|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* SCTP kernel implementation | 
|  | * (C) Copyright 2007 Hewlett-Packard Development Company, L.P. | 
|  | * | 
|  | * This file is part of the SCTP kernel implementation | 
|  | * | 
|  | * Please send any bug reports or fixes you make to the | 
|  | * email address(es): | 
|  | *    lksctp developers <linux-sctp@vger.kernel.org> | 
|  | * | 
|  | * Written or modified by: | 
|  | *   Vlad Yasevich     <vladislav.yasevich@hp.com> | 
|  | */ | 
|  |  | 
|  | #include <crypto/hash.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/scatterlist.h> | 
|  | #include <net/sctp/sctp.h> | 
|  | #include <net/sctp/auth.h> | 
|  |  | 
|  | static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = { | 
|  | { | 
|  | /* id 0 is reserved.  as all 0 */ | 
|  | .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0, | 
|  | }, | 
|  | { | 
|  | .hmac_id = SCTP_AUTH_HMAC_ID_SHA1, | 
|  | .hmac_name = "hmac(sha1)", | 
|  | .hmac_len = SCTP_SHA1_SIG_SIZE, | 
|  | }, | 
|  | { | 
|  | /* id 2 is reserved as well */ | 
|  | .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2, | 
|  | }, | 
|  | #if IS_ENABLED(CONFIG_CRYPTO_SHA256) | 
|  | { | 
|  | .hmac_id = SCTP_AUTH_HMAC_ID_SHA256, | 
|  | .hmac_name = "hmac(sha256)", | 
|  | .hmac_len = SCTP_SHA256_SIG_SIZE, | 
|  | } | 
|  | #endif | 
|  | }; | 
|  |  | 
|  |  | 
|  | void sctp_auth_key_put(struct sctp_auth_bytes *key) | 
|  | { | 
|  | if (!key) | 
|  | return; | 
|  |  | 
|  | if (refcount_dec_and_test(&key->refcnt)) { | 
|  | kfree_sensitive(key); | 
|  | SCTP_DBG_OBJCNT_DEC(keys); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Create a new key structure of a given length */ | 
|  | static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp) | 
|  | { | 
|  | struct sctp_auth_bytes *key; | 
|  |  | 
|  | /* Verify that we are not going to overflow INT_MAX */ | 
|  | if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes))) | 
|  | return NULL; | 
|  |  | 
|  | /* Allocate the shared key */ | 
|  | key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp); | 
|  | if (!key) | 
|  | return NULL; | 
|  |  | 
|  | key->len = key_len; | 
|  | refcount_set(&key->refcnt, 1); | 
|  | SCTP_DBG_OBJCNT_INC(keys); | 
|  |  | 
|  | return key; | 
|  | } | 
|  |  | 
|  | /* Create a new shared key container with a give key id */ | 
|  | struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp) | 
|  | { | 
|  | struct sctp_shared_key *new; | 
|  |  | 
|  | /* Allocate the shared key container */ | 
|  | new = kzalloc(sizeof(struct sctp_shared_key), gfp); | 
|  | if (!new) | 
|  | return NULL; | 
|  |  | 
|  | INIT_LIST_HEAD(&new->key_list); | 
|  | refcount_set(&new->refcnt, 1); | 
|  | new->key_id = key_id; | 
|  |  | 
|  | return new; | 
|  | } | 
|  |  | 
|  | /* Free the shared key structure */ | 
|  | static void sctp_auth_shkey_destroy(struct sctp_shared_key *sh_key) | 
|  | { | 
|  | BUG_ON(!list_empty(&sh_key->key_list)); | 
|  | sctp_auth_key_put(sh_key->key); | 
|  | sh_key->key = NULL; | 
|  | kfree(sh_key); | 
|  | } | 
|  |  | 
|  | void sctp_auth_shkey_release(struct sctp_shared_key *sh_key) | 
|  | { | 
|  | if (refcount_dec_and_test(&sh_key->refcnt)) | 
|  | sctp_auth_shkey_destroy(sh_key); | 
|  | } | 
|  |  | 
|  | void sctp_auth_shkey_hold(struct sctp_shared_key *sh_key) | 
|  | { | 
|  | refcount_inc(&sh_key->refcnt); | 
|  | } | 
|  |  | 
|  | /* Destroy the entire key list.  This is done during the | 
|  | * associon and endpoint free process. | 
|  | */ | 
|  | void sctp_auth_destroy_keys(struct list_head *keys) | 
|  | { | 
|  | struct sctp_shared_key *ep_key; | 
|  | struct sctp_shared_key *tmp; | 
|  |  | 
|  | if (list_empty(keys)) | 
|  | return; | 
|  |  | 
|  | key_for_each_safe(ep_key, tmp, keys) { | 
|  | list_del_init(&ep_key->key_list); | 
|  | sctp_auth_shkey_release(ep_key); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Compare two byte vectors as numbers.  Return values | 
|  | * are: | 
|  | * 	  0 - vectors are equal | 
|  | * 	< 0 - vector 1 is smaller than vector2 | 
|  | * 	> 0 - vector 1 is greater than vector2 | 
|  | * | 
|  | * Algorithm is: | 
|  | * 	This is performed by selecting the numerically smaller key vector... | 
|  | *	If the key vectors are equal as numbers but differ in length ... | 
|  | *	the shorter vector is considered smaller | 
|  | * | 
|  | * Examples (with small values): | 
|  | * 	000123456789 > 123456789 (first number is longer) | 
|  | * 	000123456789 < 234567891 (second number is larger numerically) | 
|  | * 	123456789 > 2345678 	 (first number is both larger & longer) | 
|  | */ | 
|  | static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1, | 
|  | struct sctp_auth_bytes *vector2) | 
|  | { | 
|  | int diff; | 
|  | int i; | 
|  | const __u8 *longer; | 
|  |  | 
|  | diff = vector1->len - vector2->len; | 
|  | if (diff) { | 
|  | longer = (diff > 0) ? vector1->data : vector2->data; | 
|  |  | 
|  | /* Check to see if the longer number is | 
|  | * lead-zero padded.  If it is not, it | 
|  | * is automatically larger numerically. | 
|  | */ | 
|  | for (i = 0; i < abs(diff); i++) { | 
|  | if (longer[i] != 0) | 
|  | return diff; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* lengths are the same, compare numbers */ | 
|  | return memcmp(vector1->data, vector2->data, vector1->len); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create a key vector as described in SCTP-AUTH, Section 6.1 | 
|  | *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO | 
|  | *    parameter sent by each endpoint are concatenated as byte vectors. | 
|  | *    These parameters include the parameter type, parameter length, and | 
|  | *    the parameter value, but padding is omitted; all padding MUST be | 
|  | *    removed from this concatenation before proceeding with further | 
|  | *    computation of keys.  Parameters which were not sent are simply | 
|  | *    omitted from the concatenation process.  The resulting two vectors | 
|  | *    are called the two key vectors. | 
|  | */ | 
|  | static struct sctp_auth_bytes *sctp_auth_make_key_vector( | 
|  | struct sctp_random_param *random, | 
|  | struct sctp_chunks_param *chunks, | 
|  | struct sctp_hmac_algo_param *hmacs, | 
|  | gfp_t gfp) | 
|  | { | 
|  | struct sctp_auth_bytes *new; | 
|  | __u32	len; | 
|  | __u32	offset = 0; | 
|  | __u16	random_len, hmacs_len, chunks_len = 0; | 
|  |  | 
|  | random_len = ntohs(random->param_hdr.length); | 
|  | hmacs_len = ntohs(hmacs->param_hdr.length); | 
|  | if (chunks) | 
|  | chunks_len = ntohs(chunks->param_hdr.length); | 
|  |  | 
|  | len = random_len + hmacs_len + chunks_len; | 
|  |  | 
|  | new = sctp_auth_create_key(len, gfp); | 
|  | if (!new) | 
|  | return NULL; | 
|  |  | 
|  | memcpy(new->data, random, random_len); | 
|  | offset += random_len; | 
|  |  | 
|  | if (chunks) { | 
|  | memcpy(new->data + offset, chunks, chunks_len); | 
|  | offset += chunks_len; | 
|  | } | 
|  |  | 
|  | memcpy(new->data + offset, hmacs, hmacs_len); | 
|  |  | 
|  | return new; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Make a key vector based on our local parameters */ | 
|  | static struct sctp_auth_bytes *sctp_auth_make_local_vector( | 
|  | const struct sctp_association *asoc, | 
|  | gfp_t gfp) | 
|  | { | 
|  | return sctp_auth_make_key_vector( | 
|  | (struct sctp_random_param *)asoc->c.auth_random, | 
|  | (struct sctp_chunks_param *)asoc->c.auth_chunks, | 
|  | (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs, gfp); | 
|  | } | 
|  |  | 
|  | /* Make a key vector based on peer's parameters */ | 
|  | static struct sctp_auth_bytes *sctp_auth_make_peer_vector( | 
|  | const struct sctp_association *asoc, | 
|  | gfp_t gfp) | 
|  | { | 
|  | return sctp_auth_make_key_vector(asoc->peer.peer_random, | 
|  | asoc->peer.peer_chunks, | 
|  | asoc->peer.peer_hmacs, | 
|  | gfp); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Set the value of the association shared key base on the parameters | 
|  | * given.  The algorithm is: | 
|  | *    From the endpoint pair shared keys and the key vectors the | 
|  | *    association shared keys are computed.  This is performed by selecting | 
|  | *    the numerically smaller key vector and concatenating it to the | 
|  | *    endpoint pair shared key, and then concatenating the numerically | 
|  | *    larger key vector to that.  The result of the concatenation is the | 
|  | *    association shared key. | 
|  | */ | 
|  | static struct sctp_auth_bytes *sctp_auth_asoc_set_secret( | 
|  | struct sctp_shared_key *ep_key, | 
|  | struct sctp_auth_bytes *first_vector, | 
|  | struct sctp_auth_bytes *last_vector, | 
|  | gfp_t gfp) | 
|  | { | 
|  | struct sctp_auth_bytes *secret; | 
|  | __u32 offset = 0; | 
|  | __u32 auth_len; | 
|  |  | 
|  | auth_len = first_vector->len + last_vector->len; | 
|  | if (ep_key->key) | 
|  | auth_len += ep_key->key->len; | 
|  |  | 
|  | secret = sctp_auth_create_key(auth_len, gfp); | 
|  | if (!secret) | 
|  | return NULL; | 
|  |  | 
|  | if (ep_key->key) { | 
|  | memcpy(secret->data, ep_key->key->data, ep_key->key->len); | 
|  | offset += ep_key->key->len; | 
|  | } | 
|  |  | 
|  | memcpy(secret->data + offset, first_vector->data, first_vector->len); | 
|  | offset += first_vector->len; | 
|  |  | 
|  | memcpy(secret->data + offset, last_vector->data, last_vector->len); | 
|  |  | 
|  | return secret; | 
|  | } | 
|  |  | 
|  | /* Create an association shared key.  Follow the algorithm | 
|  | * described in SCTP-AUTH, Section 6.1 | 
|  | */ | 
|  | static struct sctp_auth_bytes *sctp_auth_asoc_create_secret( | 
|  | const struct sctp_association *asoc, | 
|  | struct sctp_shared_key *ep_key, | 
|  | gfp_t gfp) | 
|  | { | 
|  | struct sctp_auth_bytes *local_key_vector; | 
|  | struct sctp_auth_bytes *peer_key_vector; | 
|  | struct sctp_auth_bytes	*first_vector, | 
|  | *last_vector; | 
|  | struct sctp_auth_bytes	*secret = NULL; | 
|  | int	cmp; | 
|  |  | 
|  |  | 
|  | /* Now we need to build the key vectors | 
|  | * SCTP-AUTH , Section 6.1 | 
|  | *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO | 
|  | *    parameter sent by each endpoint are concatenated as byte vectors. | 
|  | *    These parameters include the parameter type, parameter length, and | 
|  | *    the parameter value, but padding is omitted; all padding MUST be | 
|  | *    removed from this concatenation before proceeding with further | 
|  | *    computation of keys.  Parameters which were not sent are simply | 
|  | *    omitted from the concatenation process.  The resulting two vectors | 
|  | *    are called the two key vectors. | 
|  | */ | 
|  |  | 
|  | local_key_vector = sctp_auth_make_local_vector(asoc, gfp); | 
|  | peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp); | 
|  |  | 
|  | if (!peer_key_vector || !local_key_vector) | 
|  | goto out; | 
|  |  | 
|  | /* Figure out the order in which the key_vectors will be | 
|  | * added to the endpoint shared key. | 
|  | * SCTP-AUTH, Section 6.1: | 
|  | *   This is performed by selecting the numerically smaller key | 
|  | *   vector and concatenating it to the endpoint pair shared | 
|  | *   key, and then concatenating the numerically larger key | 
|  | *   vector to that.  If the key vectors are equal as numbers | 
|  | *   but differ in length, then the concatenation order is the | 
|  | *   endpoint shared key, followed by the shorter key vector, | 
|  | *   followed by the longer key vector.  Otherwise, the key | 
|  | *   vectors are identical, and may be concatenated to the | 
|  | *   endpoint pair key in any order. | 
|  | */ | 
|  | cmp = sctp_auth_compare_vectors(local_key_vector, | 
|  | peer_key_vector); | 
|  | if (cmp < 0) { | 
|  | first_vector = local_key_vector; | 
|  | last_vector = peer_key_vector; | 
|  | } else { | 
|  | first_vector = peer_key_vector; | 
|  | last_vector = local_key_vector; | 
|  | } | 
|  |  | 
|  | secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector, | 
|  | gfp); | 
|  | out: | 
|  | sctp_auth_key_put(local_key_vector); | 
|  | sctp_auth_key_put(peer_key_vector); | 
|  |  | 
|  | return secret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Populate the association overlay list with the list | 
|  | * from the endpoint. | 
|  | */ | 
|  | int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep, | 
|  | struct sctp_association *asoc, | 
|  | gfp_t gfp) | 
|  | { | 
|  | struct sctp_shared_key *sh_key; | 
|  | struct sctp_shared_key *new; | 
|  |  | 
|  | BUG_ON(!list_empty(&asoc->endpoint_shared_keys)); | 
|  |  | 
|  | key_for_each(sh_key, &ep->endpoint_shared_keys) { | 
|  | new = sctp_auth_shkey_create(sh_key->key_id, gfp); | 
|  | if (!new) | 
|  | goto nomem; | 
|  |  | 
|  | new->key = sh_key->key; | 
|  | sctp_auth_key_hold(new->key); | 
|  | list_add(&new->key_list, &asoc->endpoint_shared_keys); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | nomem: | 
|  | sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Public interface to create the association shared key. | 
|  | * See code above for the algorithm. | 
|  | */ | 
|  | int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp) | 
|  | { | 
|  | struct sctp_auth_bytes	*secret; | 
|  | struct sctp_shared_key *ep_key; | 
|  | struct sctp_chunk *chunk; | 
|  |  | 
|  | /* If we don't support AUTH, or peer is not capable | 
|  | * we don't need to do anything. | 
|  | */ | 
|  | if (!asoc->peer.auth_capable) | 
|  | return 0; | 
|  |  | 
|  | /* If the key_id is non-zero and we couldn't find an | 
|  | * endpoint pair shared key, we can't compute the | 
|  | * secret. | 
|  | * For key_id 0, endpoint pair shared key is a NULL key. | 
|  | */ | 
|  | ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id); | 
|  | BUG_ON(!ep_key); | 
|  |  | 
|  | secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp); | 
|  | if (!secret) | 
|  | return -ENOMEM; | 
|  |  | 
|  | sctp_auth_key_put(asoc->asoc_shared_key); | 
|  | asoc->asoc_shared_key = secret; | 
|  | asoc->shkey = ep_key; | 
|  |  | 
|  | /* Update send queue in case any chunk already in there now | 
|  | * needs authenticating | 
|  | */ | 
|  | list_for_each_entry(chunk, &asoc->outqueue.out_chunk_list, list) { | 
|  | if (sctp_auth_send_cid(chunk->chunk_hdr->type, asoc)) { | 
|  | chunk->auth = 1; | 
|  | if (!chunk->shkey) { | 
|  | chunk->shkey = asoc->shkey; | 
|  | sctp_auth_shkey_hold(chunk->shkey); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Find the endpoint pair shared key based on the key_id */ | 
|  | struct sctp_shared_key *sctp_auth_get_shkey( | 
|  | const struct sctp_association *asoc, | 
|  | __u16 key_id) | 
|  | { | 
|  | struct sctp_shared_key *key; | 
|  |  | 
|  | /* First search associations set of endpoint pair shared keys */ | 
|  | key_for_each(key, &asoc->endpoint_shared_keys) { | 
|  | if (key->key_id == key_id) { | 
|  | if (!key->deactivated) | 
|  | return key; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize all the possible digest transforms that we can use.  Right | 
|  | * now, the supported digests are SHA1 and SHA256.  We do this here once | 
|  | * because of the restrictiong that transforms may only be allocated in | 
|  | * user context.  This forces us to pre-allocated all possible transforms | 
|  | * at the endpoint init time. | 
|  | */ | 
|  | int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp) | 
|  | { | 
|  | struct crypto_shash *tfm = NULL; | 
|  | __u16   id; | 
|  |  | 
|  | /* If the transforms are already allocated, we are done */ | 
|  | if (ep->auth_hmacs) | 
|  | return 0; | 
|  |  | 
|  | /* Allocated the array of pointers to transorms */ | 
|  | ep->auth_hmacs = kcalloc(SCTP_AUTH_NUM_HMACS, | 
|  | sizeof(struct crypto_shash *), | 
|  | gfp); | 
|  | if (!ep->auth_hmacs) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) { | 
|  |  | 
|  | /* See is we support the id.  Supported IDs have name and | 
|  | * length fields set, so that we can allocated and use | 
|  | * them.  We can safely just check for name, for without the | 
|  | * name, we can't allocate the TFM. | 
|  | */ | 
|  | if (!sctp_hmac_list[id].hmac_name) | 
|  | continue; | 
|  |  | 
|  | /* If this TFM has been allocated, we are all set */ | 
|  | if (ep->auth_hmacs[id]) | 
|  | continue; | 
|  |  | 
|  | /* Allocate the ID */ | 
|  | tfm = crypto_alloc_shash(sctp_hmac_list[id].hmac_name, 0, 0); | 
|  | if (IS_ERR(tfm)) | 
|  | goto out_err; | 
|  |  | 
|  | ep->auth_hmacs[id] = tfm; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_err: | 
|  | /* Clean up any successful allocations */ | 
|  | sctp_auth_destroy_hmacs(ep->auth_hmacs); | 
|  | ep->auth_hmacs = NULL; | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Destroy the hmac tfm array */ | 
|  | void sctp_auth_destroy_hmacs(struct crypto_shash *auth_hmacs[]) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (!auth_hmacs) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) { | 
|  | crypto_free_shash(auth_hmacs[i]); | 
|  | } | 
|  | kfree(auth_hmacs); | 
|  | } | 
|  |  | 
|  |  | 
|  | struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id) | 
|  | { | 
|  | return &sctp_hmac_list[hmac_id]; | 
|  | } | 
|  |  | 
|  | /* Get an hmac description information that we can use to build | 
|  | * the AUTH chunk | 
|  | */ | 
|  | struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc) | 
|  | { | 
|  | struct sctp_hmac_algo_param *hmacs; | 
|  | __u16 n_elt; | 
|  | __u16 id = 0; | 
|  | int i; | 
|  |  | 
|  | /* If we have a default entry, use it */ | 
|  | if (asoc->default_hmac_id) | 
|  | return &sctp_hmac_list[asoc->default_hmac_id]; | 
|  |  | 
|  | /* Since we do not have a default entry, find the first entry | 
|  | * we support and return that.  Do not cache that id. | 
|  | */ | 
|  | hmacs = asoc->peer.peer_hmacs; | 
|  | if (!hmacs) | 
|  | return NULL; | 
|  |  | 
|  | n_elt = (ntohs(hmacs->param_hdr.length) - | 
|  | sizeof(struct sctp_paramhdr)) >> 1; | 
|  | for (i = 0; i < n_elt; i++) { | 
|  | id = ntohs(hmacs->hmac_ids[i]); | 
|  |  | 
|  | /* Check the id is in the supported range. And | 
|  | * see if we support the id.  Supported IDs have name and | 
|  | * length fields set, so that we can allocate and use | 
|  | * them.  We can safely just check for name, for without the | 
|  | * name, we can't allocate the TFM. | 
|  | */ | 
|  | if (id > SCTP_AUTH_HMAC_ID_MAX || | 
|  | !sctp_hmac_list[id].hmac_name) { | 
|  | id = 0; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (id == 0) | 
|  | return NULL; | 
|  |  | 
|  | return &sctp_hmac_list[id]; | 
|  | } | 
|  |  | 
|  | static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id) | 
|  | { | 
|  | int  found = 0; | 
|  | int  i; | 
|  |  | 
|  | for (i = 0; i < n_elts; i++) { | 
|  | if (hmac_id == hmacs[i]) { | 
|  | found = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return found; | 
|  | } | 
|  |  | 
|  | /* See if the HMAC_ID is one that we claim as supported */ | 
|  | int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc, | 
|  | __be16 hmac_id) | 
|  | { | 
|  | struct sctp_hmac_algo_param *hmacs; | 
|  | __u16 n_elt; | 
|  |  | 
|  | if (!asoc) | 
|  | return 0; | 
|  |  | 
|  | hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs; | 
|  | n_elt = (ntohs(hmacs->param_hdr.length) - | 
|  | sizeof(struct sctp_paramhdr)) >> 1; | 
|  |  | 
|  | return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Cache the default HMAC id.  This to follow this text from SCTP-AUTH: | 
|  | * Section 6.1: | 
|  | *   The receiver of a HMAC-ALGO parameter SHOULD use the first listed | 
|  | *   algorithm it supports. | 
|  | */ | 
|  | void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc, | 
|  | struct sctp_hmac_algo_param *hmacs) | 
|  | { | 
|  | struct sctp_endpoint *ep; | 
|  | __u16   id; | 
|  | int	i; | 
|  | int	n_params; | 
|  |  | 
|  | /* if the default id is already set, use it */ | 
|  | if (asoc->default_hmac_id) | 
|  | return; | 
|  |  | 
|  | n_params = (ntohs(hmacs->param_hdr.length) - | 
|  | sizeof(struct sctp_paramhdr)) >> 1; | 
|  | ep = asoc->ep; | 
|  | for (i = 0; i < n_params; i++) { | 
|  | id = ntohs(hmacs->hmac_ids[i]); | 
|  |  | 
|  | /* Check the id is in the supported range */ | 
|  | if (id > SCTP_AUTH_HMAC_ID_MAX) | 
|  | continue; | 
|  |  | 
|  | /* If this TFM has been allocated, use this id */ | 
|  | if (ep->auth_hmacs[id]) { | 
|  | asoc->default_hmac_id = id; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Check to see if the given chunk is supposed to be authenticated */ | 
|  | static int __sctp_auth_cid(enum sctp_cid chunk, struct sctp_chunks_param *param) | 
|  | { | 
|  | unsigned short len; | 
|  | int found = 0; | 
|  | int i; | 
|  |  | 
|  | if (!param || param->param_hdr.length == 0) | 
|  | return 0; | 
|  |  | 
|  | len = ntohs(param->param_hdr.length) - sizeof(struct sctp_paramhdr); | 
|  |  | 
|  | /* SCTP-AUTH, Section 3.2 | 
|  | *    The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH | 
|  | *    chunks MUST NOT be listed in the CHUNKS parameter.  However, if | 
|  | *    a CHUNKS parameter is received then the types for INIT, INIT-ACK, | 
|  | *    SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored. | 
|  | */ | 
|  | for (i = 0; !found && i < len; i++) { | 
|  | switch (param->chunks[i]) { | 
|  | case SCTP_CID_INIT: | 
|  | case SCTP_CID_INIT_ACK: | 
|  | case SCTP_CID_SHUTDOWN_COMPLETE: | 
|  | case SCTP_CID_AUTH: | 
|  | break; | 
|  |  | 
|  | default: | 
|  | if (param->chunks[i] == chunk) | 
|  | found = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return found; | 
|  | } | 
|  |  | 
|  | /* Check if peer requested that this chunk is authenticated */ | 
|  | int sctp_auth_send_cid(enum sctp_cid chunk, const struct sctp_association *asoc) | 
|  | { | 
|  | if (!asoc) | 
|  | return 0; | 
|  |  | 
|  | if (!asoc->peer.auth_capable) | 
|  | return 0; | 
|  |  | 
|  | return __sctp_auth_cid(chunk, asoc->peer.peer_chunks); | 
|  | } | 
|  |  | 
|  | /* Check if we requested that peer authenticate this chunk. */ | 
|  | int sctp_auth_recv_cid(enum sctp_cid chunk, const struct sctp_association *asoc) | 
|  | { | 
|  | if (!asoc) | 
|  | return 0; | 
|  |  | 
|  | if (!asoc->peer.auth_capable) | 
|  | return 0; | 
|  |  | 
|  | return __sctp_auth_cid(chunk, | 
|  | (struct sctp_chunks_param *)asoc->c.auth_chunks); | 
|  | } | 
|  |  | 
|  | /* SCTP-AUTH: Section 6.2: | 
|  | *    The sender MUST calculate the MAC as described in RFC2104 [2] using | 
|  | *    the hash function H as described by the MAC Identifier and the shared | 
|  | *    association key K based on the endpoint pair shared key described by | 
|  | *    the shared key identifier.  The 'data' used for the computation of | 
|  | *    the AUTH-chunk is given by the AUTH chunk with its HMAC field set to | 
|  | *    zero (as shown in Figure 6) followed by all chunks that are placed | 
|  | *    after the AUTH chunk in the SCTP packet. | 
|  | */ | 
|  | void sctp_auth_calculate_hmac(const struct sctp_association *asoc, | 
|  | struct sk_buff *skb, struct sctp_auth_chunk *auth, | 
|  | struct sctp_shared_key *ep_key, gfp_t gfp) | 
|  | { | 
|  | struct sctp_auth_bytes *asoc_key; | 
|  | struct crypto_shash *tfm; | 
|  | __u16 key_id, hmac_id; | 
|  | unsigned char *end; | 
|  | int free_key = 0; | 
|  | __u8 *digest; | 
|  |  | 
|  | /* Extract the info we need: | 
|  | * - hmac id | 
|  | * - key id | 
|  | */ | 
|  | key_id = ntohs(auth->auth_hdr.shkey_id); | 
|  | hmac_id = ntohs(auth->auth_hdr.hmac_id); | 
|  |  | 
|  | if (key_id == asoc->active_key_id) | 
|  | asoc_key = asoc->asoc_shared_key; | 
|  | else { | 
|  | /* ep_key can't be NULL here */ | 
|  | asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp); | 
|  | if (!asoc_key) | 
|  | return; | 
|  |  | 
|  | free_key = 1; | 
|  | } | 
|  |  | 
|  | /* set up scatter list */ | 
|  | end = skb_tail_pointer(skb); | 
|  |  | 
|  | tfm = asoc->ep->auth_hmacs[hmac_id]; | 
|  |  | 
|  | digest = (u8 *)(&auth->auth_hdr + 1); | 
|  | if (crypto_shash_setkey(tfm, &asoc_key->data[0], asoc_key->len)) | 
|  | goto free; | 
|  |  | 
|  | crypto_shash_tfm_digest(tfm, (u8 *)auth, end - (unsigned char *)auth, | 
|  | digest); | 
|  |  | 
|  | free: | 
|  | if (free_key) | 
|  | sctp_auth_key_put(asoc_key); | 
|  | } | 
|  |  | 
|  | /* API Helpers */ | 
|  |  | 
|  | /* Add a chunk to the endpoint authenticated chunk list */ | 
|  | int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id) | 
|  | { | 
|  | struct sctp_chunks_param *p = ep->auth_chunk_list; | 
|  | __u16 nchunks; | 
|  | __u16 param_len; | 
|  |  | 
|  | /* If this chunk is already specified, we are done */ | 
|  | if (__sctp_auth_cid(chunk_id, p)) | 
|  | return 0; | 
|  |  | 
|  | /* Check if we can add this chunk to the array */ | 
|  | param_len = ntohs(p->param_hdr.length); | 
|  | nchunks = param_len - sizeof(struct sctp_paramhdr); | 
|  | if (nchunks == SCTP_NUM_CHUNK_TYPES) | 
|  | return -EINVAL; | 
|  |  | 
|  | p->chunks[nchunks] = chunk_id; | 
|  | p->param_hdr.length = htons(param_len + 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Add hmac identifires to the endpoint list of supported hmac ids */ | 
|  | int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep, | 
|  | struct sctp_hmacalgo *hmacs) | 
|  | { | 
|  | int has_sha1 = 0; | 
|  | __u16 id; | 
|  | int i; | 
|  |  | 
|  | /* Scan the list looking for unsupported id.  Also make sure that | 
|  | * SHA1 is specified. | 
|  | */ | 
|  | for (i = 0; i < hmacs->shmac_num_idents; i++) { | 
|  | id = hmacs->shmac_idents[i]; | 
|  |  | 
|  | if (id > SCTP_AUTH_HMAC_ID_MAX) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if (SCTP_AUTH_HMAC_ID_SHA1 == id) | 
|  | has_sha1 = 1; | 
|  |  | 
|  | if (!sctp_hmac_list[id].hmac_name) | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | if (!has_sha1) | 
|  | return -EINVAL; | 
|  |  | 
|  | for (i = 0; i < hmacs->shmac_num_idents; i++) | 
|  | ep->auth_hmacs_list->hmac_ids[i] = | 
|  | htons(hmacs->shmac_idents[i]); | 
|  | ep->auth_hmacs_list->param_hdr.length = | 
|  | htons(sizeof(struct sctp_paramhdr) + | 
|  | hmacs->shmac_num_idents * sizeof(__u16)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Set a new shared key on either endpoint or association.  If the | 
|  | * key with a same ID already exists, replace the key (remove the | 
|  | * old key and add a new one). | 
|  | */ | 
|  | int sctp_auth_set_key(struct sctp_endpoint *ep, | 
|  | struct sctp_association *asoc, | 
|  | struct sctp_authkey *auth_key) | 
|  | { | 
|  | struct sctp_shared_key *cur_key, *shkey; | 
|  | struct sctp_auth_bytes *key; | 
|  | struct list_head *sh_keys; | 
|  | int replace = 0; | 
|  |  | 
|  | /* Try to find the given key id to see if | 
|  | * we are doing a replace, or adding a new key | 
|  | */ | 
|  | if (asoc) { | 
|  | if (!asoc->peer.auth_capable) | 
|  | return -EACCES; | 
|  | sh_keys = &asoc->endpoint_shared_keys; | 
|  | } else { | 
|  | if (!ep->auth_enable) | 
|  | return -EACCES; | 
|  | sh_keys = &ep->endpoint_shared_keys; | 
|  | } | 
|  |  | 
|  | key_for_each(shkey, sh_keys) { | 
|  | if (shkey->key_id == auth_key->sca_keynumber) { | 
|  | replace = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber, GFP_KERNEL); | 
|  | if (!cur_key) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Create a new key data based on the info passed in */ | 
|  | key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL); | 
|  | if (!key) { | 
|  | kfree(cur_key); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength); | 
|  | cur_key->key = key; | 
|  |  | 
|  | if (!replace) { | 
|  | list_add(&cur_key->key_list, sh_keys); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | list_del_init(&shkey->key_list); | 
|  | list_add(&cur_key->key_list, sh_keys); | 
|  |  | 
|  | if (asoc && asoc->active_key_id == auth_key->sca_keynumber && | 
|  | sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL)) { | 
|  | list_del_init(&cur_key->key_list); | 
|  | sctp_auth_shkey_release(cur_key); | 
|  | list_add(&shkey->key_list, sh_keys); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | sctp_auth_shkey_release(shkey); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int sctp_auth_set_active_key(struct sctp_endpoint *ep, | 
|  | struct sctp_association *asoc, | 
|  | __u16  key_id) | 
|  | { | 
|  | struct sctp_shared_key *key; | 
|  | struct list_head *sh_keys; | 
|  | int found = 0; | 
|  |  | 
|  | /* The key identifier MUST correst to an existing key */ | 
|  | if (asoc) { | 
|  | if (!asoc->peer.auth_capable) | 
|  | return -EACCES; | 
|  | sh_keys = &asoc->endpoint_shared_keys; | 
|  | } else { | 
|  | if (!ep->auth_enable) | 
|  | return -EACCES; | 
|  | sh_keys = &ep->endpoint_shared_keys; | 
|  | } | 
|  |  | 
|  | key_for_each(key, sh_keys) { | 
|  | if (key->key_id == key_id) { | 
|  | found = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!found || key->deactivated) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (asoc) { | 
|  | __u16  active_key_id = asoc->active_key_id; | 
|  |  | 
|  | asoc->active_key_id = key_id; | 
|  | if (sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL)) { | 
|  | asoc->active_key_id = active_key_id; | 
|  | return -ENOMEM; | 
|  | } | 
|  | } else | 
|  | ep->active_key_id = key_id; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int sctp_auth_del_key_id(struct sctp_endpoint *ep, | 
|  | struct sctp_association *asoc, | 
|  | __u16  key_id) | 
|  | { | 
|  | struct sctp_shared_key *key; | 
|  | struct list_head *sh_keys; | 
|  | int found = 0; | 
|  |  | 
|  | /* The key identifier MUST NOT be the current active key | 
|  | * The key identifier MUST correst to an existing key | 
|  | */ | 
|  | if (asoc) { | 
|  | if (!asoc->peer.auth_capable) | 
|  | return -EACCES; | 
|  | if (asoc->active_key_id == key_id) | 
|  | return -EINVAL; | 
|  |  | 
|  | sh_keys = &asoc->endpoint_shared_keys; | 
|  | } else { | 
|  | if (!ep->auth_enable) | 
|  | return -EACCES; | 
|  | if (ep->active_key_id == key_id) | 
|  | return -EINVAL; | 
|  |  | 
|  | sh_keys = &ep->endpoint_shared_keys; | 
|  | } | 
|  |  | 
|  | key_for_each(key, sh_keys) { | 
|  | if (key->key_id == key_id) { | 
|  | found = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!found) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Delete the shared key */ | 
|  | list_del_init(&key->key_list); | 
|  | sctp_auth_shkey_release(key); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int sctp_auth_deact_key_id(struct sctp_endpoint *ep, | 
|  | struct sctp_association *asoc, __u16  key_id) | 
|  | { | 
|  | struct sctp_shared_key *key; | 
|  | struct list_head *sh_keys; | 
|  | int found = 0; | 
|  |  | 
|  | /* The key identifier MUST NOT be the current active key | 
|  | * The key identifier MUST correst to an existing key | 
|  | */ | 
|  | if (asoc) { | 
|  | if (!asoc->peer.auth_capable) | 
|  | return -EACCES; | 
|  | if (asoc->active_key_id == key_id) | 
|  | return -EINVAL; | 
|  |  | 
|  | sh_keys = &asoc->endpoint_shared_keys; | 
|  | } else { | 
|  | if (!ep->auth_enable) | 
|  | return -EACCES; | 
|  | if (ep->active_key_id == key_id) | 
|  | return -EINVAL; | 
|  |  | 
|  | sh_keys = &ep->endpoint_shared_keys; | 
|  | } | 
|  |  | 
|  | key_for_each(key, sh_keys) { | 
|  | if (key->key_id == key_id) { | 
|  | found = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!found) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* refcnt == 1 and !list_empty mean it's not being used anywhere | 
|  | * and deactivated will be set, so it's time to notify userland | 
|  | * that this shkey can be freed. | 
|  | */ | 
|  | if (asoc && !list_empty(&key->key_list) && | 
|  | refcount_read(&key->refcnt) == 1) { | 
|  | struct sctp_ulpevent *ev; | 
|  |  | 
|  | ev = sctp_ulpevent_make_authkey(asoc, key->key_id, | 
|  | SCTP_AUTH_FREE_KEY, GFP_KERNEL); | 
|  | if (ev) | 
|  | asoc->stream.si->enqueue_event(&asoc->ulpq, ev); | 
|  | } | 
|  |  | 
|  | key->deactivated = 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int sctp_auth_init(struct sctp_endpoint *ep, gfp_t gfp) | 
|  | { | 
|  | int err = -ENOMEM; | 
|  |  | 
|  | /* Allocate space for HMACS and CHUNKS authentication | 
|  | * variables.  There are arrays that we encode directly | 
|  | * into parameters to make the rest of the operations easier. | 
|  | */ | 
|  | if (!ep->auth_hmacs_list) { | 
|  | struct sctp_hmac_algo_param *auth_hmacs; | 
|  |  | 
|  | auth_hmacs = kzalloc(struct_size(auth_hmacs, hmac_ids, | 
|  | SCTP_AUTH_NUM_HMACS), gfp); | 
|  | if (!auth_hmacs) | 
|  | goto nomem; | 
|  | /* Initialize the HMACS parameter. | 
|  | * SCTP-AUTH: Section 3.3 | 
|  | *    Every endpoint supporting SCTP chunk authentication MUST | 
|  | *    support the HMAC based on the SHA-1 algorithm. | 
|  | */ | 
|  | auth_hmacs->param_hdr.type = SCTP_PARAM_HMAC_ALGO; | 
|  | auth_hmacs->param_hdr.length = | 
|  | htons(sizeof(struct sctp_paramhdr) + 2); | 
|  | auth_hmacs->hmac_ids[0] = htons(SCTP_AUTH_HMAC_ID_SHA1); | 
|  | ep->auth_hmacs_list = auth_hmacs; | 
|  | } | 
|  |  | 
|  | if (!ep->auth_chunk_list) { | 
|  | struct sctp_chunks_param *auth_chunks; | 
|  |  | 
|  | auth_chunks = kzalloc(sizeof(*auth_chunks) + | 
|  | SCTP_NUM_CHUNK_TYPES, gfp); | 
|  | if (!auth_chunks) | 
|  | goto nomem; | 
|  | /* Initialize the CHUNKS parameter */ | 
|  | auth_chunks->param_hdr.type = SCTP_PARAM_CHUNKS; | 
|  | auth_chunks->param_hdr.length = | 
|  | htons(sizeof(struct sctp_paramhdr)); | 
|  | ep->auth_chunk_list = auth_chunks; | 
|  | } | 
|  |  | 
|  | /* Allocate and initialize transorms arrays for supported | 
|  | * HMACs. | 
|  | */ | 
|  | err = sctp_auth_init_hmacs(ep, gfp); | 
|  | if (err) | 
|  | goto nomem; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | nomem: | 
|  | /* Free all allocations */ | 
|  | kfree(ep->auth_hmacs_list); | 
|  | kfree(ep->auth_chunk_list); | 
|  | ep->auth_hmacs_list = NULL; | 
|  | ep->auth_chunk_list = NULL; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | void sctp_auth_free(struct sctp_endpoint *ep) | 
|  | { | 
|  | kfree(ep->auth_hmacs_list); | 
|  | kfree(ep->auth_chunk_list); | 
|  | ep->auth_hmacs_list = NULL; | 
|  | ep->auth_chunk_list = NULL; | 
|  | sctp_auth_destroy_hmacs(ep->auth_hmacs); | 
|  | ep->auth_hmacs = NULL; | 
|  | } |