|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (C) 2007 Oracle.  All rights reserved. | 
|  | */ | 
|  |  | 
|  | #include <linux/bio.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <crypto/hash.h> | 
|  | #include "messages.h" | 
|  | #include "misc.h" | 
|  | #include "ctree.h" | 
|  | #include "disk-io.h" | 
|  | #include "transaction.h" | 
|  | #include "bio.h" | 
|  | #include "print-tree.h" | 
|  | #include "compression.h" | 
|  | #include "fs.h" | 
|  | #include "accessors.h" | 
|  | #include "file-item.h" | 
|  | #include "super.h" | 
|  |  | 
|  | #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \ | 
|  | sizeof(struct btrfs_item) * 2) / \ | 
|  | size) - 1)) | 
|  |  | 
|  | #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \ | 
|  | PAGE_SIZE)) | 
|  |  | 
|  | /* | 
|  | * Set inode's size according to filesystem options. | 
|  | * | 
|  | * @inode:      inode we want to update the disk_i_size for | 
|  | * @new_i_size: i_size we want to set to, 0 if we use i_size | 
|  | * | 
|  | * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read() | 
|  | * returns as it is perfectly fine with a file that has holes without hole file | 
|  | * extent items. | 
|  | * | 
|  | * However without NO_HOLES we need to only return the area that is contiguous | 
|  | * from the 0 offset of the file.  Otherwise we could end up adjust i_size up | 
|  | * to an extent that has a gap in between. | 
|  | * | 
|  | * Finally new_i_size should only be set in the case of truncate where we're not | 
|  | * ready to use i_size_read() as the limiter yet. | 
|  | */ | 
|  | void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | u64 start, end, i_size; | 
|  | int ret; | 
|  |  | 
|  | spin_lock(&inode->lock); | 
|  | i_size = new_i_size ?: i_size_read(&inode->vfs_inode); | 
|  | if (btrfs_fs_incompat(fs_info, NO_HOLES)) { | 
|  | inode->disk_i_size = i_size; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start, | 
|  | &end, EXTENT_DIRTY); | 
|  | if (!ret && start == 0) | 
|  | i_size = min(i_size, end + 1); | 
|  | else | 
|  | i_size = 0; | 
|  | inode->disk_i_size = i_size; | 
|  | out_unlock: | 
|  | spin_unlock(&inode->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mark range within a file as having a new extent inserted. | 
|  | * | 
|  | * @inode: inode being modified | 
|  | * @start: start file offset of the file extent we've inserted | 
|  | * @len:   logical length of the file extent item | 
|  | * | 
|  | * Call when we are inserting a new file extent where there was none before. | 
|  | * Does not need to call this in the case where we're replacing an existing file | 
|  | * extent, however if not sure it's fine to call this multiple times. | 
|  | * | 
|  | * The start and len must match the file extent item, so thus must be sectorsize | 
|  | * aligned. | 
|  | */ | 
|  | int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start, | 
|  | u64 len) | 
|  | { | 
|  | if (len == 0) | 
|  | return 0; | 
|  |  | 
|  | ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize)); | 
|  |  | 
|  | if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES)) | 
|  | return 0; | 
|  | return set_extent_bit(&inode->file_extent_tree, start, start + len - 1, | 
|  | EXTENT_DIRTY, NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mark an inode range as not having a backing extent. | 
|  | * | 
|  | * @inode: inode being modified | 
|  | * @start: start file offset of the file extent we've inserted | 
|  | * @len:   logical length of the file extent item | 
|  | * | 
|  | * Called when we drop a file extent, for example when we truncate.  Doesn't | 
|  | * need to be called for cases where we're replacing a file extent, like when | 
|  | * we've COWed a file extent. | 
|  | * | 
|  | * The start and len must match the file extent item, so thus must be sectorsize | 
|  | * aligned. | 
|  | */ | 
|  | int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start, | 
|  | u64 len) | 
|  | { | 
|  | if (len == 0) | 
|  | return 0; | 
|  |  | 
|  | ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) || | 
|  | len == (u64)-1); | 
|  |  | 
|  | if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES)) | 
|  | return 0; | 
|  | return clear_extent_bit(&inode->file_extent_tree, start, | 
|  | start + len - 1, EXTENT_DIRTY, NULL); | 
|  | } | 
|  |  | 
|  | static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes) | 
|  | { | 
|  | ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize)); | 
|  |  | 
|  | return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size; | 
|  | } | 
|  |  | 
|  | static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size) | 
|  | { | 
|  | ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size)); | 
|  |  | 
|  | return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits; | 
|  | } | 
|  |  | 
|  | static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum), | 
|  | fs_info->csum_size); | 
|  |  | 
|  | return csum_size_to_bytes(fs_info, max_csum_size); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the total size needed to allocate for an ordered sum structure | 
|  | * spanning @bytes in the file. | 
|  | */ | 
|  | static int btrfs_ordered_sum_size(struct btrfs_fs_info *fs_info, unsigned long bytes) | 
|  | { | 
|  | return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes); | 
|  | } | 
|  |  | 
|  | int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 objectid, u64 pos, u64 num_bytes) | 
|  | { | 
|  | int ret = 0; | 
|  | struct btrfs_file_extent_item *item; | 
|  | struct btrfs_key file_key; | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  | file_key.objectid = objectid; | 
|  | file_key.offset = pos; | 
|  | file_key.type = BTRFS_EXTENT_DATA_KEY; | 
|  |  | 
|  | ret = btrfs_insert_empty_item(trans, root, path, &file_key, | 
|  | sizeof(*item)); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | BUG_ON(ret); /* Can't happen */ | 
|  | leaf = path->nodes[0]; | 
|  | item = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  | btrfs_set_file_extent_disk_bytenr(leaf, item, 0); | 
|  | btrfs_set_file_extent_disk_num_bytes(leaf, item, 0); | 
|  | btrfs_set_file_extent_offset(leaf, item, 0); | 
|  | btrfs_set_file_extent_num_bytes(leaf, item, num_bytes); | 
|  | btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes); | 
|  | btrfs_set_file_extent_generation(leaf, item, trans->transid); | 
|  | btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); | 
|  | btrfs_set_file_extent_compression(leaf, item, 0); | 
|  | btrfs_set_file_extent_encryption(leaf, item, 0); | 
|  | btrfs_set_file_extent_other_encoding(leaf, item, 0); | 
|  |  | 
|  | btrfs_mark_buffer_dirty(trans, leaf); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct btrfs_csum_item * | 
|  | btrfs_lookup_csum(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | u64 bytenr, int cow) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | int ret; | 
|  | struct btrfs_key file_key; | 
|  | struct btrfs_key found_key; | 
|  | struct btrfs_csum_item *item; | 
|  | struct extent_buffer *leaf; | 
|  | u64 csum_offset = 0; | 
|  | const u32 csum_size = fs_info->csum_size; | 
|  | int csums_in_item; | 
|  |  | 
|  | file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; | 
|  | file_key.offset = bytenr; | 
|  | file_key.type = BTRFS_EXTENT_CSUM_KEY; | 
|  | ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow); | 
|  | if (ret < 0) | 
|  | goto fail; | 
|  | leaf = path->nodes[0]; | 
|  | if (ret > 0) { | 
|  | ret = 1; | 
|  | if (path->slots[0] == 0) | 
|  | goto fail; | 
|  | path->slots[0]--; | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
|  | if (found_key.type != BTRFS_EXTENT_CSUM_KEY) | 
|  | goto fail; | 
|  |  | 
|  | csum_offset = (bytenr - found_key.offset) >> | 
|  | fs_info->sectorsize_bits; | 
|  | csums_in_item = btrfs_item_size(leaf, path->slots[0]); | 
|  | csums_in_item /= csum_size; | 
|  |  | 
|  | if (csum_offset == csums_in_item) { | 
|  | ret = -EFBIG; | 
|  | goto fail; | 
|  | } else if (csum_offset > csums_in_item) { | 
|  | goto fail; | 
|  | } | 
|  | } | 
|  | item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); | 
|  | item = (struct btrfs_csum_item *)((unsigned char *)item + | 
|  | csum_offset * csum_size); | 
|  | return item; | 
|  | fail: | 
|  | if (ret > 0) | 
|  | ret = -ENOENT; | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, u64 objectid, | 
|  | u64 offset, int mod) | 
|  | { | 
|  | struct btrfs_key file_key; | 
|  | int ins_len = mod < 0 ? -1 : 0; | 
|  | int cow = mod != 0; | 
|  |  | 
|  | file_key.objectid = objectid; | 
|  | file_key.offset = offset; | 
|  | file_key.type = BTRFS_EXTENT_DATA_KEY; | 
|  |  | 
|  | return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and | 
|  | * store the result to @dst. | 
|  | * | 
|  | * Return >0 for the number of sectors we found. | 
|  | * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum | 
|  | * for it. Caller may want to try next sector until one range is hit. | 
|  | * Return <0 for fatal error. | 
|  | */ | 
|  | static int search_csum_tree(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_path *path, u64 disk_bytenr, | 
|  | u64 len, u8 *dst) | 
|  | { | 
|  | struct btrfs_root *csum_root; | 
|  | struct btrfs_csum_item *item = NULL; | 
|  | struct btrfs_key key; | 
|  | const u32 sectorsize = fs_info->sectorsize; | 
|  | const u32 csum_size = fs_info->csum_size; | 
|  | u32 itemsize; | 
|  | int ret; | 
|  | u64 csum_start; | 
|  | u64 csum_len; | 
|  |  | 
|  | ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) && | 
|  | IS_ALIGNED(len, sectorsize)); | 
|  |  | 
|  | /* Check if the current csum item covers disk_bytenr */ | 
|  | if (path->nodes[0]) { | 
|  | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
|  | struct btrfs_csum_item); | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
|  | itemsize = btrfs_item_size(path->nodes[0], path->slots[0]); | 
|  |  | 
|  | csum_start = key.offset; | 
|  | csum_len = (itemsize / csum_size) * sectorsize; | 
|  |  | 
|  | if (in_range(disk_bytenr, csum_start, csum_len)) | 
|  | goto found; | 
|  | } | 
|  |  | 
|  | /* Current item doesn't contain the desired range, search again */ | 
|  | btrfs_release_path(path); | 
|  | csum_root = btrfs_csum_root(fs_info, disk_bytenr); | 
|  | item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0); | 
|  | if (IS_ERR(item)) { | 
|  | ret = PTR_ERR(item); | 
|  | goto out; | 
|  | } | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
|  | itemsize = btrfs_item_size(path->nodes[0], path->slots[0]); | 
|  |  | 
|  | csum_start = key.offset; | 
|  | csum_len = (itemsize / csum_size) * sectorsize; | 
|  | ASSERT(in_range(disk_bytenr, csum_start, csum_len)); | 
|  |  | 
|  | found: | 
|  | ret = (min(csum_start + csum_len, disk_bytenr + len) - | 
|  | disk_bytenr) >> fs_info->sectorsize_bits; | 
|  | read_extent_buffer(path->nodes[0], dst, (unsigned long)item, | 
|  | ret * csum_size); | 
|  | out: | 
|  | if (ret == -ENOENT || ret == -EFBIG) | 
|  | ret = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lookup the checksum for the read bio in csum tree. | 
|  | * | 
|  | * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise. | 
|  | */ | 
|  | blk_status_t btrfs_lookup_bio_sums(struct btrfs_bio *bbio) | 
|  | { | 
|  | struct btrfs_inode *inode = bbio->inode; | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | struct bio *bio = &bbio->bio; | 
|  | struct btrfs_path *path; | 
|  | const u32 sectorsize = fs_info->sectorsize; | 
|  | const u32 csum_size = fs_info->csum_size; | 
|  | u32 orig_len = bio->bi_iter.bi_size; | 
|  | u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT; | 
|  | const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits; | 
|  | blk_status_t ret = BLK_STS_OK; | 
|  | u32 bio_offset = 0; | 
|  |  | 
|  | if ((inode->flags & BTRFS_INODE_NODATASUM) || | 
|  | test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)) | 
|  | return BLK_STS_OK; | 
|  |  | 
|  | /* | 
|  | * This function is only called for read bio. | 
|  | * | 
|  | * This means two things: | 
|  | * - All our csums should only be in csum tree | 
|  | *   No ordered extents csums, as ordered extents are only for write | 
|  | *   path. | 
|  | * - No need to bother any other info from bvec | 
|  | *   Since we're looking up csums, the only important info is the | 
|  | *   disk_bytenr and the length, which can be extracted from bi_iter | 
|  | *   directly. | 
|  | */ | 
|  | ASSERT(bio_op(bio) == REQ_OP_READ); | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return BLK_STS_RESOURCE; | 
|  |  | 
|  | if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) { | 
|  | bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS); | 
|  | if (!bbio->csum) { | 
|  | btrfs_free_path(path); | 
|  | return BLK_STS_RESOURCE; | 
|  | } | 
|  | } else { | 
|  | bbio->csum = bbio->csum_inline; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If requested number of sectors is larger than one leaf can contain, | 
|  | * kick the readahead for csum tree. | 
|  | */ | 
|  | if (nblocks > fs_info->csums_per_leaf) | 
|  | path->reada = READA_FORWARD; | 
|  |  | 
|  | /* | 
|  | * the free space stuff is only read when it hasn't been | 
|  | * updated in the current transaction.  So, we can safely | 
|  | * read from the commit root and sidestep a nasty deadlock | 
|  | * between reading the free space cache and updating the csum tree. | 
|  | */ | 
|  | if (btrfs_is_free_space_inode(inode)) { | 
|  | path->search_commit_root = 1; | 
|  | path->skip_locking = 1; | 
|  | } | 
|  |  | 
|  | while (bio_offset < orig_len) { | 
|  | int count; | 
|  | u64 cur_disk_bytenr = orig_disk_bytenr + bio_offset; | 
|  | u8 *csum_dst = bbio->csum + | 
|  | (bio_offset >> fs_info->sectorsize_bits) * csum_size; | 
|  |  | 
|  | count = search_csum_tree(fs_info, path, cur_disk_bytenr, | 
|  | orig_len - bio_offset, csum_dst); | 
|  | if (count < 0) { | 
|  | ret = errno_to_blk_status(count); | 
|  | if (bbio->csum != bbio->csum_inline) | 
|  | kfree(bbio->csum); | 
|  | bbio->csum = NULL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We didn't find a csum for this range.  We need to make sure | 
|  | * we complain loudly about this, because we are not NODATASUM. | 
|  | * | 
|  | * However for the DATA_RELOC inode we could potentially be | 
|  | * relocating data extents for a NODATASUM inode, so the inode | 
|  | * itself won't be marked with NODATASUM, but the extent we're | 
|  | * copying is in fact NODATASUM.  If we don't find a csum we | 
|  | * assume this is the case. | 
|  | */ | 
|  | if (count == 0) { | 
|  | memset(csum_dst, 0, csum_size); | 
|  | count = 1; | 
|  |  | 
|  | if (inode->root->root_key.objectid == | 
|  | BTRFS_DATA_RELOC_TREE_OBJECTID) { | 
|  | u64 file_offset = bbio->file_offset + bio_offset; | 
|  |  | 
|  | set_extent_bit(&inode->io_tree, file_offset, | 
|  | file_offset + sectorsize - 1, | 
|  | EXTENT_NODATASUM, NULL); | 
|  | } else { | 
|  | btrfs_warn_rl(fs_info, | 
|  | "csum hole found for disk bytenr range [%llu, %llu)", | 
|  | cur_disk_bytenr, cur_disk_bytenr + sectorsize); | 
|  | } | 
|  | } | 
|  | bio_offset += count * sectorsize; | 
|  | } | 
|  |  | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end, | 
|  | struct list_head *list, int search_commit, | 
|  | bool nowait) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_ordered_sum *sums; | 
|  | struct btrfs_csum_item *item; | 
|  | LIST_HEAD(tmplist); | 
|  | int ret; | 
|  |  | 
|  | ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && | 
|  | IS_ALIGNED(end + 1, fs_info->sectorsize)); | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | path->nowait = nowait; | 
|  | if (search_commit) { | 
|  | path->skip_locking = 1; | 
|  | path->reada = READA_FORWARD; | 
|  | path->search_commit_root = 1; | 
|  | } | 
|  |  | 
|  | key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; | 
|  | key.offset = start; | 
|  | key.type = BTRFS_EXTENT_CSUM_KEY; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto fail; | 
|  | if (ret > 0 && path->slots[0] > 0) { | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); | 
|  |  | 
|  | /* | 
|  | * There are two cases we can hit here for the previous csum | 
|  | * item: | 
|  | * | 
|  | *		|<- search range ->| | 
|  | *	|<- csum item ->| | 
|  | * | 
|  | * Or | 
|  | *				|<- search range ->| | 
|  | *	|<- csum item ->| | 
|  | * | 
|  | * Check if the previous csum item covers the leading part of | 
|  | * the search range.  If so we have to start from previous csum | 
|  | * item. | 
|  | */ | 
|  | if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID && | 
|  | key.type == BTRFS_EXTENT_CSUM_KEY) { | 
|  | if (bytes_to_csum_size(fs_info, start - key.offset) < | 
|  | btrfs_item_size(leaf, path->slots[0] - 1)) | 
|  | path->slots[0]--; | 
|  | } | 
|  | } | 
|  |  | 
|  | while (start <= end) { | 
|  | u64 csum_end; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | if (path->slots[0] >= btrfs_header_nritems(leaf)) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret < 0) | 
|  | goto fail; | 
|  | if (ret > 0) | 
|  | break; | 
|  | leaf = path->nodes[0]; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || | 
|  | key.type != BTRFS_EXTENT_CSUM_KEY || | 
|  | key.offset > end) | 
|  | break; | 
|  |  | 
|  | if (key.offset > start) | 
|  | start = key.offset; | 
|  |  | 
|  | csum_end = key.offset + csum_size_to_bytes(fs_info, | 
|  | btrfs_item_size(leaf, path->slots[0])); | 
|  | if (csum_end <= start) { | 
|  | path->slots[0]++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | csum_end = min(csum_end, end + 1); | 
|  | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
|  | struct btrfs_csum_item); | 
|  | while (start < csum_end) { | 
|  | unsigned long offset; | 
|  | size_t size; | 
|  |  | 
|  | size = min_t(size_t, csum_end - start, | 
|  | max_ordered_sum_bytes(fs_info)); | 
|  | sums = kzalloc(btrfs_ordered_sum_size(fs_info, size), | 
|  | GFP_NOFS); | 
|  | if (!sums) { | 
|  | ret = -ENOMEM; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | sums->logical = start; | 
|  | sums->len = size; | 
|  |  | 
|  | offset = bytes_to_csum_size(fs_info, start - key.offset); | 
|  |  | 
|  | read_extent_buffer(path->nodes[0], | 
|  | sums->sums, | 
|  | ((unsigned long)item) + offset, | 
|  | bytes_to_csum_size(fs_info, size)); | 
|  |  | 
|  | start += size; | 
|  | list_add_tail(&sums->list, &tmplist); | 
|  | } | 
|  | path->slots[0]++; | 
|  | } | 
|  | ret = 0; | 
|  | fail: | 
|  | while (ret < 0 && !list_empty(&tmplist)) { | 
|  | sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list); | 
|  | list_del(&sums->list); | 
|  | kfree(sums); | 
|  | } | 
|  | list_splice_tail(&tmplist, list); | 
|  |  | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do the same work as btrfs_lookup_csums_list(), the difference is in how | 
|  | * we return the result. | 
|  | * | 
|  | * This version will set the corresponding bits in @csum_bitmap to represent | 
|  | * that there is a csum found. | 
|  | * Each bit represents a sector. Thus caller should ensure @csum_buf passed | 
|  | * in is large enough to contain all csums. | 
|  | */ | 
|  | int btrfs_lookup_csums_bitmap(struct btrfs_root *root, struct btrfs_path *path, | 
|  | u64 start, u64 end, u8 *csum_buf, | 
|  | unsigned long *csum_bitmap) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_key key; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_csum_item *item; | 
|  | const u64 orig_start = start; | 
|  | bool free_path = false; | 
|  | int ret; | 
|  |  | 
|  | ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && | 
|  | IS_ALIGNED(end + 1, fs_info->sectorsize)); | 
|  |  | 
|  | if (!path) { | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  | free_path = true; | 
|  | } | 
|  |  | 
|  | /* Check if we can reuse the previous path. */ | 
|  | if (path->nodes[0]) { | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
|  |  | 
|  | if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID && | 
|  | key.type == BTRFS_EXTENT_CSUM_KEY && | 
|  | key.offset <= start) | 
|  | goto search_forward; | 
|  | btrfs_release_path(path); | 
|  | } | 
|  |  | 
|  | key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; | 
|  | key.type = BTRFS_EXTENT_CSUM_KEY; | 
|  | key.offset = start; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto fail; | 
|  | if (ret > 0 && path->slots[0] > 0) { | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); | 
|  |  | 
|  | /* | 
|  | * There are two cases we can hit here for the previous csum | 
|  | * item: | 
|  | * | 
|  | *		|<- search range ->| | 
|  | *	|<- csum item ->| | 
|  | * | 
|  | * Or | 
|  | *				|<- search range ->| | 
|  | *	|<- csum item ->| | 
|  | * | 
|  | * Check if the previous csum item covers the leading part of | 
|  | * the search range.  If so we have to start from previous csum | 
|  | * item. | 
|  | */ | 
|  | if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID && | 
|  | key.type == BTRFS_EXTENT_CSUM_KEY) { | 
|  | if (bytes_to_csum_size(fs_info, start - key.offset) < | 
|  | btrfs_item_size(leaf, path->slots[0] - 1)) | 
|  | path->slots[0]--; | 
|  | } | 
|  | } | 
|  |  | 
|  | search_forward: | 
|  | while (start <= end) { | 
|  | u64 csum_end; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | if (path->slots[0] >= btrfs_header_nritems(leaf)) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret < 0) | 
|  | goto fail; | 
|  | if (ret > 0) | 
|  | break; | 
|  | leaf = path->nodes[0]; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || | 
|  | key.type != BTRFS_EXTENT_CSUM_KEY || | 
|  | key.offset > end) | 
|  | break; | 
|  |  | 
|  | if (key.offset > start) | 
|  | start = key.offset; | 
|  |  | 
|  | csum_end = key.offset + csum_size_to_bytes(fs_info, | 
|  | btrfs_item_size(leaf, path->slots[0])); | 
|  | if (csum_end <= start) { | 
|  | path->slots[0]++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | csum_end = min(csum_end, end + 1); | 
|  | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
|  | struct btrfs_csum_item); | 
|  | while (start < csum_end) { | 
|  | unsigned long offset; | 
|  | size_t size; | 
|  | u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info, | 
|  | start - orig_start); | 
|  |  | 
|  | size = min_t(size_t, csum_end - start, end + 1 - start); | 
|  |  | 
|  | offset = bytes_to_csum_size(fs_info, start - key.offset); | 
|  |  | 
|  | read_extent_buffer(path->nodes[0], csum_dest, | 
|  | ((unsigned long)item) + offset, | 
|  | bytes_to_csum_size(fs_info, size)); | 
|  |  | 
|  | bitmap_set(csum_bitmap, | 
|  | (start - orig_start) >> fs_info->sectorsize_bits, | 
|  | size >> fs_info->sectorsize_bits); | 
|  |  | 
|  | start += size; | 
|  | } | 
|  | path->slots[0]++; | 
|  | } | 
|  | ret = 0; | 
|  | fail: | 
|  | if (free_path) | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate checksums of the data contained inside a bio. | 
|  | */ | 
|  | blk_status_t btrfs_csum_one_bio(struct btrfs_bio *bbio) | 
|  | { | 
|  | struct btrfs_ordered_extent *ordered = bbio->ordered; | 
|  | struct btrfs_inode *inode = bbio->inode; | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); | 
|  | struct bio *bio = &bbio->bio; | 
|  | struct btrfs_ordered_sum *sums; | 
|  | char *data; | 
|  | struct bvec_iter iter; | 
|  | struct bio_vec bvec; | 
|  | int index; | 
|  | unsigned int blockcount; | 
|  | int i; | 
|  | unsigned nofs_flag; | 
|  |  | 
|  | nofs_flag = memalloc_nofs_save(); | 
|  | sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size), | 
|  | GFP_KERNEL); | 
|  | memalloc_nofs_restore(nofs_flag); | 
|  |  | 
|  | if (!sums) | 
|  | return BLK_STS_RESOURCE; | 
|  |  | 
|  | sums->len = bio->bi_iter.bi_size; | 
|  | INIT_LIST_HEAD(&sums->list); | 
|  |  | 
|  | sums->logical = bio->bi_iter.bi_sector << SECTOR_SHIFT; | 
|  | index = 0; | 
|  |  | 
|  | shash->tfm = fs_info->csum_shash; | 
|  |  | 
|  | bio_for_each_segment(bvec, bio, iter) { | 
|  | blockcount = BTRFS_BYTES_TO_BLKS(fs_info, | 
|  | bvec.bv_len + fs_info->sectorsize | 
|  | - 1); | 
|  |  | 
|  | for (i = 0; i < blockcount; i++) { | 
|  | data = bvec_kmap_local(&bvec); | 
|  | crypto_shash_digest(shash, | 
|  | data + (i * fs_info->sectorsize), | 
|  | fs_info->sectorsize, | 
|  | sums->sums + index); | 
|  | kunmap_local(data); | 
|  | index += fs_info->csum_size; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | bbio->sums = sums; | 
|  | btrfs_add_ordered_sum(ordered, sums); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Nodatasum I/O on zoned file systems still requires an btrfs_ordered_sum to | 
|  | * record the updated logical address on Zone Append completion. | 
|  | * Allocate just the structure with an empty sums array here for that case. | 
|  | */ | 
|  | blk_status_t btrfs_alloc_dummy_sum(struct btrfs_bio *bbio) | 
|  | { | 
|  | bbio->sums = kmalloc(sizeof(*bbio->sums), GFP_NOFS); | 
|  | if (!bbio->sums) | 
|  | return BLK_STS_RESOURCE; | 
|  | bbio->sums->len = bbio->bio.bi_iter.bi_size; | 
|  | bbio->sums->logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; | 
|  | btrfs_add_ordered_sum(bbio->ordered, bbio->sums); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove one checksum overlapping a range. | 
|  | * | 
|  | * This expects the key to describe the csum pointed to by the path, and it | 
|  | * expects the csum to overlap the range [bytenr, len] | 
|  | * | 
|  | * The csum should not be entirely contained in the range and the range should | 
|  | * not be entirely contained in the csum. | 
|  | * | 
|  | * This calls btrfs_truncate_item with the correct args based on the overlap, | 
|  | * and fixes up the key as required. | 
|  | */ | 
|  | static noinline void truncate_one_csum(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_key *key, | 
|  | u64 bytenr, u64 len) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct extent_buffer *leaf; | 
|  | const u32 csum_size = fs_info->csum_size; | 
|  | u64 csum_end; | 
|  | u64 end_byte = bytenr + len; | 
|  | u32 blocksize_bits = fs_info->sectorsize_bits; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size; | 
|  | csum_end <<= blocksize_bits; | 
|  | csum_end += key->offset; | 
|  |  | 
|  | if (key->offset < bytenr && csum_end <= end_byte) { | 
|  | /* | 
|  | *         [ bytenr - len ] | 
|  | *         [   ] | 
|  | *   [csum     ] | 
|  | *   A simple truncate off the end of the item | 
|  | */ | 
|  | u32 new_size = (bytenr - key->offset) >> blocksize_bits; | 
|  | new_size *= csum_size; | 
|  | btrfs_truncate_item(trans, path, new_size, 1); | 
|  | } else if (key->offset >= bytenr && csum_end > end_byte && | 
|  | end_byte > key->offset) { | 
|  | /* | 
|  | *         [ bytenr - len ] | 
|  | *                 [ ] | 
|  | *                 [csum     ] | 
|  | * we need to truncate from the beginning of the csum | 
|  | */ | 
|  | u32 new_size = (csum_end - end_byte) >> blocksize_bits; | 
|  | new_size *= csum_size; | 
|  |  | 
|  | btrfs_truncate_item(trans, path, new_size, 0); | 
|  |  | 
|  | key->offset = end_byte; | 
|  | btrfs_set_item_key_safe(trans, path, key); | 
|  | } else { | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Delete the csum items from the csum tree for a given range of bytes. | 
|  | */ | 
|  | int btrfs_del_csums(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, u64 bytenr, u64 len) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_key key; | 
|  | u64 end_byte = bytenr + len; | 
|  | u64 csum_end; | 
|  | struct extent_buffer *leaf; | 
|  | int ret = 0; | 
|  | const u32 csum_size = fs_info->csum_size; | 
|  | u32 blocksize_bits = fs_info->sectorsize_bits; | 
|  |  | 
|  | ASSERT(root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID || | 
|  | root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | while (1) { | 
|  | key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; | 
|  | key.offset = end_byte - 1; | 
|  | key.type = BTRFS_EXTENT_CSUM_KEY; | 
|  |  | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | if (ret > 0) { | 
|  | ret = 0; | 
|  | if (path->slots[0] == 0) | 
|  | break; | 
|  | path->slots[0]--; | 
|  | } else if (ret < 0) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  |  | 
|  | if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || | 
|  | key.type != BTRFS_EXTENT_CSUM_KEY) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (key.offset >= end_byte) | 
|  | break; | 
|  |  | 
|  | csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size; | 
|  | csum_end <<= blocksize_bits; | 
|  | csum_end += key.offset; | 
|  |  | 
|  | /* this csum ends before we start, we're done */ | 
|  | if (csum_end <= bytenr) | 
|  | break; | 
|  |  | 
|  | /* delete the entire item, it is inside our range */ | 
|  | if (key.offset >= bytenr && csum_end <= end_byte) { | 
|  | int del_nr = 1; | 
|  |  | 
|  | /* | 
|  | * Check how many csum items preceding this one in this | 
|  | * leaf correspond to our range and then delete them all | 
|  | * at once. | 
|  | */ | 
|  | if (key.offset > bytenr && path->slots[0] > 0) { | 
|  | int slot = path->slots[0] - 1; | 
|  |  | 
|  | while (slot >= 0) { | 
|  | struct btrfs_key pk; | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &pk, slot); | 
|  | if (pk.offset < bytenr || | 
|  | pk.type != BTRFS_EXTENT_CSUM_KEY || | 
|  | pk.objectid != | 
|  | BTRFS_EXTENT_CSUM_OBJECTID) | 
|  | break; | 
|  | path->slots[0] = slot; | 
|  | del_nr++; | 
|  | key.offset = pk.offset; | 
|  | slot--; | 
|  | } | 
|  | } | 
|  | ret = btrfs_del_items(trans, root, path, | 
|  | path->slots[0], del_nr); | 
|  | if (ret) | 
|  | break; | 
|  | if (key.offset == bytenr) | 
|  | break; | 
|  | } else if (key.offset < bytenr && csum_end > end_byte) { | 
|  | unsigned long offset; | 
|  | unsigned long shift_len; | 
|  | unsigned long item_offset; | 
|  | /* | 
|  | *        [ bytenr - len ] | 
|  | *     [csum                ] | 
|  | * | 
|  | * Our bytes are in the middle of the csum, | 
|  | * we need to split this item and insert a new one. | 
|  | * | 
|  | * But we can't drop the path because the | 
|  | * csum could change, get removed, extended etc. | 
|  | * | 
|  | * The trick here is the max size of a csum item leaves | 
|  | * enough room in the tree block for a single | 
|  | * item header.  So, we split the item in place, | 
|  | * adding a new header pointing to the existing | 
|  | * bytes.  Then we loop around again and we have | 
|  | * a nicely formed csum item that we can neatly | 
|  | * truncate. | 
|  | */ | 
|  | offset = (bytenr - key.offset) >> blocksize_bits; | 
|  | offset *= csum_size; | 
|  |  | 
|  | shift_len = (len >> blocksize_bits) * csum_size; | 
|  |  | 
|  | item_offset = btrfs_item_ptr_offset(leaf, | 
|  | path->slots[0]); | 
|  |  | 
|  | memzero_extent_buffer(leaf, item_offset + offset, | 
|  | shift_len); | 
|  | key.offset = bytenr; | 
|  |  | 
|  | /* | 
|  | * btrfs_split_item returns -EAGAIN when the | 
|  | * item changed size or key | 
|  | */ | 
|  | ret = btrfs_split_item(trans, root, path, &key, offset); | 
|  | if (ret && ret != -EAGAIN) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | break; | 
|  | } | 
|  | ret = 0; | 
|  |  | 
|  | key.offset = end_byte - 1; | 
|  | } else { | 
|  | truncate_one_csum(trans, path, &key, bytenr, len); | 
|  | if (key.offset < bytenr) | 
|  | break; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  | } | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int find_next_csum_offset(struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | u64 *next_offset) | 
|  | { | 
|  | const u32 nritems = btrfs_header_nritems(path->nodes[0]); | 
|  | struct btrfs_key found_key; | 
|  | int slot = path->slots[0] + 1; | 
|  | int ret; | 
|  |  | 
|  | if (nritems == 0 || slot >= nritems) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } else if (ret > 0) { | 
|  | *next_offset = (u64)-1; | 
|  | return 0; | 
|  | } | 
|  | slot = path->slots[0]; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot); | 
|  |  | 
|  | if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || | 
|  | found_key.type != BTRFS_EXTENT_CSUM_KEY) | 
|  | *next_offset = (u64)-1; | 
|  | else | 
|  | *next_offset = found_key.offset; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_ordered_sum *sums) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_key file_key; | 
|  | struct btrfs_key found_key; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_csum_item *item; | 
|  | struct btrfs_csum_item *item_end; | 
|  | struct extent_buffer *leaf = NULL; | 
|  | u64 next_offset; | 
|  | u64 total_bytes = 0; | 
|  | u64 csum_offset; | 
|  | u64 bytenr; | 
|  | u32 ins_size; | 
|  | int index = 0; | 
|  | int found_next; | 
|  | int ret; | 
|  | const u32 csum_size = fs_info->csum_size; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  | again: | 
|  | next_offset = (u64)-1; | 
|  | found_next = 0; | 
|  | bytenr = sums->logical + total_bytes; | 
|  | file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; | 
|  | file_key.offset = bytenr; | 
|  | file_key.type = BTRFS_EXTENT_CSUM_KEY; | 
|  |  | 
|  | item = btrfs_lookup_csum(trans, root, path, bytenr, 1); | 
|  | if (!IS_ERR(item)) { | 
|  | ret = 0; | 
|  | leaf = path->nodes[0]; | 
|  | item_end = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_csum_item); | 
|  | item_end = (struct btrfs_csum_item *)((char *)item_end + | 
|  | btrfs_item_size(leaf, path->slots[0])); | 
|  | goto found; | 
|  | } | 
|  | ret = PTR_ERR(item); | 
|  | if (ret != -EFBIG && ret != -ENOENT) | 
|  | goto out; | 
|  |  | 
|  | if (ret == -EFBIG) { | 
|  | u32 item_size; | 
|  | /* we found one, but it isn't big enough yet */ | 
|  | leaf = path->nodes[0]; | 
|  | item_size = btrfs_item_size(leaf, path->slots[0]); | 
|  | if ((item_size / csum_size) >= | 
|  | MAX_CSUM_ITEMS(fs_info, csum_size)) { | 
|  | /* already at max size, make a new one */ | 
|  | goto insert; | 
|  | } | 
|  | } else { | 
|  | /* We didn't find a csum item, insert one. */ | 
|  | ret = find_next_csum_offset(root, path, &next_offset); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | found_next = 1; | 
|  | goto insert; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * At this point, we know the tree has a checksum item that ends at an | 
|  | * offset matching the start of the checksum range we want to insert. | 
|  | * We try to extend that item as much as possible and then add as many | 
|  | * checksums to it as they fit. | 
|  | * | 
|  | * First check if the leaf has enough free space for at least one | 
|  | * checksum. If it has go directly to the item extension code, otherwise | 
|  | * release the path and do a search for insertion before the extension. | 
|  | */ | 
|  | if (btrfs_leaf_free_space(leaf) >= csum_size) { | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
|  | csum_offset = (bytenr - found_key.offset) >> | 
|  | fs_info->sectorsize_bits; | 
|  | goto extend_csum; | 
|  | } | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | path->search_for_extension = 1; | 
|  | ret = btrfs_search_slot(trans, root, &file_key, path, | 
|  | csum_size, 1); | 
|  | path->search_for_extension = 0; | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | if (ret > 0) { | 
|  | if (path->slots[0] == 0) | 
|  | goto insert; | 
|  | path->slots[0]--; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
|  | csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits; | 
|  |  | 
|  | if (found_key.type != BTRFS_EXTENT_CSUM_KEY || | 
|  | found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || | 
|  | csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) { | 
|  | goto insert; | 
|  | } | 
|  |  | 
|  | extend_csum: | 
|  | if (csum_offset == btrfs_item_size(leaf, path->slots[0]) / | 
|  | csum_size) { | 
|  | int extend_nr; | 
|  | u64 tmp; | 
|  | u32 diff; | 
|  |  | 
|  | tmp = sums->len - total_bytes; | 
|  | tmp >>= fs_info->sectorsize_bits; | 
|  | WARN_ON(tmp < 1); | 
|  | extend_nr = max_t(int, 1, tmp); | 
|  |  | 
|  | /* | 
|  | * A log tree can already have checksum items with a subset of | 
|  | * the checksums we are trying to log. This can happen after | 
|  | * doing a sequence of partial writes into prealloc extents and | 
|  | * fsyncs in between, with a full fsync logging a larger subrange | 
|  | * of an extent for which a previous fast fsync logged a smaller | 
|  | * subrange. And this happens in particular due to merging file | 
|  | * extent items when we complete an ordered extent for a range | 
|  | * covered by a prealloc extent - this is done at | 
|  | * btrfs_mark_extent_written(). | 
|  | * | 
|  | * So if we try to extend the previous checksum item, which has | 
|  | * a range that ends at the start of the range we want to insert, | 
|  | * make sure we don't extend beyond the start offset of the next | 
|  | * checksum item. If we are at the last item in the leaf, then | 
|  | * forget the optimization of extending and add a new checksum | 
|  | * item - it is not worth the complexity of releasing the path, | 
|  | * getting the first key for the next leaf, repeat the btree | 
|  | * search, etc, because log trees are temporary anyway and it | 
|  | * would only save a few bytes of leaf space. | 
|  | */ | 
|  | if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { | 
|  | if (path->slots[0] + 1 >= | 
|  | btrfs_header_nritems(path->nodes[0])) { | 
|  | ret = find_next_csum_offset(root, path, &next_offset); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | found_next = 1; | 
|  | goto insert; | 
|  | } | 
|  |  | 
|  | ret = find_next_csum_offset(root, path, &next_offset); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits; | 
|  | if (tmp <= INT_MAX) | 
|  | extend_nr = min_t(int, extend_nr, tmp); | 
|  | } | 
|  |  | 
|  | diff = (csum_offset + extend_nr) * csum_size; | 
|  | diff = min(diff, | 
|  | MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size); | 
|  |  | 
|  | diff = diff - btrfs_item_size(leaf, path->slots[0]); | 
|  | diff = min_t(u32, btrfs_leaf_free_space(leaf), diff); | 
|  | diff /= csum_size; | 
|  | diff *= csum_size; | 
|  |  | 
|  | btrfs_extend_item(trans, path, diff); | 
|  | ret = 0; | 
|  | goto csum; | 
|  | } | 
|  |  | 
|  | insert: | 
|  | btrfs_release_path(path); | 
|  | csum_offset = 0; | 
|  | if (found_next) { | 
|  | u64 tmp; | 
|  |  | 
|  | tmp = sums->len - total_bytes; | 
|  | tmp >>= fs_info->sectorsize_bits; | 
|  | tmp = min(tmp, (next_offset - file_key.offset) >> | 
|  | fs_info->sectorsize_bits); | 
|  |  | 
|  | tmp = max_t(u64, 1, tmp); | 
|  | tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size)); | 
|  | ins_size = csum_size * tmp; | 
|  | } else { | 
|  | ins_size = csum_size; | 
|  | } | 
|  | ret = btrfs_insert_empty_item(trans, root, path, &file_key, | 
|  | ins_size); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (WARN_ON(ret != 0)) | 
|  | goto out; | 
|  | leaf = path->nodes[0]; | 
|  | csum: | 
|  | item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); | 
|  | item_end = (struct btrfs_csum_item *)((unsigned char *)item + | 
|  | btrfs_item_size(leaf, path->slots[0])); | 
|  | item = (struct btrfs_csum_item *)((unsigned char *)item + | 
|  | csum_offset * csum_size); | 
|  | found: | 
|  | ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits; | 
|  | ins_size *= csum_size; | 
|  | ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item, | 
|  | ins_size); | 
|  | write_extent_buffer(leaf, sums->sums + index, (unsigned long)item, | 
|  | ins_size); | 
|  |  | 
|  | index += ins_size; | 
|  | ins_size /= csum_size; | 
|  | total_bytes += ins_size * fs_info->sectorsize; | 
|  |  | 
|  | btrfs_mark_buffer_dirty(trans, path->nodes[0]); | 
|  | if (total_bytes < sums->len) { | 
|  | btrfs_release_path(path); | 
|  | cond_resched(); | 
|  | goto again; | 
|  | } | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode, | 
|  | const struct btrfs_path *path, | 
|  | struct btrfs_file_extent_item *fi, | 
|  | struct extent_map *em) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct extent_buffer *leaf = path->nodes[0]; | 
|  | const int slot = path->slots[0]; | 
|  | struct btrfs_key key; | 
|  | u64 extent_start, extent_end; | 
|  | u64 bytenr; | 
|  | u8 type = btrfs_file_extent_type(leaf, fi); | 
|  | int compress_type = btrfs_file_extent_compression(leaf, fi); | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, slot); | 
|  | extent_start = key.offset; | 
|  | extent_end = btrfs_file_extent_end(path); | 
|  | em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); | 
|  | em->generation = btrfs_file_extent_generation(leaf, fi); | 
|  | if (type == BTRFS_FILE_EXTENT_REG || | 
|  | type == BTRFS_FILE_EXTENT_PREALLOC) { | 
|  | em->start = extent_start; | 
|  | em->len = extent_end - extent_start; | 
|  | em->orig_start = extent_start - | 
|  | btrfs_file_extent_offset(leaf, fi); | 
|  | em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); | 
|  | bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); | 
|  | if (bytenr == 0) { | 
|  | em->block_start = EXTENT_MAP_HOLE; | 
|  | return; | 
|  | } | 
|  | if (compress_type != BTRFS_COMPRESS_NONE) { | 
|  | set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); | 
|  | em->compress_type = compress_type; | 
|  | em->block_start = bytenr; | 
|  | em->block_len = em->orig_block_len; | 
|  | } else { | 
|  | bytenr += btrfs_file_extent_offset(leaf, fi); | 
|  | em->block_start = bytenr; | 
|  | em->block_len = em->len; | 
|  | if (type == BTRFS_FILE_EXTENT_PREALLOC) | 
|  | set_bit(EXTENT_FLAG_PREALLOC, &em->flags); | 
|  | } | 
|  | } else if (type == BTRFS_FILE_EXTENT_INLINE) { | 
|  | em->block_start = EXTENT_MAP_INLINE; | 
|  | em->start = extent_start; | 
|  | em->len = extent_end - extent_start; | 
|  | /* | 
|  | * Initialize orig_start and block_len with the same values | 
|  | * as in inode.c:btrfs_get_extent(). | 
|  | */ | 
|  | em->orig_start = EXTENT_MAP_HOLE; | 
|  | em->block_len = (u64)-1; | 
|  | em->compress_type = compress_type; | 
|  | if (compress_type != BTRFS_COMPRESS_NONE) | 
|  | set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); | 
|  | } else { | 
|  | btrfs_err(fs_info, | 
|  | "unknown file extent item type %d, inode %llu, offset %llu, " | 
|  | "root %llu", type, btrfs_ino(inode), extent_start, | 
|  | root->root_key.objectid); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns the end offset (non inclusive) of the file extent item the given path | 
|  | * points to. If it points to an inline extent, the returned offset is rounded | 
|  | * up to the sector size. | 
|  | */ | 
|  | u64 btrfs_file_extent_end(const struct btrfs_path *path) | 
|  | { | 
|  | const struct extent_buffer *leaf = path->nodes[0]; | 
|  | const int slot = path->slots[0]; | 
|  | struct btrfs_file_extent_item *fi; | 
|  | struct btrfs_key key; | 
|  | u64 end; | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, slot); | 
|  | ASSERT(key.type == BTRFS_EXTENT_DATA_KEY); | 
|  | fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); | 
|  |  | 
|  | if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) { | 
|  | end = btrfs_file_extent_ram_bytes(leaf, fi); | 
|  | end = ALIGN(key.offset + end, leaf->fs_info->sectorsize); | 
|  | } else { | 
|  | end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); | 
|  | } | 
|  |  | 
|  | return end; | 
|  | } |