|  | /* Keyring handling | 
|  | * | 
|  | * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved. | 
|  | * Written by David Howells (dhowells@redhat.com) | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License | 
|  | * as published by the Free Software Foundation; either version | 
|  | * 2 of the License, or (at your option) any later version. | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/err.h> | 
|  | #include <keys/keyring-type.h> | 
|  | #include <keys/user-type.h> | 
|  | #include <linux/assoc_array_priv.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include "internal.h" | 
|  |  | 
|  | /* | 
|  | * When plumbing the depths of the key tree, this sets a hard limit | 
|  | * set on how deep we're willing to go. | 
|  | */ | 
|  | #define KEYRING_SEARCH_MAX_DEPTH 6 | 
|  |  | 
|  | /* | 
|  | * We keep all named keyrings in a hash to speed looking them up. | 
|  | */ | 
|  | #define KEYRING_NAME_HASH_SIZE	(1 << 5) | 
|  |  | 
|  | /* | 
|  | * We mark pointers we pass to the associative array with bit 1 set if | 
|  | * they're keyrings and clear otherwise. | 
|  | */ | 
|  | #define KEYRING_PTR_SUBTYPE	0x2UL | 
|  |  | 
|  | static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x) | 
|  | { | 
|  | return (unsigned long)x & KEYRING_PTR_SUBTYPE; | 
|  | } | 
|  | static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x) | 
|  | { | 
|  | void *object = assoc_array_ptr_to_leaf(x); | 
|  | return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE); | 
|  | } | 
|  | static inline void *keyring_key_to_ptr(struct key *key) | 
|  | { | 
|  | if (key->type == &key_type_keyring) | 
|  | return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE); | 
|  | return key; | 
|  | } | 
|  |  | 
|  | static struct list_head	keyring_name_hash[KEYRING_NAME_HASH_SIZE]; | 
|  | static DEFINE_RWLOCK(keyring_name_lock); | 
|  |  | 
|  | static inline unsigned keyring_hash(const char *desc) | 
|  | { | 
|  | unsigned bucket = 0; | 
|  |  | 
|  | for (; *desc; desc++) | 
|  | bucket += (unsigned char)*desc; | 
|  |  | 
|  | return bucket & (KEYRING_NAME_HASH_SIZE - 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The keyring key type definition.  Keyrings are simply keys of this type and | 
|  | * can be treated as ordinary keys in addition to having their own special | 
|  | * operations. | 
|  | */ | 
|  | static int keyring_preparse(struct key_preparsed_payload *prep); | 
|  | static void keyring_free_preparse(struct key_preparsed_payload *prep); | 
|  | static int keyring_instantiate(struct key *keyring, | 
|  | struct key_preparsed_payload *prep); | 
|  | static void keyring_revoke(struct key *keyring); | 
|  | static void keyring_destroy(struct key *keyring); | 
|  | static void keyring_describe(const struct key *keyring, struct seq_file *m); | 
|  | static long keyring_read(const struct key *keyring, | 
|  | char __user *buffer, size_t buflen); | 
|  |  | 
|  | struct key_type key_type_keyring = { | 
|  | .name		= "keyring", | 
|  | .def_datalen	= 0, | 
|  | .preparse	= keyring_preparse, | 
|  | .free_preparse	= keyring_free_preparse, | 
|  | .instantiate	= keyring_instantiate, | 
|  | .revoke		= keyring_revoke, | 
|  | .destroy	= keyring_destroy, | 
|  | .describe	= keyring_describe, | 
|  | .read		= keyring_read, | 
|  | }; | 
|  | EXPORT_SYMBOL(key_type_keyring); | 
|  |  | 
|  | /* | 
|  | * Semaphore to serialise link/link calls to prevent two link calls in parallel | 
|  | * introducing a cycle. | 
|  | */ | 
|  | static DECLARE_RWSEM(keyring_serialise_link_sem); | 
|  |  | 
|  | /* | 
|  | * Publish the name of a keyring so that it can be found by name (if it has | 
|  | * one). | 
|  | */ | 
|  | static void keyring_publish_name(struct key *keyring) | 
|  | { | 
|  | int bucket; | 
|  |  | 
|  | if (keyring->description) { | 
|  | bucket = keyring_hash(keyring->description); | 
|  |  | 
|  | write_lock(&keyring_name_lock); | 
|  |  | 
|  | if (!keyring_name_hash[bucket].next) | 
|  | INIT_LIST_HEAD(&keyring_name_hash[bucket]); | 
|  |  | 
|  | list_add_tail(&keyring->name_link, | 
|  | &keyring_name_hash[bucket]); | 
|  |  | 
|  | write_unlock(&keyring_name_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Preparse a keyring payload | 
|  | */ | 
|  | static int keyring_preparse(struct key_preparsed_payload *prep) | 
|  | { | 
|  | return prep->datalen != 0 ? -EINVAL : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free a preparse of a user defined key payload | 
|  | */ | 
|  | static void keyring_free_preparse(struct key_preparsed_payload *prep) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialise a keyring. | 
|  | * | 
|  | * Returns 0 on success, -EINVAL if given any data. | 
|  | */ | 
|  | static int keyring_instantiate(struct key *keyring, | 
|  | struct key_preparsed_payload *prep) | 
|  | { | 
|  | assoc_array_init(&keyring->keys); | 
|  | /* make the keyring available by name if it has one */ | 
|  | keyring_publish_name(keyring); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit.  Ideally we'd | 
|  | * fold the carry back too, but that requires inline asm. | 
|  | */ | 
|  | static u64 mult_64x32_and_fold(u64 x, u32 y) | 
|  | { | 
|  | u64 hi = (u64)(u32)(x >> 32) * y; | 
|  | u64 lo = (u64)(u32)(x) * y; | 
|  | return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Hash a key type and description. | 
|  | */ | 
|  | static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key) | 
|  | { | 
|  | const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP; | 
|  | const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK; | 
|  | const char *description = index_key->description; | 
|  | unsigned long hash, type; | 
|  | u32 piece; | 
|  | u64 acc; | 
|  | int n, desc_len = index_key->desc_len; | 
|  |  | 
|  | type = (unsigned long)index_key->type; | 
|  |  | 
|  | acc = mult_64x32_and_fold(type, desc_len + 13); | 
|  | acc = mult_64x32_and_fold(acc, 9207); | 
|  | for (;;) { | 
|  | n = desc_len; | 
|  | if (n <= 0) | 
|  | break; | 
|  | if (n > 4) | 
|  | n = 4; | 
|  | piece = 0; | 
|  | memcpy(&piece, description, n); | 
|  | description += n; | 
|  | desc_len -= n; | 
|  | acc = mult_64x32_and_fold(acc, piece); | 
|  | acc = mult_64x32_and_fold(acc, 9207); | 
|  | } | 
|  |  | 
|  | /* Fold the hash down to 32 bits if need be. */ | 
|  | hash = acc; | 
|  | if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32) | 
|  | hash ^= acc >> 32; | 
|  |  | 
|  | /* Squidge all the keyrings into a separate part of the tree to | 
|  | * ordinary keys by making sure the lowest level segment in the hash is | 
|  | * zero for keyrings and non-zero otherwise. | 
|  | */ | 
|  | if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0) | 
|  | return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1; | 
|  | if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0) | 
|  | return (hash + (hash << level_shift)) & ~fan_mask; | 
|  | return hash; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Build the next index key chunk. | 
|  | * | 
|  | * On 32-bit systems the index key is laid out as: | 
|  | * | 
|  | *	0	4	5	9... | 
|  | *	hash	desclen	typeptr	desc[] | 
|  | * | 
|  | * On 64-bit systems: | 
|  | * | 
|  | *	0	8	9	17... | 
|  | *	hash	desclen	typeptr	desc[] | 
|  | * | 
|  | * We return it one word-sized chunk at a time. | 
|  | */ | 
|  | static unsigned long keyring_get_key_chunk(const void *data, int level) | 
|  | { | 
|  | const struct keyring_index_key *index_key = data; | 
|  | unsigned long chunk = 0; | 
|  | long offset = 0; | 
|  | int desc_len = index_key->desc_len, n = sizeof(chunk); | 
|  |  | 
|  | level /= ASSOC_ARRAY_KEY_CHUNK_SIZE; | 
|  | switch (level) { | 
|  | case 0: | 
|  | return hash_key_type_and_desc(index_key); | 
|  | case 1: | 
|  | return ((unsigned long)index_key->type << 8) | desc_len; | 
|  | case 2: | 
|  | if (desc_len == 0) | 
|  | return (u8)((unsigned long)index_key->type >> | 
|  | (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8)); | 
|  | n--; | 
|  | offset = 1; | 
|  | default: | 
|  | offset += sizeof(chunk) - 1; | 
|  | offset += (level - 3) * sizeof(chunk); | 
|  | if (offset >= desc_len) | 
|  | return 0; | 
|  | desc_len -= offset; | 
|  | if (desc_len > n) | 
|  | desc_len = n; | 
|  | offset += desc_len; | 
|  | do { | 
|  | chunk <<= 8; | 
|  | chunk |= ((u8*)index_key->description)[--offset]; | 
|  | } while (--desc_len > 0); | 
|  |  | 
|  | if (level == 2) { | 
|  | chunk <<= 8; | 
|  | chunk |= (u8)((unsigned long)index_key->type >> | 
|  | (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8)); | 
|  | } | 
|  | return chunk; | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned long keyring_get_object_key_chunk(const void *object, int level) | 
|  | { | 
|  | const struct key *key = keyring_ptr_to_key(object); | 
|  | return keyring_get_key_chunk(&key->index_key, level); | 
|  | } | 
|  |  | 
|  | static bool keyring_compare_object(const void *object, const void *data) | 
|  | { | 
|  | const struct keyring_index_key *index_key = data; | 
|  | const struct key *key = keyring_ptr_to_key(object); | 
|  |  | 
|  | return key->index_key.type == index_key->type && | 
|  | key->index_key.desc_len == index_key->desc_len && | 
|  | memcmp(key->index_key.description, index_key->description, | 
|  | index_key->desc_len) == 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compare the index keys of a pair of objects and determine the bit position | 
|  | * at which they differ - if they differ. | 
|  | */ | 
|  | static int keyring_diff_objects(const void *object, const void *data) | 
|  | { | 
|  | const struct key *key_a = keyring_ptr_to_key(object); | 
|  | const struct keyring_index_key *a = &key_a->index_key; | 
|  | const struct keyring_index_key *b = data; | 
|  | unsigned long seg_a, seg_b; | 
|  | int level, i; | 
|  |  | 
|  | level = 0; | 
|  | seg_a = hash_key_type_and_desc(a); | 
|  | seg_b = hash_key_type_and_desc(b); | 
|  | if ((seg_a ^ seg_b) != 0) | 
|  | goto differ; | 
|  |  | 
|  | /* The number of bits contributed by the hash is controlled by a | 
|  | * constant in the assoc_array headers.  Everything else thereafter we | 
|  | * can deal with as being machine word-size dependent. | 
|  | */ | 
|  | level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8; | 
|  | seg_a = a->desc_len; | 
|  | seg_b = b->desc_len; | 
|  | if ((seg_a ^ seg_b) != 0) | 
|  | goto differ; | 
|  |  | 
|  | /* The next bit may not work on big endian */ | 
|  | level++; | 
|  | seg_a = (unsigned long)a->type; | 
|  | seg_b = (unsigned long)b->type; | 
|  | if ((seg_a ^ seg_b) != 0) | 
|  | goto differ; | 
|  |  | 
|  | level += sizeof(unsigned long); | 
|  | if (a->desc_len == 0) | 
|  | goto same; | 
|  |  | 
|  | i = 0; | 
|  | if (((unsigned long)a->description | (unsigned long)b->description) & | 
|  | (sizeof(unsigned long) - 1)) { | 
|  | do { | 
|  | seg_a = *(unsigned long *)(a->description + i); | 
|  | seg_b = *(unsigned long *)(b->description + i); | 
|  | if ((seg_a ^ seg_b) != 0) | 
|  | goto differ_plus_i; | 
|  | i += sizeof(unsigned long); | 
|  | } while (i < (a->desc_len & (sizeof(unsigned long) - 1))); | 
|  | } | 
|  |  | 
|  | for (; i < a->desc_len; i++) { | 
|  | seg_a = *(unsigned char *)(a->description + i); | 
|  | seg_b = *(unsigned char *)(b->description + i); | 
|  | if ((seg_a ^ seg_b) != 0) | 
|  | goto differ_plus_i; | 
|  | } | 
|  |  | 
|  | same: | 
|  | return -1; | 
|  |  | 
|  | differ_plus_i: | 
|  | level += i; | 
|  | differ: | 
|  | i = level * 8 + __ffs(seg_a ^ seg_b); | 
|  | return i; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free an object after stripping the keyring flag off of the pointer. | 
|  | */ | 
|  | static void keyring_free_object(void *object) | 
|  | { | 
|  | key_put(keyring_ptr_to_key(object)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Operations for keyring management by the index-tree routines. | 
|  | */ | 
|  | static const struct assoc_array_ops keyring_assoc_array_ops = { | 
|  | .get_key_chunk		= keyring_get_key_chunk, | 
|  | .get_object_key_chunk	= keyring_get_object_key_chunk, | 
|  | .compare_object		= keyring_compare_object, | 
|  | .diff_objects		= keyring_diff_objects, | 
|  | .free_object		= keyring_free_object, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Clean up a keyring when it is destroyed.  Unpublish its name if it had one | 
|  | * and dispose of its data. | 
|  | * | 
|  | * The garbage collector detects the final key_put(), removes the keyring from | 
|  | * the serial number tree and then does RCU synchronisation before coming here, | 
|  | * so we shouldn't need to worry about code poking around here with the RCU | 
|  | * readlock held by this time. | 
|  | */ | 
|  | static void keyring_destroy(struct key *keyring) | 
|  | { | 
|  | if (keyring->description) { | 
|  | write_lock(&keyring_name_lock); | 
|  |  | 
|  | if (keyring->name_link.next != NULL && | 
|  | !list_empty(&keyring->name_link)) | 
|  | list_del(&keyring->name_link); | 
|  |  | 
|  | write_unlock(&keyring_name_lock); | 
|  | } | 
|  |  | 
|  | if (keyring->restrict_link) { | 
|  | struct key_restriction *keyres = keyring->restrict_link; | 
|  |  | 
|  | key_put(keyres->key); | 
|  | kfree(keyres); | 
|  | } | 
|  |  | 
|  | assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Describe a keyring for /proc. | 
|  | */ | 
|  | static void keyring_describe(const struct key *keyring, struct seq_file *m) | 
|  | { | 
|  | if (keyring->description) | 
|  | seq_puts(m, keyring->description); | 
|  | else | 
|  | seq_puts(m, "[anon]"); | 
|  |  | 
|  | if (key_is_positive(keyring)) { | 
|  | if (keyring->keys.nr_leaves_on_tree != 0) | 
|  | seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree); | 
|  | else | 
|  | seq_puts(m, ": empty"); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct keyring_read_iterator_context { | 
|  | size_t			buflen; | 
|  | size_t			count; | 
|  | key_serial_t __user	*buffer; | 
|  | }; | 
|  |  | 
|  | static int keyring_read_iterator(const void *object, void *data) | 
|  | { | 
|  | struct keyring_read_iterator_context *ctx = data; | 
|  | const struct key *key = keyring_ptr_to_key(object); | 
|  | int ret; | 
|  |  | 
|  | kenter("{%s,%d},,{%zu/%zu}", | 
|  | key->type->name, key->serial, ctx->count, ctx->buflen); | 
|  |  | 
|  | if (ctx->count >= ctx->buflen) | 
|  | return 1; | 
|  |  | 
|  | ret = put_user(key->serial, ctx->buffer); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | ctx->buffer++; | 
|  | ctx->count += sizeof(key->serial); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read a list of key IDs from the keyring's contents in binary form | 
|  | * | 
|  | * The keyring's semaphore is read-locked by the caller.  This prevents someone | 
|  | * from modifying it under us - which could cause us to read key IDs multiple | 
|  | * times. | 
|  | */ | 
|  | static long keyring_read(const struct key *keyring, | 
|  | char __user *buffer, size_t buflen) | 
|  | { | 
|  | struct keyring_read_iterator_context ctx; | 
|  | long ret; | 
|  |  | 
|  | kenter("{%d},,%zu", key_serial(keyring), buflen); | 
|  |  | 
|  | if (buflen & (sizeof(key_serial_t) - 1)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Copy as many key IDs as fit into the buffer */ | 
|  | if (buffer && buflen) { | 
|  | ctx.buffer = (key_serial_t __user *)buffer; | 
|  | ctx.buflen = buflen; | 
|  | ctx.count = 0; | 
|  | ret = assoc_array_iterate(&keyring->keys, | 
|  | keyring_read_iterator, &ctx); | 
|  | if (ret < 0) { | 
|  | kleave(" = %ld [iterate]", ret); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Return the size of the buffer needed */ | 
|  | ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t); | 
|  | if (ret <= buflen) | 
|  | kleave("= %ld [ok]", ret); | 
|  | else | 
|  | kleave("= %ld [buffer too small]", ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a keyring and link into the destination keyring. | 
|  | */ | 
|  | struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid, | 
|  | const struct cred *cred, key_perm_t perm, | 
|  | unsigned long flags, | 
|  | struct key_restriction *restrict_link, | 
|  | struct key *dest) | 
|  | { | 
|  | struct key *keyring; | 
|  | int ret; | 
|  |  | 
|  | keyring = key_alloc(&key_type_keyring, description, | 
|  | uid, gid, cred, perm, flags, restrict_link); | 
|  | if (!IS_ERR(keyring)) { | 
|  | ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL); | 
|  | if (ret < 0) { | 
|  | key_put(keyring); | 
|  | keyring = ERR_PTR(ret); | 
|  | } | 
|  | } | 
|  |  | 
|  | return keyring; | 
|  | } | 
|  | EXPORT_SYMBOL(keyring_alloc); | 
|  |  | 
|  | /** | 
|  | * restrict_link_reject - Give -EPERM to restrict link | 
|  | * @keyring: The keyring being added to. | 
|  | * @type: The type of key being added. | 
|  | * @payload: The payload of the key intended to be added. | 
|  | * @data: Additional data for evaluating restriction. | 
|  | * | 
|  | * Reject the addition of any links to a keyring.  It can be overridden by | 
|  | * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when | 
|  | * adding a key to a keyring. | 
|  | * | 
|  | * This is meant to be stored in a key_restriction structure which is passed | 
|  | * in the restrict_link parameter to keyring_alloc(). | 
|  | */ | 
|  | int restrict_link_reject(struct key *keyring, | 
|  | const struct key_type *type, | 
|  | const union key_payload *payload, | 
|  | struct key *restriction_key) | 
|  | { | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * By default, we keys found by getting an exact match on their descriptions. | 
|  | */ | 
|  | bool key_default_cmp(const struct key *key, | 
|  | const struct key_match_data *match_data) | 
|  | { | 
|  | return strcmp(key->description, match_data->raw_data) == 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Iteration function to consider each key found. | 
|  | */ | 
|  | static int keyring_search_iterator(const void *object, void *iterator_data) | 
|  | { | 
|  | struct keyring_search_context *ctx = iterator_data; | 
|  | const struct key *key = keyring_ptr_to_key(object); | 
|  | unsigned long kflags = READ_ONCE(key->flags); | 
|  | short state = READ_ONCE(key->state); | 
|  |  | 
|  | kenter("{%d}", key->serial); | 
|  |  | 
|  | /* ignore keys not of this type */ | 
|  | if (key->type != ctx->index_key.type) { | 
|  | kleave(" = 0 [!type]"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* skip invalidated, revoked and expired keys */ | 
|  | if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) { | 
|  | time64_t expiry = READ_ONCE(key->expiry); | 
|  |  | 
|  | if (kflags & ((1 << KEY_FLAG_INVALIDATED) | | 
|  | (1 << KEY_FLAG_REVOKED))) { | 
|  | ctx->result = ERR_PTR(-EKEYREVOKED); | 
|  | kleave(" = %d [invrev]", ctx->skipped_ret); | 
|  | goto skipped; | 
|  | } | 
|  |  | 
|  | if (expiry && ctx->now >= expiry) { | 
|  | if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED)) | 
|  | ctx->result = ERR_PTR(-EKEYEXPIRED); | 
|  | kleave(" = %d [expire]", ctx->skipped_ret); | 
|  | goto skipped; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* keys that don't match */ | 
|  | if (!ctx->match_data.cmp(key, &ctx->match_data)) { | 
|  | kleave(" = 0 [!match]"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* key must have search permissions */ | 
|  | if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) && | 
|  | key_task_permission(make_key_ref(key, ctx->possessed), | 
|  | ctx->cred, KEY_NEED_SEARCH) < 0) { | 
|  | ctx->result = ERR_PTR(-EACCES); | 
|  | kleave(" = %d [!perm]", ctx->skipped_ret); | 
|  | goto skipped; | 
|  | } | 
|  |  | 
|  | if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) { | 
|  | /* we set a different error code if we pass a negative key */ | 
|  | if (state < 0) { | 
|  | ctx->result = ERR_PTR(state); | 
|  | kleave(" = %d [neg]", ctx->skipped_ret); | 
|  | goto skipped; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Found */ | 
|  | ctx->result = make_key_ref(key, ctx->possessed); | 
|  | kleave(" = 1 [found]"); | 
|  | return 1; | 
|  |  | 
|  | skipped: | 
|  | return ctx->skipped_ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Search inside a keyring for a key.  We can search by walking to it | 
|  | * directly based on its index-key or we can iterate over the entire | 
|  | * tree looking for it, based on the match function. | 
|  | */ | 
|  | static int search_keyring(struct key *keyring, struct keyring_search_context *ctx) | 
|  | { | 
|  | if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) { | 
|  | const void *object; | 
|  |  | 
|  | object = assoc_array_find(&keyring->keys, | 
|  | &keyring_assoc_array_ops, | 
|  | &ctx->index_key); | 
|  | return object ? ctx->iterator(object, ctx) : 0; | 
|  | } | 
|  | return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Search a tree of keyrings that point to other keyrings up to the maximum | 
|  | * depth. | 
|  | */ | 
|  | static bool search_nested_keyrings(struct key *keyring, | 
|  | struct keyring_search_context *ctx) | 
|  | { | 
|  | struct { | 
|  | struct key *keyring; | 
|  | struct assoc_array_node *node; | 
|  | int slot; | 
|  | } stack[KEYRING_SEARCH_MAX_DEPTH]; | 
|  |  | 
|  | struct assoc_array_shortcut *shortcut; | 
|  | struct assoc_array_node *node; | 
|  | struct assoc_array_ptr *ptr; | 
|  | struct key *key; | 
|  | int sp = 0, slot; | 
|  |  | 
|  | kenter("{%d},{%s,%s}", | 
|  | keyring->serial, | 
|  | ctx->index_key.type->name, | 
|  | ctx->index_key.description); | 
|  |  | 
|  | #define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK) | 
|  | BUG_ON((ctx->flags & STATE_CHECKS) == 0 || | 
|  | (ctx->flags & STATE_CHECKS) == STATE_CHECKS); | 
|  |  | 
|  | if (ctx->index_key.description) | 
|  | ctx->index_key.desc_len = strlen(ctx->index_key.description); | 
|  |  | 
|  | /* Check to see if this top-level keyring is what we are looking for | 
|  | * and whether it is valid or not. | 
|  | */ | 
|  | if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE || | 
|  | keyring_compare_object(keyring, &ctx->index_key)) { | 
|  | ctx->skipped_ret = 2; | 
|  | switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) { | 
|  | case 1: | 
|  | goto found; | 
|  | case 2: | 
|  | return false; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | ctx->skipped_ret = 0; | 
|  |  | 
|  | /* Start processing a new keyring */ | 
|  | descend_to_keyring: | 
|  | kdebug("descend to %d", keyring->serial); | 
|  | if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) | | 
|  | (1 << KEY_FLAG_REVOKED))) | 
|  | goto not_this_keyring; | 
|  |  | 
|  | /* Search through the keys in this keyring before its searching its | 
|  | * subtrees. | 
|  | */ | 
|  | if (search_keyring(keyring, ctx)) | 
|  | goto found; | 
|  |  | 
|  | /* Then manually iterate through the keyrings nested in this one. | 
|  | * | 
|  | * Start from the root node of the index tree.  Because of the way the | 
|  | * hash function has been set up, keyrings cluster on the leftmost | 
|  | * branch of the root node (root slot 0) or in the root node itself. | 
|  | * Non-keyrings avoid the leftmost branch of the root entirely (root | 
|  | * slots 1-15). | 
|  | */ | 
|  | ptr = READ_ONCE(keyring->keys.root); | 
|  | if (!ptr) | 
|  | goto not_this_keyring; | 
|  |  | 
|  | if (assoc_array_ptr_is_shortcut(ptr)) { | 
|  | /* If the root is a shortcut, either the keyring only contains | 
|  | * keyring pointers (everything clusters behind root slot 0) or | 
|  | * doesn't contain any keyring pointers. | 
|  | */ | 
|  | shortcut = assoc_array_ptr_to_shortcut(ptr); | 
|  | smp_read_barrier_depends(); | 
|  | if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0) | 
|  | goto not_this_keyring; | 
|  |  | 
|  | ptr = READ_ONCE(shortcut->next_node); | 
|  | node = assoc_array_ptr_to_node(ptr); | 
|  | goto begin_node; | 
|  | } | 
|  |  | 
|  | node = assoc_array_ptr_to_node(ptr); | 
|  | smp_read_barrier_depends(); | 
|  |  | 
|  | ptr = node->slots[0]; | 
|  | if (!assoc_array_ptr_is_meta(ptr)) | 
|  | goto begin_node; | 
|  |  | 
|  | descend_to_node: | 
|  | /* Descend to a more distal node in this keyring's content tree and go | 
|  | * through that. | 
|  | */ | 
|  | kdebug("descend"); | 
|  | if (assoc_array_ptr_is_shortcut(ptr)) { | 
|  | shortcut = assoc_array_ptr_to_shortcut(ptr); | 
|  | smp_read_barrier_depends(); | 
|  | ptr = READ_ONCE(shortcut->next_node); | 
|  | BUG_ON(!assoc_array_ptr_is_node(ptr)); | 
|  | } | 
|  | node = assoc_array_ptr_to_node(ptr); | 
|  |  | 
|  | begin_node: | 
|  | kdebug("begin_node"); | 
|  | smp_read_barrier_depends(); | 
|  | slot = 0; | 
|  | ascend_to_node: | 
|  | /* Go through the slots in a node */ | 
|  | for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { | 
|  | ptr = READ_ONCE(node->slots[slot]); | 
|  |  | 
|  | if (assoc_array_ptr_is_meta(ptr) && node->back_pointer) | 
|  | goto descend_to_node; | 
|  |  | 
|  | if (!keyring_ptr_is_keyring(ptr)) | 
|  | continue; | 
|  |  | 
|  | key = keyring_ptr_to_key(ptr); | 
|  |  | 
|  | if (sp >= KEYRING_SEARCH_MAX_DEPTH) { | 
|  | if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) { | 
|  | ctx->result = ERR_PTR(-ELOOP); | 
|  | return false; | 
|  | } | 
|  | goto not_this_keyring; | 
|  | } | 
|  |  | 
|  | /* Search a nested keyring */ | 
|  | if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) && | 
|  | key_task_permission(make_key_ref(key, ctx->possessed), | 
|  | ctx->cred, KEY_NEED_SEARCH) < 0) | 
|  | continue; | 
|  |  | 
|  | /* stack the current position */ | 
|  | stack[sp].keyring = keyring; | 
|  | stack[sp].node = node; | 
|  | stack[sp].slot = slot; | 
|  | sp++; | 
|  |  | 
|  | /* begin again with the new keyring */ | 
|  | keyring = key; | 
|  | goto descend_to_keyring; | 
|  | } | 
|  |  | 
|  | /* We've dealt with all the slots in the current node, so now we need | 
|  | * to ascend to the parent and continue processing there. | 
|  | */ | 
|  | ptr = READ_ONCE(node->back_pointer); | 
|  | slot = node->parent_slot; | 
|  |  | 
|  | if (ptr && assoc_array_ptr_is_shortcut(ptr)) { | 
|  | shortcut = assoc_array_ptr_to_shortcut(ptr); | 
|  | smp_read_barrier_depends(); | 
|  | ptr = READ_ONCE(shortcut->back_pointer); | 
|  | slot = shortcut->parent_slot; | 
|  | } | 
|  | if (!ptr) | 
|  | goto not_this_keyring; | 
|  | node = assoc_array_ptr_to_node(ptr); | 
|  | smp_read_barrier_depends(); | 
|  | slot++; | 
|  |  | 
|  | /* If we've ascended to the root (zero backpointer), we must have just | 
|  | * finished processing the leftmost branch rather than the root slots - | 
|  | * so there can't be any more keyrings for us to find. | 
|  | */ | 
|  | if (node->back_pointer) { | 
|  | kdebug("ascend %d", slot); | 
|  | goto ascend_to_node; | 
|  | } | 
|  |  | 
|  | /* The keyring we're looking at was disqualified or didn't contain a | 
|  | * matching key. | 
|  | */ | 
|  | not_this_keyring: | 
|  | kdebug("not_this_keyring %d", sp); | 
|  | if (sp <= 0) { | 
|  | kleave(" = false"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Resume the processing of a keyring higher up in the tree */ | 
|  | sp--; | 
|  | keyring = stack[sp].keyring; | 
|  | node = stack[sp].node; | 
|  | slot = stack[sp].slot + 1; | 
|  | kdebug("ascend to %d [%d]", keyring->serial, slot); | 
|  | goto ascend_to_node; | 
|  |  | 
|  | /* We found a viable match */ | 
|  | found: | 
|  | key = key_ref_to_ptr(ctx->result); | 
|  | key_check(key); | 
|  | if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) { | 
|  | key->last_used_at = ctx->now; | 
|  | keyring->last_used_at = ctx->now; | 
|  | while (sp > 0) | 
|  | stack[--sp].keyring->last_used_at = ctx->now; | 
|  | } | 
|  | kleave(" = true"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * keyring_search_aux - Search a keyring tree for a key matching some criteria | 
|  | * @keyring_ref: A pointer to the keyring with possession indicator. | 
|  | * @ctx: The keyring search context. | 
|  | * | 
|  | * Search the supplied keyring tree for a key that matches the criteria given. | 
|  | * The root keyring and any linked keyrings must grant Search permission to the | 
|  | * caller to be searchable and keys can only be found if they too grant Search | 
|  | * to the caller. The possession flag on the root keyring pointer controls use | 
|  | * of the possessor bits in permissions checking of the entire tree.  In | 
|  | * addition, the LSM gets to forbid keyring searches and key matches. | 
|  | * | 
|  | * The search is performed as a breadth-then-depth search up to the prescribed | 
|  | * limit (KEYRING_SEARCH_MAX_DEPTH). | 
|  | * | 
|  | * Keys are matched to the type provided and are then filtered by the match | 
|  | * function, which is given the description to use in any way it sees fit.  The | 
|  | * match function may use any attributes of a key that it wishes to to | 
|  | * determine the match.  Normally the match function from the key type would be | 
|  | * used. | 
|  | * | 
|  | * RCU can be used to prevent the keyring key lists from disappearing without | 
|  | * the need to take lots of locks. | 
|  | * | 
|  | * Returns a pointer to the found key and increments the key usage count if | 
|  | * successful; -EAGAIN if no matching keys were found, or if expired or revoked | 
|  | * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the | 
|  | * specified keyring wasn't a keyring. | 
|  | * | 
|  | * In the case of a successful return, the possession attribute from | 
|  | * @keyring_ref is propagated to the returned key reference. | 
|  | */ | 
|  | key_ref_t keyring_search_aux(key_ref_t keyring_ref, | 
|  | struct keyring_search_context *ctx) | 
|  | { | 
|  | struct key *keyring; | 
|  | long err; | 
|  |  | 
|  | ctx->iterator = keyring_search_iterator; | 
|  | ctx->possessed = is_key_possessed(keyring_ref); | 
|  | ctx->result = ERR_PTR(-EAGAIN); | 
|  |  | 
|  | keyring = key_ref_to_ptr(keyring_ref); | 
|  | key_check(keyring); | 
|  |  | 
|  | if (keyring->type != &key_type_keyring) | 
|  | return ERR_PTR(-ENOTDIR); | 
|  |  | 
|  | if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) { | 
|  | err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH); | 
|  | if (err < 0) | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | rcu_read_lock(); | 
|  | ctx->now = ktime_get_real_seconds(); | 
|  | if (search_nested_keyrings(keyring, ctx)) | 
|  | __key_get(key_ref_to_ptr(ctx->result)); | 
|  | rcu_read_unlock(); | 
|  | return ctx->result; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * keyring_search - Search the supplied keyring tree for a matching key | 
|  | * @keyring: The root of the keyring tree to be searched. | 
|  | * @type: The type of keyring we want to find. | 
|  | * @description: The name of the keyring we want to find. | 
|  | * | 
|  | * As keyring_search_aux() above, but using the current task's credentials and | 
|  | * type's default matching function and preferred search method. | 
|  | */ | 
|  | key_ref_t keyring_search(key_ref_t keyring, | 
|  | struct key_type *type, | 
|  | const char *description) | 
|  | { | 
|  | struct keyring_search_context ctx = { | 
|  | .index_key.type		= type, | 
|  | .index_key.description	= description, | 
|  | .cred			= current_cred(), | 
|  | .match_data.cmp		= key_default_cmp, | 
|  | .match_data.raw_data	= description, | 
|  | .match_data.lookup_type	= KEYRING_SEARCH_LOOKUP_DIRECT, | 
|  | .flags			= KEYRING_SEARCH_DO_STATE_CHECK, | 
|  | }; | 
|  | key_ref_t key; | 
|  | int ret; | 
|  |  | 
|  | if (type->match_preparse) { | 
|  | ret = type->match_preparse(&ctx.match_data); | 
|  | if (ret < 0) | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | key = keyring_search_aux(keyring, &ctx); | 
|  |  | 
|  | if (type->match_free) | 
|  | type->match_free(&ctx.match_data); | 
|  | return key; | 
|  | } | 
|  | EXPORT_SYMBOL(keyring_search); | 
|  |  | 
|  | static struct key_restriction *keyring_restriction_alloc( | 
|  | key_restrict_link_func_t check) | 
|  | { | 
|  | struct key_restriction *keyres = | 
|  | kzalloc(sizeof(struct key_restriction), GFP_KERNEL); | 
|  |  | 
|  | if (!keyres) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | keyres->check = check; | 
|  |  | 
|  | return keyres; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Semaphore to serialise restriction setup to prevent reference count | 
|  | * cycles through restriction key pointers. | 
|  | */ | 
|  | static DECLARE_RWSEM(keyring_serialise_restrict_sem); | 
|  |  | 
|  | /* | 
|  | * Check for restriction cycles that would prevent keyring garbage collection. | 
|  | * keyring_serialise_restrict_sem must be held. | 
|  | */ | 
|  | static bool keyring_detect_restriction_cycle(const struct key *dest_keyring, | 
|  | struct key_restriction *keyres) | 
|  | { | 
|  | while (keyres && keyres->key && | 
|  | keyres->key->type == &key_type_keyring) { | 
|  | if (keyres->key == dest_keyring) | 
|  | return true; | 
|  |  | 
|  | keyres = keyres->key->restrict_link; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * keyring_restrict - Look up and apply a restriction to a keyring | 
|  | * | 
|  | * @keyring: The keyring to be restricted | 
|  | * @restriction: The restriction options to apply to the keyring | 
|  | */ | 
|  | int keyring_restrict(key_ref_t keyring_ref, const char *type, | 
|  | const char *restriction) | 
|  | { | 
|  | struct key *keyring; | 
|  | struct key_type *restrict_type = NULL; | 
|  | struct key_restriction *restrict_link; | 
|  | int ret = 0; | 
|  |  | 
|  | keyring = key_ref_to_ptr(keyring_ref); | 
|  | key_check(keyring); | 
|  |  | 
|  | if (keyring->type != &key_type_keyring) | 
|  | return -ENOTDIR; | 
|  |  | 
|  | if (!type) { | 
|  | restrict_link = keyring_restriction_alloc(restrict_link_reject); | 
|  | } else { | 
|  | restrict_type = key_type_lookup(type); | 
|  |  | 
|  | if (IS_ERR(restrict_type)) | 
|  | return PTR_ERR(restrict_type); | 
|  |  | 
|  | if (!restrict_type->lookup_restriction) { | 
|  | ret = -ENOENT; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | restrict_link = restrict_type->lookup_restriction(restriction); | 
|  | } | 
|  |  | 
|  | if (IS_ERR(restrict_link)) { | 
|  | ret = PTR_ERR(restrict_link); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | down_write(&keyring->sem); | 
|  | down_write(&keyring_serialise_restrict_sem); | 
|  |  | 
|  | if (keyring->restrict_link) | 
|  | ret = -EEXIST; | 
|  | else if (keyring_detect_restriction_cycle(keyring, restrict_link)) | 
|  | ret = -EDEADLK; | 
|  | else | 
|  | keyring->restrict_link = restrict_link; | 
|  |  | 
|  | up_write(&keyring_serialise_restrict_sem); | 
|  | up_write(&keyring->sem); | 
|  |  | 
|  | if (ret < 0) { | 
|  | key_put(restrict_link->key); | 
|  | kfree(restrict_link); | 
|  | } | 
|  |  | 
|  | error: | 
|  | if (restrict_type) | 
|  | key_type_put(restrict_type); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(keyring_restrict); | 
|  |  | 
|  | /* | 
|  | * Search the given keyring for a key that might be updated. | 
|  | * | 
|  | * The caller must guarantee that the keyring is a keyring and that the | 
|  | * permission is granted to modify the keyring as no check is made here.  The | 
|  | * caller must also hold a lock on the keyring semaphore. | 
|  | * | 
|  | * Returns a pointer to the found key with usage count incremented if | 
|  | * successful and returns NULL if not found.  Revoked and invalidated keys are | 
|  | * skipped over. | 
|  | * | 
|  | * If successful, the possession indicator is propagated from the keyring ref | 
|  | * to the returned key reference. | 
|  | */ | 
|  | key_ref_t find_key_to_update(key_ref_t keyring_ref, | 
|  | const struct keyring_index_key *index_key) | 
|  | { | 
|  | struct key *keyring, *key; | 
|  | const void *object; | 
|  |  | 
|  | keyring = key_ref_to_ptr(keyring_ref); | 
|  |  | 
|  | kenter("{%d},{%s,%s}", | 
|  | keyring->serial, index_key->type->name, index_key->description); | 
|  |  | 
|  | object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops, | 
|  | index_key); | 
|  |  | 
|  | if (object) | 
|  | goto found; | 
|  |  | 
|  | kleave(" = NULL"); | 
|  | return NULL; | 
|  |  | 
|  | found: | 
|  | key = keyring_ptr_to_key(object); | 
|  | if (key->flags & ((1 << KEY_FLAG_INVALIDATED) | | 
|  | (1 << KEY_FLAG_REVOKED))) { | 
|  | kleave(" = NULL [x]"); | 
|  | return NULL; | 
|  | } | 
|  | __key_get(key); | 
|  | kleave(" = {%d}", key->serial); | 
|  | return make_key_ref(key, is_key_possessed(keyring_ref)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find a keyring with the specified name. | 
|  | * | 
|  | * Only keyrings that have nonzero refcount, are not revoked, and are owned by a | 
|  | * user in the current user namespace are considered.  If @uid_keyring is %true, | 
|  | * the keyring additionally must have been allocated as a user or user session | 
|  | * keyring; otherwise, it must grant Search permission directly to the caller. | 
|  | * | 
|  | * Returns a pointer to the keyring with the keyring's refcount having being | 
|  | * incremented on success.  -ENOKEY is returned if a key could not be found. | 
|  | */ | 
|  | struct key *find_keyring_by_name(const char *name, bool uid_keyring) | 
|  | { | 
|  | struct key *keyring; | 
|  | int bucket; | 
|  |  | 
|  | if (!name) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | bucket = keyring_hash(name); | 
|  |  | 
|  | read_lock(&keyring_name_lock); | 
|  |  | 
|  | if (keyring_name_hash[bucket].next) { | 
|  | /* search this hash bucket for a keyring with a matching name | 
|  | * that's readable and that hasn't been revoked */ | 
|  | list_for_each_entry(keyring, | 
|  | &keyring_name_hash[bucket], | 
|  | name_link | 
|  | ) { | 
|  | if (!kuid_has_mapping(current_user_ns(), keyring->user->uid)) | 
|  | continue; | 
|  |  | 
|  | if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) | 
|  | continue; | 
|  |  | 
|  | if (strcmp(keyring->description, name) != 0) | 
|  | continue; | 
|  |  | 
|  | if (uid_keyring) { | 
|  | if (!test_bit(KEY_FLAG_UID_KEYRING, | 
|  | &keyring->flags)) | 
|  | continue; | 
|  | } else { | 
|  | if (key_permission(make_key_ref(keyring, 0), | 
|  | KEY_NEED_SEARCH) < 0) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* we've got a match but we might end up racing with | 
|  | * key_cleanup() if the keyring is currently 'dead' | 
|  | * (ie. it has a zero usage count) */ | 
|  | if (!refcount_inc_not_zero(&keyring->usage)) | 
|  | continue; | 
|  | keyring->last_used_at = ktime_get_real_seconds(); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | keyring = ERR_PTR(-ENOKEY); | 
|  | out: | 
|  | read_unlock(&keyring_name_lock); | 
|  | return keyring; | 
|  | } | 
|  |  | 
|  | static int keyring_detect_cycle_iterator(const void *object, | 
|  | void *iterator_data) | 
|  | { | 
|  | struct keyring_search_context *ctx = iterator_data; | 
|  | const struct key *key = keyring_ptr_to_key(object); | 
|  |  | 
|  | kenter("{%d}", key->serial); | 
|  |  | 
|  | /* We might get a keyring with matching index-key that is nonetheless a | 
|  | * different keyring. */ | 
|  | if (key != ctx->match_data.raw_data) | 
|  | return 0; | 
|  |  | 
|  | ctx->result = ERR_PTR(-EDEADLK); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * See if a cycle will will be created by inserting acyclic tree B in acyclic | 
|  | * tree A at the topmost level (ie: as a direct child of A). | 
|  | * | 
|  | * Since we are adding B to A at the top level, checking for cycles should just | 
|  | * be a matter of seeing if node A is somewhere in tree B. | 
|  | */ | 
|  | static int keyring_detect_cycle(struct key *A, struct key *B) | 
|  | { | 
|  | struct keyring_search_context ctx = { | 
|  | .index_key		= A->index_key, | 
|  | .match_data.raw_data	= A, | 
|  | .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT, | 
|  | .iterator		= keyring_detect_cycle_iterator, | 
|  | .flags			= (KEYRING_SEARCH_NO_STATE_CHECK | | 
|  | KEYRING_SEARCH_NO_UPDATE_TIME | | 
|  | KEYRING_SEARCH_NO_CHECK_PERM | | 
|  | KEYRING_SEARCH_DETECT_TOO_DEEP), | 
|  | }; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | search_nested_keyrings(B, &ctx); | 
|  | rcu_read_unlock(); | 
|  | return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Preallocate memory so that a key can be linked into to a keyring. | 
|  | */ | 
|  | int __key_link_begin(struct key *keyring, | 
|  | const struct keyring_index_key *index_key, | 
|  | struct assoc_array_edit **_edit) | 
|  | __acquires(&keyring->sem) | 
|  | __acquires(&keyring_serialise_link_sem) | 
|  | { | 
|  | struct assoc_array_edit *edit; | 
|  | int ret; | 
|  |  | 
|  | kenter("%d,%s,%s,", | 
|  | keyring->serial, index_key->type->name, index_key->description); | 
|  |  | 
|  | BUG_ON(index_key->desc_len == 0); | 
|  |  | 
|  | if (keyring->type != &key_type_keyring) | 
|  | return -ENOTDIR; | 
|  |  | 
|  | down_write(&keyring->sem); | 
|  |  | 
|  | ret = -EKEYREVOKED; | 
|  | if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) | 
|  | goto error_krsem; | 
|  |  | 
|  | /* serialise link/link calls to prevent parallel calls causing a cycle | 
|  | * when linking two keyring in opposite orders */ | 
|  | if (index_key->type == &key_type_keyring) | 
|  | down_write(&keyring_serialise_link_sem); | 
|  |  | 
|  | /* Create an edit script that will insert/replace the key in the | 
|  | * keyring tree. | 
|  | */ | 
|  | edit = assoc_array_insert(&keyring->keys, | 
|  | &keyring_assoc_array_ops, | 
|  | index_key, | 
|  | NULL); | 
|  | if (IS_ERR(edit)) { | 
|  | ret = PTR_ERR(edit); | 
|  | goto error_sem; | 
|  | } | 
|  |  | 
|  | /* If we're not replacing a link in-place then we're going to need some | 
|  | * extra quota. | 
|  | */ | 
|  | if (!edit->dead_leaf) { | 
|  | ret = key_payload_reserve(keyring, | 
|  | keyring->datalen + KEYQUOTA_LINK_BYTES); | 
|  | if (ret < 0) | 
|  | goto error_cancel; | 
|  | } | 
|  |  | 
|  | *_edit = edit; | 
|  | kleave(" = 0"); | 
|  | return 0; | 
|  |  | 
|  | error_cancel: | 
|  | assoc_array_cancel_edit(edit); | 
|  | error_sem: | 
|  | if (index_key->type == &key_type_keyring) | 
|  | up_write(&keyring_serialise_link_sem); | 
|  | error_krsem: | 
|  | up_write(&keyring->sem); | 
|  | kleave(" = %d", ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check already instantiated keys aren't going to be a problem. | 
|  | * | 
|  | * The caller must have called __key_link_begin(). Don't need to call this for | 
|  | * keys that were created since __key_link_begin() was called. | 
|  | */ | 
|  | int __key_link_check_live_key(struct key *keyring, struct key *key) | 
|  | { | 
|  | if (key->type == &key_type_keyring) | 
|  | /* check that we aren't going to create a cycle by linking one | 
|  | * keyring to another */ | 
|  | return keyring_detect_cycle(keyring, key); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Link a key into to a keyring. | 
|  | * | 
|  | * Must be called with __key_link_begin() having being called.  Discards any | 
|  | * already extant link to matching key if there is one, so that each keyring | 
|  | * holds at most one link to any given key of a particular type+description | 
|  | * combination. | 
|  | */ | 
|  | void __key_link(struct key *key, struct assoc_array_edit **_edit) | 
|  | { | 
|  | __key_get(key); | 
|  | assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key)); | 
|  | assoc_array_apply_edit(*_edit); | 
|  | *_edit = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Finish linking a key into to a keyring. | 
|  | * | 
|  | * Must be called with __key_link_begin() having being called. | 
|  | */ | 
|  | void __key_link_end(struct key *keyring, | 
|  | const struct keyring_index_key *index_key, | 
|  | struct assoc_array_edit *edit) | 
|  | __releases(&keyring->sem) | 
|  | __releases(&keyring_serialise_link_sem) | 
|  | { | 
|  | BUG_ON(index_key->type == NULL); | 
|  | kenter("%d,%s,", keyring->serial, index_key->type->name); | 
|  |  | 
|  | if (index_key->type == &key_type_keyring) | 
|  | up_write(&keyring_serialise_link_sem); | 
|  |  | 
|  | if (edit) { | 
|  | if (!edit->dead_leaf) { | 
|  | key_payload_reserve(keyring, | 
|  | keyring->datalen - KEYQUOTA_LINK_BYTES); | 
|  | } | 
|  | assoc_array_cancel_edit(edit); | 
|  | } | 
|  | up_write(&keyring->sem); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check addition of keys to restricted keyrings. | 
|  | */ | 
|  | static int __key_link_check_restriction(struct key *keyring, struct key *key) | 
|  | { | 
|  | if (!keyring->restrict_link || !keyring->restrict_link->check) | 
|  | return 0; | 
|  | return keyring->restrict_link->check(keyring, key->type, &key->payload, | 
|  | keyring->restrict_link->key); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * key_link - Link a key to a keyring | 
|  | * @keyring: The keyring to make the link in. | 
|  | * @key: The key to link to. | 
|  | * | 
|  | * Make a link in a keyring to a key, such that the keyring holds a reference | 
|  | * on that key and the key can potentially be found by searching that keyring. | 
|  | * | 
|  | * This function will write-lock the keyring's semaphore and will consume some | 
|  | * of the user's key data quota to hold the link. | 
|  | * | 
|  | * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, | 
|  | * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is | 
|  | * full, -EDQUOT if there is insufficient key data quota remaining to add | 
|  | * another link or -ENOMEM if there's insufficient memory. | 
|  | * | 
|  | * It is assumed that the caller has checked that it is permitted for a link to | 
|  | * be made (the keyring should have Write permission and the key Link | 
|  | * permission). | 
|  | */ | 
|  | int key_link(struct key *keyring, struct key *key) | 
|  | { | 
|  | struct assoc_array_edit *edit; | 
|  | int ret; | 
|  |  | 
|  | kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage)); | 
|  |  | 
|  | key_check(keyring); | 
|  | key_check(key); | 
|  |  | 
|  | ret = __key_link_begin(keyring, &key->index_key, &edit); | 
|  | if (ret == 0) { | 
|  | kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage)); | 
|  | ret = __key_link_check_restriction(keyring, key); | 
|  | if (ret == 0) | 
|  | ret = __key_link_check_live_key(keyring, key); | 
|  | if (ret == 0) | 
|  | __key_link(key, &edit); | 
|  | __key_link_end(keyring, &key->index_key, edit); | 
|  | } | 
|  |  | 
|  | kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage)); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(key_link); | 
|  |  | 
|  | /** | 
|  | * key_unlink - Unlink the first link to a key from a keyring. | 
|  | * @keyring: The keyring to remove the link from. | 
|  | * @key: The key the link is to. | 
|  | * | 
|  | * Remove a link from a keyring to a key. | 
|  | * | 
|  | * This function will write-lock the keyring's semaphore. | 
|  | * | 
|  | * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if | 
|  | * the key isn't linked to by the keyring or -ENOMEM if there's insufficient | 
|  | * memory. | 
|  | * | 
|  | * It is assumed that the caller has checked that it is permitted for a link to | 
|  | * be removed (the keyring should have Write permission; no permissions are | 
|  | * required on the key). | 
|  | */ | 
|  | int key_unlink(struct key *keyring, struct key *key) | 
|  | { | 
|  | struct assoc_array_edit *edit; | 
|  | int ret; | 
|  |  | 
|  | key_check(keyring); | 
|  | key_check(key); | 
|  |  | 
|  | if (keyring->type != &key_type_keyring) | 
|  | return -ENOTDIR; | 
|  |  | 
|  | down_write(&keyring->sem); | 
|  |  | 
|  | edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops, | 
|  | &key->index_key); | 
|  | if (IS_ERR(edit)) { | 
|  | ret = PTR_ERR(edit); | 
|  | goto error; | 
|  | } | 
|  | ret = -ENOENT; | 
|  | if (edit == NULL) | 
|  | goto error; | 
|  |  | 
|  | assoc_array_apply_edit(edit); | 
|  | key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES); | 
|  | ret = 0; | 
|  |  | 
|  | error: | 
|  | up_write(&keyring->sem); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(key_unlink); | 
|  |  | 
|  | /** | 
|  | * keyring_clear - Clear a keyring | 
|  | * @keyring: The keyring to clear. | 
|  | * | 
|  | * Clear the contents of the specified keyring. | 
|  | * | 
|  | * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring. | 
|  | */ | 
|  | int keyring_clear(struct key *keyring) | 
|  | { | 
|  | struct assoc_array_edit *edit; | 
|  | int ret; | 
|  |  | 
|  | if (keyring->type != &key_type_keyring) | 
|  | return -ENOTDIR; | 
|  |  | 
|  | down_write(&keyring->sem); | 
|  |  | 
|  | edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops); | 
|  | if (IS_ERR(edit)) { | 
|  | ret = PTR_ERR(edit); | 
|  | } else { | 
|  | if (edit) | 
|  | assoc_array_apply_edit(edit); | 
|  | key_payload_reserve(keyring, 0); | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | up_write(&keyring->sem); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(keyring_clear); | 
|  |  | 
|  | /* | 
|  | * Dispose of the links from a revoked keyring. | 
|  | * | 
|  | * This is called with the key sem write-locked. | 
|  | */ | 
|  | static void keyring_revoke(struct key *keyring) | 
|  | { | 
|  | struct assoc_array_edit *edit; | 
|  |  | 
|  | edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops); | 
|  | if (!IS_ERR(edit)) { | 
|  | if (edit) | 
|  | assoc_array_apply_edit(edit); | 
|  | key_payload_reserve(keyring, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool keyring_gc_select_iterator(void *object, void *iterator_data) | 
|  | { | 
|  | struct key *key = keyring_ptr_to_key(object); | 
|  | time64_t *limit = iterator_data; | 
|  |  | 
|  | if (key_is_dead(key, *limit)) | 
|  | return false; | 
|  | key_get(key); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int keyring_gc_check_iterator(const void *object, void *iterator_data) | 
|  | { | 
|  | const struct key *key = keyring_ptr_to_key(object); | 
|  | time64_t *limit = iterator_data; | 
|  |  | 
|  | key_check(key); | 
|  | return key_is_dead(key, *limit); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Garbage collect pointers from a keyring. | 
|  | * | 
|  | * Not called with any locks held.  The keyring's key struct will not be | 
|  | * deallocated under us as only our caller may deallocate it. | 
|  | */ | 
|  | void keyring_gc(struct key *keyring, time64_t limit) | 
|  | { | 
|  | int result; | 
|  |  | 
|  | kenter("%x{%s}", keyring->serial, keyring->description ?: ""); | 
|  |  | 
|  | if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) | | 
|  | (1 << KEY_FLAG_REVOKED))) | 
|  | goto dont_gc; | 
|  |  | 
|  | /* scan the keyring looking for dead keys */ | 
|  | rcu_read_lock(); | 
|  | result = assoc_array_iterate(&keyring->keys, | 
|  | keyring_gc_check_iterator, &limit); | 
|  | rcu_read_unlock(); | 
|  | if (result == true) | 
|  | goto do_gc; | 
|  |  | 
|  | dont_gc: | 
|  | kleave(" [no gc]"); | 
|  | return; | 
|  |  | 
|  | do_gc: | 
|  | down_write(&keyring->sem); | 
|  | assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops, | 
|  | keyring_gc_select_iterator, &limit); | 
|  | up_write(&keyring->sem); | 
|  | kleave(" [gc]"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Garbage collect restriction pointers from a keyring. | 
|  | * | 
|  | * Keyring restrictions are associated with a key type, and must be cleaned | 
|  | * up if the key type is unregistered. The restriction is altered to always | 
|  | * reject additional keys so a keyring cannot be opened up by unregistering | 
|  | * a key type. | 
|  | * | 
|  | * Not called with any keyring locks held. The keyring's key struct will not | 
|  | * be deallocated under us as only our caller may deallocate it. | 
|  | * | 
|  | * The caller is required to hold key_types_sem and dead_type->sem. This is | 
|  | * fulfilled by key_gc_keytype() holding the locks on behalf of | 
|  | * key_garbage_collector(), which it invokes on a workqueue. | 
|  | */ | 
|  | void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type) | 
|  | { | 
|  | struct key_restriction *keyres; | 
|  |  | 
|  | kenter("%x{%s}", keyring->serial, keyring->description ?: ""); | 
|  |  | 
|  | /* | 
|  | * keyring->restrict_link is only assigned at key allocation time | 
|  | * or with the key type locked, so the only values that could be | 
|  | * concurrently assigned to keyring->restrict_link are for key | 
|  | * types other than dead_type. Given this, it's ok to check | 
|  | * the key type before acquiring keyring->sem. | 
|  | */ | 
|  | if (!dead_type || !keyring->restrict_link || | 
|  | keyring->restrict_link->keytype != dead_type) { | 
|  | kleave(" [no restriction gc]"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Lock the keyring to ensure that a link is not in progress */ | 
|  | down_write(&keyring->sem); | 
|  |  | 
|  | keyres = keyring->restrict_link; | 
|  |  | 
|  | keyres->check = restrict_link_reject; | 
|  |  | 
|  | key_put(keyres->key); | 
|  | keyres->key = NULL; | 
|  | keyres->keytype = NULL; | 
|  |  | 
|  | up_write(&keyring->sem); | 
|  |  | 
|  | kleave(" [restriction gc]"); | 
|  | } |