|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (C) 2007 Oracle.  All rights reserved. | 
|  | */ | 
|  |  | 
|  | #include <linux/fs.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/falloc.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/compat.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/btrfs.h> | 
|  | #include <linux/uio.h> | 
|  | #include <linux/iversion.h> | 
|  | #include <linux/fsverity.h> | 
|  | #include <linux/iomap.h> | 
|  | #include "ctree.h" | 
|  | #include "disk-io.h" | 
|  | #include "transaction.h" | 
|  | #include "btrfs_inode.h" | 
|  | #include "print-tree.h" | 
|  | #include "tree-log.h" | 
|  | #include "locking.h" | 
|  | #include "volumes.h" | 
|  | #include "qgroup.h" | 
|  | #include "compression.h" | 
|  | #include "delalloc-space.h" | 
|  | #include "reflink.h" | 
|  | #include "subpage.h" | 
|  | #include "fs.h" | 
|  | #include "accessors.h" | 
|  | #include "extent-tree.h" | 
|  | #include "file-item.h" | 
|  | #include "ioctl.h" | 
|  | #include "file.h" | 
|  | #include "super.h" | 
|  |  | 
|  | /* simple helper to fault in pages and copy.  This should go away | 
|  | * and be replaced with calls into generic code. | 
|  | */ | 
|  | static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, | 
|  | struct page **prepared_pages, | 
|  | struct iov_iter *i) | 
|  | { | 
|  | size_t copied = 0; | 
|  | size_t total_copied = 0; | 
|  | int pg = 0; | 
|  | int offset = offset_in_page(pos); | 
|  |  | 
|  | while (write_bytes > 0) { | 
|  | size_t count = min_t(size_t, | 
|  | PAGE_SIZE - offset, write_bytes); | 
|  | struct page *page = prepared_pages[pg]; | 
|  | /* | 
|  | * Copy data from userspace to the current page | 
|  | */ | 
|  | copied = copy_page_from_iter_atomic(page, offset, count, i); | 
|  |  | 
|  | /* Flush processor's dcache for this page */ | 
|  | flush_dcache_page(page); | 
|  |  | 
|  | /* | 
|  | * if we get a partial write, we can end up with | 
|  | * partially up to date pages.  These add | 
|  | * a lot of complexity, so make sure they don't | 
|  | * happen by forcing this copy to be retried. | 
|  | * | 
|  | * The rest of the btrfs_file_write code will fall | 
|  | * back to page at a time copies after we return 0. | 
|  | */ | 
|  | if (unlikely(copied < count)) { | 
|  | if (!PageUptodate(page)) { | 
|  | iov_iter_revert(i, copied); | 
|  | copied = 0; | 
|  | } | 
|  | if (!copied) | 
|  | break; | 
|  | } | 
|  |  | 
|  | write_bytes -= copied; | 
|  | total_copied += copied; | 
|  | offset += copied; | 
|  | if (offset == PAGE_SIZE) { | 
|  | pg++; | 
|  | offset = 0; | 
|  | } | 
|  | } | 
|  | return total_copied; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * unlocks pages after btrfs_file_write is done with them | 
|  | */ | 
|  | static void btrfs_drop_pages(struct btrfs_fs_info *fs_info, | 
|  | struct page **pages, size_t num_pages, | 
|  | u64 pos, u64 copied) | 
|  | { | 
|  | size_t i; | 
|  | u64 block_start = round_down(pos, fs_info->sectorsize); | 
|  | u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start; | 
|  |  | 
|  | ASSERT(block_len <= U32_MAX); | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | /* page checked is some magic around finding pages that | 
|  | * have been modified without going through btrfs_set_page_dirty | 
|  | * clear it here. There should be no need to mark the pages | 
|  | * accessed as prepare_pages should have marked them accessed | 
|  | * in prepare_pages via find_or_create_page() | 
|  | */ | 
|  | btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start, | 
|  | block_len); | 
|  | unlock_page(pages[i]); | 
|  | put_page(pages[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * After btrfs_copy_from_user(), update the following things for delalloc: | 
|  | * - Mark newly dirtied pages as DELALLOC in the io tree. | 
|  | *   Used to advise which range is to be written back. | 
|  | * - Mark modified pages as Uptodate/Dirty and not needing COW fixup | 
|  | * - Update inode size for past EOF write | 
|  | */ | 
|  | int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, | 
|  | size_t num_pages, loff_t pos, size_t write_bytes, | 
|  | struct extent_state **cached, bool noreserve) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | int err = 0; | 
|  | int i; | 
|  | u64 num_bytes; | 
|  | u64 start_pos; | 
|  | u64 end_of_last_block; | 
|  | u64 end_pos = pos + write_bytes; | 
|  | loff_t isize = i_size_read(&inode->vfs_inode); | 
|  | unsigned int extra_bits = 0; | 
|  |  | 
|  | if (write_bytes == 0) | 
|  | return 0; | 
|  |  | 
|  | if (noreserve) | 
|  | extra_bits |= EXTENT_NORESERVE; | 
|  |  | 
|  | start_pos = round_down(pos, fs_info->sectorsize); | 
|  | num_bytes = round_up(write_bytes + pos - start_pos, | 
|  | fs_info->sectorsize); | 
|  | ASSERT(num_bytes <= U32_MAX); | 
|  |  | 
|  | end_of_last_block = start_pos + num_bytes - 1; | 
|  |  | 
|  | /* | 
|  | * The pages may have already been dirty, clear out old accounting so | 
|  | * we can set things up properly | 
|  | */ | 
|  | clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block, | 
|  | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, | 
|  | cached); | 
|  |  | 
|  | err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, | 
|  | extra_bits, cached); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | struct page *p = pages[i]; | 
|  |  | 
|  | btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes); | 
|  | btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes); | 
|  | btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * we've only changed i_size in ram, and we haven't updated | 
|  | * the disk i_size.  There is no need to log the inode | 
|  | * at this time. | 
|  | */ | 
|  | if (end_pos > isize) | 
|  | i_size_write(&inode->vfs_inode, end_pos); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this is very complex, but the basic idea is to drop all extents | 
|  | * in the range start - end.  hint_block is filled in with a block number | 
|  | * that would be a good hint to the block allocator for this file. | 
|  | * | 
|  | * If an extent intersects the range but is not entirely inside the range | 
|  | * it is either truncated or split.  Anything entirely inside the range | 
|  | * is deleted from the tree. | 
|  | * | 
|  | * Note: the VFS' inode number of bytes is not updated, it's up to the caller | 
|  | * to deal with that. We set the field 'bytes_found' of the arguments structure | 
|  | * with the number of allocated bytes found in the target range, so that the | 
|  | * caller can update the inode's number of bytes in an atomic way when | 
|  | * replacing extents in a range to avoid races with stat(2). | 
|  | */ | 
|  | int btrfs_drop_extents(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, struct btrfs_inode *inode, | 
|  | struct btrfs_drop_extents_args *args) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_file_extent_item *fi; | 
|  | struct btrfs_ref ref = { 0 }; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key new_key; | 
|  | u64 ino = btrfs_ino(inode); | 
|  | u64 search_start = args->start; | 
|  | u64 disk_bytenr = 0; | 
|  | u64 num_bytes = 0; | 
|  | u64 extent_offset = 0; | 
|  | u64 extent_end = 0; | 
|  | u64 last_end = args->start; | 
|  | int del_nr = 0; | 
|  | int del_slot = 0; | 
|  | int extent_type; | 
|  | int recow; | 
|  | int ret; | 
|  | int modify_tree = -1; | 
|  | int update_refs; | 
|  | int found = 0; | 
|  | struct btrfs_path *path = args->path; | 
|  |  | 
|  | args->bytes_found = 0; | 
|  | args->extent_inserted = false; | 
|  |  | 
|  | /* Must always have a path if ->replace_extent is true */ | 
|  | ASSERT(!(args->replace_extent && !args->path)); | 
|  |  | 
|  | if (!path) { | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (args->drop_cache) | 
|  | btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false); | 
|  |  | 
|  | if (args->start >= inode->disk_i_size && !args->replace_extent) | 
|  | modify_tree = 0; | 
|  |  | 
|  | update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID); | 
|  | while (1) { | 
|  | recow = 0; | 
|  | ret = btrfs_lookup_file_extent(trans, root, path, ino, | 
|  | search_start, modify_tree); | 
|  | if (ret < 0) | 
|  | break; | 
|  | if (ret > 0 && path->slots[0] > 0 && search_start == args->start) { | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); | 
|  | if (key.objectid == ino && | 
|  | key.type == BTRFS_EXTENT_DATA_KEY) | 
|  | path->slots[0]--; | 
|  | } | 
|  | ret = 0; | 
|  | next_slot: | 
|  | leaf = path->nodes[0]; | 
|  | if (path->slots[0] >= btrfs_header_nritems(leaf)) { | 
|  | BUG_ON(del_nr > 0); | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret < 0) | 
|  | break; | 
|  | if (ret > 0) { | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | leaf = path->nodes[0]; | 
|  | recow = 1; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  |  | 
|  | if (key.objectid > ino) | 
|  | break; | 
|  | if (WARN_ON_ONCE(key.objectid < ino) || | 
|  | key.type < BTRFS_EXTENT_DATA_KEY) { | 
|  | ASSERT(del_nr == 0); | 
|  | path->slots[0]++; | 
|  | goto next_slot; | 
|  | } | 
|  | if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end) | 
|  | break; | 
|  |  | 
|  | fi = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  | extent_type = btrfs_file_extent_type(leaf, fi); | 
|  |  | 
|  | if (extent_type == BTRFS_FILE_EXTENT_REG || | 
|  | extent_type == BTRFS_FILE_EXTENT_PREALLOC) { | 
|  | disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); | 
|  | num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); | 
|  | extent_offset = btrfs_file_extent_offset(leaf, fi); | 
|  | extent_end = key.offset + | 
|  | btrfs_file_extent_num_bytes(leaf, fi); | 
|  | } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { | 
|  | extent_end = key.offset + | 
|  | btrfs_file_extent_ram_bytes(leaf, fi); | 
|  | } else { | 
|  | /* can't happen */ | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Don't skip extent items representing 0 byte lengths. They | 
|  | * used to be created (bug) if while punching holes we hit | 
|  | * -ENOSPC condition. So if we find one here, just ensure we | 
|  | * delete it, otherwise we would insert a new file extent item | 
|  | * with the same key (offset) as that 0 bytes length file | 
|  | * extent item in the call to setup_items_for_insert() later | 
|  | * in this function. | 
|  | */ | 
|  | if (extent_end == key.offset && extent_end >= search_start) { | 
|  | last_end = extent_end; | 
|  | goto delete_extent_item; | 
|  | } | 
|  |  | 
|  | if (extent_end <= search_start) { | 
|  | path->slots[0]++; | 
|  | goto next_slot; | 
|  | } | 
|  |  | 
|  | found = 1; | 
|  | search_start = max(key.offset, args->start); | 
|  | if (recow || !modify_tree) { | 
|  | modify_tree = -1; | 
|  | btrfs_release_path(path); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *     | - range to drop - | | 
|  | *  | -------- extent -------- | | 
|  | */ | 
|  | if (args->start > key.offset && args->end < extent_end) { | 
|  | BUG_ON(del_nr > 0); | 
|  | if (extent_type == BTRFS_FILE_EXTENT_INLINE) { | 
|  | ret = -EOPNOTSUPP; | 
|  | break; | 
|  | } | 
|  |  | 
|  | memcpy(&new_key, &key, sizeof(new_key)); | 
|  | new_key.offset = args->start; | 
|  | ret = btrfs_duplicate_item(trans, root, path, | 
|  | &new_key); | 
|  | if (ret == -EAGAIN) { | 
|  | btrfs_release_path(path); | 
|  | continue; | 
|  | } | 
|  | if (ret < 0) | 
|  | break; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | fi = btrfs_item_ptr(leaf, path->slots[0] - 1, | 
|  | struct btrfs_file_extent_item); | 
|  | btrfs_set_file_extent_num_bytes(leaf, fi, | 
|  | args->start - key.offset); | 
|  |  | 
|  | fi = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  |  | 
|  | extent_offset += args->start - key.offset; | 
|  | btrfs_set_file_extent_offset(leaf, fi, extent_offset); | 
|  | btrfs_set_file_extent_num_bytes(leaf, fi, | 
|  | extent_end - args->start); | 
|  | btrfs_mark_buffer_dirty(trans, leaf); | 
|  |  | 
|  | if (update_refs && disk_bytenr > 0) { | 
|  | btrfs_init_generic_ref(&ref, | 
|  | BTRFS_ADD_DELAYED_REF, | 
|  | disk_bytenr, num_bytes, 0, | 
|  | root->root_key.objectid); | 
|  | btrfs_init_data_ref(&ref, | 
|  | root->root_key.objectid, | 
|  | new_key.objectid, | 
|  | args->start - extent_offset, | 
|  | 0, false); | 
|  | ret = btrfs_inc_extent_ref(trans, &ref); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | break; | 
|  | } | 
|  | } | 
|  | key.offset = args->start; | 
|  | } | 
|  | /* | 
|  | * From here on out we will have actually dropped something, so | 
|  | * last_end can be updated. | 
|  | */ | 
|  | last_end = extent_end; | 
|  |  | 
|  | /* | 
|  | *  | ---- range to drop ----- | | 
|  | *      | -------- extent -------- | | 
|  | */ | 
|  | if (args->start <= key.offset && args->end < extent_end) { | 
|  | if (extent_type == BTRFS_FILE_EXTENT_INLINE) { | 
|  | ret = -EOPNOTSUPP; | 
|  | break; | 
|  | } | 
|  |  | 
|  | memcpy(&new_key, &key, sizeof(new_key)); | 
|  | new_key.offset = args->end; | 
|  | btrfs_set_item_key_safe(trans, path, &new_key); | 
|  |  | 
|  | extent_offset += args->end - key.offset; | 
|  | btrfs_set_file_extent_offset(leaf, fi, extent_offset); | 
|  | btrfs_set_file_extent_num_bytes(leaf, fi, | 
|  | extent_end - args->end); | 
|  | btrfs_mark_buffer_dirty(trans, leaf); | 
|  | if (update_refs && disk_bytenr > 0) | 
|  | args->bytes_found += args->end - key.offset; | 
|  | break; | 
|  | } | 
|  |  | 
|  | search_start = extent_end; | 
|  | /* | 
|  | *       | ---- range to drop ----- | | 
|  | *  | -------- extent -------- | | 
|  | */ | 
|  | if (args->start > key.offset && args->end >= extent_end) { | 
|  | BUG_ON(del_nr > 0); | 
|  | if (extent_type == BTRFS_FILE_EXTENT_INLINE) { | 
|  | ret = -EOPNOTSUPP; | 
|  | break; | 
|  | } | 
|  |  | 
|  | btrfs_set_file_extent_num_bytes(leaf, fi, | 
|  | args->start - key.offset); | 
|  | btrfs_mark_buffer_dirty(trans, leaf); | 
|  | if (update_refs && disk_bytenr > 0) | 
|  | args->bytes_found += extent_end - args->start; | 
|  | if (args->end == extent_end) | 
|  | break; | 
|  |  | 
|  | path->slots[0]++; | 
|  | goto next_slot; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  | ---- range to drop ----- | | 
|  | *    | ------ extent ------ | | 
|  | */ | 
|  | if (args->start <= key.offset && args->end >= extent_end) { | 
|  | delete_extent_item: | 
|  | if (del_nr == 0) { | 
|  | del_slot = path->slots[0]; | 
|  | del_nr = 1; | 
|  | } else { | 
|  | BUG_ON(del_slot + del_nr != path->slots[0]); | 
|  | del_nr++; | 
|  | } | 
|  |  | 
|  | if (update_refs && | 
|  | extent_type == BTRFS_FILE_EXTENT_INLINE) { | 
|  | args->bytes_found += extent_end - key.offset; | 
|  | extent_end = ALIGN(extent_end, | 
|  | fs_info->sectorsize); | 
|  | } else if (update_refs && disk_bytenr > 0) { | 
|  | btrfs_init_generic_ref(&ref, | 
|  | BTRFS_DROP_DELAYED_REF, | 
|  | disk_bytenr, num_bytes, 0, | 
|  | root->root_key.objectid); | 
|  | btrfs_init_data_ref(&ref, | 
|  | root->root_key.objectid, | 
|  | key.objectid, | 
|  | key.offset - extent_offset, 0, | 
|  | false); | 
|  | ret = btrfs_free_extent(trans, &ref); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | break; | 
|  | } | 
|  | args->bytes_found += extent_end - key.offset; | 
|  | } | 
|  |  | 
|  | if (args->end == extent_end) | 
|  | break; | 
|  |  | 
|  | if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { | 
|  | path->slots[0]++; | 
|  | goto next_slot; | 
|  | } | 
|  |  | 
|  | ret = btrfs_del_items(trans, root, path, del_slot, | 
|  | del_nr); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | break; | 
|  | } | 
|  |  | 
|  | del_nr = 0; | 
|  | del_slot = 0; | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | if (!ret && del_nr > 0) { | 
|  | /* | 
|  | * Set path->slots[0] to first slot, so that after the delete | 
|  | * if items are move off from our leaf to its immediate left or | 
|  | * right neighbor leafs, we end up with a correct and adjusted | 
|  | * path->slots[0] for our insertion (if args->replace_extent). | 
|  | */ | 
|  | path->slots[0] = del_slot; | 
|  | ret = btrfs_del_items(trans, root, path, del_slot, del_nr); | 
|  | if (ret) | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | /* | 
|  | * If btrfs_del_items() was called, it might have deleted a leaf, in | 
|  | * which case it unlocked our path, so check path->locks[0] matches a | 
|  | * write lock. | 
|  | */ | 
|  | if (!ret && args->replace_extent && | 
|  | path->locks[0] == BTRFS_WRITE_LOCK && | 
|  | btrfs_leaf_free_space(leaf) >= | 
|  | sizeof(struct btrfs_item) + args->extent_item_size) { | 
|  |  | 
|  | key.objectid = ino; | 
|  | key.type = BTRFS_EXTENT_DATA_KEY; | 
|  | key.offset = args->start; | 
|  | if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { | 
|  | struct btrfs_key slot_key; | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); | 
|  | if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) | 
|  | path->slots[0]++; | 
|  | } | 
|  | btrfs_setup_item_for_insert(trans, root, path, &key, | 
|  | args->extent_item_size); | 
|  | args->extent_inserted = true; | 
|  | } | 
|  |  | 
|  | if (!args->path) | 
|  | btrfs_free_path(path); | 
|  | else if (!args->extent_inserted) | 
|  | btrfs_release_path(path); | 
|  | out: | 
|  | args->drop_end = found ? min(args->end, last_end) : args->end; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int extent_mergeable(struct extent_buffer *leaf, int slot, | 
|  | u64 objectid, u64 bytenr, u64 orig_offset, | 
|  | u64 *start, u64 *end) | 
|  | { | 
|  | struct btrfs_file_extent_item *fi; | 
|  | struct btrfs_key key; | 
|  | u64 extent_end; | 
|  |  | 
|  | if (slot < 0 || slot >= btrfs_header_nritems(leaf)) | 
|  | return 0; | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, slot); | 
|  | if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) | 
|  | return 0; | 
|  |  | 
|  | fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); | 
|  | if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || | 
|  | btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || | 
|  | btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || | 
|  | btrfs_file_extent_compression(leaf, fi) || | 
|  | btrfs_file_extent_encryption(leaf, fi) || | 
|  | btrfs_file_extent_other_encoding(leaf, fi)) | 
|  | return 0; | 
|  |  | 
|  | extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); | 
|  | if ((*start && *start != key.offset) || (*end && *end != extent_end)) | 
|  | return 0; | 
|  |  | 
|  | *start = key.offset; | 
|  | *end = extent_end; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mark extent in the range start - end as written. | 
|  | * | 
|  | * This changes extent type from 'pre-allocated' to 'regular'. If only | 
|  | * part of extent is marked as written, the extent will be split into | 
|  | * two or three. | 
|  | */ | 
|  | int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, u64 start, u64 end) | 
|  | { | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_file_extent_item *fi; | 
|  | struct btrfs_ref ref = { 0 }; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key new_key; | 
|  | u64 bytenr; | 
|  | u64 num_bytes; | 
|  | u64 extent_end; | 
|  | u64 orig_offset; | 
|  | u64 other_start; | 
|  | u64 other_end; | 
|  | u64 split; | 
|  | int del_nr = 0; | 
|  | int del_slot = 0; | 
|  | int recow; | 
|  | int ret = 0; | 
|  | u64 ino = btrfs_ino(inode); | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  | again: | 
|  | recow = 0; | 
|  | split = start; | 
|  | key.objectid = ino; | 
|  | key.type = BTRFS_EXTENT_DATA_KEY; | 
|  | key.offset = split; | 
|  |  | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret > 0 && path->slots[0] > 0) | 
|  | path->slots[0]--; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | if (key.objectid != ino || | 
|  | key.type != BTRFS_EXTENT_DATA_KEY) { | 
|  | ret = -EINVAL; | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  | fi = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  | if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { | 
|  | ret = -EINVAL; | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  | extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); | 
|  | if (key.offset > start || extent_end < end) { | 
|  | ret = -EINVAL; | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); | 
|  | num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); | 
|  | orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); | 
|  | memcpy(&new_key, &key, sizeof(new_key)); | 
|  |  | 
|  | if (start == key.offset && end < extent_end) { | 
|  | other_start = 0; | 
|  | other_end = start; | 
|  | if (extent_mergeable(leaf, path->slots[0] - 1, | 
|  | ino, bytenr, orig_offset, | 
|  | &other_start, &other_end)) { | 
|  | new_key.offset = end; | 
|  | btrfs_set_item_key_safe(trans, path, &new_key); | 
|  | fi = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  | btrfs_set_file_extent_generation(leaf, fi, | 
|  | trans->transid); | 
|  | btrfs_set_file_extent_num_bytes(leaf, fi, | 
|  | extent_end - end); | 
|  | btrfs_set_file_extent_offset(leaf, fi, | 
|  | end - orig_offset); | 
|  | fi = btrfs_item_ptr(leaf, path->slots[0] - 1, | 
|  | struct btrfs_file_extent_item); | 
|  | btrfs_set_file_extent_generation(leaf, fi, | 
|  | trans->transid); | 
|  | btrfs_set_file_extent_num_bytes(leaf, fi, | 
|  | end - other_start); | 
|  | btrfs_mark_buffer_dirty(trans, leaf); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (start > key.offset && end == extent_end) { | 
|  | other_start = end; | 
|  | other_end = 0; | 
|  | if (extent_mergeable(leaf, path->slots[0] + 1, | 
|  | ino, bytenr, orig_offset, | 
|  | &other_start, &other_end)) { | 
|  | fi = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  | btrfs_set_file_extent_num_bytes(leaf, fi, | 
|  | start - key.offset); | 
|  | btrfs_set_file_extent_generation(leaf, fi, | 
|  | trans->transid); | 
|  | path->slots[0]++; | 
|  | new_key.offset = start; | 
|  | btrfs_set_item_key_safe(trans, path, &new_key); | 
|  |  | 
|  | fi = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  | btrfs_set_file_extent_generation(leaf, fi, | 
|  | trans->transid); | 
|  | btrfs_set_file_extent_num_bytes(leaf, fi, | 
|  | other_end - start); | 
|  | btrfs_set_file_extent_offset(leaf, fi, | 
|  | start - orig_offset); | 
|  | btrfs_mark_buffer_dirty(trans, leaf); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | while (start > key.offset || end < extent_end) { | 
|  | if (key.offset == start) | 
|  | split = end; | 
|  |  | 
|  | new_key.offset = split; | 
|  | ret = btrfs_duplicate_item(trans, root, path, &new_key); | 
|  | if (ret == -EAGAIN) { | 
|  | btrfs_release_path(path); | 
|  | goto again; | 
|  | } | 
|  | if (ret < 0) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | fi = btrfs_item_ptr(leaf, path->slots[0] - 1, | 
|  | struct btrfs_file_extent_item); | 
|  | btrfs_set_file_extent_generation(leaf, fi, trans->transid); | 
|  | btrfs_set_file_extent_num_bytes(leaf, fi, | 
|  | split - key.offset); | 
|  |  | 
|  | fi = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  |  | 
|  | btrfs_set_file_extent_generation(leaf, fi, trans->transid); | 
|  | btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); | 
|  | btrfs_set_file_extent_num_bytes(leaf, fi, | 
|  | extent_end - split); | 
|  | btrfs_mark_buffer_dirty(trans, leaf); | 
|  |  | 
|  | btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr, | 
|  | num_bytes, 0, root->root_key.objectid); | 
|  | btrfs_init_data_ref(&ref, root->root_key.objectid, ino, | 
|  | orig_offset, 0, false); | 
|  | ret = btrfs_inc_extent_ref(trans, &ref); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (split == start) { | 
|  | key.offset = start; | 
|  | } else { | 
|  | if (start != key.offset) { | 
|  | ret = -EINVAL; | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  | path->slots[0]--; | 
|  | extent_end = end; | 
|  | } | 
|  | recow = 1; | 
|  | } | 
|  |  | 
|  | other_start = end; | 
|  | other_end = 0; | 
|  | btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, | 
|  | num_bytes, 0, root->root_key.objectid); | 
|  | btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset, | 
|  | 0, false); | 
|  | if (extent_mergeable(leaf, path->slots[0] + 1, | 
|  | ino, bytenr, orig_offset, | 
|  | &other_start, &other_end)) { | 
|  | if (recow) { | 
|  | btrfs_release_path(path); | 
|  | goto again; | 
|  | } | 
|  | extent_end = other_end; | 
|  | del_slot = path->slots[0] + 1; | 
|  | del_nr++; | 
|  | ret = btrfs_free_extent(trans, &ref); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | other_start = 0; | 
|  | other_end = start; | 
|  | if (extent_mergeable(leaf, path->slots[0] - 1, | 
|  | ino, bytenr, orig_offset, | 
|  | &other_start, &other_end)) { | 
|  | if (recow) { | 
|  | btrfs_release_path(path); | 
|  | goto again; | 
|  | } | 
|  | key.offset = other_start; | 
|  | del_slot = path->slots[0]; | 
|  | del_nr++; | 
|  | ret = btrfs_free_extent(trans, &ref); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | if (del_nr == 0) { | 
|  | fi = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  | btrfs_set_file_extent_type(leaf, fi, | 
|  | BTRFS_FILE_EXTENT_REG); | 
|  | btrfs_set_file_extent_generation(leaf, fi, trans->transid); | 
|  | btrfs_mark_buffer_dirty(trans, leaf); | 
|  | } else { | 
|  | fi = btrfs_item_ptr(leaf, del_slot - 1, | 
|  | struct btrfs_file_extent_item); | 
|  | btrfs_set_file_extent_type(leaf, fi, | 
|  | BTRFS_FILE_EXTENT_REG); | 
|  | btrfs_set_file_extent_generation(leaf, fi, trans->transid); | 
|  | btrfs_set_file_extent_num_bytes(leaf, fi, | 
|  | extent_end - key.offset); | 
|  | btrfs_mark_buffer_dirty(trans, leaf); | 
|  |  | 
|  | ret = btrfs_del_items(trans, root, path, del_slot, del_nr); | 
|  | if (ret < 0) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * on error we return an unlocked page and the error value | 
|  | * on success we return a locked page and 0 | 
|  | */ | 
|  | static int prepare_uptodate_page(struct inode *inode, | 
|  | struct page *page, u64 pos, | 
|  | bool force_uptodate) | 
|  | { | 
|  | struct folio *folio = page_folio(page); | 
|  | int ret = 0; | 
|  |  | 
|  | if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && | 
|  | !PageUptodate(page)) { | 
|  | ret = btrfs_read_folio(NULL, folio); | 
|  | if (ret) | 
|  | return ret; | 
|  | lock_page(page); | 
|  | if (!PageUptodate(page)) { | 
|  | unlock_page(page); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Since btrfs_read_folio() will unlock the folio before it | 
|  | * returns, there is a window where btrfs_release_folio() can be | 
|  | * called to release the page.  Here we check both inode | 
|  | * mapping and PagePrivate() to make sure the page was not | 
|  | * released. | 
|  | * | 
|  | * The private flag check is essential for subpage as we need | 
|  | * to store extra bitmap using page->private. | 
|  | */ | 
|  | if (page->mapping != inode->i_mapping || !PagePrivate(page)) { | 
|  | unlock_page(page); | 
|  | return -EAGAIN; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static fgf_t get_prepare_fgp_flags(bool nowait) | 
|  | { | 
|  | fgf_t fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT; | 
|  |  | 
|  | if (nowait) | 
|  | fgp_flags |= FGP_NOWAIT; | 
|  |  | 
|  | return fgp_flags; | 
|  | } | 
|  |  | 
|  | static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait) | 
|  | { | 
|  | gfp_t gfp; | 
|  |  | 
|  | gfp = btrfs_alloc_write_mask(inode->i_mapping); | 
|  | if (nowait) { | 
|  | gfp &= ~__GFP_DIRECT_RECLAIM; | 
|  | gfp |= GFP_NOWAIT; | 
|  | } | 
|  |  | 
|  | return gfp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this just gets pages into the page cache and locks them down. | 
|  | */ | 
|  | static noinline int prepare_pages(struct inode *inode, struct page **pages, | 
|  | size_t num_pages, loff_t pos, | 
|  | size_t write_bytes, bool force_uptodate, | 
|  | bool nowait) | 
|  | { | 
|  | int i; | 
|  | unsigned long index = pos >> PAGE_SHIFT; | 
|  | gfp_t mask = get_prepare_gfp_flags(inode, nowait); | 
|  | fgf_t fgp_flags = get_prepare_fgp_flags(nowait); | 
|  | int err = 0; | 
|  | int faili; | 
|  |  | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | again: | 
|  | pages[i] = pagecache_get_page(inode->i_mapping, index + i, | 
|  | fgp_flags, mask | __GFP_WRITE); | 
|  | if (!pages[i]) { | 
|  | faili = i - 1; | 
|  | if (nowait) | 
|  | err = -EAGAIN; | 
|  | else | 
|  | err = -ENOMEM; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | err = set_page_extent_mapped(pages[i]); | 
|  | if (err < 0) { | 
|  | faili = i; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | if (i == 0) | 
|  | err = prepare_uptodate_page(inode, pages[i], pos, | 
|  | force_uptodate); | 
|  | if (!err && i == num_pages - 1) | 
|  | err = prepare_uptodate_page(inode, pages[i], | 
|  | pos + write_bytes, false); | 
|  | if (err) { | 
|  | put_page(pages[i]); | 
|  | if (!nowait && err == -EAGAIN) { | 
|  | err = 0; | 
|  | goto again; | 
|  | } | 
|  | faili = i - 1; | 
|  | goto fail; | 
|  | } | 
|  | wait_on_page_writeback(pages[i]); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | fail: | 
|  | while (faili >= 0) { | 
|  | unlock_page(pages[faili]); | 
|  | put_page(pages[faili]); | 
|  | faili--; | 
|  | } | 
|  | return err; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function locks the extent and properly waits for data=ordered extents | 
|  | * to finish before allowing the pages to be modified if need. | 
|  | * | 
|  | * The return value: | 
|  | * 1 - the extent is locked | 
|  | * 0 - the extent is not locked, and everything is OK | 
|  | * -EAGAIN - need re-prepare the pages | 
|  | * the other < 0 number - Something wrong happens | 
|  | */ | 
|  | static noinline int | 
|  | lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, | 
|  | size_t num_pages, loff_t pos, | 
|  | size_t write_bytes, | 
|  | u64 *lockstart, u64 *lockend, bool nowait, | 
|  | struct extent_state **cached_state) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | u64 start_pos; | 
|  | u64 last_pos; | 
|  | int i; | 
|  | int ret = 0; | 
|  |  | 
|  | start_pos = round_down(pos, fs_info->sectorsize); | 
|  | last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1; | 
|  |  | 
|  | if (start_pos < inode->vfs_inode.i_size) { | 
|  | struct btrfs_ordered_extent *ordered; | 
|  |  | 
|  | if (nowait) { | 
|  | if (!try_lock_extent(&inode->io_tree, start_pos, last_pos, | 
|  | cached_state)) { | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | unlock_page(pages[i]); | 
|  | put_page(pages[i]); | 
|  | pages[i] = NULL; | 
|  | } | 
|  |  | 
|  | return -EAGAIN; | 
|  | } | 
|  | } else { | 
|  | lock_extent(&inode->io_tree, start_pos, last_pos, cached_state); | 
|  | } | 
|  |  | 
|  | ordered = btrfs_lookup_ordered_range(inode, start_pos, | 
|  | last_pos - start_pos + 1); | 
|  | if (ordered && | 
|  | ordered->file_offset + ordered->num_bytes > start_pos && | 
|  | ordered->file_offset <= last_pos) { | 
|  | unlock_extent(&inode->io_tree, start_pos, last_pos, | 
|  | cached_state); | 
|  | for (i = 0; i < num_pages; i++) { | 
|  | unlock_page(pages[i]); | 
|  | put_page(pages[i]); | 
|  | } | 
|  | btrfs_start_ordered_extent(ordered); | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | return -EAGAIN; | 
|  | } | 
|  | if (ordered) | 
|  | btrfs_put_ordered_extent(ordered); | 
|  |  | 
|  | *lockstart = start_pos; | 
|  | *lockend = last_pos; | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We should be called after prepare_pages() which should have locked | 
|  | * all pages in the range. | 
|  | */ | 
|  | for (i = 0; i < num_pages; i++) | 
|  | WARN_ON(!PageLocked(pages[i])); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if we can do nocow write into the range [@pos, @pos + @write_bytes) | 
|  | * | 
|  | * @pos:         File offset. | 
|  | * @write_bytes: The length to write, will be updated to the nocow writeable | 
|  | *               range. | 
|  | * | 
|  | * This function will flush ordered extents in the range to ensure proper | 
|  | * nocow checks. | 
|  | * | 
|  | * Return: | 
|  | * > 0          If we can nocow, and updates @write_bytes. | 
|  | *  0           If we can't do a nocow write. | 
|  | * -EAGAIN      If we can't do a nocow write because snapshoting of the inode's | 
|  | *              root is in progress. | 
|  | * < 0          If an error happened. | 
|  | * | 
|  | * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0. | 
|  | */ | 
|  | int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, | 
|  | size_t *write_bytes, bool nowait) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct extent_state *cached_state = NULL; | 
|  | u64 lockstart, lockend; | 
|  | u64 num_bytes; | 
|  | int ret; | 
|  |  | 
|  | if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) | 
|  | return 0; | 
|  |  | 
|  | if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) | 
|  | return -EAGAIN; | 
|  |  | 
|  | lockstart = round_down(pos, fs_info->sectorsize); | 
|  | lockend = round_up(pos + *write_bytes, | 
|  | fs_info->sectorsize) - 1; | 
|  | num_bytes = lockend - lockstart + 1; | 
|  |  | 
|  | if (nowait) { | 
|  | if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend, | 
|  | &cached_state)) { | 
|  | btrfs_drew_write_unlock(&root->snapshot_lock); | 
|  | return -EAGAIN; | 
|  | } | 
|  | } else { | 
|  | btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend, | 
|  | &cached_state); | 
|  | } | 
|  | ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, | 
|  | NULL, NULL, NULL, nowait, false); | 
|  | if (ret <= 0) | 
|  | btrfs_drew_write_unlock(&root->snapshot_lock); | 
|  | else | 
|  | *write_bytes = min_t(size_t, *write_bytes , | 
|  | num_bytes - pos + lockstart); | 
|  | unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_check_nocow_unlock(struct btrfs_inode *inode) | 
|  | { | 
|  | btrfs_drew_write_unlock(&inode->root->snapshot_lock); | 
|  | } | 
|  |  | 
|  | static void update_time_for_write(struct inode *inode) | 
|  | { | 
|  | struct timespec64 now, ts; | 
|  |  | 
|  | if (IS_NOCMTIME(inode)) | 
|  | return; | 
|  |  | 
|  | now = current_time(inode); | 
|  | ts = inode_get_mtime(inode); | 
|  | if (!timespec64_equal(&ts, &now)) | 
|  | inode_set_mtime_to_ts(inode, now); | 
|  |  | 
|  | ts = inode_get_ctime(inode); | 
|  | if (!timespec64_equal(&ts, &now)) | 
|  | inode_set_ctime_to_ts(inode, now); | 
|  |  | 
|  | if (IS_I_VERSION(inode)) | 
|  | inode_inc_iversion(inode); | 
|  | } | 
|  |  | 
|  | static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from, | 
|  | size_t count) | 
|  | { | 
|  | struct file *file = iocb->ki_filp; | 
|  | struct inode *inode = file_inode(file); | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | loff_t pos = iocb->ki_pos; | 
|  | int ret; | 
|  | loff_t oldsize; | 
|  | loff_t start_pos; | 
|  |  | 
|  | /* | 
|  | * Quickly bail out on NOWAIT writes if we don't have the nodatacow or | 
|  | * prealloc flags, as without those flags we always have to COW. We will | 
|  | * later check if we can really COW into the target range (using | 
|  | * can_nocow_extent() at btrfs_get_blocks_direct_write()). | 
|  | */ | 
|  | if ((iocb->ki_flags & IOCB_NOWAIT) && | 
|  | !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) | 
|  | return -EAGAIN; | 
|  |  | 
|  | ret = file_remove_privs(file); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * We reserve space for updating the inode when we reserve space for the | 
|  | * extent we are going to write, so we will enospc out there.  We don't | 
|  | * need to start yet another transaction to update the inode as we will | 
|  | * update the inode when we finish writing whatever data we write. | 
|  | */ | 
|  | update_time_for_write(inode); | 
|  |  | 
|  | start_pos = round_down(pos, fs_info->sectorsize); | 
|  | oldsize = i_size_read(inode); | 
|  | if (start_pos > oldsize) { | 
|  | /* Expand hole size to cover write data, preventing empty gap */ | 
|  | loff_t end_pos = round_up(pos + count, fs_info->sectorsize); | 
|  |  | 
|  | ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, | 
|  | struct iov_iter *i) | 
|  | { | 
|  | struct file *file = iocb->ki_filp; | 
|  | loff_t pos; | 
|  | struct inode *inode = file_inode(file); | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | struct page **pages = NULL; | 
|  | struct extent_changeset *data_reserved = NULL; | 
|  | u64 release_bytes = 0; | 
|  | u64 lockstart; | 
|  | u64 lockend; | 
|  | size_t num_written = 0; | 
|  | int nrptrs; | 
|  | ssize_t ret; | 
|  | bool only_release_metadata = false; | 
|  | bool force_page_uptodate = false; | 
|  | loff_t old_isize = i_size_read(inode); | 
|  | unsigned int ilock_flags = 0; | 
|  | const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); | 
|  | unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0); | 
|  |  | 
|  | if (nowait) | 
|  | ilock_flags |= BTRFS_ILOCK_TRY; | 
|  |  | 
|  | ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | ret = generic_write_checks(iocb, i); | 
|  | if (ret <= 0) | 
|  | goto out; | 
|  |  | 
|  | ret = btrfs_write_check(iocb, i, ret); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | pos = iocb->ki_pos; | 
|  | nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), | 
|  | PAGE_SIZE / (sizeof(struct page *))); | 
|  | nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); | 
|  | nrptrs = max(nrptrs, 8); | 
|  | pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); | 
|  | if (!pages) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | while (iov_iter_count(i) > 0) { | 
|  | struct extent_state *cached_state = NULL; | 
|  | size_t offset = offset_in_page(pos); | 
|  | size_t sector_offset; | 
|  | size_t write_bytes = min(iov_iter_count(i), | 
|  | nrptrs * (size_t)PAGE_SIZE - | 
|  | offset); | 
|  | size_t num_pages; | 
|  | size_t reserve_bytes; | 
|  | size_t dirty_pages; | 
|  | size_t copied; | 
|  | size_t dirty_sectors; | 
|  | size_t num_sectors; | 
|  | int extents_locked; | 
|  |  | 
|  | /* | 
|  | * Fault pages before locking them in prepare_pages | 
|  | * to avoid recursive lock | 
|  | */ | 
|  | if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) { | 
|  | ret = -EFAULT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | only_release_metadata = false; | 
|  | sector_offset = pos & (fs_info->sectorsize - 1); | 
|  |  | 
|  | extent_changeset_release(data_reserved); | 
|  | ret = btrfs_check_data_free_space(BTRFS_I(inode), | 
|  | &data_reserved, pos, | 
|  | write_bytes, nowait); | 
|  | if (ret < 0) { | 
|  | int can_nocow; | 
|  |  | 
|  | if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) { | 
|  | ret = -EAGAIN; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we don't have to COW at the offset, reserve | 
|  | * metadata only. write_bytes may get smaller than | 
|  | * requested here. | 
|  | */ | 
|  | can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos, | 
|  | &write_bytes, nowait); | 
|  | if (can_nocow < 0) | 
|  | ret = can_nocow; | 
|  | if (can_nocow > 0) | 
|  | ret = 0; | 
|  | if (ret) | 
|  | break; | 
|  | only_release_metadata = true; | 
|  | } | 
|  |  | 
|  | num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE); | 
|  | WARN_ON(num_pages > nrptrs); | 
|  | reserve_bytes = round_up(write_bytes + sector_offset, | 
|  | fs_info->sectorsize); | 
|  | WARN_ON(reserve_bytes == 0); | 
|  | ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), | 
|  | reserve_bytes, | 
|  | reserve_bytes, nowait); | 
|  | if (ret) { | 
|  | if (!only_release_metadata) | 
|  | btrfs_free_reserved_data_space(BTRFS_I(inode), | 
|  | data_reserved, pos, | 
|  | write_bytes); | 
|  | else | 
|  | btrfs_check_nocow_unlock(BTRFS_I(inode)); | 
|  |  | 
|  | if (nowait && ret == -ENOSPC) | 
|  | ret = -EAGAIN; | 
|  | break; | 
|  | } | 
|  |  | 
|  | release_bytes = reserve_bytes; | 
|  | again: | 
|  | ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags); | 
|  | if (ret) { | 
|  | btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is going to setup the pages array with the number of | 
|  | * pages we want, so we don't really need to worry about the | 
|  | * contents of pages from loop to loop | 
|  | */ | 
|  | ret = prepare_pages(inode, pages, num_pages, | 
|  | pos, write_bytes, force_page_uptodate, false); | 
|  | if (ret) { | 
|  | btrfs_delalloc_release_extents(BTRFS_I(inode), | 
|  | reserve_bytes); | 
|  | break; | 
|  | } | 
|  |  | 
|  | extents_locked = lock_and_cleanup_extent_if_need( | 
|  | BTRFS_I(inode), pages, | 
|  | num_pages, pos, write_bytes, &lockstart, | 
|  | &lockend, nowait, &cached_state); | 
|  | if (extents_locked < 0) { | 
|  | if (!nowait && extents_locked == -EAGAIN) | 
|  | goto again; | 
|  |  | 
|  | btrfs_delalloc_release_extents(BTRFS_I(inode), | 
|  | reserve_bytes); | 
|  | ret = extents_locked; | 
|  | break; | 
|  | } | 
|  |  | 
|  | copied = btrfs_copy_from_user(pos, write_bytes, pages, i); | 
|  |  | 
|  | num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); | 
|  | dirty_sectors = round_up(copied + sector_offset, | 
|  | fs_info->sectorsize); | 
|  | dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); | 
|  |  | 
|  | /* | 
|  | * if we have trouble faulting in the pages, fall | 
|  | * back to one page at a time | 
|  | */ | 
|  | if (copied < write_bytes) | 
|  | nrptrs = 1; | 
|  |  | 
|  | if (copied == 0) { | 
|  | force_page_uptodate = true; | 
|  | dirty_sectors = 0; | 
|  | dirty_pages = 0; | 
|  | } else { | 
|  | force_page_uptodate = false; | 
|  | dirty_pages = DIV_ROUND_UP(copied + offset, | 
|  | PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | if (num_sectors > dirty_sectors) { | 
|  | /* release everything except the sectors we dirtied */ | 
|  | release_bytes -= dirty_sectors << fs_info->sectorsize_bits; | 
|  | if (only_release_metadata) { | 
|  | btrfs_delalloc_release_metadata(BTRFS_I(inode), | 
|  | release_bytes, true); | 
|  | } else { | 
|  | u64 __pos; | 
|  |  | 
|  | __pos = round_down(pos, | 
|  | fs_info->sectorsize) + | 
|  | (dirty_pages << PAGE_SHIFT); | 
|  | btrfs_delalloc_release_space(BTRFS_I(inode), | 
|  | data_reserved, __pos, | 
|  | release_bytes, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | release_bytes = round_up(copied + sector_offset, | 
|  | fs_info->sectorsize); | 
|  |  | 
|  | ret = btrfs_dirty_pages(BTRFS_I(inode), pages, | 
|  | dirty_pages, pos, copied, | 
|  | &cached_state, only_release_metadata); | 
|  |  | 
|  | /* | 
|  | * If we have not locked the extent range, because the range's | 
|  | * start offset is >= i_size, we might still have a non-NULL | 
|  | * cached extent state, acquired while marking the extent range | 
|  | * as delalloc through btrfs_dirty_pages(). Therefore free any | 
|  | * possible cached extent state to avoid a memory leak. | 
|  | */ | 
|  | if (extents_locked) | 
|  | unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, | 
|  | lockend, &cached_state); | 
|  | else | 
|  | free_extent_state(cached_state); | 
|  |  | 
|  | btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); | 
|  | if (ret) { | 
|  | btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); | 
|  | break; | 
|  | } | 
|  |  | 
|  | release_bytes = 0; | 
|  | if (only_release_metadata) | 
|  | btrfs_check_nocow_unlock(BTRFS_I(inode)); | 
|  |  | 
|  | btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | pos += copied; | 
|  | num_written += copied; | 
|  | } | 
|  |  | 
|  | kfree(pages); | 
|  |  | 
|  | if (release_bytes) { | 
|  | if (only_release_metadata) { | 
|  | btrfs_check_nocow_unlock(BTRFS_I(inode)); | 
|  | btrfs_delalloc_release_metadata(BTRFS_I(inode), | 
|  | release_bytes, true); | 
|  | } else { | 
|  | btrfs_delalloc_release_space(BTRFS_I(inode), | 
|  | data_reserved, | 
|  | round_down(pos, fs_info->sectorsize), | 
|  | release_bytes, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | extent_changeset_free(data_reserved); | 
|  | if (num_written > 0) { | 
|  | pagecache_isize_extended(inode, old_isize, iocb->ki_pos); | 
|  | iocb->ki_pos += num_written; | 
|  | } | 
|  | out: | 
|  | btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); | 
|  | return num_written ? num_written : ret; | 
|  | } | 
|  |  | 
|  | static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, | 
|  | const struct iov_iter *iter, loff_t offset) | 
|  | { | 
|  | const u32 blocksize_mask = fs_info->sectorsize - 1; | 
|  |  | 
|  | if (offset & blocksize_mask) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (iov_iter_alignment(iter) & blocksize_mask) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) | 
|  | { | 
|  | struct file *file = iocb->ki_filp; | 
|  | struct inode *inode = file_inode(file); | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | loff_t pos; | 
|  | ssize_t written = 0; | 
|  | ssize_t written_buffered; | 
|  | size_t prev_left = 0; | 
|  | loff_t endbyte; | 
|  | ssize_t err; | 
|  | unsigned int ilock_flags = 0; | 
|  | struct iomap_dio *dio; | 
|  |  | 
|  | if (iocb->ki_flags & IOCB_NOWAIT) | 
|  | ilock_flags |= BTRFS_ILOCK_TRY; | 
|  |  | 
|  | /* | 
|  | * If the write DIO is within EOF, use a shared lock and also only if | 
|  | * security bits will likely not be dropped by file_remove_privs() called | 
|  | * from btrfs_write_check(). Either will need to be rechecked after the | 
|  | * lock was acquired. | 
|  | */ | 
|  | if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode) && IS_NOSEC(inode)) | 
|  | ilock_flags |= BTRFS_ILOCK_SHARED; | 
|  |  | 
|  | relock: | 
|  | err = btrfs_inode_lock(BTRFS_I(inode), ilock_flags); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | /* Shared lock cannot be used with security bits set. */ | 
|  | if ((ilock_flags & BTRFS_ILOCK_SHARED) && !IS_NOSEC(inode)) { | 
|  | btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); | 
|  | ilock_flags &= ~BTRFS_ILOCK_SHARED; | 
|  | goto relock; | 
|  | } | 
|  |  | 
|  | err = generic_write_checks(iocb, from); | 
|  | if (err <= 0) { | 
|  | btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | err = btrfs_write_check(iocb, from, err); | 
|  | if (err < 0) { | 
|  | btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | pos = iocb->ki_pos; | 
|  | /* | 
|  | * Re-check since file size may have changed just before taking the | 
|  | * lock or pos may have changed because of O_APPEND in generic_write_check() | 
|  | */ | 
|  | if ((ilock_flags & BTRFS_ILOCK_SHARED) && | 
|  | pos + iov_iter_count(from) > i_size_read(inode)) { | 
|  | btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); | 
|  | ilock_flags &= ~BTRFS_ILOCK_SHARED; | 
|  | goto relock; | 
|  | } | 
|  |  | 
|  | if (check_direct_IO(fs_info, from, pos)) { | 
|  | btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); | 
|  | goto buffered; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The iov_iter can be mapped to the same file range we are writing to. | 
|  | * If that's the case, then we will deadlock in the iomap code, because | 
|  | * it first calls our callback btrfs_dio_iomap_begin(), which will create | 
|  | * an ordered extent, and after that it will fault in the pages that the | 
|  | * iov_iter refers to. During the fault in we end up in the readahead | 
|  | * pages code (starting at btrfs_readahead()), which will lock the range, | 
|  | * find that ordered extent and then wait for it to complete (at | 
|  | * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since | 
|  | * obviously the ordered extent can never complete as we didn't submit | 
|  | * yet the respective bio(s). This always happens when the buffer is | 
|  | * memory mapped to the same file range, since the iomap DIO code always | 
|  | * invalidates pages in the target file range (after starting and waiting | 
|  | * for any writeback). | 
|  | * | 
|  | * So here we disable page faults in the iov_iter and then retry if we | 
|  | * got -EFAULT, faulting in the pages before the retry. | 
|  | */ | 
|  | from->nofault = true; | 
|  | dio = btrfs_dio_write(iocb, from, written); | 
|  | from->nofault = false; | 
|  |  | 
|  | /* | 
|  | * iomap_dio_complete() will call btrfs_sync_file() if we have a dsync | 
|  | * iocb, and that needs to lock the inode. So unlock it before calling | 
|  | * iomap_dio_complete() to avoid a deadlock. | 
|  | */ | 
|  | btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); | 
|  |  | 
|  | if (IS_ERR_OR_NULL(dio)) | 
|  | err = PTR_ERR_OR_ZERO(dio); | 
|  | else | 
|  | err = iomap_dio_complete(dio); | 
|  |  | 
|  | /* No increment (+=) because iomap returns a cumulative value. */ | 
|  | if (err > 0) | 
|  | written = err; | 
|  |  | 
|  | if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) { | 
|  | const size_t left = iov_iter_count(from); | 
|  | /* | 
|  | * We have more data left to write. Try to fault in as many as | 
|  | * possible of the remainder pages and retry. We do this without | 
|  | * releasing and locking again the inode, to prevent races with | 
|  | * truncate. | 
|  | * | 
|  | * Also, in case the iov refers to pages in the file range of the | 
|  | * file we want to write to (due to a mmap), we could enter an | 
|  | * infinite loop if we retry after faulting the pages in, since | 
|  | * iomap will invalidate any pages in the range early on, before | 
|  | * it tries to fault in the pages of the iov. So we keep track of | 
|  | * how much was left of iov in the previous EFAULT and fallback | 
|  | * to buffered IO in case we haven't made any progress. | 
|  | */ | 
|  | if (left == prev_left) { | 
|  | err = -ENOTBLK; | 
|  | } else { | 
|  | fault_in_iov_iter_readable(from, left); | 
|  | prev_left = left; | 
|  | goto relock; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If 'err' is -ENOTBLK or we have not written all data, then it means | 
|  | * we must fallback to buffered IO. | 
|  | */ | 
|  | if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from)) | 
|  | goto out; | 
|  |  | 
|  | buffered: | 
|  | /* | 
|  | * If we are in a NOWAIT context, then return -EAGAIN to signal the caller | 
|  | * it must retry the operation in a context where blocking is acceptable, | 
|  | * because even if we end up not blocking during the buffered IO attempt | 
|  | * below, we will block when flushing and waiting for the IO. | 
|  | */ | 
|  | if (iocb->ki_flags & IOCB_NOWAIT) { | 
|  | err = -EAGAIN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | pos = iocb->ki_pos; | 
|  | written_buffered = btrfs_buffered_write(iocb, from); | 
|  | if (written_buffered < 0) { | 
|  | err = written_buffered; | 
|  | goto out; | 
|  | } | 
|  | /* | 
|  | * Ensure all data is persisted. We want the next direct IO read to be | 
|  | * able to read what was just written. | 
|  | */ | 
|  | endbyte = pos + written_buffered - 1; | 
|  | err = btrfs_fdatawrite_range(inode, pos, endbyte); | 
|  | if (err) | 
|  | goto out; | 
|  | err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); | 
|  | if (err) | 
|  | goto out; | 
|  | written += written_buffered; | 
|  | iocb->ki_pos = pos + written_buffered; | 
|  | invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, | 
|  | endbyte >> PAGE_SHIFT); | 
|  | out: | 
|  | return err < 0 ? err : written; | 
|  | } | 
|  |  | 
|  | static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from, | 
|  | const struct btrfs_ioctl_encoded_io_args *encoded) | 
|  | { | 
|  | struct file *file = iocb->ki_filp; | 
|  | struct inode *inode = file_inode(file); | 
|  | loff_t count; | 
|  | ssize_t ret; | 
|  |  | 
|  | btrfs_inode_lock(BTRFS_I(inode), 0); | 
|  | count = encoded->len; | 
|  | ret = generic_write_checks_count(iocb, &count); | 
|  | if (ret == 0 && count != encoded->len) { | 
|  | /* | 
|  | * The write got truncated by generic_write_checks_count(). We | 
|  | * can't do a partial encoded write. | 
|  | */ | 
|  | ret = -EFBIG; | 
|  | } | 
|  | if (ret || encoded->len == 0) | 
|  | goto out; | 
|  |  | 
|  | ret = btrfs_write_check(iocb, from, encoded->len); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | ret = btrfs_do_encoded_write(iocb, from, encoded); | 
|  | out: | 
|  | btrfs_inode_unlock(BTRFS_I(inode), 0); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from, | 
|  | const struct btrfs_ioctl_encoded_io_args *encoded) | 
|  | { | 
|  | struct file *file = iocb->ki_filp; | 
|  | struct btrfs_inode *inode = BTRFS_I(file_inode(file)); | 
|  | ssize_t num_written, num_sync; | 
|  |  | 
|  | /* | 
|  | * If the fs flips readonly due to some impossible error, although we | 
|  | * have opened a file as writable, we have to stop this write operation | 
|  | * to ensure consistency. | 
|  | */ | 
|  | if (BTRFS_FS_ERROR(inode->root->fs_info)) | 
|  | return -EROFS; | 
|  |  | 
|  | if (encoded && (iocb->ki_flags & IOCB_NOWAIT)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if (encoded) { | 
|  | num_written = btrfs_encoded_write(iocb, from, encoded); | 
|  | num_sync = encoded->len; | 
|  | } else if (iocb->ki_flags & IOCB_DIRECT) { | 
|  | num_written = btrfs_direct_write(iocb, from); | 
|  | num_sync = num_written; | 
|  | } else { | 
|  | num_written = btrfs_buffered_write(iocb, from); | 
|  | num_sync = num_written; | 
|  | } | 
|  |  | 
|  | btrfs_set_inode_last_sub_trans(inode); | 
|  |  | 
|  | if (num_sync > 0) { | 
|  | num_sync = generic_write_sync(iocb, num_sync); | 
|  | if (num_sync < 0) | 
|  | num_written = num_sync; | 
|  | } | 
|  |  | 
|  | return num_written; | 
|  | } | 
|  |  | 
|  | static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) | 
|  | { | 
|  | return btrfs_do_write_iter(iocb, from, NULL); | 
|  | } | 
|  |  | 
|  | int btrfs_release_file(struct inode *inode, struct file *filp) | 
|  | { | 
|  | struct btrfs_file_private *private = filp->private_data; | 
|  |  | 
|  | if (private) { | 
|  | kfree(private->filldir_buf); | 
|  | free_extent_state(private->llseek_cached_state); | 
|  | kfree(private); | 
|  | filp->private_data = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set by setattr when we are about to truncate a file from a non-zero | 
|  | * size to a zero size.  This tries to flush down new bytes that may | 
|  | * have been written if the application were using truncate to replace | 
|  | * a file in place. | 
|  | */ | 
|  | if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE, | 
|  | &BTRFS_I(inode)->runtime_flags)) | 
|  | filemap_flush(inode->i_mapping); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) | 
|  | { | 
|  | int ret; | 
|  | struct blk_plug plug; | 
|  |  | 
|  | /* | 
|  | * This is only called in fsync, which would do synchronous writes, so | 
|  | * a plug can merge adjacent IOs as much as possible.  Esp. in case of | 
|  | * multiple disks using raid profile, a large IO can be split to | 
|  | * several segments of stripe length (currently 64K). | 
|  | */ | 
|  | blk_start_plug(&plug); | 
|  | ret = btrfs_fdatawrite_range(inode, start, end); | 
|  | blk_finish_plug(&plug); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx) | 
|  | { | 
|  | struct btrfs_inode *inode = BTRFS_I(ctx->inode); | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  |  | 
|  | if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) && | 
|  | list_empty(&ctx->ordered_extents)) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * If we are doing a fast fsync we can not bail out if the inode's | 
|  | * last_trans is <= then the last committed transaction, because we only | 
|  | * update the last_trans of the inode during ordered extent completion, | 
|  | * and for a fast fsync we don't wait for that, we only wait for the | 
|  | * writeback to complete. | 
|  | */ | 
|  | if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) && | 
|  | (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) || | 
|  | list_empty(&ctx->ordered_extents))) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fsync call for both files and directories.  This logs the inode into | 
|  | * the tree log instead of forcing full commits whenever possible. | 
|  | * | 
|  | * It needs to call filemap_fdatawait so that all ordered extent updates are | 
|  | * in the metadata btree are up to date for copying to the log. | 
|  | * | 
|  | * It drops the inode mutex before doing the tree log commit.  This is an | 
|  | * important optimization for directories because holding the mutex prevents | 
|  | * new operations on the dir while we write to disk. | 
|  | */ | 
|  | int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) | 
|  | { | 
|  | struct dentry *dentry = file_dentry(file); | 
|  | struct inode *inode = d_inode(dentry); | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_log_ctx ctx; | 
|  | int ret = 0, err; | 
|  | u64 len; | 
|  | bool full_sync; | 
|  |  | 
|  | trace_btrfs_sync_file(file, datasync); | 
|  |  | 
|  | btrfs_init_log_ctx(&ctx, inode); | 
|  |  | 
|  | /* | 
|  | * Always set the range to a full range, otherwise we can get into | 
|  | * several problems, from missing file extent items to represent holes | 
|  | * when not using the NO_HOLES feature, to log tree corruption due to | 
|  | * races between hole detection during logging and completion of ordered | 
|  | * extents outside the range, to missing checksums due to ordered extents | 
|  | * for which we flushed only a subset of their pages. | 
|  | */ | 
|  | start = 0; | 
|  | end = LLONG_MAX; | 
|  | len = (u64)LLONG_MAX + 1; | 
|  |  | 
|  | /* | 
|  | * We write the dirty pages in the range and wait until they complete | 
|  | * out of the ->i_mutex. If so, we can flush the dirty pages by | 
|  | * multi-task, and make the performance up.  See | 
|  | * btrfs_wait_ordered_range for an explanation of the ASYNC check. | 
|  | */ | 
|  | ret = start_ordered_ops(inode, start, end); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); | 
|  |  | 
|  | atomic_inc(&root->log_batch); | 
|  |  | 
|  | /* | 
|  | * Before we acquired the inode's lock and the mmap lock, someone may | 
|  | * have dirtied more pages in the target range. We need to make sure | 
|  | * that writeback for any such pages does not start while we are logging | 
|  | * the inode, because if it does, any of the following might happen when | 
|  | * we are not doing a full inode sync: | 
|  | * | 
|  | * 1) We log an extent after its writeback finishes but before its | 
|  | *    checksums are added to the csum tree, leading to -EIO errors | 
|  | *    when attempting to read the extent after a log replay. | 
|  | * | 
|  | * 2) We can end up logging an extent before its writeback finishes. | 
|  | *    Therefore after the log replay we will have a file extent item | 
|  | *    pointing to an unwritten extent (and no data checksums as well). | 
|  | * | 
|  | * So trigger writeback for any eventual new dirty pages and then we | 
|  | * wait for all ordered extents to complete below. | 
|  | */ | 
|  | ret = start_ordered_ops(inode, start, end); | 
|  | if (ret) { | 
|  | btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Always check for the full sync flag while holding the inode's lock, | 
|  | * to avoid races with other tasks. The flag must be either set all the | 
|  | * time during logging or always off all the time while logging. | 
|  | * We check the flag here after starting delalloc above, because when | 
|  | * running delalloc the full sync flag may be set if we need to drop | 
|  | * extra extent map ranges due to temporary memory allocation failures. | 
|  | */ | 
|  | full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, | 
|  | &BTRFS_I(inode)->runtime_flags); | 
|  |  | 
|  | /* | 
|  | * We have to do this here to avoid the priority inversion of waiting on | 
|  | * IO of a lower priority task while holding a transaction open. | 
|  | * | 
|  | * For a full fsync we wait for the ordered extents to complete while | 
|  | * for a fast fsync we wait just for writeback to complete, and then | 
|  | * attach the ordered extents to the transaction so that a transaction | 
|  | * commit waits for their completion, to avoid data loss if we fsync, | 
|  | * the current transaction commits before the ordered extents complete | 
|  | * and a power failure happens right after that. | 
|  | * | 
|  | * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the | 
|  | * logical address recorded in the ordered extent may change. We need | 
|  | * to wait for the IO to stabilize the logical address. | 
|  | */ | 
|  | if (full_sync || btrfs_is_zoned(fs_info)) { | 
|  | ret = btrfs_wait_ordered_range(inode, start, len); | 
|  | } else { | 
|  | /* | 
|  | * Get our ordered extents as soon as possible to avoid doing | 
|  | * checksum lookups in the csum tree, and use instead the | 
|  | * checksums attached to the ordered extents. | 
|  | */ | 
|  | btrfs_get_ordered_extents_for_logging(BTRFS_I(inode), | 
|  | &ctx.ordered_extents); | 
|  | ret = filemap_fdatawait_range(inode->i_mapping, start, end); | 
|  | } | 
|  |  | 
|  | if (ret) | 
|  | goto out_release_extents; | 
|  |  | 
|  | atomic_inc(&root->log_batch); | 
|  |  | 
|  | if (skip_inode_logging(&ctx)) { | 
|  | /* | 
|  | * We've had everything committed since the last time we were | 
|  | * modified so clear this flag in case it was set for whatever | 
|  | * reason, it's no longer relevant. | 
|  | */ | 
|  | clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, | 
|  | &BTRFS_I(inode)->runtime_flags); | 
|  | /* | 
|  | * An ordered extent might have started before and completed | 
|  | * already with io errors, in which case the inode was not | 
|  | * updated and we end up here. So check the inode's mapping | 
|  | * for any errors that might have happened since we last | 
|  | * checked called fsync. | 
|  | */ | 
|  | ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); | 
|  | goto out_release_extents; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We use start here because we will need to wait on the IO to complete | 
|  | * in btrfs_sync_log, which could require joining a transaction (for | 
|  | * example checking cross references in the nocow path).  If we use join | 
|  | * here we could get into a situation where we're waiting on IO to | 
|  | * happen that is blocked on a transaction trying to commit.  With start | 
|  | * we inc the extwriter counter, so we wait for all extwriters to exit | 
|  | * before we start blocking joiners.  This comment is to keep somebody | 
|  | * from thinking they are super smart and changing this to | 
|  | * btrfs_join_transaction *cough*Josef*cough*. | 
|  | */ | 
|  | trans = btrfs_start_transaction(root, 0); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | goto out_release_extents; | 
|  | } | 
|  | trans->in_fsync = true; | 
|  |  | 
|  | ret = btrfs_log_dentry_safe(trans, dentry, &ctx); | 
|  | btrfs_release_log_ctx_extents(&ctx); | 
|  | if (ret < 0) { | 
|  | /* Fallthrough and commit/free transaction. */ | 
|  | ret = BTRFS_LOG_FORCE_COMMIT; | 
|  | } | 
|  |  | 
|  | /* we've logged all the items and now have a consistent | 
|  | * version of the file in the log.  It is possible that | 
|  | * someone will come in and modify the file, but that's | 
|  | * fine because the log is consistent on disk, and we | 
|  | * have references to all of the file's extents | 
|  | * | 
|  | * It is possible that someone will come in and log the | 
|  | * file again, but that will end up using the synchronization | 
|  | * inside btrfs_sync_log to keep things safe. | 
|  | */ | 
|  | btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); | 
|  |  | 
|  | if (ret == BTRFS_NO_LOG_SYNC) { | 
|  | ret = btrfs_end_transaction(trans); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* We successfully logged the inode, attempt to sync the log. */ | 
|  | if (!ret) { | 
|  | ret = btrfs_sync_log(trans, root, &ctx); | 
|  | if (!ret) { | 
|  | ret = btrfs_end_transaction(trans); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * At this point we need to commit the transaction because we had | 
|  | * btrfs_need_log_full_commit() or some other error. | 
|  | * | 
|  | * If we didn't do a full sync we have to stop the trans handle, wait on | 
|  | * the ordered extents, start it again and commit the transaction.  If | 
|  | * we attempt to wait on the ordered extents here we could deadlock with | 
|  | * something like fallocate() that is holding the extent lock trying to | 
|  | * start a transaction while some other thread is trying to commit the | 
|  | * transaction while we (fsync) are currently holding the transaction | 
|  | * open. | 
|  | */ | 
|  | if (!full_sync) { | 
|  | ret = btrfs_end_transaction(trans); | 
|  | if (ret) | 
|  | goto out; | 
|  | ret = btrfs_wait_ordered_range(inode, start, len); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * This is safe to use here because we're only interested in | 
|  | * making sure the transaction that had the ordered extents is | 
|  | * committed.  We aren't waiting on anything past this point, | 
|  | * we're purely getting the transaction and committing it. | 
|  | */ | 
|  | trans = btrfs_attach_transaction_barrier(root); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  |  | 
|  | /* | 
|  | * We committed the transaction and there's no currently | 
|  | * running transaction, this means everything we care | 
|  | * about made it to disk and we are done. | 
|  | */ | 
|  | if (ret == -ENOENT) | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = btrfs_commit_transaction(trans); | 
|  | out: | 
|  | ASSERT(list_empty(&ctx.list)); | 
|  | ASSERT(list_empty(&ctx.conflict_inodes)); | 
|  | err = file_check_and_advance_wb_err(file); | 
|  | if (!ret) | 
|  | ret = err; | 
|  | return ret > 0 ? -EIO : ret; | 
|  |  | 
|  | out_release_extents: | 
|  | btrfs_release_log_ctx_extents(&ctx); | 
|  | btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | static const struct vm_operations_struct btrfs_file_vm_ops = { | 
|  | .fault		= filemap_fault, | 
|  | .map_pages	= filemap_map_pages, | 
|  | .page_mkwrite	= btrfs_page_mkwrite, | 
|  | }; | 
|  |  | 
|  | static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma) | 
|  | { | 
|  | struct address_space *mapping = filp->f_mapping; | 
|  |  | 
|  | if (!mapping->a_ops->read_folio) | 
|  | return -ENOEXEC; | 
|  |  | 
|  | file_accessed(filp); | 
|  | vma->vm_ops = &btrfs_file_vm_ops; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, | 
|  | int slot, u64 start, u64 end) | 
|  | { | 
|  | struct btrfs_file_extent_item *fi; | 
|  | struct btrfs_key key; | 
|  |  | 
|  | if (slot < 0 || slot >= btrfs_header_nritems(leaf)) | 
|  | return 0; | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, slot); | 
|  | if (key.objectid != btrfs_ino(inode) || | 
|  | key.type != BTRFS_EXTENT_DATA_KEY) | 
|  | return 0; | 
|  |  | 
|  | fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); | 
|  |  | 
|  | if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) | 
|  | return 0; | 
|  |  | 
|  | if (btrfs_file_extent_disk_bytenr(leaf, fi)) | 
|  | return 0; | 
|  |  | 
|  | if (key.offset == end) | 
|  | return 1; | 
|  | if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int fill_holes(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, | 
|  | struct btrfs_path *path, u64 offset, u64 end) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_file_extent_item *fi; | 
|  | struct extent_map *hole_em; | 
|  | struct btrfs_key key; | 
|  | int ret; | 
|  |  | 
|  | if (btrfs_fs_incompat(fs_info, NO_HOLES)) | 
|  | goto out; | 
|  |  | 
|  | key.objectid = btrfs_ino(inode); | 
|  | key.type = BTRFS_EXTENT_DATA_KEY; | 
|  | key.offset = offset; | 
|  |  | 
|  | ret = btrfs_search_slot(trans, root, &key, path, 0, 1); | 
|  | if (ret <= 0) { | 
|  | /* | 
|  | * We should have dropped this offset, so if we find it then | 
|  | * something has gone horribly wrong. | 
|  | */ | 
|  | if (ret == 0) | 
|  | ret = -EINVAL; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { | 
|  | u64 num_bytes; | 
|  |  | 
|  | path->slots[0]--; | 
|  | fi = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  | num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + | 
|  | end - offset; | 
|  | btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); | 
|  | btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); | 
|  | btrfs_set_file_extent_offset(leaf, fi, 0); | 
|  | btrfs_set_file_extent_generation(leaf, fi, trans->transid); | 
|  | btrfs_mark_buffer_dirty(trans, leaf); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { | 
|  | u64 num_bytes; | 
|  |  | 
|  | key.offset = offset; | 
|  | btrfs_set_item_key_safe(trans, path, &key); | 
|  | fi = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  | num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - | 
|  | offset; | 
|  | btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); | 
|  | btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); | 
|  | btrfs_set_file_extent_offset(leaf, fi, 0); | 
|  | btrfs_set_file_extent_generation(leaf, fi, trans->transid); | 
|  | btrfs_mark_buffer_dirty(trans, leaf); | 
|  | goto out; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, | 
|  | end - offset); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | out: | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | hole_em = alloc_extent_map(); | 
|  | if (!hole_em) { | 
|  | btrfs_drop_extent_map_range(inode, offset, end - 1, false); | 
|  | btrfs_set_inode_full_sync(inode); | 
|  | } else { | 
|  | hole_em->start = offset; | 
|  | hole_em->len = end - offset; | 
|  | hole_em->ram_bytes = hole_em->len; | 
|  | hole_em->orig_start = offset; | 
|  |  | 
|  | hole_em->block_start = EXTENT_MAP_HOLE; | 
|  | hole_em->block_len = 0; | 
|  | hole_em->orig_block_len = 0; | 
|  | hole_em->compress_type = BTRFS_COMPRESS_NONE; | 
|  | hole_em->generation = trans->transid; | 
|  |  | 
|  | ret = btrfs_replace_extent_map_range(inode, hole_em, true); | 
|  | free_extent_map(hole_em); | 
|  | if (ret) | 
|  | btrfs_set_inode_full_sync(inode); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find a hole extent on given inode and change start/len to the end of hole | 
|  | * extent.(hole/vacuum extent whose em->start <= start && | 
|  | *	   em->start + em->len > start) | 
|  | * When a hole extent is found, return 1 and modify start/len. | 
|  | */ | 
|  | static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | struct extent_map *em; | 
|  | int ret = 0; | 
|  |  | 
|  | em = btrfs_get_extent(inode, NULL, 0, | 
|  | round_down(*start, fs_info->sectorsize), | 
|  | round_up(*len, fs_info->sectorsize)); | 
|  | if (IS_ERR(em)) | 
|  | return PTR_ERR(em); | 
|  |  | 
|  | /* Hole or vacuum extent(only exists in no-hole mode) */ | 
|  | if (em->block_start == EXTENT_MAP_HOLE) { | 
|  | ret = 1; | 
|  | *len = em->start + em->len > *start + *len ? | 
|  | 0 : *start + *len - em->start - em->len; | 
|  | *start = em->start + em->len; | 
|  | } | 
|  | free_extent_map(em); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void btrfs_punch_hole_lock_range(struct inode *inode, | 
|  | const u64 lockstart, | 
|  | const u64 lockend, | 
|  | struct extent_state **cached_state) | 
|  | { | 
|  | /* | 
|  | * For subpage case, if the range is not at page boundary, we could | 
|  | * have pages at the leading/tailing part of the range. | 
|  | * This could lead to dead loop since filemap_range_has_page() | 
|  | * will always return true. | 
|  | * So here we need to do extra page alignment for | 
|  | * filemap_range_has_page(). | 
|  | */ | 
|  | const u64 page_lockstart = round_up(lockstart, PAGE_SIZE); | 
|  | const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1; | 
|  |  | 
|  | while (1) { | 
|  | truncate_pagecache_range(inode, lockstart, lockend); | 
|  |  | 
|  | lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, | 
|  | cached_state); | 
|  | /* | 
|  | * We can't have ordered extents in the range, nor dirty/writeback | 
|  | * pages, because we have locked the inode's VFS lock in exclusive | 
|  | * mode, we have locked the inode's i_mmap_lock in exclusive mode, | 
|  | * we have flushed all delalloc in the range and we have waited | 
|  | * for any ordered extents in the range to complete. | 
|  | * We can race with anyone reading pages from this range, so after | 
|  | * locking the range check if we have pages in the range, and if | 
|  | * we do, unlock the range and retry. | 
|  | */ | 
|  | if (!filemap_range_has_page(inode->i_mapping, page_lockstart, | 
|  | page_lockend)) | 
|  | break; | 
|  |  | 
|  | unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, | 
|  | cached_state); | 
|  | } | 
|  |  | 
|  | btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend); | 
|  | } | 
|  |  | 
|  | static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_inode *inode, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_replace_extent_info *extent_info, | 
|  | const u64 replace_len, | 
|  | const u64 bytes_to_drop) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct btrfs_file_extent_item *extent; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key key; | 
|  | int slot; | 
|  | struct btrfs_ref ref = { 0 }; | 
|  | int ret; | 
|  |  | 
|  | if (replace_len == 0) | 
|  | return 0; | 
|  |  | 
|  | if (extent_info->disk_offset == 0 && | 
|  | btrfs_fs_incompat(fs_info, NO_HOLES)) { | 
|  | btrfs_update_inode_bytes(inode, 0, bytes_to_drop); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | key.objectid = btrfs_ino(inode); | 
|  | key.type = BTRFS_EXTENT_DATA_KEY; | 
|  | key.offset = extent_info->file_offset; | 
|  | ret = btrfs_insert_empty_item(trans, root, path, &key, | 
|  | sizeof(struct btrfs_file_extent_item)); | 
|  | if (ret) | 
|  | return ret; | 
|  | leaf = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  | write_extent_buffer(leaf, extent_info->extent_buf, | 
|  | btrfs_item_ptr_offset(leaf, slot), | 
|  | sizeof(struct btrfs_file_extent_item)); | 
|  | extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); | 
|  | ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE); | 
|  | btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset); | 
|  | btrfs_set_file_extent_num_bytes(leaf, extent, replace_len); | 
|  | if (extent_info->is_new_extent) | 
|  | btrfs_set_file_extent_generation(leaf, extent, trans->transid); | 
|  | btrfs_mark_buffer_dirty(trans, leaf); | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset, | 
|  | replace_len); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* If it's a hole, nothing more needs to be done. */ | 
|  | if (extent_info->disk_offset == 0) { | 
|  | btrfs_update_inode_bytes(inode, 0, bytes_to_drop); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop); | 
|  |  | 
|  | if (extent_info->is_new_extent && extent_info->insertions == 0) { | 
|  | key.objectid = extent_info->disk_offset; | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | key.offset = extent_info->disk_len; | 
|  | ret = btrfs_alloc_reserved_file_extent(trans, root, | 
|  | btrfs_ino(inode), | 
|  | extent_info->file_offset, | 
|  | extent_info->qgroup_reserved, | 
|  | &key); | 
|  | } else { | 
|  | u64 ref_offset; | 
|  |  | 
|  | btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, | 
|  | extent_info->disk_offset, | 
|  | extent_info->disk_len, 0, | 
|  | root->root_key.objectid); | 
|  | ref_offset = extent_info->file_offset - extent_info->data_offset; | 
|  | btrfs_init_data_ref(&ref, root->root_key.objectid, | 
|  | btrfs_ino(inode), ref_offset, 0, false); | 
|  | ret = btrfs_inc_extent_ref(trans, &ref); | 
|  | } | 
|  |  | 
|  | extent_info->insertions++; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The respective range must have been previously locked, as well as the inode. | 
|  | * The end offset is inclusive (last byte of the range). | 
|  | * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing | 
|  | * the file range with an extent. | 
|  | * When not punching a hole, we don't want to end up in a state where we dropped | 
|  | * extents without inserting a new one, so we must abort the transaction to avoid | 
|  | * a corruption. | 
|  | */ | 
|  | int btrfs_replace_file_extents(struct btrfs_inode *inode, | 
|  | struct btrfs_path *path, const u64 start, | 
|  | const u64 end, | 
|  | struct btrfs_replace_extent_info *extent_info, | 
|  | struct btrfs_trans_handle **trans_out) | 
|  | { | 
|  | struct btrfs_drop_extents_args drop_args = { 0 }; | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); | 
|  | u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize); | 
|  | struct btrfs_trans_handle *trans = NULL; | 
|  | struct btrfs_block_rsv *rsv; | 
|  | unsigned int rsv_count; | 
|  | u64 cur_offset; | 
|  | u64 len = end - start; | 
|  | int ret = 0; | 
|  |  | 
|  | if (end <= start) | 
|  | return -EINVAL; | 
|  |  | 
|  | rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); | 
|  | if (!rsv) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1); | 
|  | rsv->failfast = true; | 
|  |  | 
|  | /* | 
|  | * 1 - update the inode | 
|  | * 1 - removing the extents in the range | 
|  | * 1 - adding the hole extent if no_holes isn't set or if we are | 
|  | *     replacing the range with a new extent | 
|  | */ | 
|  | if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info) | 
|  | rsv_count = 3; | 
|  | else | 
|  | rsv_count = 2; | 
|  |  | 
|  | trans = btrfs_start_transaction(root, rsv_count); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | trans = NULL; | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, | 
|  | min_size, false); | 
|  | if (WARN_ON(ret)) | 
|  | goto out_trans; | 
|  | trans->block_rsv = rsv; | 
|  |  | 
|  | cur_offset = start; | 
|  | drop_args.path = path; | 
|  | drop_args.end = end + 1; | 
|  | drop_args.drop_cache = true; | 
|  | while (cur_offset < end) { | 
|  | drop_args.start = cur_offset; | 
|  | ret = btrfs_drop_extents(trans, root, inode, &drop_args); | 
|  | /* If we are punching a hole decrement the inode's byte count */ | 
|  | if (!extent_info) | 
|  | btrfs_update_inode_bytes(inode, 0, | 
|  | drop_args.bytes_found); | 
|  | if (ret != -ENOSPC) { | 
|  | /* | 
|  | * The only time we don't want to abort is if we are | 
|  | * attempting to clone a partial inline extent, in which | 
|  | * case we'll get EOPNOTSUPP.  However if we aren't | 
|  | * clone we need to abort no matter what, because if we | 
|  | * got EOPNOTSUPP via prealloc then we messed up and | 
|  | * need to abort. | 
|  | */ | 
|  | if (ret && | 
|  | (ret != -EOPNOTSUPP || | 
|  | (extent_info && extent_info->is_new_extent))) | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | break; | 
|  | } | 
|  |  | 
|  | trans->block_rsv = &fs_info->trans_block_rsv; | 
|  |  | 
|  | if (!extent_info && cur_offset < drop_args.drop_end && | 
|  | cur_offset < ino_size) { | 
|  | ret = fill_holes(trans, inode, path, cur_offset, | 
|  | drop_args.drop_end); | 
|  | if (ret) { | 
|  | /* | 
|  | * If we failed then we didn't insert our hole | 
|  | * entries for the area we dropped, so now the | 
|  | * fs is corrupted, so we must abort the | 
|  | * transaction. | 
|  | */ | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | break; | 
|  | } | 
|  | } else if (!extent_info && cur_offset < drop_args.drop_end) { | 
|  | /* | 
|  | * We are past the i_size here, but since we didn't | 
|  | * insert holes we need to clear the mapped area so we | 
|  | * know to not set disk_i_size in this area until a new | 
|  | * file extent is inserted here. | 
|  | */ | 
|  | ret = btrfs_inode_clear_file_extent_range(inode, | 
|  | cur_offset, | 
|  | drop_args.drop_end - cur_offset); | 
|  | if (ret) { | 
|  | /* | 
|  | * We couldn't clear our area, so we could | 
|  | * presumably adjust up and corrupt the fs, so | 
|  | * we need to abort. | 
|  | */ | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (extent_info && | 
|  | drop_args.drop_end > extent_info->file_offset) { | 
|  | u64 replace_len = drop_args.drop_end - | 
|  | extent_info->file_offset; | 
|  |  | 
|  | ret = btrfs_insert_replace_extent(trans, inode,	path, | 
|  | extent_info, replace_len, | 
|  | drop_args.bytes_found); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | break; | 
|  | } | 
|  | extent_info->data_len -= replace_len; | 
|  | extent_info->data_offset += replace_len; | 
|  | extent_info->file_offset += replace_len; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We are releasing our handle on the transaction, balance the | 
|  | * dirty pages of the btree inode and flush delayed items, and | 
|  | * then get a new transaction handle, which may now point to a | 
|  | * new transaction in case someone else may have committed the | 
|  | * transaction we used to replace/drop file extent items. So | 
|  | * bump the inode's iversion and update mtime and ctime except | 
|  | * if we are called from a dedupe context. This is because a | 
|  | * power failure/crash may happen after the transaction is | 
|  | * committed and before we finish replacing/dropping all the | 
|  | * file extent items we need. | 
|  | */ | 
|  | inode_inc_iversion(&inode->vfs_inode); | 
|  |  | 
|  | if (!extent_info || extent_info->update_times) | 
|  | inode_set_mtime_to_ts(&inode->vfs_inode, | 
|  | inode_set_ctime_current(&inode->vfs_inode)); | 
|  |  | 
|  | ret = btrfs_update_inode(trans, inode); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | btrfs_end_transaction(trans); | 
|  | btrfs_btree_balance_dirty(fs_info); | 
|  |  | 
|  | trans = btrfs_start_transaction(root, rsv_count); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | trans = NULL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, | 
|  | rsv, min_size, false); | 
|  | if (WARN_ON(ret)) | 
|  | break; | 
|  | trans->block_rsv = rsv; | 
|  |  | 
|  | cur_offset = drop_args.drop_end; | 
|  | len = end - cur_offset; | 
|  | if (!extent_info && len) { | 
|  | ret = find_first_non_hole(inode, &cur_offset, &len); | 
|  | if (unlikely(ret < 0)) | 
|  | break; | 
|  | if (ret && !len) { | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we were cloning, force the next fsync to be a full one since we | 
|  | * we replaced (or just dropped in the case of cloning holes when | 
|  | * NO_HOLES is enabled) file extent items and did not setup new extent | 
|  | * maps for the replacement extents (or holes). | 
|  | */ | 
|  | if (extent_info && !extent_info->is_new_extent) | 
|  | btrfs_set_inode_full_sync(inode); | 
|  |  | 
|  | if (ret) | 
|  | goto out_trans; | 
|  |  | 
|  | trans->block_rsv = &fs_info->trans_block_rsv; | 
|  | /* | 
|  | * If we are using the NO_HOLES feature we might have had already an | 
|  | * hole that overlaps a part of the region [lockstart, lockend] and | 
|  | * ends at (or beyond) lockend. Since we have no file extent items to | 
|  | * represent holes, drop_end can be less than lockend and so we must | 
|  | * make sure we have an extent map representing the existing hole (the | 
|  | * call to __btrfs_drop_extents() might have dropped the existing extent | 
|  | * map representing the existing hole), otherwise the fast fsync path | 
|  | * will not record the existence of the hole region | 
|  | * [existing_hole_start, lockend]. | 
|  | */ | 
|  | if (drop_args.drop_end <= end) | 
|  | drop_args.drop_end = end + 1; | 
|  | /* | 
|  | * Don't insert file hole extent item if it's for a range beyond eof | 
|  | * (because it's useless) or if it represents a 0 bytes range (when | 
|  | * cur_offset == drop_end). | 
|  | */ | 
|  | if (!extent_info && cur_offset < ino_size && | 
|  | cur_offset < drop_args.drop_end) { | 
|  | ret = fill_holes(trans, inode, path, cur_offset, | 
|  | drop_args.drop_end); | 
|  | if (ret) { | 
|  | /* Same comment as above. */ | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out_trans; | 
|  | } | 
|  | } else if (!extent_info && cur_offset < drop_args.drop_end) { | 
|  | /* See the comment in the loop above for the reasoning here. */ | 
|  | ret = btrfs_inode_clear_file_extent_range(inode, cur_offset, | 
|  | drop_args.drop_end - cur_offset); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out_trans; | 
|  | } | 
|  |  | 
|  | } | 
|  | if (extent_info) { | 
|  | ret = btrfs_insert_replace_extent(trans, inode, path, | 
|  | extent_info, extent_info->data_len, | 
|  | drop_args.bytes_found); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out_trans; | 
|  | } | 
|  | } | 
|  |  | 
|  | out_trans: | 
|  | if (!trans) | 
|  | goto out_free; | 
|  |  | 
|  | trans->block_rsv = &fs_info->trans_block_rsv; | 
|  | if (ret) | 
|  | btrfs_end_transaction(trans); | 
|  | else | 
|  | *trans_out = trans; | 
|  | out_free: | 
|  | btrfs_free_block_rsv(fs_info, rsv); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len) | 
|  | { | 
|  | struct inode *inode = file_inode(file); | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | struct extent_state *cached_state = NULL; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_trans_handle *trans = NULL; | 
|  | u64 lockstart; | 
|  | u64 lockend; | 
|  | u64 tail_start; | 
|  | u64 tail_len; | 
|  | u64 orig_start = offset; | 
|  | int ret = 0; | 
|  | bool same_block; | 
|  | u64 ino_size; | 
|  | bool truncated_block = false; | 
|  | bool updated_inode = false; | 
|  |  | 
|  | btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); | 
|  |  | 
|  | ret = btrfs_wait_ordered_range(inode, offset, len); | 
|  | if (ret) | 
|  | goto out_only_mutex; | 
|  |  | 
|  | ino_size = round_up(inode->i_size, fs_info->sectorsize); | 
|  | ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); | 
|  | if (ret < 0) | 
|  | goto out_only_mutex; | 
|  | if (ret && !len) { | 
|  | /* Already in a large hole */ | 
|  | ret = 0; | 
|  | goto out_only_mutex; | 
|  | } | 
|  |  | 
|  | ret = file_modified(file); | 
|  | if (ret) | 
|  | goto out_only_mutex; | 
|  |  | 
|  | lockstart = round_up(offset, fs_info->sectorsize); | 
|  | lockend = round_down(offset + len, fs_info->sectorsize) - 1; | 
|  | same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) | 
|  | == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); | 
|  | /* | 
|  | * We needn't truncate any block which is beyond the end of the file | 
|  | * because we are sure there is no data there. | 
|  | */ | 
|  | /* | 
|  | * Only do this if we are in the same block and we aren't doing the | 
|  | * entire block. | 
|  | */ | 
|  | if (same_block && len < fs_info->sectorsize) { | 
|  | if (offset < ino_size) { | 
|  | truncated_block = true; | 
|  | ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, | 
|  | 0); | 
|  | } else { | 
|  | ret = 0; | 
|  | } | 
|  | goto out_only_mutex; | 
|  | } | 
|  |  | 
|  | /* zero back part of the first block */ | 
|  | if (offset < ino_size) { | 
|  | truncated_block = true; | 
|  | ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); | 
|  | if (ret) { | 
|  | btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check the aligned pages after the first unaligned page, | 
|  | * if offset != orig_start, which means the first unaligned page | 
|  | * including several following pages are already in holes, | 
|  | * the extra check can be skipped */ | 
|  | if (offset == orig_start) { | 
|  | /* after truncate page, check hole again */ | 
|  | len = offset + len - lockstart; | 
|  | offset = lockstart; | 
|  | ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); | 
|  | if (ret < 0) | 
|  | goto out_only_mutex; | 
|  | if (ret && !len) { | 
|  | ret = 0; | 
|  | goto out_only_mutex; | 
|  | } | 
|  | lockstart = offset; | 
|  | } | 
|  |  | 
|  | /* Check the tail unaligned part is in a hole */ | 
|  | tail_start = lockend + 1; | 
|  | tail_len = offset + len - tail_start; | 
|  | if (tail_len) { | 
|  | ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len); | 
|  | if (unlikely(ret < 0)) | 
|  | goto out_only_mutex; | 
|  | if (!ret) { | 
|  | /* zero the front end of the last page */ | 
|  | if (tail_start + tail_len < ino_size) { | 
|  | truncated_block = true; | 
|  | ret = btrfs_truncate_block(BTRFS_I(inode), | 
|  | tail_start + tail_len, | 
|  | 0, 1); | 
|  | if (ret) | 
|  | goto out_only_mutex; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (lockend < lockstart) { | 
|  | ret = 0; | 
|  | goto out_only_mutex; | 
|  | } | 
|  |  | 
|  | btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state); | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart, | 
|  | lockend, NULL, &trans); | 
|  | btrfs_free_path(path); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ASSERT(trans != NULL); | 
|  | inode_inc_iversion(inode); | 
|  | inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); | 
|  | ret = btrfs_update_inode(trans, BTRFS_I(inode)); | 
|  | updated_inode = true; | 
|  | btrfs_end_transaction(trans); | 
|  | btrfs_btree_balance_dirty(fs_info); | 
|  | out: | 
|  | unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, | 
|  | &cached_state); | 
|  | out_only_mutex: | 
|  | if (!updated_inode && truncated_block && !ret) { | 
|  | /* | 
|  | * If we only end up zeroing part of a page, we still need to | 
|  | * update the inode item, so that all the time fields are | 
|  | * updated as well as the necessary btrfs inode in memory fields | 
|  | * for detecting, at fsync time, if the inode isn't yet in the | 
|  | * log tree or it's there but not up to date. | 
|  | */ | 
|  | struct timespec64 now = inode_set_ctime_current(inode); | 
|  |  | 
|  | inode_inc_iversion(inode); | 
|  | inode_set_mtime_to_ts(inode, now); | 
|  | trans = btrfs_start_transaction(root, 1); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | } else { | 
|  | int ret2; | 
|  |  | 
|  | ret = btrfs_update_inode(trans, BTRFS_I(inode)); | 
|  | ret2 = btrfs_end_transaction(trans); | 
|  | if (!ret) | 
|  | ret = ret2; | 
|  | } | 
|  | } | 
|  | btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Helper structure to record which range is already reserved */ | 
|  | struct falloc_range { | 
|  | struct list_head list; | 
|  | u64 start; | 
|  | u64 len; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Helper function to add falloc range | 
|  | * | 
|  | * Caller should have locked the larger range of extent containing | 
|  | * [start, len) | 
|  | */ | 
|  | static int add_falloc_range(struct list_head *head, u64 start, u64 len) | 
|  | { | 
|  | struct falloc_range *range = NULL; | 
|  |  | 
|  | if (!list_empty(head)) { | 
|  | /* | 
|  | * As fallocate iterates by bytenr order, we only need to check | 
|  | * the last range. | 
|  | */ | 
|  | range = list_last_entry(head, struct falloc_range, list); | 
|  | if (range->start + range->len == start) { | 
|  | range->len += len; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | range = kmalloc(sizeof(*range), GFP_KERNEL); | 
|  | if (!range) | 
|  | return -ENOMEM; | 
|  | range->start = start; | 
|  | range->len = len; | 
|  | list_add_tail(&range->list, head); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btrfs_fallocate_update_isize(struct inode *inode, | 
|  | const u64 end, | 
|  | const int mode) | 
|  | { | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | int ret; | 
|  | int ret2; | 
|  |  | 
|  | if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) | 
|  | return 0; | 
|  |  | 
|  | trans = btrfs_start_transaction(root, 1); | 
|  | if (IS_ERR(trans)) | 
|  | return PTR_ERR(trans); | 
|  |  | 
|  | inode_set_ctime_current(inode); | 
|  | i_size_write(inode, end); | 
|  | btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); | 
|  | ret = btrfs_update_inode(trans, BTRFS_I(inode)); | 
|  | ret2 = btrfs_end_transaction(trans); | 
|  |  | 
|  | return ret ? ret : ret2; | 
|  | } | 
|  |  | 
|  | enum { | 
|  | RANGE_BOUNDARY_WRITTEN_EXTENT, | 
|  | RANGE_BOUNDARY_PREALLOC_EXTENT, | 
|  | RANGE_BOUNDARY_HOLE, | 
|  | }; | 
|  |  | 
|  | static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode, | 
|  | u64 offset) | 
|  | { | 
|  | const u64 sectorsize = inode->root->fs_info->sectorsize; | 
|  | struct extent_map *em; | 
|  | int ret; | 
|  |  | 
|  | offset = round_down(offset, sectorsize); | 
|  | em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize); | 
|  | if (IS_ERR(em)) | 
|  | return PTR_ERR(em); | 
|  |  | 
|  | if (em->block_start == EXTENT_MAP_HOLE) | 
|  | ret = RANGE_BOUNDARY_HOLE; | 
|  | else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) | 
|  | ret = RANGE_BOUNDARY_PREALLOC_EXTENT; | 
|  | else | 
|  | ret = RANGE_BOUNDARY_WRITTEN_EXTENT; | 
|  |  | 
|  | free_extent_map(em); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_zero_range(struct inode *inode, | 
|  | loff_t offset, | 
|  | loff_t len, | 
|  | const int mode) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; | 
|  | struct extent_map *em; | 
|  | struct extent_changeset *data_reserved = NULL; | 
|  | int ret; | 
|  | u64 alloc_hint = 0; | 
|  | const u64 sectorsize = fs_info->sectorsize; | 
|  | u64 alloc_start = round_down(offset, sectorsize); | 
|  | u64 alloc_end = round_up(offset + len, sectorsize); | 
|  | u64 bytes_to_reserve = 0; | 
|  | bool space_reserved = false; | 
|  |  | 
|  | em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, | 
|  | alloc_end - alloc_start); | 
|  | if (IS_ERR(em)) { | 
|  | ret = PTR_ERR(em); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Avoid hole punching and extent allocation for some cases. More cases | 
|  | * could be considered, but these are unlikely common and we keep things | 
|  | * as simple as possible for now. Also, intentionally, if the target | 
|  | * range contains one or more prealloc extents together with regular | 
|  | * extents and holes, we drop all the existing extents and allocate a | 
|  | * new prealloc extent, so that we get a larger contiguous disk extent. | 
|  | */ | 
|  | if (em->start <= alloc_start && | 
|  | test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { | 
|  | const u64 em_end = em->start + em->len; | 
|  |  | 
|  | if (em_end >= offset + len) { | 
|  | /* | 
|  | * The whole range is already a prealloc extent, | 
|  | * do nothing except updating the inode's i_size if | 
|  | * needed. | 
|  | */ | 
|  | free_extent_map(em); | 
|  | ret = btrfs_fallocate_update_isize(inode, offset + len, | 
|  | mode); | 
|  | goto out; | 
|  | } | 
|  | /* | 
|  | * Part of the range is already a prealloc extent, so operate | 
|  | * only on the remaining part of the range. | 
|  | */ | 
|  | alloc_start = em_end; | 
|  | ASSERT(IS_ALIGNED(alloc_start, sectorsize)); | 
|  | len = offset + len - alloc_start; | 
|  | offset = alloc_start; | 
|  | alloc_hint = em->block_start + em->len; | 
|  | } | 
|  | free_extent_map(em); | 
|  |  | 
|  | if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == | 
|  | BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { | 
|  | em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, | 
|  | sectorsize); | 
|  | if (IS_ERR(em)) { | 
|  | ret = PTR_ERR(em); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { | 
|  | free_extent_map(em); | 
|  | ret = btrfs_fallocate_update_isize(inode, offset + len, | 
|  | mode); | 
|  | goto out; | 
|  | } | 
|  | if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { | 
|  | free_extent_map(em); | 
|  | ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, | 
|  | 0); | 
|  | if (!ret) | 
|  | ret = btrfs_fallocate_update_isize(inode, | 
|  | offset + len, | 
|  | mode); | 
|  | return ret; | 
|  | } | 
|  | free_extent_map(em); | 
|  | alloc_start = round_down(offset, sectorsize); | 
|  | alloc_end = alloc_start + sectorsize; | 
|  | goto reserve_space; | 
|  | } | 
|  |  | 
|  | alloc_start = round_up(offset, sectorsize); | 
|  | alloc_end = round_down(offset + len, sectorsize); | 
|  |  | 
|  | /* | 
|  | * For unaligned ranges, check the pages at the boundaries, they might | 
|  | * map to an extent, in which case we need to partially zero them, or | 
|  | * they might map to a hole, in which case we need our allocation range | 
|  | * to cover them. | 
|  | */ | 
|  | if (!IS_ALIGNED(offset, sectorsize)) { | 
|  | ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), | 
|  | offset); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret == RANGE_BOUNDARY_HOLE) { | 
|  | alloc_start = round_down(offset, sectorsize); | 
|  | ret = 0; | 
|  | } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { | 
|  | ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); | 
|  | if (ret) | 
|  | goto out; | 
|  | } else { | 
|  | ret = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!IS_ALIGNED(offset + len, sectorsize)) { | 
|  | ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), | 
|  | offset + len); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret == RANGE_BOUNDARY_HOLE) { | 
|  | alloc_end = round_up(offset + len, sectorsize); | 
|  | ret = 0; | 
|  | } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { | 
|  | ret = btrfs_truncate_block(BTRFS_I(inode), offset + len, | 
|  | 0, 1); | 
|  | if (ret) | 
|  | goto out; | 
|  | } else { | 
|  | ret = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | reserve_space: | 
|  | if (alloc_start < alloc_end) { | 
|  | struct extent_state *cached_state = NULL; | 
|  | const u64 lockstart = alloc_start; | 
|  | const u64 lockend = alloc_end - 1; | 
|  |  | 
|  | bytes_to_reserve = alloc_end - alloc_start; | 
|  | ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), | 
|  | bytes_to_reserve); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | space_reserved = true; | 
|  | btrfs_punch_hole_lock_range(inode, lockstart, lockend, | 
|  | &cached_state); | 
|  | ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved, | 
|  | alloc_start, bytes_to_reserve); | 
|  | if (ret) { | 
|  | unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, | 
|  | lockend, &cached_state); | 
|  | goto out; | 
|  | } | 
|  | ret = btrfs_prealloc_file_range(inode, mode, alloc_start, | 
|  | alloc_end - alloc_start, | 
|  | i_blocksize(inode), | 
|  | offset + len, &alloc_hint); | 
|  | unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, | 
|  | &cached_state); | 
|  | /* btrfs_prealloc_file_range releases reserved space on error */ | 
|  | if (ret) { | 
|  | space_reserved = false; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | ret = btrfs_fallocate_update_isize(inode, offset + len, mode); | 
|  | out: | 
|  | if (ret && space_reserved) | 
|  | btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, | 
|  | alloc_start, bytes_to_reserve); | 
|  | extent_changeset_free(data_reserved); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static long btrfs_fallocate(struct file *file, int mode, | 
|  | loff_t offset, loff_t len) | 
|  | { | 
|  | struct inode *inode = file_inode(file); | 
|  | struct extent_state *cached_state = NULL; | 
|  | struct extent_changeset *data_reserved = NULL; | 
|  | struct falloc_range *range; | 
|  | struct falloc_range *tmp; | 
|  | LIST_HEAD(reserve_list); | 
|  | u64 cur_offset; | 
|  | u64 last_byte; | 
|  | u64 alloc_start; | 
|  | u64 alloc_end; | 
|  | u64 alloc_hint = 0; | 
|  | u64 locked_end; | 
|  | u64 actual_end = 0; | 
|  | u64 data_space_needed = 0; | 
|  | u64 data_space_reserved = 0; | 
|  | u64 qgroup_reserved = 0; | 
|  | struct extent_map *em; | 
|  | int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize; | 
|  | int ret; | 
|  |  | 
|  | /* Do not allow fallocate in ZONED mode */ | 
|  | if (btrfs_is_zoned(btrfs_sb(inode->i_sb))) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | alloc_start = round_down(offset, blocksize); | 
|  | alloc_end = round_up(offset + len, blocksize); | 
|  | cur_offset = alloc_start; | 
|  |  | 
|  | /* Make sure we aren't being give some crap mode */ | 
|  | if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | | 
|  | FALLOC_FL_ZERO_RANGE)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if (mode & FALLOC_FL_PUNCH_HOLE) | 
|  | return btrfs_punch_hole(file, offset, len); | 
|  |  | 
|  | btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); | 
|  |  | 
|  | if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { | 
|  | ret = inode_newsize_ok(inode, offset + len); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = file_modified(file); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * TODO: Move these two operations after we have checked | 
|  | * accurate reserved space, or fallocate can still fail but | 
|  | * with page truncated or size expanded. | 
|  | * | 
|  | * But that's a minor problem and won't do much harm BTW. | 
|  | */ | 
|  | if (alloc_start > inode->i_size) { | 
|  | ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode), | 
|  | alloc_start); | 
|  | if (ret) | 
|  | goto out; | 
|  | } else if (offset + len > inode->i_size) { | 
|  | /* | 
|  | * If we are fallocating from the end of the file onward we | 
|  | * need to zero out the end of the block if i_size lands in the | 
|  | * middle of a block. | 
|  | */ | 
|  | ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We have locked the inode at the VFS level (in exclusive mode) and we | 
|  | * have locked the i_mmap_lock lock (in exclusive mode). Now before | 
|  | * locking the file range, flush all dealloc in the range and wait for | 
|  | * all ordered extents in the range to complete. After this we can lock | 
|  | * the file range and, due to the previous locking we did, we know there | 
|  | * can't be more delalloc or ordered extents in the range. | 
|  | */ | 
|  | ret = btrfs_wait_ordered_range(inode, alloc_start, | 
|  | alloc_end - alloc_start); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if (mode & FALLOC_FL_ZERO_RANGE) { | 
|  | ret = btrfs_zero_range(inode, offset, len, mode); | 
|  | btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | locked_end = alloc_end - 1; | 
|  | lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, | 
|  | &cached_state); | 
|  |  | 
|  | btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end); | 
|  |  | 
|  | /* First, check if we exceed the qgroup limit */ | 
|  | while (cur_offset < alloc_end) { | 
|  | em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, | 
|  | alloc_end - cur_offset); | 
|  | if (IS_ERR(em)) { | 
|  | ret = PTR_ERR(em); | 
|  | break; | 
|  | } | 
|  | last_byte = min(extent_map_end(em), alloc_end); | 
|  | actual_end = min_t(u64, extent_map_end(em), offset + len); | 
|  | last_byte = ALIGN(last_byte, blocksize); | 
|  | if (em->block_start == EXTENT_MAP_HOLE || | 
|  | (cur_offset >= inode->i_size && | 
|  | !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { | 
|  | const u64 range_len = last_byte - cur_offset; | 
|  |  | 
|  | ret = add_falloc_range(&reserve_list, cur_offset, range_len); | 
|  | if (ret < 0) { | 
|  | free_extent_map(em); | 
|  | break; | 
|  | } | 
|  | ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), | 
|  | &data_reserved, cur_offset, range_len); | 
|  | if (ret < 0) { | 
|  | free_extent_map(em); | 
|  | break; | 
|  | } | 
|  | qgroup_reserved += range_len; | 
|  | data_space_needed += range_len; | 
|  | } | 
|  | free_extent_map(em); | 
|  | cur_offset = last_byte; | 
|  | } | 
|  |  | 
|  | if (!ret && data_space_needed > 0) { | 
|  | /* | 
|  | * We are safe to reserve space here as we can't have delalloc | 
|  | * in the range, see above. | 
|  | */ | 
|  | ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), | 
|  | data_space_needed); | 
|  | if (!ret) | 
|  | data_space_reserved = data_space_needed; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If ret is still 0, means we're OK to fallocate. | 
|  | * Or just cleanup the list and exit. | 
|  | */ | 
|  | list_for_each_entry_safe(range, tmp, &reserve_list, list) { | 
|  | if (!ret) { | 
|  | ret = btrfs_prealloc_file_range(inode, mode, | 
|  | range->start, | 
|  | range->len, i_blocksize(inode), | 
|  | offset + len, &alloc_hint); | 
|  | /* | 
|  | * btrfs_prealloc_file_range() releases space even | 
|  | * if it returns an error. | 
|  | */ | 
|  | data_space_reserved -= range->len; | 
|  | qgroup_reserved -= range->len; | 
|  | } else if (data_space_reserved > 0) { | 
|  | btrfs_free_reserved_data_space(BTRFS_I(inode), | 
|  | data_reserved, range->start, | 
|  | range->len); | 
|  | data_space_reserved -= range->len; | 
|  | qgroup_reserved -= range->len; | 
|  | } else if (qgroup_reserved > 0) { | 
|  | btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved, | 
|  | range->start, range->len); | 
|  | qgroup_reserved -= range->len; | 
|  | } | 
|  | list_del(&range->list); | 
|  | kfree(range); | 
|  | } | 
|  | if (ret < 0) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* | 
|  | * We didn't need to allocate any more space, but we still extended the | 
|  | * size of the file so we need to update i_size and the inode item. | 
|  | */ | 
|  | ret = btrfs_fallocate_update_isize(inode, actual_end, mode); | 
|  | out_unlock: | 
|  | unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, | 
|  | &cached_state); | 
|  | out: | 
|  | btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); | 
|  | extent_changeset_free(data_reserved); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range | 
|  | * that has unflushed and/or flushing delalloc. There might be other adjacent | 
|  | * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps | 
|  | * looping while it gets adjacent subranges, and merging them together. | 
|  | */ | 
|  | static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end, | 
|  | struct extent_state **cached_state, | 
|  | bool *search_io_tree, | 
|  | u64 *delalloc_start_ret, u64 *delalloc_end_ret) | 
|  | { | 
|  | u64 len = end + 1 - start; | 
|  | u64 delalloc_len = 0; | 
|  | struct btrfs_ordered_extent *oe; | 
|  | u64 oe_start; | 
|  | u64 oe_end; | 
|  |  | 
|  | /* | 
|  | * Search the io tree first for EXTENT_DELALLOC. If we find any, it | 
|  | * means we have delalloc (dirty pages) for which writeback has not | 
|  | * started yet. | 
|  | */ | 
|  | if (*search_io_tree) { | 
|  | spin_lock(&inode->lock); | 
|  | if (inode->delalloc_bytes > 0) { | 
|  | spin_unlock(&inode->lock); | 
|  | *delalloc_start_ret = start; | 
|  | delalloc_len = count_range_bits(&inode->io_tree, | 
|  | delalloc_start_ret, end, | 
|  | len, EXTENT_DELALLOC, 1, | 
|  | cached_state); | 
|  | } else { | 
|  | spin_unlock(&inode->lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (delalloc_len > 0) { | 
|  | /* | 
|  | * If delalloc was found then *delalloc_start_ret has a sector size | 
|  | * aligned value (rounded down). | 
|  | */ | 
|  | *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1; | 
|  |  | 
|  | if (*delalloc_start_ret == start) { | 
|  | /* Delalloc for the whole range, nothing more to do. */ | 
|  | if (*delalloc_end_ret == end) | 
|  | return true; | 
|  | /* Else trim our search range for ordered extents. */ | 
|  | start = *delalloc_end_ret + 1; | 
|  | len = end + 1 - start; | 
|  | } | 
|  | } else { | 
|  | /* No delalloc, future calls don't need to search again. */ | 
|  | *search_io_tree = false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now also check if there's any ordered extent in the range. | 
|  | * We do this because: | 
|  | * | 
|  | * 1) When delalloc is flushed, the file range is locked, we clear the | 
|  | *    EXTENT_DELALLOC bit from the io tree and create an extent map and | 
|  | *    an ordered extent for the write. So we might just have been called | 
|  | *    after delalloc is flushed and before the ordered extent completes | 
|  | *    and inserts the new file extent item in the subvolume's btree; | 
|  | * | 
|  | * 2) We may have an ordered extent created by flushing delalloc for a | 
|  | *    subrange that starts before the subrange we found marked with | 
|  | *    EXTENT_DELALLOC in the io tree. | 
|  | * | 
|  | * We could also use the extent map tree to find such delalloc that is | 
|  | * being flushed, but using the ordered extents tree is more efficient | 
|  | * because it's usually much smaller as ordered extents are removed from | 
|  | * the tree once they complete. With the extent maps, we mau have them | 
|  | * in the extent map tree for a very long time, and they were either | 
|  | * created by previous writes or loaded by read operations. | 
|  | */ | 
|  | oe = btrfs_lookup_first_ordered_range(inode, start, len); | 
|  | if (!oe) | 
|  | return (delalloc_len > 0); | 
|  |  | 
|  | /* The ordered extent may span beyond our search range. */ | 
|  | oe_start = max(oe->file_offset, start); | 
|  | oe_end = min(oe->file_offset + oe->num_bytes - 1, end); | 
|  |  | 
|  | btrfs_put_ordered_extent(oe); | 
|  |  | 
|  | /* Don't have unflushed delalloc, return the ordered extent range. */ | 
|  | if (delalloc_len == 0) { | 
|  | *delalloc_start_ret = oe_start; | 
|  | *delalloc_end_ret = oe_end; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We have both unflushed delalloc (io_tree) and an ordered extent. | 
|  | * If the ranges are adjacent returned a combined range, otherwise | 
|  | * return the leftmost range. | 
|  | */ | 
|  | if (oe_start < *delalloc_start_ret) { | 
|  | if (oe_end < *delalloc_start_ret) | 
|  | *delalloc_end_ret = oe_end; | 
|  | *delalloc_start_ret = oe_start; | 
|  | } else if (*delalloc_end_ret + 1 == oe_start) { | 
|  | *delalloc_end_ret = oe_end; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if there's delalloc in a given range. | 
|  | * | 
|  | * @inode:               The inode. | 
|  | * @start:               The start offset of the range. It does not need to be | 
|  | *                       sector size aligned. | 
|  | * @end:                 The end offset (inclusive value) of the search range. | 
|  | *                       It does not need to be sector size aligned. | 
|  | * @cached_state:        Extent state record used for speeding up delalloc | 
|  | *                       searches in the inode's io_tree. Can be NULL. | 
|  | * @delalloc_start_ret:  Output argument, set to the start offset of the | 
|  | *                       subrange found with delalloc (may not be sector size | 
|  | *                       aligned). | 
|  | * @delalloc_end_ret:    Output argument, set to he end offset (inclusive value) | 
|  | *                       of the subrange found with delalloc. | 
|  | * | 
|  | * Returns true if a subrange with delalloc is found within the given range, and | 
|  | * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and | 
|  | * end offsets of the subrange. | 
|  | */ | 
|  | bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end, | 
|  | struct extent_state **cached_state, | 
|  | u64 *delalloc_start_ret, u64 *delalloc_end_ret) | 
|  | { | 
|  | u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize); | 
|  | u64 prev_delalloc_end = 0; | 
|  | bool search_io_tree = true; | 
|  | bool ret = false; | 
|  |  | 
|  | while (cur_offset <= end) { | 
|  | u64 delalloc_start; | 
|  | u64 delalloc_end; | 
|  | bool delalloc; | 
|  |  | 
|  | delalloc = find_delalloc_subrange(inode, cur_offset, end, | 
|  | cached_state, &search_io_tree, | 
|  | &delalloc_start, | 
|  | &delalloc_end); | 
|  | if (!delalloc) | 
|  | break; | 
|  |  | 
|  | if (prev_delalloc_end == 0) { | 
|  | /* First subrange found. */ | 
|  | *delalloc_start_ret = max(delalloc_start, start); | 
|  | *delalloc_end_ret = delalloc_end; | 
|  | ret = true; | 
|  | } else if (delalloc_start == prev_delalloc_end + 1) { | 
|  | /* Subrange adjacent to the previous one, merge them. */ | 
|  | *delalloc_end_ret = delalloc_end; | 
|  | } else { | 
|  | /* Subrange not adjacent to the previous one, exit. */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | prev_delalloc_end = delalloc_end; | 
|  | cur_offset = delalloc_end + 1; | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if there's a hole or delalloc range in a range representing a hole (or | 
|  | * prealloc extent) found in the inode's subvolume btree. | 
|  | * | 
|  | * @inode:      The inode. | 
|  | * @whence:     Seek mode (SEEK_DATA or SEEK_HOLE). | 
|  | * @start:      Start offset of the hole region. It does not need to be sector | 
|  | *              size aligned. | 
|  | * @end:        End offset (inclusive value) of the hole region. It does not | 
|  | *              need to be sector size aligned. | 
|  | * @start_ret:  Return parameter, used to set the start of the subrange in the | 
|  | *              hole that matches the search criteria (seek mode), if such | 
|  | *              subrange is found (return value of the function is true). | 
|  | *              The value returned here may not be sector size aligned. | 
|  | * | 
|  | * Returns true if a subrange matching the given seek mode is found, and if one | 
|  | * is found, it updates @start_ret with the start of the subrange. | 
|  | */ | 
|  | static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence, | 
|  | struct extent_state **cached_state, | 
|  | u64 start, u64 end, u64 *start_ret) | 
|  | { | 
|  | u64 delalloc_start; | 
|  | u64 delalloc_end; | 
|  | bool delalloc; | 
|  |  | 
|  | delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state, | 
|  | &delalloc_start, &delalloc_end); | 
|  | if (delalloc && whence == SEEK_DATA) { | 
|  | *start_ret = delalloc_start; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (delalloc && whence == SEEK_HOLE) { | 
|  | /* | 
|  | * We found delalloc but it starts after out start offset. So we | 
|  | * have a hole between our start offset and the delalloc start. | 
|  | */ | 
|  | if (start < delalloc_start) { | 
|  | *start_ret = start; | 
|  | return true; | 
|  | } | 
|  | /* | 
|  | * Delalloc range starts at our start offset. | 
|  | * If the delalloc range's length is smaller than our range, | 
|  | * then it means we have a hole that starts where the delalloc | 
|  | * subrange ends. | 
|  | */ | 
|  | if (delalloc_end < end) { | 
|  | *start_ret = delalloc_end + 1; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* There's delalloc for the whole range. */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!delalloc && whence == SEEK_HOLE) { | 
|  | *start_ret = start; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * No delalloc in the range and we are seeking for data. The caller has | 
|  | * to iterate to the next extent item in the subvolume btree. | 
|  | */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static loff_t find_desired_extent(struct file *file, loff_t offset, int whence) | 
|  | { | 
|  | struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host); | 
|  | struct btrfs_file_private *private = file->private_data; | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | struct extent_state *cached_state = NULL; | 
|  | struct extent_state **delalloc_cached_state; | 
|  | const loff_t i_size = i_size_read(&inode->vfs_inode); | 
|  | const u64 ino = btrfs_ino(inode); | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_key key; | 
|  | u64 last_extent_end; | 
|  | u64 lockstart; | 
|  | u64 lockend; | 
|  | u64 start; | 
|  | int ret; | 
|  | bool found = false; | 
|  |  | 
|  | if (i_size == 0 || offset >= i_size) | 
|  | return -ENXIO; | 
|  |  | 
|  | /* | 
|  | * Quick path. If the inode has no prealloc extents and its number of | 
|  | * bytes used matches its i_size, then it can not have holes. | 
|  | */ | 
|  | if (whence == SEEK_HOLE && | 
|  | !(inode->flags & BTRFS_INODE_PREALLOC) && | 
|  | inode_get_bytes(&inode->vfs_inode) == i_size) | 
|  | return i_size; | 
|  |  | 
|  | if (!private) { | 
|  | private = kzalloc(sizeof(*private), GFP_KERNEL); | 
|  | /* | 
|  | * No worries if memory allocation failed. | 
|  | * The private structure is used only for speeding up multiple | 
|  | * lseek SEEK_HOLE/DATA calls to a file when there's delalloc, | 
|  | * so everything will still be correct. | 
|  | */ | 
|  | file->private_data = private; | 
|  | } | 
|  |  | 
|  | if (private) | 
|  | delalloc_cached_state = &private->llseek_cached_state; | 
|  | else | 
|  | delalloc_cached_state = NULL; | 
|  |  | 
|  | /* | 
|  | * offset can be negative, in this case we start finding DATA/HOLE from | 
|  | * the very start of the file. | 
|  | */ | 
|  | start = max_t(loff_t, 0, offset); | 
|  |  | 
|  | lockstart = round_down(start, fs_info->sectorsize); | 
|  | lockend = round_up(i_size, fs_info->sectorsize); | 
|  | if (lockend <= lockstart) | 
|  | lockend = lockstart + fs_info->sectorsize; | 
|  | lockend--; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  | path->reada = READA_FORWARD; | 
|  |  | 
|  | key.objectid = ino; | 
|  | key.type = BTRFS_EXTENT_DATA_KEY; | 
|  | key.offset = start; | 
|  |  | 
|  | last_extent_end = lockstart; | 
|  |  | 
|  | lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) { | 
|  | goto out; | 
|  | } else if (ret > 0 && path->slots[0] > 0) { | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); | 
|  | if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) | 
|  | path->slots[0]--; | 
|  | } | 
|  |  | 
|  | while (start < i_size) { | 
|  | struct extent_buffer *leaf = path->nodes[0]; | 
|  | struct btrfs_file_extent_item *extent; | 
|  | u64 extent_end; | 
|  | u8 type; | 
|  |  | 
|  | if (path->slots[0] >= btrfs_header_nritems(leaf)) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | else if (ret > 0) | 
|  | break; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) | 
|  | break; | 
|  |  | 
|  | extent_end = btrfs_file_extent_end(path); | 
|  |  | 
|  | /* | 
|  | * In the first iteration we may have a slot that points to an | 
|  | * extent that ends before our start offset, so skip it. | 
|  | */ | 
|  | if (extent_end <= start) { | 
|  | path->slots[0]++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* We have an implicit hole, NO_HOLES feature is likely set. */ | 
|  | if (last_extent_end < key.offset) { | 
|  | u64 search_start = last_extent_end; | 
|  | u64 found_start; | 
|  |  | 
|  | /* | 
|  | * First iteration, @start matches @offset and it's | 
|  | * within the hole. | 
|  | */ | 
|  | if (start == offset) | 
|  | search_start = offset; | 
|  |  | 
|  | found = find_desired_extent_in_hole(inode, whence, | 
|  | delalloc_cached_state, | 
|  | search_start, | 
|  | key.offset - 1, | 
|  | &found_start); | 
|  | if (found) { | 
|  | start = found_start; | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * Didn't find data or a hole (due to delalloc) in the | 
|  | * implicit hole range, so need to analyze the extent. | 
|  | */ | 
|  | } | 
|  |  | 
|  | extent = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  | type = btrfs_file_extent_type(leaf, extent); | 
|  |  | 
|  | /* | 
|  | * Can't access the extent's disk_bytenr field if this is an | 
|  | * inline extent, since at that offset, it's where the extent | 
|  | * data starts. | 
|  | */ | 
|  | if (type == BTRFS_FILE_EXTENT_PREALLOC || | 
|  | (type == BTRFS_FILE_EXTENT_REG && | 
|  | btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) { | 
|  | /* | 
|  | * Explicit hole or prealloc extent, search for delalloc. | 
|  | * A prealloc extent is treated like a hole. | 
|  | */ | 
|  | u64 search_start = key.offset; | 
|  | u64 found_start; | 
|  |  | 
|  | /* | 
|  | * First iteration, @start matches @offset and it's | 
|  | * within the hole. | 
|  | */ | 
|  | if (start == offset) | 
|  | search_start = offset; | 
|  |  | 
|  | found = find_desired_extent_in_hole(inode, whence, | 
|  | delalloc_cached_state, | 
|  | search_start, | 
|  | extent_end - 1, | 
|  | &found_start); | 
|  | if (found) { | 
|  | start = found_start; | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * Didn't find data or a hole (due to delalloc) in the | 
|  | * implicit hole range, so need to analyze the next | 
|  | * extent item. | 
|  | */ | 
|  | } else { | 
|  | /* | 
|  | * Found a regular or inline extent. | 
|  | * If we are seeking for data, adjust the start offset | 
|  | * and stop, we're done. | 
|  | */ | 
|  | if (whence == SEEK_DATA) { | 
|  | start = max_t(u64, key.offset, offset); | 
|  | found = true; | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * Else, we are seeking for a hole, check the next file | 
|  | * extent item. | 
|  | */ | 
|  | } | 
|  |  | 
|  | start = extent_end; | 
|  | last_extent_end = extent_end; | 
|  | path->slots[0]++; | 
|  | if (fatal_signal_pending(current)) { | 
|  | ret = -EINTR; | 
|  | goto out; | 
|  | } | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | /* We have an implicit hole from the last extent found up to i_size. */ | 
|  | if (!found && start < i_size) { | 
|  | found = find_desired_extent_in_hole(inode, whence, | 
|  | delalloc_cached_state, start, | 
|  | i_size - 1, &start); | 
|  | if (!found) | 
|  | start = i_size; | 
|  | } | 
|  |  | 
|  | out: | 
|  | unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); | 
|  | btrfs_free_path(path); | 
|  |  | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (whence == SEEK_DATA && start >= i_size) | 
|  | return -ENXIO; | 
|  |  | 
|  | return min_t(loff_t, start, i_size); | 
|  | } | 
|  |  | 
|  | static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) | 
|  | { | 
|  | struct inode *inode = file->f_mapping->host; | 
|  |  | 
|  | switch (whence) { | 
|  | default: | 
|  | return generic_file_llseek(file, offset, whence); | 
|  | case SEEK_DATA: | 
|  | case SEEK_HOLE: | 
|  | btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); | 
|  | offset = find_desired_extent(file, offset, whence); | 
|  | btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (offset < 0) | 
|  | return offset; | 
|  |  | 
|  | return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); | 
|  | } | 
|  |  | 
|  | static int btrfs_file_open(struct inode *inode, struct file *filp) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC | | 
|  | FMODE_CAN_ODIRECT; | 
|  |  | 
|  | ret = fsverity_file_open(inode, filp); | 
|  | if (ret) | 
|  | return ret; | 
|  | return generic_file_open(inode, filp); | 
|  | } | 
|  |  | 
|  | static int check_direct_read(struct btrfs_fs_info *fs_info, | 
|  | const struct iov_iter *iter, loff_t offset) | 
|  | { | 
|  | int ret; | 
|  | int i, seg; | 
|  |  | 
|  | ret = check_direct_IO(fs_info, iter, offset); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (!iter_is_iovec(iter)) | 
|  | return 0; | 
|  |  | 
|  | for (seg = 0; seg < iter->nr_segs; seg++) { | 
|  | for (i = seg + 1; i < iter->nr_segs; i++) { | 
|  | const struct iovec *iov1 = iter_iov(iter) + seg; | 
|  | const struct iovec *iov2 = iter_iov(iter) + i; | 
|  |  | 
|  | if (iov1->iov_base == iov2->iov_base) | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to) | 
|  | { | 
|  | struct inode *inode = file_inode(iocb->ki_filp); | 
|  | size_t prev_left = 0; | 
|  | ssize_t read = 0; | 
|  | ssize_t ret; | 
|  |  | 
|  | if (fsverity_active(inode)) | 
|  | return 0; | 
|  |  | 
|  | if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos)) | 
|  | return 0; | 
|  |  | 
|  | btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); | 
|  | again: | 
|  | /* | 
|  | * This is similar to what we do for direct IO writes, see the comment | 
|  | * at btrfs_direct_write(), but we also disable page faults in addition | 
|  | * to disabling them only at the iov_iter level. This is because when | 
|  | * reading from a hole or prealloc extent, iomap calls iov_iter_zero(), | 
|  | * which can still trigger page fault ins despite having set ->nofault | 
|  | * to true of our 'to' iov_iter. | 
|  | * | 
|  | * The difference to direct IO writes is that we deadlock when trying | 
|  | * to lock the extent range in the inode's tree during he page reads | 
|  | * triggered by the fault in (while for writes it is due to waiting for | 
|  | * our own ordered extent). This is because for direct IO reads, | 
|  | * btrfs_dio_iomap_begin() returns with the extent range locked, which | 
|  | * is only unlocked in the endio callback (end_bio_extent_readpage()). | 
|  | */ | 
|  | pagefault_disable(); | 
|  | to->nofault = true; | 
|  | ret = btrfs_dio_read(iocb, to, read); | 
|  | to->nofault = false; | 
|  | pagefault_enable(); | 
|  |  | 
|  | /* No increment (+=) because iomap returns a cumulative value. */ | 
|  | if (ret > 0) | 
|  | read = ret; | 
|  |  | 
|  | if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) { | 
|  | const size_t left = iov_iter_count(to); | 
|  |  | 
|  | if (left == prev_left) { | 
|  | /* | 
|  | * We didn't make any progress since the last attempt, | 
|  | * fallback to a buffered read for the remainder of the | 
|  | * range. This is just to avoid any possibility of looping | 
|  | * for too long. | 
|  | */ | 
|  | ret = read; | 
|  | } else { | 
|  | /* | 
|  | * We made some progress since the last retry or this is | 
|  | * the first time we are retrying. Fault in as many pages | 
|  | * as possible and retry. | 
|  | */ | 
|  | fault_in_iov_iter_writeable(to, left); | 
|  | prev_left = left; | 
|  | goto again; | 
|  | } | 
|  | } | 
|  | btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); | 
|  | return ret < 0 ? ret : read; | 
|  | } | 
|  |  | 
|  | static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) | 
|  | { | 
|  | ssize_t ret = 0; | 
|  |  | 
|  | if (iocb->ki_flags & IOCB_DIRECT) { | 
|  | ret = btrfs_direct_read(iocb, to); | 
|  | if (ret < 0 || !iov_iter_count(to) || | 
|  | iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp))) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return filemap_read(iocb, to, ret); | 
|  | } | 
|  |  | 
|  | const struct file_operations btrfs_file_operations = { | 
|  | .llseek		= btrfs_file_llseek, | 
|  | .read_iter      = btrfs_file_read_iter, | 
|  | .splice_read	= filemap_splice_read, | 
|  | .write_iter	= btrfs_file_write_iter, | 
|  | .splice_write	= iter_file_splice_write, | 
|  | .mmap		= btrfs_file_mmap, | 
|  | .open		= btrfs_file_open, | 
|  | .release	= btrfs_release_file, | 
|  | .get_unmapped_area = thp_get_unmapped_area, | 
|  | .fsync		= btrfs_sync_file, | 
|  | .fallocate	= btrfs_fallocate, | 
|  | .unlocked_ioctl	= btrfs_ioctl, | 
|  | #ifdef CONFIG_COMPAT | 
|  | .compat_ioctl	= btrfs_compat_ioctl, | 
|  | #endif | 
|  | .remap_file_range = btrfs_remap_file_range, | 
|  | }; | 
|  |  | 
|  | int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * So with compression we will find and lock a dirty page and clear the | 
|  | * first one as dirty, setup an async extent, and immediately return | 
|  | * with the entire range locked but with nobody actually marked with | 
|  | * writeback.  So we can't just filemap_write_and_wait_range() and | 
|  | * expect it to work since it will just kick off a thread to do the | 
|  | * actual work.  So we need to call filemap_fdatawrite_range _again_ | 
|  | * since it will wait on the page lock, which won't be unlocked until | 
|  | * after the pages have been marked as writeback and so we're good to go | 
|  | * from there.  We have to do this otherwise we'll miss the ordered | 
|  | * extents and that results in badness.  Please Josef, do not think you | 
|  | * know better and pull this out at some point in the future, it is | 
|  | * right and you are wrong. | 
|  | */ | 
|  | ret = filemap_fdatawrite_range(inode->i_mapping, start, end); | 
|  | if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, | 
|  | &BTRFS_I(inode)->runtime_flags)) | 
|  | ret = filemap_fdatawrite_range(inode->i_mapping, start, end); | 
|  |  | 
|  | return ret; | 
|  | } |