|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Functions related to setting various queue properties from drivers | 
|  | */ | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/bio.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/backing-dev-defs.h> | 
|  | #include <linux/gcd.h> | 
|  | #include <linux/lcm.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/dma-mapping.h> | 
|  |  | 
|  | #include "blk.h" | 
|  | #include "blk-wbt.h" | 
|  |  | 
|  | void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout) | 
|  | { | 
|  | q->rq_timeout = timeout; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(blk_queue_rq_timeout); | 
|  |  | 
|  | /** | 
|  | * blk_set_default_limits - reset limits to default values | 
|  | * @lim:  the queue_limits structure to reset | 
|  | * | 
|  | * Description: | 
|  | *   Returns a queue_limit struct to its default state. | 
|  | */ | 
|  | void blk_set_default_limits(struct queue_limits *lim) | 
|  | { | 
|  | lim->max_segments = BLK_MAX_SEGMENTS; | 
|  | lim->max_discard_segments = 1; | 
|  | lim->max_integrity_segments = 0; | 
|  | lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; | 
|  | lim->virt_boundary_mask = 0; | 
|  | lim->max_segment_size = BLK_MAX_SEGMENT_SIZE; | 
|  | lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS; | 
|  | lim->max_dev_sectors = 0; | 
|  | lim->chunk_sectors = 0; | 
|  | lim->max_write_zeroes_sectors = 0; | 
|  | lim->max_zone_append_sectors = 0; | 
|  | lim->max_discard_sectors = 0; | 
|  | lim->max_hw_discard_sectors = 0; | 
|  | lim->max_secure_erase_sectors = 0; | 
|  | lim->discard_granularity = 0; | 
|  | lim->discard_alignment = 0; | 
|  | lim->discard_misaligned = 0; | 
|  | lim->logical_block_size = lim->physical_block_size = lim->io_min = 512; | 
|  | lim->bounce = BLK_BOUNCE_NONE; | 
|  | lim->alignment_offset = 0; | 
|  | lim->io_opt = 0; | 
|  | lim->misaligned = 0; | 
|  | lim->zoned = BLK_ZONED_NONE; | 
|  | lim->zone_write_granularity = 0; | 
|  | } | 
|  | EXPORT_SYMBOL(blk_set_default_limits); | 
|  |  | 
|  | /** | 
|  | * blk_set_stacking_limits - set default limits for stacking devices | 
|  | * @lim:  the queue_limits structure to reset | 
|  | * | 
|  | * Description: | 
|  | *   Returns a queue_limit struct to its default state. Should be used | 
|  | *   by stacking drivers like DM that have no internal limits. | 
|  | */ | 
|  | void blk_set_stacking_limits(struct queue_limits *lim) | 
|  | { | 
|  | blk_set_default_limits(lim); | 
|  |  | 
|  | /* Inherit limits from component devices */ | 
|  | lim->max_segments = USHRT_MAX; | 
|  | lim->max_discard_segments = USHRT_MAX; | 
|  | lim->max_hw_sectors = UINT_MAX; | 
|  | lim->max_segment_size = UINT_MAX; | 
|  | lim->max_sectors = UINT_MAX; | 
|  | lim->max_dev_sectors = UINT_MAX; | 
|  | lim->max_write_zeroes_sectors = UINT_MAX; | 
|  | lim->max_zone_append_sectors = UINT_MAX; | 
|  | } | 
|  | EXPORT_SYMBOL(blk_set_stacking_limits); | 
|  |  | 
|  | /** | 
|  | * blk_queue_bounce_limit - set bounce buffer limit for queue | 
|  | * @q: the request queue for the device | 
|  | * @bounce: bounce limit to enforce | 
|  | * | 
|  | * Description: | 
|  | *    Force bouncing for ISA DMA ranges or highmem. | 
|  | * | 
|  | *    DEPRECATED, don't use in new code. | 
|  | **/ | 
|  | void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce bounce) | 
|  | { | 
|  | q->limits.bounce = bounce; | 
|  | } | 
|  | EXPORT_SYMBOL(blk_queue_bounce_limit); | 
|  |  | 
|  | /** | 
|  | * blk_queue_max_hw_sectors - set max sectors for a request for this queue | 
|  | * @q:  the request queue for the device | 
|  | * @max_hw_sectors:  max hardware sectors in the usual 512b unit | 
|  | * | 
|  | * Description: | 
|  | *    Enables a low level driver to set a hard upper limit, | 
|  | *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by | 
|  | *    the device driver based upon the capabilities of the I/O | 
|  | *    controller. | 
|  | * | 
|  | *    max_dev_sectors is a hard limit imposed by the storage device for | 
|  | *    READ/WRITE requests. It is set by the disk driver. | 
|  | * | 
|  | *    max_sectors is a soft limit imposed by the block layer for | 
|  | *    filesystem type requests.  This value can be overridden on a | 
|  | *    per-device basis in /sys/block/<device>/queue/max_sectors_kb. | 
|  | *    The soft limit can not exceed max_hw_sectors. | 
|  | **/ | 
|  | void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors) | 
|  | { | 
|  | struct queue_limits *limits = &q->limits; | 
|  | unsigned int max_sectors; | 
|  |  | 
|  | if ((max_hw_sectors << 9) < PAGE_SIZE) { | 
|  | max_hw_sectors = 1 << (PAGE_SHIFT - 9); | 
|  | printk(KERN_INFO "%s: set to minimum %d\n", | 
|  | __func__, max_hw_sectors); | 
|  | } | 
|  |  | 
|  | max_hw_sectors = round_down(max_hw_sectors, | 
|  | limits->logical_block_size >> SECTOR_SHIFT); | 
|  | limits->max_hw_sectors = max_hw_sectors; | 
|  |  | 
|  | max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors); | 
|  | max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS); | 
|  | max_sectors = round_down(max_sectors, | 
|  | limits->logical_block_size >> SECTOR_SHIFT); | 
|  | limits->max_sectors = max_sectors; | 
|  |  | 
|  | if (!q->disk) | 
|  | return; | 
|  | q->disk->bdi->io_pages = max_sectors >> (PAGE_SHIFT - 9); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_queue_max_hw_sectors); | 
|  |  | 
|  | /** | 
|  | * blk_queue_chunk_sectors - set size of the chunk for this queue | 
|  | * @q:  the request queue for the device | 
|  | * @chunk_sectors:  chunk sectors in the usual 512b unit | 
|  | * | 
|  | * Description: | 
|  | *    If a driver doesn't want IOs to cross a given chunk size, it can set | 
|  | *    this limit and prevent merging across chunks. Note that the block layer | 
|  | *    must accept a page worth of data at any offset. So if the crossing of | 
|  | *    chunks is a hard limitation in the driver, it must still be prepared | 
|  | *    to split single page bios. | 
|  | **/ | 
|  | void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors) | 
|  | { | 
|  | q->limits.chunk_sectors = chunk_sectors; | 
|  | } | 
|  | EXPORT_SYMBOL(blk_queue_chunk_sectors); | 
|  |  | 
|  | /** | 
|  | * blk_queue_max_discard_sectors - set max sectors for a single discard | 
|  | * @q:  the request queue for the device | 
|  | * @max_discard_sectors: maximum number of sectors to discard | 
|  | **/ | 
|  | void blk_queue_max_discard_sectors(struct request_queue *q, | 
|  | unsigned int max_discard_sectors) | 
|  | { | 
|  | q->limits.max_hw_discard_sectors = max_discard_sectors; | 
|  | q->limits.max_discard_sectors = max_discard_sectors; | 
|  | } | 
|  | EXPORT_SYMBOL(blk_queue_max_discard_sectors); | 
|  |  | 
|  | /** | 
|  | * blk_queue_max_secure_erase_sectors - set max sectors for a secure erase | 
|  | * @q:  the request queue for the device | 
|  | * @max_sectors: maximum number of sectors to secure_erase | 
|  | **/ | 
|  | void blk_queue_max_secure_erase_sectors(struct request_queue *q, | 
|  | unsigned int max_sectors) | 
|  | { | 
|  | q->limits.max_secure_erase_sectors = max_sectors; | 
|  | } | 
|  | EXPORT_SYMBOL(blk_queue_max_secure_erase_sectors); | 
|  |  | 
|  | /** | 
|  | * blk_queue_max_write_zeroes_sectors - set max sectors for a single | 
|  | *                                      write zeroes | 
|  | * @q:  the request queue for the device | 
|  | * @max_write_zeroes_sectors: maximum number of sectors to write per command | 
|  | **/ | 
|  | void blk_queue_max_write_zeroes_sectors(struct request_queue *q, | 
|  | unsigned int max_write_zeroes_sectors) | 
|  | { | 
|  | q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors; | 
|  | } | 
|  | EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors); | 
|  |  | 
|  | /** | 
|  | * blk_queue_max_zone_append_sectors - set max sectors for a single zone append | 
|  | * @q:  the request queue for the device | 
|  | * @max_zone_append_sectors: maximum number of sectors to write per command | 
|  | **/ | 
|  | void blk_queue_max_zone_append_sectors(struct request_queue *q, | 
|  | unsigned int max_zone_append_sectors) | 
|  | { | 
|  | unsigned int max_sectors; | 
|  |  | 
|  | if (WARN_ON(!blk_queue_is_zoned(q))) | 
|  | return; | 
|  |  | 
|  | max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors); | 
|  | max_sectors = min(q->limits.chunk_sectors, max_sectors); | 
|  |  | 
|  | /* | 
|  | * Signal eventual driver bugs resulting in the max_zone_append sectors limit | 
|  | * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set, | 
|  | * or the max_hw_sectors limit not set. | 
|  | */ | 
|  | WARN_ON(!max_sectors); | 
|  |  | 
|  | q->limits.max_zone_append_sectors = max_sectors; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors); | 
|  |  | 
|  | /** | 
|  | * blk_queue_max_segments - set max hw segments for a request for this queue | 
|  | * @q:  the request queue for the device | 
|  | * @max_segments:  max number of segments | 
|  | * | 
|  | * Description: | 
|  | *    Enables a low level driver to set an upper limit on the number of | 
|  | *    hw data segments in a request. | 
|  | **/ | 
|  | void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments) | 
|  | { | 
|  | if (!max_segments) { | 
|  | max_segments = 1; | 
|  | printk(KERN_INFO "%s: set to minimum %d\n", | 
|  | __func__, max_segments); | 
|  | } | 
|  |  | 
|  | q->limits.max_segments = max_segments; | 
|  | } | 
|  | EXPORT_SYMBOL(blk_queue_max_segments); | 
|  |  | 
|  | /** | 
|  | * blk_queue_max_discard_segments - set max segments for discard requests | 
|  | * @q:  the request queue for the device | 
|  | * @max_segments:  max number of segments | 
|  | * | 
|  | * Description: | 
|  | *    Enables a low level driver to set an upper limit on the number of | 
|  | *    segments in a discard request. | 
|  | **/ | 
|  | void blk_queue_max_discard_segments(struct request_queue *q, | 
|  | unsigned short max_segments) | 
|  | { | 
|  | q->limits.max_discard_segments = max_segments; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments); | 
|  |  | 
|  | /** | 
|  | * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg | 
|  | * @q:  the request queue for the device | 
|  | * @max_size:  max size of segment in bytes | 
|  | * | 
|  | * Description: | 
|  | *    Enables a low level driver to set an upper limit on the size of a | 
|  | *    coalesced segment | 
|  | **/ | 
|  | void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size) | 
|  | { | 
|  | if (max_size < PAGE_SIZE) { | 
|  | max_size = PAGE_SIZE; | 
|  | printk(KERN_INFO "%s: set to minimum %d\n", | 
|  | __func__, max_size); | 
|  | } | 
|  |  | 
|  | /* see blk_queue_virt_boundary() for the explanation */ | 
|  | WARN_ON_ONCE(q->limits.virt_boundary_mask); | 
|  |  | 
|  | q->limits.max_segment_size = max_size; | 
|  | } | 
|  | EXPORT_SYMBOL(blk_queue_max_segment_size); | 
|  |  | 
|  | /** | 
|  | * blk_queue_logical_block_size - set logical block size for the queue | 
|  | * @q:  the request queue for the device | 
|  | * @size:  the logical block size, in bytes | 
|  | * | 
|  | * Description: | 
|  | *   This should be set to the lowest possible block size that the | 
|  | *   storage device can address.  The default of 512 covers most | 
|  | *   hardware. | 
|  | **/ | 
|  | void blk_queue_logical_block_size(struct request_queue *q, unsigned int size) | 
|  | { | 
|  | struct queue_limits *limits = &q->limits; | 
|  |  | 
|  | limits->logical_block_size = size; | 
|  |  | 
|  | if (limits->physical_block_size < size) | 
|  | limits->physical_block_size = size; | 
|  |  | 
|  | if (limits->io_min < limits->physical_block_size) | 
|  | limits->io_min = limits->physical_block_size; | 
|  |  | 
|  | limits->max_hw_sectors = | 
|  | round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT); | 
|  | limits->max_sectors = | 
|  | round_down(limits->max_sectors, size >> SECTOR_SHIFT); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_queue_logical_block_size); | 
|  |  | 
|  | /** | 
|  | * blk_queue_physical_block_size - set physical block size for the queue | 
|  | * @q:  the request queue for the device | 
|  | * @size:  the physical block size, in bytes | 
|  | * | 
|  | * Description: | 
|  | *   This should be set to the lowest possible sector size that the | 
|  | *   hardware can operate on without reverting to read-modify-write | 
|  | *   operations. | 
|  | */ | 
|  | void blk_queue_physical_block_size(struct request_queue *q, unsigned int size) | 
|  | { | 
|  | q->limits.physical_block_size = size; | 
|  |  | 
|  | if (q->limits.physical_block_size < q->limits.logical_block_size) | 
|  | q->limits.physical_block_size = q->limits.logical_block_size; | 
|  |  | 
|  | if (q->limits.io_min < q->limits.physical_block_size) | 
|  | q->limits.io_min = q->limits.physical_block_size; | 
|  | } | 
|  | EXPORT_SYMBOL(blk_queue_physical_block_size); | 
|  |  | 
|  | /** | 
|  | * blk_queue_zone_write_granularity - set zone write granularity for the queue | 
|  | * @q:  the request queue for the zoned device | 
|  | * @size:  the zone write granularity size, in bytes | 
|  | * | 
|  | * Description: | 
|  | *   This should be set to the lowest possible size allowing to write in | 
|  | *   sequential zones of a zoned block device. | 
|  | */ | 
|  | void blk_queue_zone_write_granularity(struct request_queue *q, | 
|  | unsigned int size) | 
|  | { | 
|  | if (WARN_ON_ONCE(!blk_queue_is_zoned(q))) | 
|  | return; | 
|  |  | 
|  | q->limits.zone_write_granularity = size; | 
|  |  | 
|  | if (q->limits.zone_write_granularity < q->limits.logical_block_size) | 
|  | q->limits.zone_write_granularity = q->limits.logical_block_size; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity); | 
|  |  | 
|  | /** | 
|  | * blk_queue_alignment_offset - set physical block alignment offset | 
|  | * @q:	the request queue for the device | 
|  | * @offset: alignment offset in bytes | 
|  | * | 
|  | * Description: | 
|  | *   Some devices are naturally misaligned to compensate for things like | 
|  | *   the legacy DOS partition table 63-sector offset.  Low-level drivers | 
|  | *   should call this function for devices whose first sector is not | 
|  | *   naturally aligned. | 
|  | */ | 
|  | void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset) | 
|  | { | 
|  | q->limits.alignment_offset = | 
|  | offset & (q->limits.physical_block_size - 1); | 
|  | q->limits.misaligned = 0; | 
|  | } | 
|  | EXPORT_SYMBOL(blk_queue_alignment_offset); | 
|  |  | 
|  | void disk_update_readahead(struct gendisk *disk) | 
|  | { | 
|  | struct request_queue *q = disk->queue; | 
|  |  | 
|  | /* | 
|  | * For read-ahead of large files to be effective, we need to read ahead | 
|  | * at least twice the optimal I/O size. | 
|  | */ | 
|  | disk->bdi->ra_pages = | 
|  | max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES); | 
|  | disk->bdi->io_pages = queue_max_sectors(q) >> (PAGE_SHIFT - 9); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(disk_update_readahead); | 
|  |  | 
|  | /** | 
|  | * blk_limits_io_min - set minimum request size for a device | 
|  | * @limits: the queue limits | 
|  | * @min:  smallest I/O size in bytes | 
|  | * | 
|  | * Description: | 
|  | *   Some devices have an internal block size bigger than the reported | 
|  | *   hardware sector size.  This function can be used to signal the | 
|  | *   smallest I/O the device can perform without incurring a performance | 
|  | *   penalty. | 
|  | */ | 
|  | void blk_limits_io_min(struct queue_limits *limits, unsigned int min) | 
|  | { | 
|  | limits->io_min = min; | 
|  |  | 
|  | if (limits->io_min < limits->logical_block_size) | 
|  | limits->io_min = limits->logical_block_size; | 
|  |  | 
|  | if (limits->io_min < limits->physical_block_size) | 
|  | limits->io_min = limits->physical_block_size; | 
|  | } | 
|  | EXPORT_SYMBOL(blk_limits_io_min); | 
|  |  | 
|  | /** | 
|  | * blk_queue_io_min - set minimum request size for the queue | 
|  | * @q:	the request queue for the device | 
|  | * @min:  smallest I/O size in bytes | 
|  | * | 
|  | * Description: | 
|  | *   Storage devices may report a granularity or preferred minimum I/O | 
|  | *   size which is the smallest request the device can perform without | 
|  | *   incurring a performance penalty.  For disk drives this is often the | 
|  | *   physical block size.  For RAID arrays it is often the stripe chunk | 
|  | *   size.  A properly aligned multiple of minimum_io_size is the | 
|  | *   preferred request size for workloads where a high number of I/O | 
|  | *   operations is desired. | 
|  | */ | 
|  | void blk_queue_io_min(struct request_queue *q, unsigned int min) | 
|  | { | 
|  | blk_limits_io_min(&q->limits, min); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_queue_io_min); | 
|  |  | 
|  | /** | 
|  | * blk_limits_io_opt - set optimal request size for a device | 
|  | * @limits: the queue limits | 
|  | * @opt:  smallest I/O size in bytes | 
|  | * | 
|  | * Description: | 
|  | *   Storage devices may report an optimal I/O size, which is the | 
|  | *   device's preferred unit for sustained I/O.  This is rarely reported | 
|  | *   for disk drives.  For RAID arrays it is usually the stripe width or | 
|  | *   the internal track size.  A properly aligned multiple of | 
|  | *   optimal_io_size is the preferred request size for workloads where | 
|  | *   sustained throughput is desired. | 
|  | */ | 
|  | void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt) | 
|  | { | 
|  | limits->io_opt = opt; | 
|  | } | 
|  | EXPORT_SYMBOL(blk_limits_io_opt); | 
|  |  | 
|  | /** | 
|  | * blk_queue_io_opt - set optimal request size for the queue | 
|  | * @q:	the request queue for the device | 
|  | * @opt:  optimal request size in bytes | 
|  | * | 
|  | * Description: | 
|  | *   Storage devices may report an optimal I/O size, which is the | 
|  | *   device's preferred unit for sustained I/O.  This is rarely reported | 
|  | *   for disk drives.  For RAID arrays it is usually the stripe width or | 
|  | *   the internal track size.  A properly aligned multiple of | 
|  | *   optimal_io_size is the preferred request size for workloads where | 
|  | *   sustained throughput is desired. | 
|  | */ | 
|  | void blk_queue_io_opt(struct request_queue *q, unsigned int opt) | 
|  | { | 
|  | blk_limits_io_opt(&q->limits, opt); | 
|  | if (!q->disk) | 
|  | return; | 
|  | q->disk->bdi->ra_pages = | 
|  | max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_queue_io_opt); | 
|  |  | 
|  | static int queue_limit_alignment_offset(struct queue_limits *lim, | 
|  | sector_t sector) | 
|  | { | 
|  | unsigned int granularity = max(lim->physical_block_size, lim->io_min); | 
|  | unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) | 
|  | << SECTOR_SHIFT; | 
|  |  | 
|  | return (granularity + lim->alignment_offset - alignment) % granularity; | 
|  | } | 
|  |  | 
|  | static unsigned int queue_limit_discard_alignment(struct queue_limits *lim, | 
|  | sector_t sector) | 
|  | { | 
|  | unsigned int alignment, granularity, offset; | 
|  |  | 
|  | if (!lim->max_discard_sectors) | 
|  | return 0; | 
|  |  | 
|  | /* Why are these in bytes, not sectors? */ | 
|  | alignment = lim->discard_alignment >> SECTOR_SHIFT; | 
|  | granularity = lim->discard_granularity >> SECTOR_SHIFT; | 
|  | if (!granularity) | 
|  | return 0; | 
|  |  | 
|  | /* Offset of the partition start in 'granularity' sectors */ | 
|  | offset = sector_div(sector, granularity); | 
|  |  | 
|  | /* And why do we do this modulus *again* in blkdev_issue_discard()? */ | 
|  | offset = (granularity + alignment - offset) % granularity; | 
|  |  | 
|  | /* Turn it back into bytes, gaah */ | 
|  | return offset << SECTOR_SHIFT; | 
|  | } | 
|  |  | 
|  | static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs) | 
|  | { | 
|  | sectors = round_down(sectors, lbs >> SECTOR_SHIFT); | 
|  | if (sectors < PAGE_SIZE >> SECTOR_SHIFT) | 
|  | sectors = PAGE_SIZE >> SECTOR_SHIFT; | 
|  | return sectors; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * blk_stack_limits - adjust queue_limits for stacked devices | 
|  | * @t:	the stacking driver limits (top device) | 
|  | * @b:  the underlying queue limits (bottom, component device) | 
|  | * @start:  first data sector within component device | 
|  | * | 
|  | * Description: | 
|  | *    This function is used by stacking drivers like MD and DM to ensure | 
|  | *    that all component devices have compatible block sizes and | 
|  | *    alignments.  The stacking driver must provide a queue_limits | 
|  | *    struct (top) and then iteratively call the stacking function for | 
|  | *    all component (bottom) devices.  The stacking function will | 
|  | *    attempt to combine the values and ensure proper alignment. | 
|  | * | 
|  | *    Returns 0 if the top and bottom queue_limits are compatible.  The | 
|  | *    top device's block sizes and alignment offsets may be adjusted to | 
|  | *    ensure alignment with the bottom device. If no compatible sizes | 
|  | *    and alignments exist, -1 is returned and the resulting top | 
|  | *    queue_limits will have the misaligned flag set to indicate that | 
|  | *    the alignment_offset is undefined. | 
|  | */ | 
|  | int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, | 
|  | sector_t start) | 
|  | { | 
|  | unsigned int top, bottom, alignment, ret = 0; | 
|  |  | 
|  | t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); | 
|  | t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); | 
|  | t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors); | 
|  | t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors, | 
|  | b->max_write_zeroes_sectors); | 
|  | t->max_zone_append_sectors = min(t->max_zone_append_sectors, | 
|  | b->max_zone_append_sectors); | 
|  | t->bounce = max(t->bounce, b->bounce); | 
|  |  | 
|  | t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask, | 
|  | b->seg_boundary_mask); | 
|  | t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask, | 
|  | b->virt_boundary_mask); | 
|  |  | 
|  | t->max_segments = min_not_zero(t->max_segments, b->max_segments); | 
|  | t->max_discard_segments = min_not_zero(t->max_discard_segments, | 
|  | b->max_discard_segments); | 
|  | t->max_integrity_segments = min_not_zero(t->max_integrity_segments, | 
|  | b->max_integrity_segments); | 
|  |  | 
|  | t->max_segment_size = min_not_zero(t->max_segment_size, | 
|  | b->max_segment_size); | 
|  |  | 
|  | t->misaligned |= b->misaligned; | 
|  |  | 
|  | alignment = queue_limit_alignment_offset(b, start); | 
|  |  | 
|  | /* Bottom device has different alignment.  Check that it is | 
|  | * compatible with the current top alignment. | 
|  | */ | 
|  | if (t->alignment_offset != alignment) { | 
|  |  | 
|  | top = max(t->physical_block_size, t->io_min) | 
|  | + t->alignment_offset; | 
|  | bottom = max(b->physical_block_size, b->io_min) + alignment; | 
|  |  | 
|  | /* Verify that top and bottom intervals line up */ | 
|  | if (max(top, bottom) % min(top, bottom)) { | 
|  | t->misaligned = 1; | 
|  | ret = -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | t->logical_block_size = max(t->logical_block_size, | 
|  | b->logical_block_size); | 
|  |  | 
|  | t->physical_block_size = max(t->physical_block_size, | 
|  | b->physical_block_size); | 
|  |  | 
|  | t->io_min = max(t->io_min, b->io_min); | 
|  | t->io_opt = lcm_not_zero(t->io_opt, b->io_opt); | 
|  |  | 
|  | /* Set non-power-of-2 compatible chunk_sectors boundary */ | 
|  | if (b->chunk_sectors) | 
|  | t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors); | 
|  |  | 
|  | /* Physical block size a multiple of the logical block size? */ | 
|  | if (t->physical_block_size & (t->logical_block_size - 1)) { | 
|  | t->physical_block_size = t->logical_block_size; | 
|  | t->misaligned = 1; | 
|  | ret = -1; | 
|  | } | 
|  |  | 
|  | /* Minimum I/O a multiple of the physical block size? */ | 
|  | if (t->io_min & (t->physical_block_size - 1)) { | 
|  | t->io_min = t->physical_block_size; | 
|  | t->misaligned = 1; | 
|  | ret = -1; | 
|  | } | 
|  |  | 
|  | /* Optimal I/O a multiple of the physical block size? */ | 
|  | if (t->io_opt & (t->physical_block_size - 1)) { | 
|  | t->io_opt = 0; | 
|  | t->misaligned = 1; | 
|  | ret = -1; | 
|  | } | 
|  |  | 
|  | /* chunk_sectors a multiple of the physical block size? */ | 
|  | if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) { | 
|  | t->chunk_sectors = 0; | 
|  | t->misaligned = 1; | 
|  | ret = -1; | 
|  | } | 
|  |  | 
|  | t->raid_partial_stripes_expensive = | 
|  | max(t->raid_partial_stripes_expensive, | 
|  | b->raid_partial_stripes_expensive); | 
|  |  | 
|  | /* Find lowest common alignment_offset */ | 
|  | t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment) | 
|  | % max(t->physical_block_size, t->io_min); | 
|  |  | 
|  | /* Verify that new alignment_offset is on a logical block boundary */ | 
|  | if (t->alignment_offset & (t->logical_block_size - 1)) { | 
|  | t->misaligned = 1; | 
|  | ret = -1; | 
|  | } | 
|  |  | 
|  | t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size); | 
|  | t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size); | 
|  | t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size); | 
|  |  | 
|  | /* Discard alignment and granularity */ | 
|  | if (b->discard_granularity) { | 
|  | alignment = queue_limit_discard_alignment(b, start); | 
|  |  | 
|  | if (t->discard_granularity != 0 && | 
|  | t->discard_alignment != alignment) { | 
|  | top = t->discard_granularity + t->discard_alignment; | 
|  | bottom = b->discard_granularity + alignment; | 
|  |  | 
|  | /* Verify that top and bottom intervals line up */ | 
|  | if ((max(top, bottom) % min(top, bottom)) != 0) | 
|  | t->discard_misaligned = 1; | 
|  | } | 
|  |  | 
|  | t->max_discard_sectors = min_not_zero(t->max_discard_sectors, | 
|  | b->max_discard_sectors); | 
|  | t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors, | 
|  | b->max_hw_discard_sectors); | 
|  | t->discard_granularity = max(t->discard_granularity, | 
|  | b->discard_granularity); | 
|  | t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) % | 
|  | t->discard_granularity; | 
|  | } | 
|  | t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors, | 
|  | b->max_secure_erase_sectors); | 
|  | t->zone_write_granularity = max(t->zone_write_granularity, | 
|  | b->zone_write_granularity); | 
|  | t->zoned = max(t->zoned, b->zoned); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(blk_stack_limits); | 
|  |  | 
|  | /** | 
|  | * disk_stack_limits - adjust queue limits for stacked drivers | 
|  | * @disk:  MD/DM gendisk (top) | 
|  | * @bdev:  the underlying block device (bottom) | 
|  | * @offset:  offset to beginning of data within component device | 
|  | * | 
|  | * Description: | 
|  | *    Merges the limits for a top level gendisk and a bottom level | 
|  | *    block_device. | 
|  | */ | 
|  | void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, | 
|  | sector_t offset) | 
|  | { | 
|  | struct request_queue *t = disk->queue; | 
|  |  | 
|  | if (blk_stack_limits(&t->limits, &bdev_get_queue(bdev)->limits, | 
|  | get_start_sect(bdev) + (offset >> 9)) < 0) | 
|  | pr_notice("%s: Warning: Device %pg is misaligned\n", | 
|  | disk->disk_name, bdev); | 
|  |  | 
|  | disk_update_readahead(disk); | 
|  | } | 
|  | EXPORT_SYMBOL(disk_stack_limits); | 
|  |  | 
|  | /** | 
|  | * blk_queue_update_dma_pad - update pad mask | 
|  | * @q:     the request queue for the device | 
|  | * @mask:  pad mask | 
|  | * | 
|  | * Update dma pad mask. | 
|  | * | 
|  | * Appending pad buffer to a request modifies the last entry of a | 
|  | * scatter list such that it includes the pad buffer. | 
|  | **/ | 
|  | void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask) | 
|  | { | 
|  | if (mask > q->dma_pad_mask) | 
|  | q->dma_pad_mask = mask; | 
|  | } | 
|  | EXPORT_SYMBOL(blk_queue_update_dma_pad); | 
|  |  | 
|  | /** | 
|  | * blk_queue_segment_boundary - set boundary rules for segment merging | 
|  | * @q:  the request queue for the device | 
|  | * @mask:  the memory boundary mask | 
|  | **/ | 
|  | void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask) | 
|  | { | 
|  | if (mask < PAGE_SIZE - 1) { | 
|  | mask = PAGE_SIZE - 1; | 
|  | printk(KERN_INFO "%s: set to minimum %lx\n", | 
|  | __func__, mask); | 
|  | } | 
|  |  | 
|  | q->limits.seg_boundary_mask = mask; | 
|  | } | 
|  | EXPORT_SYMBOL(blk_queue_segment_boundary); | 
|  |  | 
|  | /** | 
|  | * blk_queue_virt_boundary - set boundary rules for bio merging | 
|  | * @q:  the request queue for the device | 
|  | * @mask:  the memory boundary mask | 
|  | **/ | 
|  | void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask) | 
|  | { | 
|  | q->limits.virt_boundary_mask = mask; | 
|  |  | 
|  | /* | 
|  | * Devices that require a virtual boundary do not support scatter/gather | 
|  | * I/O natively, but instead require a descriptor list entry for each | 
|  | * page (which might not be idential to the Linux PAGE_SIZE).  Because | 
|  | * of that they are not limited by our notion of "segment size". | 
|  | */ | 
|  | if (mask) | 
|  | q->limits.max_segment_size = UINT_MAX; | 
|  | } | 
|  | EXPORT_SYMBOL(blk_queue_virt_boundary); | 
|  |  | 
|  | /** | 
|  | * blk_queue_dma_alignment - set dma length and memory alignment | 
|  | * @q:     the request queue for the device | 
|  | * @mask:  alignment mask | 
|  | * | 
|  | * description: | 
|  | *    set required memory and length alignment for direct dma transactions. | 
|  | *    this is used when building direct io requests for the queue. | 
|  | * | 
|  | **/ | 
|  | void blk_queue_dma_alignment(struct request_queue *q, int mask) | 
|  | { | 
|  | q->dma_alignment = mask; | 
|  | } | 
|  | EXPORT_SYMBOL(blk_queue_dma_alignment); | 
|  |  | 
|  | /** | 
|  | * blk_queue_update_dma_alignment - update dma length and memory alignment | 
|  | * @q:     the request queue for the device | 
|  | * @mask:  alignment mask | 
|  | * | 
|  | * description: | 
|  | *    update required memory and length alignment for direct dma transactions. | 
|  | *    If the requested alignment is larger than the current alignment, then | 
|  | *    the current queue alignment is updated to the new value, otherwise it | 
|  | *    is left alone.  The design of this is to allow multiple objects | 
|  | *    (driver, device, transport etc) to set their respective | 
|  | *    alignments without having them interfere. | 
|  | * | 
|  | **/ | 
|  | void blk_queue_update_dma_alignment(struct request_queue *q, int mask) | 
|  | { | 
|  | BUG_ON(mask > PAGE_SIZE); | 
|  |  | 
|  | if (mask > q->dma_alignment) | 
|  | q->dma_alignment = mask; | 
|  | } | 
|  | EXPORT_SYMBOL(blk_queue_update_dma_alignment); | 
|  |  | 
|  | /** | 
|  | * blk_set_queue_depth - tell the block layer about the device queue depth | 
|  | * @q:		the request queue for the device | 
|  | * @depth:		queue depth | 
|  | * | 
|  | */ | 
|  | void blk_set_queue_depth(struct request_queue *q, unsigned int depth) | 
|  | { | 
|  | q->queue_depth = depth; | 
|  | rq_qos_queue_depth_changed(q); | 
|  | } | 
|  | EXPORT_SYMBOL(blk_set_queue_depth); | 
|  |  | 
|  | /** | 
|  | * blk_queue_write_cache - configure queue's write cache | 
|  | * @q:		the request queue for the device | 
|  | * @wc:		write back cache on or off | 
|  | * @fua:	device supports FUA writes, if true | 
|  | * | 
|  | * Tell the block layer about the write cache of @q. | 
|  | */ | 
|  | void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua) | 
|  | { | 
|  | if (wc) | 
|  | blk_queue_flag_set(QUEUE_FLAG_WC, q); | 
|  | else | 
|  | blk_queue_flag_clear(QUEUE_FLAG_WC, q); | 
|  | if (fua) | 
|  | blk_queue_flag_set(QUEUE_FLAG_FUA, q); | 
|  | else | 
|  | blk_queue_flag_clear(QUEUE_FLAG_FUA, q); | 
|  |  | 
|  | wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(blk_queue_write_cache); | 
|  |  | 
|  | /** | 
|  | * blk_queue_required_elevator_features - Set a queue required elevator features | 
|  | * @q:		the request queue for the target device | 
|  | * @features:	Required elevator features OR'ed together | 
|  | * | 
|  | * Tell the block layer that for the device controlled through @q, only the | 
|  | * only elevators that can be used are those that implement at least the set of | 
|  | * features specified by @features. | 
|  | */ | 
|  | void blk_queue_required_elevator_features(struct request_queue *q, | 
|  | unsigned int features) | 
|  | { | 
|  | q->required_elevator_features = features; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features); | 
|  |  | 
|  | /** | 
|  | * blk_queue_can_use_dma_map_merging - configure queue for merging segments. | 
|  | * @q:		the request queue for the device | 
|  | * @dev:	the device pointer for dma | 
|  | * | 
|  | * Tell the block layer about merging the segments by dma map of @q. | 
|  | */ | 
|  | bool blk_queue_can_use_dma_map_merging(struct request_queue *q, | 
|  | struct device *dev) | 
|  | { | 
|  | unsigned long boundary = dma_get_merge_boundary(dev); | 
|  |  | 
|  | if (!boundary) | 
|  | return false; | 
|  |  | 
|  | /* No need to update max_segment_size. see blk_queue_virt_boundary() */ | 
|  | blk_queue_virt_boundary(q, boundary); | 
|  |  | 
|  | return true; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging); | 
|  |  | 
|  | static bool disk_has_partitions(struct gendisk *disk) | 
|  | { | 
|  | unsigned long idx; | 
|  | struct block_device *part; | 
|  | bool ret = false; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | xa_for_each(&disk->part_tbl, idx, part) { | 
|  | if (bdev_is_partition(part)) { | 
|  | ret = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * blk_queue_set_zoned - configure a disk queue zoned model. | 
|  | * @disk:	the gendisk of the queue to configure | 
|  | * @model:	the zoned model to set | 
|  | * | 
|  | * Set the zoned model of the request queue of @disk according to @model. | 
|  | * When @model is BLK_ZONED_HM (host managed), this should be called only | 
|  | * if zoned block device support is enabled (CONFIG_BLK_DEV_ZONED option). | 
|  | * If @model specifies BLK_ZONED_HA (host aware), the effective model used | 
|  | * depends on CONFIG_BLK_DEV_ZONED settings and on the existence of partitions | 
|  | * on the disk. | 
|  | */ | 
|  | void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model) | 
|  | { | 
|  | struct request_queue *q = disk->queue; | 
|  |  | 
|  | switch (model) { | 
|  | case BLK_ZONED_HM: | 
|  | /* | 
|  | * Host managed devices are supported only if | 
|  | * CONFIG_BLK_DEV_ZONED is enabled. | 
|  | */ | 
|  | WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED)); | 
|  | break; | 
|  | case BLK_ZONED_HA: | 
|  | /* | 
|  | * Host aware devices can be treated either as regular block | 
|  | * devices (similar to drive managed devices) or as zoned block | 
|  | * devices to take advantage of the zone command set, similarly | 
|  | * to host managed devices. We try the latter if there are no | 
|  | * partitions and zoned block device support is enabled, else | 
|  | * we do nothing special as far as the block layer is concerned. | 
|  | */ | 
|  | if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) || | 
|  | disk_has_partitions(disk)) | 
|  | model = BLK_ZONED_NONE; | 
|  | break; | 
|  | case BLK_ZONED_NONE: | 
|  | default: | 
|  | if (WARN_ON_ONCE(model != BLK_ZONED_NONE)) | 
|  | model = BLK_ZONED_NONE; | 
|  | break; | 
|  | } | 
|  |  | 
|  | q->limits.zoned = model; | 
|  | if (model != BLK_ZONED_NONE) { | 
|  | /* | 
|  | * Set the zone write granularity to the device logical block | 
|  | * size by default. The driver can change this value if needed. | 
|  | */ | 
|  | blk_queue_zone_write_granularity(q, | 
|  | queue_logical_block_size(q)); | 
|  | } else { | 
|  | blk_queue_clear_zone_settings(q); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(blk_queue_set_zoned); | 
|  |  | 
|  | int bdev_alignment_offset(struct block_device *bdev) | 
|  | { | 
|  | struct request_queue *q = bdev_get_queue(bdev); | 
|  |  | 
|  | if (q->limits.misaligned) | 
|  | return -1; | 
|  | if (bdev_is_partition(bdev)) | 
|  | return queue_limit_alignment_offset(&q->limits, | 
|  | bdev->bd_start_sect); | 
|  | return q->limits.alignment_offset; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(bdev_alignment_offset); | 
|  |  | 
|  | unsigned int bdev_discard_alignment(struct block_device *bdev) | 
|  | { | 
|  | struct request_queue *q = bdev_get_queue(bdev); | 
|  |  | 
|  | if (bdev_is_partition(bdev)) | 
|  | return queue_limit_discard_alignment(&q->limits, | 
|  | bdev->bd_start_sect); | 
|  | return q->limits.discard_alignment; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(bdev_discard_alignment); |