->num, num = 0; | 
 |  | 
 | 	for (i = 0; i < n; i++) { | 
 | 		num <<= UBIFS_LPT_FANOUT_SHIFT; | 
 | 		num |= pnum & (UBIFS_LPT_FANOUT - 1); | 
 | 		pnum >>= UBIFS_LPT_FANOUT_SHIFT; | 
 | 	} | 
 | 	num <<= UBIFS_LPT_FANOUT_SHIFT; | 
 | 	num |= iip; | 
 | 	return num; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_create_dflt_lpt - create default LPT. | 
 |  * @c: UBIFS file-system description object | 
 |  * @main_lebs: number of main area LEBs is passed and returned here | 
 |  * @lpt_first: LEB number of first LPT LEB | 
 |  * @lpt_lebs: number of LEBs for LPT is passed and returned here | 
 |  * @big_lpt: use big LPT model is passed and returned here | 
 |  * | 
 |  * This function returns %0 on success and a negative error code on failure. | 
 |  */ | 
 | int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first, | 
 | 			  int *lpt_lebs, int *big_lpt) | 
 | { | 
 | 	int lnum, err = 0, node_sz, iopos, i, j, cnt, len, alen, row; | 
 | 	int blnum, boffs, bsz, bcnt; | 
 | 	struct ubifs_pnode *pnode = NULL; | 
 | 	struct ubifs_nnode *nnode = NULL; | 
 | 	void *buf = NULL, *p; | 
 | 	struct ubifs_lpt_lprops *ltab = NULL; | 
 | 	int *lsave = NULL; | 
 |  | 
 | 	err = calc_dflt_lpt_geom(c, main_lebs, big_lpt); | 
 | 	if (err) | 
 | 		return err; | 
 | 	*lpt_lebs = c->lpt_lebs; | 
 |  | 
 | 	/* Needed by 'ubifs_pack_nnode()' and 'set_ltab()' */ | 
 | 	c->lpt_first = lpt_first; | 
 | 	/* Needed by 'set_ltab()' */ | 
 | 	c->lpt_last = lpt_first + c->lpt_lebs - 1; | 
 | 	/* Needed by 'ubifs_pack_lsave()' */ | 
 | 	c->main_first = c->leb_cnt - *main_lebs; | 
 |  | 
 | 	lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_KERNEL); | 
 | 	pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_KERNEL); | 
 | 	nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_KERNEL); | 
 | 	buf = vmalloc(c->leb_size); | 
 | 	ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs); | 
 | 	if (!pnode || !nnode || !buf || !ltab || !lsave) { | 
 | 		err = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ubifs_assert(!c->ltab); | 
 | 	c->ltab = ltab; /* Needed by set_ltab */ | 
 |  | 
 | 	/* Initialize LPT's own lprops */ | 
 | 	for (i = 0; i < c->lpt_lebs; i++) { | 
 | 		ltab[i].free = c->leb_size; | 
 | 		ltab[i].dirty = 0; | 
 | 		ltab[i].tgc = 0; | 
 | 		ltab[i].cmt = 0; | 
 | 	} | 
 |  | 
 | 	lnum = lpt_first; | 
 | 	p = buf; | 
 | 	/* Number of leaf nodes (pnodes) */ | 
 | 	cnt = c->pnode_cnt; | 
 |  | 
 | 	/* | 
 | 	 * The first pnode contains the LEB properties for the LEBs that contain | 
 | 	 * the root inode node and the root index node of the index tree. | 
 | 	 */ | 
 | 	node_sz = ALIGN(ubifs_idx_node_sz(c, 1), 8); | 
 | 	iopos = ALIGN(node_sz, c->min_io_size); | 
 | 	pnode->lprops[0].free = c->leb_size - iopos; | 
 | 	pnode->lprops[0].dirty = iopos - node_sz; | 
 | 	pnode->lprops[0].flags = LPROPS_INDEX; | 
 |  | 
 | 	node_sz = UBIFS_INO_NODE_SZ; | 
 | 	iopos = ALIGN(node_sz, c->min_io_size); | 
 | 	pnode->lprops[1].free = c->leb_size - iopos; | 
 | 	pnode->lprops[1].dirty = iopos - node_sz; | 
 |  | 
 | 	for (i = 2; i < UBIFS_LPT_FANOUT; i++) | 
 | 		pnode->lprops[i].free = c->leb_size; | 
 |  | 
 | 	/* Add first pnode */ | 
 | 	ubifs_pack_pnode(c, p, pnode); | 
 | 	p += c->pnode_sz; | 
 | 	len = c->pnode_sz; | 
 | 	pnode->num += 1; | 
 |  | 
 | 	/* Reset pnode values for remaining pnodes */ | 
 | 	pnode->lprops[0].free = c->leb_size; | 
 | 	pnode->lprops[0].dirty = 0; | 
 | 	pnode->lprops[0].flags = 0; | 
 |  | 
 | 	pnode->lprops[1].free = c->leb_size; | 
 | 	pnode->lprops[1].dirty = 0; | 
 |  | 
 | 	/* | 
 | 	 * To calculate the internal node branches, we keep information about | 
 | 	 * the level below. | 
 | 	 */ | 
 | 	blnum = lnum; /* LEB number of level below */ | 
 | 	boffs = 0; /* Offset of level below */ | 
 | 	bcnt = cnt; /* Number of nodes in level below */ | 
 | 	bsz = c->pnode_sz; /* Size of nodes in level below */ | 
 |  | 
 | 	/* Add all remaining pnodes */ | 
 | 	for (i = 1; i < cnt; i++) { | 
 | 		if (len + c->pnode_sz > c->leb_size) { | 
 | 			alen = ALIGN(len, c->min_io_size); | 
 | 			set_ltab(c, lnum, c->leb_size - alen, alen - len); | 
 | 			memset(p, 0xff, alen - len); | 
 | 			err = ubifs_leb_change(c, lnum++, buf, alen); | 
 | 			if (err) | 
 | 				goto out; | 
 | 			p = buf; | 
 | 			len = 0; | 
 | 		} | 
 | 		ubifs_pack_pnode(c, p, pnode); | 
 | 		p += c->pnode_sz; | 
 | 		len += c->pnode_sz; | 
 | 		/* | 
 | 		 * pnodes are simply numbered left to right starting at zero, | 
 | 		 * which means the pnode number can be used easily to traverse | 
 | 		 * down the tree to the corresponding pnode. | 
 | 		 */ | 
 | 		pnode->num += 1; | 
 | 	} | 
 |  | 
 | 	row = 0; | 
 | 	for (i = UBIFS_LPT_FANOUT; cnt > i; i <<= UBIFS_LPT_FANOUT_SHIFT) | 
 | 		row += 1; | 
 | 	/* Add all nnodes, one level at a time */ | 
 | 	while (1) { | 
 | 		/* Number of internal nodes (nnodes) at next level */ | 
 | 		cnt = DIV_ROUND_UP(cnt, UBIFS_LPT_FANOUT); | 
 | 		for (i = 0; i < cnt; i++) { | 
 | 			if (len + c->nnode_sz > c->leb_size) { | 
 | 				alen = ALIGN(len, c->min_io_size); | 
 | 				set_ltab(c, lnum, c->leb_size - alen, | 
 | 					    alen - len); | 
 | 				memset(p, 0xff, alen - len); | 
 | 				err = ubifs_leb_change(c, lnum++, buf, alen); | 
 | 				if (err) | 
 | 					goto out; | 
 | 				p = buf; | 
 | 				len = 0; | 
 | 			} | 
 | 			/* Only 1 nnode at this level, so it is the root */ | 
 | 			if (cnt == 1) { | 
 | 				c->lpt_lnum = lnum; | 
 | 				c->lpt_offs = len; | 
 | 			} | 
 | 			/* Set branches to the level below */ | 
 | 			for (j = 0; j < UBIFS_LPT_FANOUT; j++) { | 
 | 				if (bcnt) { | 
 | 					if (boffs + bsz > c->leb_size) { | 
 | 						blnum += 1; | 
 | 						boffs = 0; | 
 | 					} | 
 | 					nnode->nbranch[j].lnum = blnum; | 
 | 					nnode->nbranch[j].offs = boffs; | 
 | 					boffs += bsz; | 
 | 					bcnt--; | 
 | 				} else { | 
 | 					nnode->nbranch[j].lnum = 0; | 
 | 					nnode->nbranch[j].offs = 0; | 
 | 				} | 
 | 			} | 
 | 			nnode->num = calc_nnode_num(row, i); | 
 | 			ubifs_pack_nnode(c, p, nnode); | 
 | 			p += c->nnode_sz; | 
 | 			len += c->nnode_sz; | 
 | 		} | 
 | 		/* Only 1 nnode at this level, so it is the root */ | 
 | 		if (cnt == 1) | 
 | 			break; | 
 | 		/* Update the information about the level below */ | 
 | 		bcnt = cnt; | 
 | 		bsz = c->nnode_sz; | 
 | 		row -= 1; | 
 | 	} | 
 |  | 
 | 	if (*big_lpt) { | 
 | 		/* Need to add LPT's save table */ | 
 | 		if (len + c->lsave_sz > c->leb_size) { | 
 | 			alen = ALIGN(len, c->min_io_size); | 
 | 			set_ltab(c, lnum, c->leb_size - alen, alen - len); | 
 | 			memset(p, 0xff, alen - len); | 
 | 			err = ubifs_leb_change(c, lnum++, buf, alen); | 
 | 			if (err) | 
 | 				goto out; | 
 | 			p = buf; | 
 | 			len = 0; | 
 | 		} | 
 |  | 
 | 		c->lsave_lnum = lnum; | 
 | 		c->lsave_offs = len; | 
 |  | 
 | 		for (i = 0; i < c->lsave_cnt && i < *main_lebs; i++) | 
 | 			lsave[i] = c->main_first + i; | 
 | 		for (; i < c->lsave_cnt; i++) | 
 | 			lsave[i] = c->main_first; | 
 |  | 
 | 		ubifs_pack_lsave(c, p, lsave); | 
 | 		p += c->lsave_sz; | 
 | 		len += c->lsave_sz; | 
 | 	} | 
 |  | 
 | 	/* Need to add LPT's own LEB properties table */ | 
 | 	if (len + c->ltab_sz > c->leb_size) { | 
 | 		alen = ALIGN(len, c->min_io_size); | 
 | 		set_ltab(c, lnum, c->leb_size - alen, alen - len); | 
 | 		memset(p, 0xff, alen - len); | 
 | 		err = ubifs_leb_change(c, lnum++, buf, alen); | 
 | 		if (err) | 
 | 			goto out; | 
 | 		p = buf; | 
 | 		len = 0; | 
 | 	} | 
 |  | 
 | 	c->ltab_lnum = lnum; | 
 | 	c->ltab_offs = len; | 
 |  | 
 | 	/* Update ltab before packing it */ | 
 | 	len += c->ltab_sz; | 
 | 	alen = ALIGN(len, c->min_io_size); | 
 | 	set_ltab(c, lnum, c->leb_size - alen, alen - len); | 
 |  | 
 | 	ubifs_pack_ltab(c, p, ltab); | 
 | 	p += c->ltab_sz; | 
 |  | 
 | 	/* Write remaining buffer */ | 
 | 	memset(p, 0xff, alen - len); | 
 | 	err = ubifs_leb_change(c, lnum, buf, alen); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	c->nhead_lnum = lnum; | 
 | 	c->nhead_offs = ALIGN(len, c->min_io_size); | 
 |  | 
 | 	dbg_lp("space_bits %d", c->space_bits); | 
 | 	dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits); | 
 | 	dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits); | 
 | 	dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits); | 
 | 	dbg_lp("pcnt_bits %d", c->pcnt_bits); | 
 | 	dbg_lp("lnum_bits %d", c->lnum_bits); | 
 | 	dbg_lp("pnode_sz %d", c->pnode_sz); | 
 | 	dbg_lp("nnode_sz %d", c->nnode_sz); | 
 | 	dbg_lp("ltab_sz %d", c->ltab_sz); | 
 | 	dbg_lp("lsave_sz %d", c->lsave_sz); | 
 | 	dbg_lp("lsave_cnt %d", c->lsave_cnt); | 
 | 	dbg_lp("lpt_hght %d", c->lpt_hght); | 
 | 	dbg_lp("big_lpt %d", c->big_lpt); | 
 | 	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs); | 
 | 	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs); | 
 | 	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs); | 
 | 	if (c->big_lpt) | 
 | 		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs); | 
 | out: | 
 | 	c->ltab = NULL; | 
 | 	kfree(lsave); | 
 | 	vfree(ltab); | 
 | 	vfree(buf); | 
 | 	kfree(nnode); | 
 | 	kfree(pnode); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * update_cats - add LEB properties of a pnode to LEB category lists and heaps. | 
 |  * @c: UBIFS file-system description object | 
 |  * @pnode: pnode | 
 |  * | 
 |  * When a pnode is loaded into memory, the LEB properties it contains are added, | 
 |  * by this function, to the LEB category lists and heaps. | 
 |  */ | 
 | static void update_cats(struct ubifs_info *c, struct ubifs_pnode *pnode) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) { | 
 | 		int cat = pnode->lprops[i].flags & LPROPS_CAT_MASK; | 
 | 		int lnum = pnode->lprops[i].lnum; | 
 |  | 
 | 		if (!lnum) | 
 | 			return; | 
 | 		ubifs_add_to_cat(c, &pnode->lprops[i], cat); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * replace_cats - add LEB properties of a pnode to LEB category lists and heaps. | 
 |  * @c: UBIFS file-system description object | 
 |  * @old_pnode: pnode copied | 
 |  * @new_pnode: pnode copy | 
 |  * | 
 |  * During commit it is sometimes necessary to copy a pnode | 
 |  * (see dirty_cow_pnode).  When that happens, references in | 
 |  * category lists and heaps must be replaced.  This function does that. | 
 |  */ | 
 | static void replace_cats(struct ubifs_info *c, struct ubifs_pnode *old_pnode, | 
 | 			 struct ubifs_pnode *new_pnode) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) { | 
 | 		if (!new_pnode->lprops[i].lnum) | 
 | 			return; | 
 | 		ubifs_replace_cat(c, &old_pnode->lprops[i], | 
 | 				  &new_pnode->lprops[i]); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * check_lpt_crc - check LPT node crc is correct. | 
 |  * @c: UBIFS file-system description object | 
 |  * @buf: buffer containing node | 
 |  * @len: length of node | 
 |  * | 
 |  * This function returns %0 on success and a negative error code on failure. | 
 |  */ | 
 | static int check_lpt_crc(const struct ubifs_info *c, void *buf, int len) | 
 | { | 
 | 	int pos = 0; | 
 | 	uint8_t *addr = buf; | 
 | 	uint16_t crc, calc_crc; | 
 |  | 
 | 	crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS); | 
 | 	calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, | 
 | 			 len - UBIFS_LPT_CRC_BYTES); | 
 | 	if (crc != calc_crc) { | 
 | 		ubifs_err(c, "invalid crc in LPT node: crc %hx calc %hx", | 
 | 			  crc, calc_crc); | 
 | 		dump_stack(); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * check_lpt_type - check LPT node type is correct. | 
 |  * @c: UBIFS file-system description object | 
 |  * @addr: address of type bit field is passed and returned updated here | 
 |  * @pos: position of type bit field is passed and returned updated here | 
 |  * @type: expected type | 
 |  * | 
 |  * This function returns %0 on success and a negative error code on failure. | 
 |  */ | 
 | static int check_lpt_type(const struct ubifs_info *c, uint8_t **addr, | 
 | 			  int *pos, int type) | 
 | { | 
 | 	int node_type; | 
 |  | 
 | 	node_type = ubifs_unpack_bits(addr, pos, UBIFS_LPT_TYPE_BITS); | 
 | 	if (node_type != type) { | 
 | 		ubifs_err(c, "invalid type (%d) in LPT node type %d", | 
 | 			  node_type, type); | 
 | 		dump_stack(); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * unpack_pnode - unpack a pnode. | 
 |  * @c: UBIFS file-system description object | 
 |  * @buf: buffer containing packed pnode to unpack | 
 |  * @pnode: pnode structure to fill | 
 |  * | 
 |  * This function returns %0 on success and a negative error code on failure. | 
 |  */ | 
 | static int unpack_pnode(const struct ubifs_info *c, void *buf, | 
 | 			struct ubifs_pnode *pnode) | 
 | { | 
 | 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; | 
 | 	int i, pos = 0, err; | 
 |  | 
 | 	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_PNODE); | 
 | 	if (err) | 
 | 		return err; | 
 | 	if (c->big_lpt) | 
 | 		pnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits); | 
 | 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) { | 
 | 		struct ubifs_lprops * const lprops = &pnode->lprops[i]; | 
 |  | 
 | 		lprops->free = ubifs_unpack_bits(&addr, &pos, c->space_bits); | 
 | 		lprops->free <<= 3; | 
 | 		lprops->dirty = ubifs_unpack_bits(&addr, &pos, c->space_bits); | 
 | 		lprops->dirty <<= 3; | 
 |  | 
 | 		if (ubifs_unpack_bits(&addr, &pos, 1)) | 
 | 			lprops->flags = LPROPS_INDEX; | 
 | 		else | 
 | 			lprops->flags = 0; | 
 | 		lprops->flags |= ubifs_categorize_lprops(c, lprops); | 
 | 	} | 
 | 	err = check_lpt_crc(c, buf, c->pnode_sz); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_unpack_nnode - unpack a nnode. | 
 |  * @c: UBIFS file-system description object | 
 |  * @buf: buffer containing packed nnode to unpack | 
 |  * @nnode: nnode structure to fill | 
 |  * | 
 |  * This function returns %0 on success and a negative error code on failure. | 
 |  */ | 
 | int ubifs_unpack_nnode(const struct ubifs_info *c, void *buf, | 
 | 		       struct ubifs_nnode *nnode) | 
 | { | 
 | 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; | 
 | 	int i, pos = 0, err; | 
 |  | 
 | 	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_NNODE); | 
 | 	if (err) | 
 | 		return err; | 
 | 	if (c->big_lpt) | 
 | 		nnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits); | 
 | 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) { | 
 | 		int lnum; | 
 |  | 
 | 		lnum = ubifs_unpack_bits(&addr, &pos, c->lpt_lnum_bits) + | 
 | 		       c->lpt_first; | 
 | 		if (lnum == c->lpt_last + 1) | 
 | 			lnum = 0; | 
 | 		nnode->nbranch[i].lnum = lnum; | 
 | 		nnode->nbranch[i].offs = ubifs_unpack_bits(&addr, &pos, | 
 | 						     c->lpt_offs_bits); | 
 | 	} | 
 | 	err = check_lpt_crc(c, buf, c->nnode_sz); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * unpack_ltab - unpack the LPT's own lprops table. | 
 |  * @c: UBIFS file-system description object | 
 |  * @buf: buffer from which to unpack | 
 |  * | 
 |  * This function returns %0 on success and a negative error code on failure. | 
 |  */ | 
 | static int unpack_ltab(const struct ubifs_info *c, void *buf) | 
 | { | 
 | 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; | 
 | 	int i, pos = 0, err; | 
 |  | 
 | 	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LTAB); | 
 | 	if (err) | 
 | 		return err; | 
 | 	for (i = 0; i < c->lpt_lebs; i++) { | 
 | 		int free = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits); | 
 | 		int dirty = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits); | 
 |  | 
 | 		if (free < 0 || free > c->leb_size || dirty < 0 || | 
 | 		    dirty > c->leb_size || free + dirty > c->leb_size) | 
 | 			return -EINVAL; | 
 |  | 
 | 		c->ltab[i].free = free; | 
 | 		c->ltab[i].dirty = dirty; | 
 | 		c->ltab[i].tgc = 0; | 
 | 		c->ltab[i].cmt = 0; | 
 | 	} | 
 | 	err = check_lpt_crc(c, buf, c->ltab_sz); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * unpack_lsave - unpack the LPT's save table. | 
 |  * @c: UBIFS file-system description object | 
 |  * @buf: buffer from which to unpack | 
 |  * | 
 |  * This function returns %0 on success and a negative error code on failure. | 
 |  */ | 
 | static int unpack_lsave(const struct ubifs_info *c, void *buf) | 
 | { | 
 | 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; | 
 | 	int i, pos = 0, err; | 
 |  | 
 | 	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LSAVE); | 
 | 	if (err) | 
 | 		return err; | 
 | 	for (i = 0; i < c->lsave_cnt; i++) { | 
 | 		int lnum = ubifs_unpack_bits(&addr, &pos, c->lnum_bits); | 
 |  | 
 | 		if (lnum < c->main_first || lnum >= c->leb_cnt) | 
 | 			return -EINVAL; | 
 | 		c->lsave[i] = lnum; | 
 | 	} | 
 | 	err = check_lpt_crc(c, buf, c->lsave_sz); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * validate_nnode - validate a nnode. | 
 |  * @c: UBIFS file-system description object | 
 |  * @nnode: nnode to validate | 
 |  * @parent: parent nnode (or NULL for the root nnode) | 
 |  * @iip: index in parent | 
 |  * | 
 |  * This function returns %0 on success and a negative error code on failure. | 
 |  */ | 
 | static int validate_nnode(const struct ubifs_info *c, struct ubifs_nnode *nnode, | 
 | 			  struct ubifs_nnode *parent, int iip) | 
 | { | 
 | 	int i, lvl, max_offs; | 
 |  | 
 | 	if (c->big_lpt) { | 
 | 		int num = calc_nnode_num_from_parent(c, parent, iip); | 
 |  | 
 | 		if (nnode->num != num) | 
 | 			return -EINVAL; | 
 | 	} | 
 | 	lvl = parent ? parent->level - 1 : c->lpt_hght; | 
 | 	if (lvl < 1) | 
 | 		return -EINVAL; | 
 | 	if (lvl == 1) | 
 | 		max_offs = c->leb_size - c->pnode_sz; | 
 | 	else | 
 | 		max_offs = c->leb_size - c->nnode_sz; | 
 | 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) { | 
 | 		int lnum = nnode->nbranch[i].lnum; | 
 | 		int offs = nnode->nbranch[i].offs; | 
 |  | 
 | 		if (lnum == 0) { | 
 | 			if (offs != 0) | 
 | 				return -EINVAL; | 
 | 			continue; | 
 | 		} | 
 | 		if (lnum < c->lpt_first || lnum > c->lpt_last) | 
 | 			return -EINVAL; | 
 | 		if (offs < 0 || offs > max_offs) | 
 | 			return -EINVAL; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * validate_pnode - validate a pnode. | 
 |  * @c: UBIFS file-system description object | 
 |  * @pnode: pnode to validate | 
 |  * @parent: parent nnode | 
 |  * @iip: index in parent | 
 |  * | 
 |  * This function returns %0 on success and a negative error code on failure. | 
 |  */ | 
 | static int validate_pnode(const struct ubifs_info *c, struct ubifs_pnode *pnode, | 
 | 			  struct ubifs_nnode *parent, int iip) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (c->big_lpt) { | 
 | 		int num = calc_pnode_num_from_parent(c, parent, iip); | 
 |  | 
 | 		if (pnode->num != num) | 
 | 			return -EINVAL; | 
 | 	} | 
 | 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) { | 
 | 		int free = pnode->lprops[i].free; | 
 | 		int dirty = pnode->lprops[i].dirty; | 
 |  | 
 | 		if (free < 0 || free > c->leb_size || free % c->min_io_size || | 
 | 		    (free & 7)) | 
 | 			return -EINVAL; | 
 | 		if (dirty < 0 || dirty > c->leb_size || (dirty & 7)) | 
 | 			return -EINVAL; | 
 | 		if (dirty + free > c->leb_size) | 
 | 			return -EINVAL; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * set_pnode_lnum - set LEB numbers on a pnode. | 
 |  * @c: UBIFS file-system description object | 
 |  * @pnode: pnode to update | 
 |  * | 
 |  * This function calculates the LEB numbers for the LEB properties it contains | 
 |  * based on the pnode number. | 
 |  */ | 
 | static void set_pnode_lnum(const struct ubifs_info *c, | 
 | 			   struct ubifs_pnode *pnode) | 
 | { | 
 | 	int i, lnum; | 
 |  | 
 | 	lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + c->main_first; | 
 | 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) { | 
 | 		if (lnum >= c->leb_cnt) | 
 | 			return; | 
 | 		pnode->lprops[i].lnum = lnum++; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_read_nnode - read a nnode from flash and link it to the tree in memory. | 
 |  * @c: UBIFS file-system description object | 
 |  * @parent: parent nnode (or NULL for the root) | 
 |  * @iip: index in parent | 
 |  * | 
 |  * This function returns %0 on success and a negative error code on failure. | 
 |  */ | 
 | int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip) | 
 | { | 
 | 	struct ubifs_nbranch *branch = NULL; | 
 | 	struct ubifs_nnode *nnode = NULL; | 
 | 	void *buf = c->lpt_nod_buf; | 
 | 	int err, lnum, offs; | 
 |  | 
 | 	if (parent) { | 
 | 		branch = &parent->nbranch[iip]; | 
 | 		lnum = branch->lnum; | 
 | 		offs = branch->offs; | 
 | 	} else { | 
 | 		lnum = c->lpt_lnum; | 
 | 		offs = c->lpt_offs; | 
 | 	} | 
 | 	nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_NOFS); | 
 | 	if (!nnode) { | 
 | 		err = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 | 	if (lnum == 0) { | 
 | 		/* | 
 | 		 * This nnode was not written which just means that the LEB | 
 | 		 * properties in the subtree below it describe empty LEBs. We | 
 | 		 * make the nnode as though we had read it, which in fact means | 
 | 		 * doing almost nothing. | 
 | 		 */ | 
 | 		if (c->big_lpt) | 
 | 			nnode->num = calc_nnode_num_from_parent(c, parent, iip); | 
 | 	} else { | 
 | 		err = ubifs_leb_read(c, lnum, buf, offs, c->nnode_sz, 1); | 
 | 		if (err) | 
 | 			goto out; | 
 | 		err = ubifs_unpack_nnode(c, buf, nnode); | 
 | 		if (err) | 
 | 			goto out; | 
 | 	} | 
 | 	err = validate_nnode(c, nnode, parent, iip); | 
 | 	if (err) | 
 | 		goto out; | 
 | 	if (!c->big_lpt) | 
 | 		nnode->num = calc_nnode_num_from_parent(c, parent, iip); | 
 | 	if (parent) { | 
 | 		branch->nnode = nnode; | 
 | 		nnode->level = parent->level - 1; | 
 | 	} else { | 
 | 		c->nroot = nnode; | 
 | 		nnode->level = c->lpt_hght; | 
 | 	} | 
 | 	nnode->parent = parent; | 
 | 	nnode->iip = iip; | 
 | 	return 0; | 
 |  | 
 | out: | 
 | 	ubifs_err(c, "error %d reading nnode at %d:%d", err, lnum, offs); | 
 | 	dump_stack(); | 
 | 	kfree(nnode); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * read_pnode - read a pnode from flash and link it to the tree in memory. | 
 |  * @c: UBIFS file-system description object | 
 |  * @parent: parent nnode | 
 |  * @iip: index in parent | 
 |  * | 
 |  * This function returns %0 on success and a negative error code on failure. | 
 |  */ | 
 | static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip) | 
 | { | 
 | 	struct ubifs_nbranch *branch; | 
 | 	struct ubifs_pnode *pnode = NULL; | 
 | 	void *buf = c->lpt_nod_buf; | 
 | 	int err, lnum, offs; | 
 |  | 
 | 	branch = &parent->nbranch[iip]; | 
 | 	lnum = branch->lnum; | 
 | 	offs = branch->offs; | 
 | 	pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_NOFS); | 
 | 	if (!pnode) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (lnum == 0) { | 
 | 		/* | 
 | 		 * This pnode was not written which just means that the LEB | 
 | 		 * properties in it describe empty LEBs. We make the pnode as | 
 | 		 * though we had read it. | 
 | 		 */ | 
 | 		int i; | 
 |  | 
 | 		if (c->big_lpt) | 
 | 			pnode->num = calc_pnode_num_from_parent(c, parent, iip); | 
 | 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) { | 
 | 			struct ubifs_lprops * const lprops = &pnode->lprops[i]; | 
 |  | 
 | 			lprops->free = c->leb_size; | 
 | 			lprops->flags = ubifs_categorize_lprops(c, lprops); | 
 | 		} | 
 | 	} else { | 
 | 		err = ubifs_leb_read(c, lnum, buf, offs, c->pnode_sz, 1); | 
 | 		if (err) | 
 | 			goto out; | 
 | 		err = unpack_pnode(c, buf, pnode); | 
 | 		if (err) | 
 | 			goto out; | 
 | 	} | 
 | 	err = validate_pnode(c, pnode, parent, iip); | 
 | 	if (err) | 
 | 		goto out; | 
 | 	if (!c->big_lpt) | 
 | 		pnode->num = calc_pnode_num_from_parent(c, parent, iip); | 
 | 	branch->pnode = pnode; | 
 | 	pnode->parent = parent; | 
 | 	pnode->iip = iip; | 
 | 	set_pnode_lnum(c, pnode); | 
 | 	c->pnodes_have += 1; | 
 | 	return 0; | 
 |  | 
 | out: | 
 | 	ubifs_err(c, "error %d reading pnode at %d:%d", err, lnum, offs); | 
 | 	ubifs_dump_pnode(c, pnode, parent, iip); | 
 | 	dump_stack(); | 
 | 	ubifs_err(c, "calc num: %d", calc_pnode_num_from_parent(c, parent, iip)); | 
 | 	kfree(pnode); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * read_ltab - read LPT's own lprops table. | 
 |  * @c: UBIFS file-system description object | 
 |  * | 
 |  * This function returns %0 on success and a negative error code on failure. | 
 |  */ | 
 | static int read_ltab(struct ubifs_info *c) | 
 | { | 
 | 	int err; | 
 | 	void *buf; | 
 |  | 
 | 	buf = vmalloc(c->ltab_sz); | 
 | 	if (!buf) | 
 | 		return -ENOMEM; | 
 | 	err = ubifs_leb_read(c, c->ltab_lnum, buf, c->ltab_offs, c->ltab_sz, 1); | 
 | 	if (err) | 
 | 		goto out; | 
 | 	err = unpack_ltab(c, buf); | 
 | out: | 
 | 	vfree(buf); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * read_lsave - read LPT's save table. | 
 |  * @c: UBIFS file-system description object | 
 |  * | 
 |  * This function returns %0 on success and a negative error code on failure. | 
 |  */ | 
 | static int read_lsave(struct ubifs_info *c) | 
 | { | 
 | 	int err, i; | 
 | 	void *buf; | 
 |  | 
 | 	buf = vmalloc(c->lsave_sz); | 
 | 	if (!buf) | 
 | 		return -ENOMEM; | 
 | 	err = ubifs_leb_read(c, c->lsave_lnum, buf, c->lsave_offs, | 
 | 			     c->lsave_sz, 1); | 
 | 	if (err) | 
 | 		goto out; | 
 | 	err = unpack_lsave(c, buf); | 
 | 	if (err) | 
 | 		goto out; | 
 | 	for (i = 0; i < c->lsave_cnt; i++) { | 
 | 		int lnum = c->lsave[i]; | 
 | 		struct ubifs_lprops *lprops; | 
 |  | 
 | 		/* | 
 | 		 * Due to automatic resizing, the values in the lsave table | 
 | 		 * could be beyond the volume size - just ignore them. | 
 | 		 */ | 
 | 		if (lnum >= c->leb_cnt) | 
 | 			continue; | 
 | 		lprops = ubifs_lpt_lookup(c, lnum); | 
 | 		if (IS_ERR(lprops)) { | 
 | 			err = PTR_ERR(lprops); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	vfree(buf); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_get_nnode - get a nnode. | 
 |  * @c: UBIFS file-system description object | 
 |  * @parent: parent nnode (or NULL for the root) | 
 |  * @iip: index in parent | 
 |  * | 
 |  * This function returns a pointer to the nnode on success or a negative error | 
 |  * code on failure. | 
 |  */ | 
 | struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c, | 
 | 				    struct ubifs_nnode *parent, int iip) | 
 | { | 
 | 	struct ubifs_nbranch *branch; | 
 | 	struct ubifs_nnode *nnode; | 
 | 	int err; | 
 |  | 
 | 	branch = &parent->nbranch[iip]; | 
 | 	nnode = branch->nnode; | 
 | 	if (nnode) | 
 | 		return nnode; | 
 | 	err = ubifs_read_nnode(c, parent, iip); | 
 | 	if (err) | 
 | 		return ERR_PTR(err); | 
 | 	return branch->nnode; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_get_pnode - get a pnode. | 
 |  * @c: UBIFS file-system description object | 
 |  * @parent: parent nnode | 
 |  * @iip: index in parent | 
 |  * | 
 |  * This function returns a pointer to the pnode on success or a negative error | 
 |  * code on failure. | 
 |  */ | 
 | struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c, | 
 | 				    struct ubifs_nnode *parent, int iip) | 
 | { | 
 | 	struct ubifs_nbranch *branch; | 
 | 	struct ubifs_pnode *pnode; | 
 | 	int err; | 
 |  | 
 | 	branch = &parent->nbranch[iip]; | 
 | 	pnode = branch->pnode; | 
 | 	if (pnode) | 
 | 		return pnode; | 
 | 	err = read_pnode(c, parent, iip); | 
 | 	if (err) | 
 | 		return ERR_PTR(err); | 
 | 	update_cats(c, branch->pnode); | 
 | 	return branch->pnode; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_lpt_lookup - lookup LEB properties in the LPT. | 
 |  * @c: UBIFS file-system description object | 
 |  * @lnum: LEB number to lookup | 
 |  * | 
 |  * This function returns a pointer to the LEB properties on success or a | 
 |  * negative error code on failure. | 
 |  */ | 
 | struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum) | 
 | { | 
 | 	int err, i, h, iip, shft; | 
 | 	struct ubifs_nnode *nnode; | 
 | 	struct ubifs_pnode *pnode; | 
 |  | 
 | 	if (!c->nroot) { | 
 | 		err = ubifs_read_nnode(c, NULL, 0); | 
 | 		if (err) | 
 | 			return ERR_PTR(err); | 
 | 	} | 
 | 	nnode = c->nroot; | 
 | 	i = lnum - c->main_first; | 
 | 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT; | 
 | 	for (h = 1; h < c->lpt_hght; h++) { | 
 | 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); | 
 | 		shft -= UBIFS_LPT_FANOUT_SHIFT; | 
 | 		nnode = ubifs_get_nnode(c, nnode, iip); | 
 | 		if (IS_ERR(nnode)) | 
 | 			return ERR_CAST(nnode); | 
 | 	} | 
 | 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); | 
 | 	pnode = ubifs_get_pnode(c, nnode, iip); | 
 | 	if (IS_ERR(pnode)) | 
 | 		return ERR_CAST(pnode); | 
 | 	iip = (i & (UBIFS_LPT_FANOUT - 1)); | 
 | 	dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum, | 
 | 	       pnode->lprops[iip].free, pnode->lprops[iip].dirty, | 
 | 	       pnode->lprops[iip].flags); | 
 | 	return &pnode->lprops[iip]; | 
 | } | 
 |  | 
 | /** | 
 |  * dirty_cow_nnode - ensure a nnode is not being committed. | 
 |  * @c: UBIFS file-system description object | 
 |  * @nnode: nnode to check | 
 |  * | 
 |  * Returns dirtied nnode on success or negative error code on failure. | 
 |  */ | 
 | static struct ubifs_nnode *dirty_cow_nnode(struct ubifs_info *c, | 
 | 					   struct ubifs_nnode *nnode) | 
 | { | 
 | 	struct ubifs_nnode *n; | 
 | 	int i; | 
 |  | 
 | 	if (!test_bit(COW_CNODE, &nnode->flags)) { | 
 | 		/* nnode is not being committed */ | 
 | 		if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) { | 
 | 			c->dirty_nn_cnt += 1; | 
 | 			ubifs_add_nnode_dirt(c, nnode); | 
 | 		} | 
 | 		return nnode; | 
 | 	} | 
 |  | 
 | 	/* nnode is being committed, so copy it */ | 
 | 	n = kmemdup(nnode, sizeof(struct ubifs_nnode), GFP_NOFS); | 
 | 	if (unlikely(!n)) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	n->cnext = NULL; | 
 | 	__set_bit(DIRTY_CNODE, &n->flags); | 
 | 	__clear_bit(COW_CNODE, &n->flags); | 
 |  | 
 | 	/* The children now have new parent */ | 
 | 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) { | 
 | 		struct ubifs_nbranch *branch = &n->nbranch[i]; | 
 |  | 
 | 		if (branch->cnode) | 
 | 			branch->cnode->parent = n; | 
 | 	} | 
 |  | 
 | 	ubifs_assert(!test_bit(OBSOLETE_CNODE, &nnode->flags)); | 
 | 	__set_bit(OBSOLETE_CNODE, &nnode->flags); | 
 |  | 
 | 	c->dirty_nn_cnt += 1; | 
 | 	ubifs_add_nnode_dirt(c, nnode); | 
 | 	if (nnode->parent) | 
 | 		nnode->parent->nbranch[n->iip].nnode = n; | 
 | 	else | 
 | 		c->nroot = n; | 
 | 	return n; | 
 | } | 
 |  | 
 | /** | 
 |  * dirty_cow_pnode - ensure a pnode is not being committed. | 
 |  * @c: UBIFS file-system description object | 
 |  * @pnode: pnode to check | 
 |  * | 
 |  * Returns dirtied pnode on success or negative error code on failure. | 
 |  */ | 
 | static struct ubifs_pnode *dirty_cow_pnode(struct ubifs_info *c, | 
 | 					   struct ubifs_pnode *pnode) | 
 | { | 
 | 	struct ubifs_pnode *p; | 
 |  | 
 | 	if (!test_bit(COW_CNODE, &pnode->flags)) { | 
 | 		/* pnode is not being committed */ | 
 | 		if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) { | 
 | 			c->dirty_pn_cnt += 1; | 
 | 			add_pnode_dirt(c, pnode); | 
 | 		} | 
 | 		return pnode; | 
 | 	} | 
 |  | 
 | 	/* pnode is being committed, so copy it */ | 
 | 	p = kmemdup(pnode, sizeof(struct ubifs_pnode), GFP_NOFS); | 
 | 	if (unlikely(!p)) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	p->cnext = NULL; | 
 | 	__set_bit(DIRTY_CNODE, &p->flags); | 
 | 	__clear_bit(COW_CNODE, &p->flags); | 
 | 	replace_cats(c, pnode, p); | 
 |  | 
 | 	ubifs_assert(!test_bit(OBSOLETE_CNODE, &pnode->flags)); | 
 | 	__set_bit(OBSOLETE_CNODE, &pnode->flags); | 
 |  | 
 | 	c->dirty_pn_cnt += 1; | 
 | 	add_pnode_dirt(c, pnode); | 
 | 	pnode->parent->nbranch[p->iip].pnode = p; | 
 | 	return p; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_lpt_lookup_dirty - lookup LEB properties in the LPT. | 
 |  * @c: UBIFS file-system description object | 
 |  * @lnum: LEB number to lookup | 
 |  * | 
 |  * This function returns a pointer to the LEB properties on success or a | 
 |  * negative error code on failure. | 
 |  */ | 
 | struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum) | 
 | { | 
 | 	int err, i, h, iip, shft; | 
 | 	struct ubifs_nnode *nnode; | 
 | 	struct ubifs_pnode *pnode; | 
 |  | 
 | 	if (!c->nroot) { | 
 | 		err = ubifs_read_nnode(c, NULL, 0); | 
 | 		if (err) | 
 | 			return ERR_PTR(err); | 
 | 	} | 
 | 	nnode = c->nroot; | 
 | 	nnode = dirty_cow_nnode(c, nnode); | 
 | 	if (IS_ERR(nnode)) | 
 | 		return ERR_CAST(nnode); | 
 | 	i = lnum - c->main_first; | 
 | 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT; | 
 | 	for (h = 1; h < c->lpt_hght; h++) { | 
 | 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); | 
 | 		shft -= UBIFS_LPT_FANOUT_SHIFT; | 
 | 		nnode = ubifs_get_nnode(c, nnode, iip); | 
 | 		if (IS_ERR(nnode)) | 
 | 			return ERR_CAST(nnode); | 
 | 		nnode = dirty_cow_nnode(c, nnode); | 
 | 		if (IS_ERR(nnode)) | 
 | 			return ERR_CAST(nnode); | 
 | 	} | 
 | 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); | 
 | 	pnode = ubifs_get_pnode(c, nnode, iip); | 
 | 	if (IS_ERR(pnode)) | 
 | 		return ERR_CAST(pnode); | 
 | 	pnode = dirty_cow_pnode(c, pnode); | 
 | 	if (IS_ERR(pnode)) | 
 | 		return ERR_CAST(pnode); | 
 | 	iip = (i & (UBIFS_LPT_FANOUT - 1)); | 
 | 	dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum, | 
 | 	       pnode->lprops[iip].free, pnode->lprops[iip].dirty, | 
 | 	       pnode->lprops[iip].flags); | 
 | 	ubifs_assert(test_bit(DIRTY_CNODE, &pnode->flags)); | 
 | 	return &pnode->lprops[iip]; | 
 | } | 
 |  | 
 | /** | 
 |  * lpt_init_rd - initialize the LPT for reading. | 
 |  * @c: UBIFS file-system description object | 
 |  * | 
 |  * This function returns %0 on success and a negative error code on failure. | 
 |  */ | 
 | static int lpt_init_rd(struct ubifs_info *c) | 
 | { | 
 | 	int err, i; | 
 |  | 
 | 	c->ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs); | 
 | 	if (!c->ltab) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	i = max_t(int, c->nnode_sz, c->pnode_sz); | 
 | 	c->lpt_nod_buf = kmalloc(i, GFP_KERNEL); | 
 | 	if (!c->lpt_nod_buf) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	for (i = 0; i < LPROPS_HEAP_CNT; i++) { | 
 | 		c->lpt_heap[i].arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ, | 
 | 					     GFP_KERNEL); | 
 | 		if (!c->lpt_heap[i].arr) | 
 | 			return -ENOMEM; | 
 | 		c->lpt_heap[i].cnt = 0; | 
 | 		c->lpt_heap[i].max_cnt = LPT_HEAP_SZ; | 
 | 	} | 
 |  | 
 | 	c->dirty_idx.arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ, GFP_KERNEL); | 
 | 	if (!c->dirty_idx.arr) | 
 | 		return -ENOMEM; | 
 | 	c->dirty_idx.cnt = 0; | 
 | 	c->dirty_idx.max_cnt = LPT_HEAP_SZ; | 
 |  | 
 | 	err = read_ltab(c); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	dbg_lp("space_bits %d", c->space_bits); | 
 | 	dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits); | 
 | 	dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits); | 
 | 	dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits); | 
 | 	dbg_lp("pcnt_bits %d", c->pcnt_bits); | 
 | 	dbg_lp("lnum_bits %d", c->lnum_bits); | 
 | 	dbg_lp("pnode_sz %d", c->pnode_sz); | 
 | 	dbg_lp("nnode_sz %d", c->nnode_sz); | 
 | 	dbg_lp("ltab_sz %d", c->ltab_sz); | 
 | 	dbg_lp("lsave_sz %d", c->lsave_sz); | 
 | 	dbg_lp("lsave_cnt %d", c->lsave_cnt); | 
 | 	dbg_lp("lpt_hght %d", c->lpt_hght); | 
 | 	dbg_lp("big_lpt %d", c->big_lpt); | 
 | 	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs); | 
 | 	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs); | 
 | 	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs); | 
 | 	if (c->big_lpt) | 
 | 		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * lpt_init_wr - initialize the LPT for writing. | 
 |  * @c: UBIFS file-system description object | 
 |  * | 
 |  * 'lpt_init_rd()' must have been called already. | 
 |  * | 
 |  * This function returns %0 on success and a negative error code on failure. | 
 |  */ | 
 | static int lpt_init_wr(struct ubifs_info *c) | 
 | { | 
 | 	int err, i; | 
 |  | 
 | 	c->ltab_cmt = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs); | 
 | 	if (!c->ltab_cmt) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	c->lpt_buf = vmalloc(c->leb_size); | 
 | 	if (!c->lpt_buf) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (c->big_lpt) { | 
 | 		c->lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_NOFS); | 
 | 		if (!c->lsave) | 
 | 			return -ENOMEM; | 
 | 		err = read_lsave(c); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < c->lpt_lebs; i++) | 
 | 		if (c->ltab[i].free == c->leb_size) { | 
 | 			err = ubifs_leb_unmap(c, i + c->lpt_first); | 
 | 			if (err) | 
 | 				return err; | 
 | 		} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_lpt_init - initialize the LPT. | 
 |  * @c: UBIFS file-system description object | 
 |  * @rd: whether to initialize lpt for reading | 
 |  * @wr: whether to initialize lpt for writing | 
 |  * | 
 |  * For mounting 'rw', @rd and @wr are both true. For mounting 'ro', @rd is true | 
 |  * and @wr is false. For mounting from 'ro' to 'rw', @rd is false and @wr is | 
 |  * true. | 
 |  * | 
 |  * This function returns %0 on success and a negative error code on failure. | 
 |  */ | 
 | int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (rd) { | 
 | 		err = lpt_init_rd(c); | 
 | 		if (err) | 
 | 			goto out_err; | 
 | 	} | 
 |  | 
 | 	if (wr) { | 
 | 		err = lpt_init_wr(c); | 
 | 		if (err) | 
 | 			goto out_err; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_err: | 
 | 	if (wr) | 
 | 		ubifs_lpt_free(c, 1); | 
 | 	if (rd) | 
 | 		ubifs_lpt_free(c, 0); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * struct lpt_scan_node - somewhere to put nodes while we scan LPT. | 
 |  * @nnode: where to keep a nnode | 
 |  * @pnode: where to keep a pnode | 
 |  * @cnode: where to keep a cnode | 
 |  * @in_tree: is the node in the tree in memory | 
 |  * @ptr.nnode: pointer to the nnode (if it is an nnode) which may be here or in | 
 |  * the tree | 
 |  * @ptr.pnode: ditto for pnode | 
 |  * @ptr.cnode: ditto for cnode | 
 |  */ | 
 | struct lpt_scan_node { | 
 | 	union { | 
 | 		struct ubifs_nnode nnode; | 
 | 		struct ubifs_pnode pnode; | 
 | 		struct ubifs_cnode cnode; | 
 | 	}; | 
 | 	int in_tree; | 
 | 	union { | 
 | 		struct ubifs_nnode *nnode; | 
 | 		struct ubifs_pnode *pnode; | 
 | 		struct ubifs_cnode *cnode; | 
 | 	} ptr; | 
 | }; | 
 |  | 
 | /** | 
 |  * scan_get_nnode - for the scan, get a nnode from either the tree or flash. | 
 |  * @c: the UBIFS file-system description object | 
 |  * @path: where to put the nnode | 
 |  * @parent: parent of the nnode | 
 |  * @iip: index in parent of the nnode | 
 |  * | 
 |  * This function returns a pointer to the nnode on success or a negative error | 
 |  * code on failure. | 
 |  */ | 
 | static struct ubifs_nnode *scan_get_nnode(struct ubifs_info *c, | 
 | 					  struct lpt_scan_node *path, | 
 | 					  struct ubifs_nnode *parent, int iip) | 
 | { | 
 | 	struct ubifs_nbranch *branch; | 
 | 	struct ubifs_nnode *nnode; | 
 | 	void *buf = c->lpt_nod_buf; | 
 | 	int err; | 
 |  | 
 | 	branch = &parent->nbranch[iip]; | 
 | 	nnode = branch->nnode; | 
 | 	if (nnode) { | 
 | 		path->in_tree = 1; | 
 | 		path->ptr.nnode = nnode; | 
 | 		return nnode; | 
 | 	} | 
 | 	nnode = &path->nnode; | 
 | 	path->in_tree = 0; | 
 | 	path->ptr.nnode = nnode; | 
 | 	memset(nnode, 0, sizeof(struct ubifs_nnode)); | 
 | 	if (branch->lnum == 0) { | 
 | 		/* | 
 | 		 * This nnode was not written which just means that the LEB | 
 | 		 * properties in the subtree below it describe empty LEBs. We | 
 | 		 * make the nnode as though we had read it, which in fact means | 
 | 		 * doing almost nothing. | 
 | 		 */ | 
 | 		if (c->big_lpt) | 
 | 			nnode->num = calc_nnode_num_from_parent(c, parent, iip); | 
 | 	} else { | 
 | 		err = ubifs_leb_read(c, branch->lnum, buf, branch->offs, | 
 | 				     c->nnode_sz, 1); | 
 | 		if (err) | 
 | 			return ERR_PTR(err); | 
 | 		err = ubifs_unpack_nnode(c, buf, nnode); | 
 | 		if (err) | 
 | 			return ERR_PTR(err); | 
 | 	} | 
 | 	err = validate_nnode(c, nnode, parent, iip); | 
 | 	if (err) | 
 | 		return ERR_PTR(err); | 
 | 	if (!c->big_lpt) | 
 | 		nnode->num = calc_nnode_num_from_parent(c, parent, iip); | 
 | 	nnode->level = parent->level - 1; | 
 | 	nnode->parent = parent; | 
 | 	nnode->iip = iip; | 
 | 	return nnode; | 
 | } | 
 |  | 
 | /** | 
 |  * scan_get_pnode - for the scan, get a pnode from either the tree or flash. | 
 |  * @c: the UBIFS file-system description object | 
 |  * @path: where to put the pnode | 
 |  * @parent: parent of the pnode | 
 |  * @iip: index in parent of the pnode | 
 |  * | 
 |  * This function returns a pointer to the pnode on success or a negative error | 
 |  * code on failure. | 
 |  */ | 
 | static struct ubifs_pnode *scan_get_pnode(struct ubifs_info *c, | 
 | 					  struct lpt_scan_node *path, | 
 | 					  struct ubifs_nnode *parent, int iip) | 
 | { | 
 | 	struct ubifs_nbranch *branch; | 
 | 	struct ubifs_pnode *pnode; | 
 | 	void *buf = c->lpt_nod_buf; | 
 | 	int err; | 
 |  | 
 | 	branch = &parent->nbranch[iip]; | 
 | 	pnode = branch->pnode; | 
 | 	if (pnode) { | 
 | 		path->in_tree = 1; | 
 | 		path->ptr.pnode = pnode; | 
 | 		return pnode; | 
 | 	} | 
 | 	pnode = &path->pnode; | 
 | 	path->in_tree = 0; | 
 | 	path->ptr.pnode = pnode; | 
 | 	memset(pnode, 0, sizeof(struct ubifs_pnode)); | 
 | 	if (branch->lnum == 0) { | 
 | 		/* | 
 | 		 * This pnode was not written which just means that the LEB | 
 | 		 * properties in it describe empty LEBs. We make the pnode as | 
 | 		 * though we had read it. | 
 | 		 */ | 
 | 		int i; | 
 |  | 
 | 		if (c->big_lpt) | 
 | 			pnode->num = calc_pnode_num_from_parent(c, parent, iip); | 
 | 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) { | 
 | 			struct ubifs_lprops * const lprops = &pnode->lprops[i]; | 
 |  | 
 | 			lprops->free = c->leb_size; | 
 | 			lprops->flags = ubifs_categorize_lprops(c, lprops); | 
 | 		} | 
 | 	} else { | 
 | 		ubifs_assert(branch->lnum >= c->lpt_first && | 
 | 			     branch->lnum <= c->lpt_last); | 
 | 		ubifs_assert(branch->offs >= 0 && branch->offs < c->leb_size); | 
 | 		err = ubifs_leb_read(c, branch->lnum, buf, branch->offs, | 
 | 				     c->pnode_sz, 1); | 
 | 		if (err) | 
 | 			return ERR_PTR(err); | 
 | 		err = unpack_pnode(c, buf, pnode); | 
 | 		if (err) | 
 | 			return ERR_PTR(err); | 
 | 	} | 
 | 	err = validate_pnode(c, pnode, parent, iip); | 
 | 	if (err) | 
 | 		return ERR_PTR(err); | 
 | 	if (!c->big_lpt) | 
 | 		pnode->num = calc_pnode_num_from_parent(c, parent, iip); | 
 | 	pnode->parent = parent; | 
 | 	pnode->iip = iip; | 
 | 	set_pnode_lnum(c, pnode); | 
 | 	return pnode; | 
 | } | 
 |  | 
 | /** | 
 |  * ubifs_lpt_scan_nolock - scan the LPT. | 
 |  * @c: the UBIFS file-system description object | 
 |  * @start_lnum: LEB number from which to start scanning | 
 |  * @end_lnum: LEB number at which to stop scanning | 
 |  * @scan_cb: callback function called for each lprops | 
 |  * @data: data to be passed to the callback function | 
 |  * | 
 |  * This function returns %0 on success and a negative error code on failure. | 
 |  */ | 
 | int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum, | 
 | 			  ubifs_lpt_scan_callback scan_cb, void *data) | 
 | { | 
 | 	int err = 0, i, h, iip, shft; | 
 | 	struct ubifs_nnode *nnode; | 
 | 	struct ubifs_pnode *pnode; | 
 | 	struct lpt_scan_node *path; | 
 |  | 
 | 	if (start_lnum == -1) { | 
 | 		start_lnum = end_lnum + 1; | 
 | 		if (start_lnum >= c->leb_cnt) | 
 | 			start_lnum = c->main_first; | 
 | 	} | 
 |  | 
 | 	ubifs_assert(start_lnum >= c->main_first && start_lnum < c->leb_cnt); | 
 | 	ubifs_assert(end_lnum >= c->main_first && end_lnum < c->leb_cnt); | 
 |  | 
 | 	if (!c->nroot) { | 
 | 		err = ubifs_read_nnode(c, NULL, 0); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	path = kmalloc(sizeof(struct lpt_scan_node) * (c->lpt_hght + 1), | 
 | 		       GFP_NOFS); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	path[0].ptr.nnode = c->nroot; | 
 | 	path[0].in_tree = 1; | 
 | again: | 
 | 	/* Descend to the pnode containing start_lnum */ | 
 | 	nnode = c->nroot; | 
 | 	i = start_lnum - c->main_first; | 
 | 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT; | 
 | 	for (h = 1; h < c->lpt_hght; h++) { | 
 | 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); | 
 | 		shft -= UBIFS_LPT_FANOUT_SHIFT; | 
 | 		nnode = scan_get_nnode(c, path + h, nnode, iip); | 
 | 		if (IS_ERR(nnode)) { | 
 | 			err = PTR_ERR(nnode); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 | 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); | 
 | 	pnode = scan_get_pnode(c, path + h, nnode, iip); | 
 | 	if (IS_ERR(pnode)) { | 
 | 		err = PTR_ERR(pnode); | 
 | 		goto out; | 
 | 	} | 
 | 	iip = (i & (UBIFS_LPT_FANOUT - 1)); | 
 |  | 
 | 	/* Loop for each lprops */ | 
 | 	while (1) { | 
 | 		struct ubifs_lprops *lprops = &pnode->lprops[iip]; | 
 | 		int ret, lnum = lprops->lnum; | 
 |  | 
 | 		ret = scan_cb(c, lprops, path[h].in_tree, data); | 
 | 		if (ret < 0) { | 
 | 			err = ret; | 
 | 			goto out; | 
 | 		} | 
 | 		if (ret & LPT_SCAN_ADD) { | 
 | 			/* Add all the nodes in path to the tree in memory */ | 
 | 			for (h = 1; h < c->lpt_hght; h++) { | 
 | 				const size_t sz = sizeof(struct ubifs_nnode); | 
 | 				struct ubifs_nnode *parent; | 
 |  | 
 | 				if (path[h].in_tree) | 
 | 					continue; | 
 | 				nnode = kmemdup(&path[h].nnode, sz, GFP_NOFS); | 
 | 				if (!nnode) { | 
 | 					err = -ENOMEM; | 
 | 					goto out; | 
 | 				} | 
 | 				parent = nnode->parent; | 
 | 				parent->nbranch[nnode->iip].nnode = nnode; | 
 | 				path[h].ptr.nnode = nnode; | 
 | 				path[h].in_tree = 1; | 
 | 				path[h + 1].cnode.parent = nnode; | 
 | 			} | 
 | 			if (path[h].in_tree) | 
 | 				ubifs_ensure_cat(c, lprops); | 
 | 			else { | 
 | 				const size_t sz = sizeof(struct ubifs_pnode); | 
 | 				struct ubifs_nnode *parent; | 
 |  | 
 | 				pnode = kmemdup(&path[h].pnode, sz, GFP_NOFS); | 
 | 				if (!pnode) { | 
 | 					err = -ENOMEM; | 
 | 					goto out; | 
 | 				} | 
 | 				parent = pnode->parent; | 
 | 				parent->nbranch[pnode->iip].pnode = pnode; | 
 | 				path[h].ptr.pnode = pnode; | 
 | 				path[h].in_tree = 1; | 
 | 				update_cats(c, pnode); | 
 | 				c->pnodes_have += 1; | 
 | 			} | 
 | 			err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *) | 
 | 						  c->nroot, 0, 0); | 
 | 			if (err) | 
 | 				goto out; | 
 | 			err = dbg_check_cats(c); | 
 | 			if (err) | 
 | 				goto out; | 
 | 		} | 
 | 		if (ret & LPT_SCAN_STOP) { | 
 | 			err = 0; | 
 | 			break; | 
 | 		} | 
 | 		/* Get the next lprops */ | 
 | 		if (lnum == end_lnum) { | 
 | 			/* | 
 | 			 * We got to the end without finding what we were | 
 | 			 * looking for | 
 | 			 */ | 
 | 			err = -ENOSPC; | 
 | 			goto out; | 
 | 		} | 
 | 		if (lnum + 1 >= c->leb_cnt) { | 
 | 			/* Wrap-around to the beginning */ | 
 | 			start_lnum = c->main_first; | 
 | 			goto again; | 
 | 		} | 
 | 		if (iip + 1 < UBIFS_LPT_FANOUT) { | 
 | 			/* Next lprops is in the same pnode */ | 
 | 			iip += 1; | 
 | 			continue; | 
 | 		} | 
 | 		/* We need to get the next pnode. Go up until we can go right */ | 
 | 		iip = pnode->iip; | 
 | 		while (1) { | 
 | 			h -= 1; | 
 | 			ubifs_assert(h >= 0); | 
 | 			nnode = path[h].ptr.nnode; | 
 | 			if (iip + 1 < UBIFS_LPT_FANOUT) | 
 | 				break; | 
 | 			iip = nnode->iip; | 
 | 		} | 
 | 		/* Go right */ | 
 | 		iip += 1; | 
 | 		/* Descend to the pnode */ | 
 | 		h += 1; | 
 | 		for (; h < c->lpt_hght; h++) { | 
 | 			nnode = scan_get_nnode(c, path + h, nnode, iip); | 
 | 			if (IS_ERR(nnode)) { | 
 | 				err = PTR_ERR(nnode); | 
 | 				goto out; | 
 | 			} | 
 | 			iip = 0; | 
 | 		} | 
 | 		pnode = scan_get_pnode(c, path + h, nnode, iip); | 
 | 		if (IS_ERR(pnode)) { | 
 | 			err = PTR_ERR(pnode); | 
 | 			goto out; | 
 | 		} | 
 | 		iip = 0; | 
 | 	} | 
 | out: | 
 | 	kfree(path); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * dbg_chk_pnode - check a pnode. | 
 |  * @c: the UBIFS file-system description object | 
 |  * @pnode: pnode to check | 
 |  * @col: pnode column | 
 |  * | 
 |  * This function returns %0 on success and a negative error code on failure. | 
 |  */ | 
 | static int dbg_chk_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, | 
 | 			 int col) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (pnode->num != col) { | 
 | 		ubifs_err(c, "pnode num %d expected %d parent num %d iip %d", | 
 | 			  pnode->num, col, pnode->parent->num, pnode->iip); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) { | 
 | 		struct ubifs_lprops *lp, *lprops = &pnode->lprops[i]; | 
 | 		int lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + i + | 
 | 			   c->main_first; | 
 | 		int found, cat = lprops->flags & LPROPS_CAT_MASK; | 
 | 		struct ubifs_lpt_heap *heap; | 
 | 		struct list_head *list = NULL; | 
 |  | 
 | 		if (lnum >= c->leb_cnt) | 
 | 			continue; | 
 | 		if (lprops->lnum != lnum) { | 
 | 			ubifs_err(c, "bad LEB number %d expected %d", | 
 | 				  lprops->lnum, lnum); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		if (lprops->flags & LPROPS_TAKEN) { | 
 | 			if (cat != LPROPS_UNCAT) { | 
 | 				ubifs_err(c, "LEB %d taken but not uncat %d", | 
 | 					  lprops->lnum, cat); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 			continue; | 
 | 		} | 
 | 		if (lprops->flags & LPROPS_INDEX) { | 
 | 			switch (cat) { | 
 | 			case LPROPS_UNCAT: | 
 | 			case LPROPS_DIRTY_IDX: | 
 | 			case LPROPS_FRDI_IDX: | 
 | 				break; | 
 | 			default: | 
 | 				ubifs_err(c, "LEB %d index but cat %d", | 
 | 					  lprops->lnum, cat); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 		} else { | 
 | 			switch (cat) { | 
 | 			case LPROPS_UNCAT: | 
 | 			case LPROPS_DIRTY: | 
 | 			case LPROPS_FREE: | 
 | 			case LPROPS_EMPTY: | 
 | 			case LPROPS_FREEABLE: | 
 | 				break; | 
 | 			default: | 
 | 				ubifs_err(c, "LEB %d not index but cat %d", | 
 | 					  lprops->lnum, cat); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 		} | 
 | 		switch (cat) { | 
 | 		case LPROPS_UNCAT: | 
 | 			list = &c->uncat_list; | 
 | 			break; | 
 | 		case LPROPS_EMPTY: | 
 | 			list = &c->empty_list; | 
 | 			break; | 
 | 		case LPROPS_FREEABLE: | 
 | 			list = &c->freeable_list; | 
 | 			break; | 
 | 		case LPROPS_FRDI_IDX: | 
 | 			list = &c->frdi_idx_list; | 
 | 			break; | 
 | 		} | 
 | 		found = 0; | 
 | 		switch (cat) { | 
 | 		case LPROPS_DIRTY: | 
 | 		case LPROPS_DIRTY_IDX: | 
 | 		case LPROPS_FREE: | 
 | 			heap = &c->lpt_heap[cat - 1]; | 
 | 			if (lprops->hpos < heap->cnt && | 
 | 			    heap->arr[lprops->hpos] == lprops) | 
 | 				found = 1; | 
 | 			break; | 
 | 		case LPROPS_UNCAT: | 
 | 		case LPROPS_EMPTY: | 
 | 		case LPROPS_FREEABLE: | 
 | 		case LPROPS_FRDI_IDX: | 
 | 			list_for_each_entry(lp, list, list) | 
 | 				if (lprops == lp) { | 
 | 					found = 1; | 
 | 					break; | 
 | 				} | 
 | 			break; | 
 | 		} | 
 | 		if (!found) { | 
 | 			ubifs_err(c, "LEB %d cat %d not found in cat heap/list", | 
 | 				  lprops->lnum, cat); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		switch (cat) { | 
 | 		case LPROPS_EMPTY: | 
 | 			if (lprops->free != c->leb_size) { | 
 | 				ubifs_err(c, "LEB %d cat %d free %d dirty %d", | 
 | 					  lprops->lnum, cat, lprops->free, | 
 | 					  lprops->dirty); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 			break; | 
 | 		case LPROPS_FREEABLE: | 
 | 		case LPROPS_FRDI_IDX: | 
 | 			if (lprops->free + lprops->dirty != c->leb_size) { | 
 | 				ubifs_err(c, "LEB %d cat %d free %d dirty %d", | 
 | 					  lprops->lnum, cat, lprops->free, | 
 | 					  lprops->dirty); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * dbg_check_lpt_nodes - check nnodes and pnodes. | 
 |  * @c: the UBIFS file-system description object | 
 |  * @cnode: next cnode (nnode or pnode) to check | 
 |  * @row: row of cnode (root is zero) | 
 |  * @col: column of cnode (leftmost is zero) | 
 |  * | 
 |  * This function returns %0 on success and a negative error code on failure. | 
 |  */ | 
 | int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode, | 
 | 			int row, int col) | 
 | { | 
 | 	struct ubifs_nnode *nnode, *nn; | 
 | 	struct ubifs_cnode *cn; | 
 | 	int num, iip = 0, err; | 
 |  | 
 | 	if (!dbg_is_chk_lprops(c)) | 
 | 		return 0; | 
 |  | 
 | 	while (cnode) { | 
 | 		ubifs_assert(row >= 0); | 
 | 		nnode = cnode->parent; | 
 | 		if (cnode->level) { | 
 | 			/* cnode is a nnode */ | 
 | 			num = calc_nnode_num(row, col); | 
 | 			if (cnode->num != num) { | 
 | 				ubifs_err(c, "nnode num %d expected %d parent num %d iip %d", | 
 | 					  cnode->num, num, | 
 | 					  (nnode ? nnode->num : 0), cnode->iip); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 			nn = (struct ubifs_nnode *)cnode; | 
 | 			while (iip < UBIFS_LPT_FANOUT) { | 
 | 				cn = nn->nbranch[iip].cnode; | 
 | 				if (cn) { | 
 | 					/* Go down */ | 
 | 					row += 1; | 
 | 					col <<= UBIFS_LPT_FANOUT_SHIFT; | 
 | 					col += iip; | 
 | 					iip = 0; | 
 | 					cnode = cn; | 
 | 					break; | 
 | 				} | 
 | 				/* Go right */ | 
 | 				iip += 1; | 
 | 			} | 
 | 			if (iip < UBIFS_LPT_FANOUT) | 
 | 				continue; | 
 | 		} else { | 
 | 			struct ubifs_pnode *pnode; | 
 |  | 
 | 			/* cnode is a pnode */ | 
 | 			pnode = (struct ubifs_pnode *)cnode; | 
 | 			err = dbg_chk_pnode(c, pnode, col); | 
 | 			if (err) | 
 | 				return err; | 
 | 		} | 
 | 		/* Go up and to the right */ | 
 | 		row -= 1; | 
 | 		col >>= UBIFS_LPT_FANOUT_SHIFT; | 
 | 		iip = cnode->iip + 1; | 
 | 		cnode = (struct ubifs_cnode *)nnode; | 
 | 	} | 
 | 	return 0; | 
 | } |