|  | /* | 
|  | * Copyright (C) 2001 Momchil Velikov | 
|  | * Portions Copyright (C) 2001 Christoph Hellwig | 
|  | * Copyright (C) 2005 SGI, Christoph Lameter | 
|  | * Copyright (C) 2006 Nick Piggin | 
|  | * Copyright (C) 2012 Konstantin Khlebnikov | 
|  | * Copyright (C) 2016 Intel, Matthew Wilcox | 
|  | * Copyright (C) 2016 Intel, Ross Zwisler | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as | 
|  | * published by the Free Software Foundation; either version 2, or (at | 
|  | * your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but | 
|  | * WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/errno.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/radix-tree.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/kmemleak.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/preempt.h>		/* in_interrupt() */ | 
|  |  | 
|  |  | 
|  | /* Number of nodes in fully populated tree of given height */ | 
|  | static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly; | 
|  |  | 
|  | /* | 
|  | * Radix tree node cache. | 
|  | */ | 
|  | static struct kmem_cache *radix_tree_node_cachep; | 
|  |  | 
|  | /* | 
|  | * The radix tree is variable-height, so an insert operation not only has | 
|  | * to build the branch to its corresponding item, it also has to build the | 
|  | * branch to existing items if the size has to be increased (by | 
|  | * radix_tree_extend). | 
|  | * | 
|  | * The worst case is a zero height tree with just a single item at index 0, | 
|  | * and then inserting an item at index ULONG_MAX. This requires 2 new branches | 
|  | * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared. | 
|  | * Hence: | 
|  | */ | 
|  | #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1) | 
|  |  | 
|  | /* | 
|  | * Per-cpu pool of preloaded nodes | 
|  | */ | 
|  | struct radix_tree_preload { | 
|  | unsigned nr; | 
|  | /* nodes->private_data points to next preallocated node */ | 
|  | struct radix_tree_node *nodes; | 
|  | }; | 
|  | static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, }; | 
|  |  | 
|  | static inline void *node_to_entry(void *ptr) | 
|  | { | 
|  | return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE); | 
|  | } | 
|  |  | 
|  | #define RADIX_TREE_RETRY	node_to_entry(NULL) | 
|  |  | 
|  | #ifdef CONFIG_RADIX_TREE_MULTIORDER | 
|  | /* Sibling slots point directly to another slot in the same node */ | 
|  | static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node) | 
|  | { | 
|  | void **ptr = node; | 
|  | return (parent->slots <= ptr) && | 
|  | (ptr < parent->slots + RADIX_TREE_MAP_SIZE); | 
|  | } | 
|  | #else | 
|  | static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node) | 
|  | { | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline unsigned long get_slot_offset(struct radix_tree_node *parent, | 
|  | void **slot) | 
|  | { | 
|  | return slot - parent->slots; | 
|  | } | 
|  |  | 
|  | static unsigned int radix_tree_descend(struct radix_tree_node *parent, | 
|  | struct radix_tree_node **nodep, unsigned long index) | 
|  | { | 
|  | unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK; | 
|  | void **entry = rcu_dereference_raw(parent->slots[offset]); | 
|  |  | 
|  | #ifdef CONFIG_RADIX_TREE_MULTIORDER | 
|  | if (radix_tree_is_internal_node(entry)) { | 
|  | if (is_sibling_entry(parent, entry)) { | 
|  | void **sibentry = (void **) entry_to_node(entry); | 
|  | offset = get_slot_offset(parent, sibentry); | 
|  | entry = rcu_dereference_raw(*sibentry); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | *nodep = (void *)entry; | 
|  | return offset; | 
|  | } | 
|  |  | 
|  | static inline gfp_t root_gfp_mask(struct radix_tree_root *root) | 
|  | { | 
|  | return root->gfp_mask & __GFP_BITS_MASK; | 
|  | } | 
|  |  | 
|  | static inline void tag_set(struct radix_tree_node *node, unsigned int tag, | 
|  | int offset) | 
|  | { | 
|  | __set_bit(offset, node->tags[tag]); | 
|  | } | 
|  |  | 
|  | static inline void tag_clear(struct radix_tree_node *node, unsigned int tag, | 
|  | int offset) | 
|  | { | 
|  | __clear_bit(offset, node->tags[tag]); | 
|  | } | 
|  |  | 
|  | static inline int tag_get(struct radix_tree_node *node, unsigned int tag, | 
|  | int offset) | 
|  | { | 
|  | return test_bit(offset, node->tags[tag]); | 
|  | } | 
|  |  | 
|  | static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag) | 
|  | { | 
|  | root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT)); | 
|  | } | 
|  |  | 
|  | static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag) | 
|  | { | 
|  | root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT)); | 
|  | } | 
|  |  | 
|  | static inline void root_tag_clear_all(struct radix_tree_root *root) | 
|  | { | 
|  | root->gfp_mask &= __GFP_BITS_MASK; | 
|  | } | 
|  |  | 
|  | static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag) | 
|  | { | 
|  | return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT)); | 
|  | } | 
|  |  | 
|  | static inline unsigned root_tags_get(struct radix_tree_root *root) | 
|  | { | 
|  | return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns 1 if any slot in the node has this tag set. | 
|  | * Otherwise returns 0. | 
|  | */ | 
|  | static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag) | 
|  | { | 
|  | unsigned idx; | 
|  | for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) { | 
|  | if (node->tags[tag][idx]) | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * radix_tree_find_next_bit - find the next set bit in a memory region | 
|  | * | 
|  | * @addr: The address to base the search on | 
|  | * @size: The bitmap size in bits | 
|  | * @offset: The bitnumber to start searching at | 
|  | * | 
|  | * Unrollable variant of find_next_bit() for constant size arrays. | 
|  | * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero. | 
|  | * Returns next bit offset, or size if nothing found. | 
|  | */ | 
|  | static __always_inline unsigned long | 
|  | radix_tree_find_next_bit(const unsigned long *addr, | 
|  | unsigned long size, unsigned long offset) | 
|  | { | 
|  | if (!__builtin_constant_p(size)) | 
|  | return find_next_bit(addr, size, offset); | 
|  |  | 
|  | if (offset < size) { | 
|  | unsigned long tmp; | 
|  |  | 
|  | addr += offset / BITS_PER_LONG; | 
|  | tmp = *addr >> (offset % BITS_PER_LONG); | 
|  | if (tmp) | 
|  | return __ffs(tmp) + offset; | 
|  | offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1); | 
|  | while (offset < size) { | 
|  | tmp = *++addr; | 
|  | if (tmp) | 
|  | return __ffs(tmp) + offset; | 
|  | offset += BITS_PER_LONG; | 
|  | } | 
|  | } | 
|  | return size; | 
|  | } | 
|  |  | 
|  | #ifndef __KERNEL__ | 
|  | static void dump_node(struct radix_tree_node *node, unsigned long index) | 
|  | { | 
|  | unsigned long i; | 
|  |  | 
|  | pr_debug("radix node: %p offset %d tags %lx %lx %lx shift %d count %d parent %p\n", | 
|  | node, node->offset, | 
|  | node->tags[0][0], node->tags[1][0], node->tags[2][0], | 
|  | node->shift, node->count, node->parent); | 
|  |  | 
|  | for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) { | 
|  | unsigned long first = index | (i << node->shift); | 
|  | unsigned long last = first | ((1UL << node->shift) - 1); | 
|  | void *entry = node->slots[i]; | 
|  | if (!entry) | 
|  | continue; | 
|  | if (is_sibling_entry(node, entry)) { | 
|  | pr_debug("radix sblng %p offset %ld val %p indices %ld-%ld\n", | 
|  | entry, i, | 
|  | *(void **)entry_to_node(entry), | 
|  | first, last); | 
|  | } else if (!radix_tree_is_internal_node(entry)) { | 
|  | pr_debug("radix entry %p offset %ld indices %ld-%ld\n", | 
|  | entry, i, first, last); | 
|  | } else { | 
|  | dump_node(entry_to_node(entry), first); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* For debug */ | 
|  | static void radix_tree_dump(struct radix_tree_root *root) | 
|  | { | 
|  | pr_debug("radix root: %p rnode %p tags %x\n", | 
|  | root, root->rnode, | 
|  | root->gfp_mask >> __GFP_BITS_SHIFT); | 
|  | if (!radix_tree_is_internal_node(root->rnode)) | 
|  | return; | 
|  | dump_node(entry_to_node(root->rnode), 0); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * This assumes that the caller has performed appropriate preallocation, and | 
|  | * that the caller has pinned this thread of control to the current CPU. | 
|  | */ | 
|  | static struct radix_tree_node * | 
|  | radix_tree_node_alloc(struct radix_tree_root *root) | 
|  | { | 
|  | struct radix_tree_node *ret = NULL; | 
|  | gfp_t gfp_mask = root_gfp_mask(root); | 
|  |  | 
|  | /* | 
|  | * Preload code isn't irq safe and it doesn't make sense to use | 
|  | * preloading during an interrupt anyway as all the allocations have | 
|  | * to be atomic. So just do normal allocation when in interrupt. | 
|  | */ | 
|  | if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) { | 
|  | struct radix_tree_preload *rtp; | 
|  |  | 
|  | /* | 
|  | * Even if the caller has preloaded, try to allocate from the | 
|  | * cache first for the new node to get accounted to the memory | 
|  | * cgroup. | 
|  | */ | 
|  | ret = kmem_cache_alloc(radix_tree_node_cachep, | 
|  | gfp_mask | __GFP_NOWARN); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Provided the caller has preloaded here, we will always | 
|  | * succeed in getting a node here (and never reach | 
|  | * kmem_cache_alloc) | 
|  | */ | 
|  | rtp = this_cpu_ptr(&radix_tree_preloads); | 
|  | if (rtp->nr) { | 
|  | ret = rtp->nodes; | 
|  | rtp->nodes = ret->private_data; | 
|  | ret->private_data = NULL; | 
|  | rtp->nr--; | 
|  | } | 
|  | /* | 
|  | * Update the allocation stack trace as this is more useful | 
|  | * for debugging. | 
|  | */ | 
|  | kmemleak_update_trace(ret); | 
|  | goto out; | 
|  | } | 
|  | ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask); | 
|  | out: | 
|  | BUG_ON(radix_tree_is_internal_node(ret)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void radix_tree_node_rcu_free(struct rcu_head *head) | 
|  | { | 
|  | struct radix_tree_node *node = | 
|  | container_of(head, struct radix_tree_node, rcu_head); | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * must only free zeroed nodes into the slab. radix_tree_shrink | 
|  | * can leave us with a non-NULL entry in the first slot, so clear | 
|  | * that here to make sure. | 
|  | */ | 
|  | for (i = 0; i < RADIX_TREE_MAX_TAGS; i++) | 
|  | tag_clear(node, i, 0); | 
|  |  | 
|  | node->slots[0] = NULL; | 
|  | node->count = 0; | 
|  |  | 
|  | kmem_cache_free(radix_tree_node_cachep, node); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | radix_tree_node_free(struct radix_tree_node *node) | 
|  | { | 
|  | call_rcu(&node->rcu_head, radix_tree_node_rcu_free); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Load up this CPU's radix_tree_node buffer with sufficient objects to | 
|  | * ensure that the addition of a single element in the tree cannot fail.  On | 
|  | * success, return zero, with preemption disabled.  On error, return -ENOMEM | 
|  | * with preemption not disabled. | 
|  | * | 
|  | * To make use of this facility, the radix tree must be initialised without | 
|  | * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE(). | 
|  | */ | 
|  | static int __radix_tree_preload(gfp_t gfp_mask, int nr) | 
|  | { | 
|  | struct radix_tree_preload *rtp; | 
|  | struct radix_tree_node *node; | 
|  | int ret = -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * Nodes preloaded by one cgroup can be be used by another cgroup, so | 
|  | * they should never be accounted to any particular memory cgroup. | 
|  | */ | 
|  | gfp_mask &= ~__GFP_ACCOUNT; | 
|  |  | 
|  | preempt_disable(); | 
|  | rtp = this_cpu_ptr(&radix_tree_preloads); | 
|  | while (rtp->nr < nr) { | 
|  | preempt_enable(); | 
|  | node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask); | 
|  | if (node == NULL) | 
|  | goto out; | 
|  | preempt_disable(); | 
|  | rtp = this_cpu_ptr(&radix_tree_preloads); | 
|  | if (rtp->nr < nr) { | 
|  | node->private_data = rtp->nodes; | 
|  | rtp->nodes = node; | 
|  | rtp->nr++; | 
|  | } else { | 
|  | kmem_cache_free(radix_tree_node_cachep, node); | 
|  | } | 
|  | } | 
|  | ret = 0; | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Load up this CPU's radix_tree_node buffer with sufficient objects to | 
|  | * ensure that the addition of a single element in the tree cannot fail.  On | 
|  | * success, return zero, with preemption disabled.  On error, return -ENOMEM | 
|  | * with preemption not disabled. | 
|  | * | 
|  | * To make use of this facility, the radix tree must be initialised without | 
|  | * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE(). | 
|  | */ | 
|  | int radix_tree_preload(gfp_t gfp_mask) | 
|  | { | 
|  | /* Warn on non-sensical use... */ | 
|  | WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask)); | 
|  | return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE); | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_preload); | 
|  |  | 
|  | /* | 
|  | * The same as above function, except we don't guarantee preloading happens. | 
|  | * We do it, if we decide it helps. On success, return zero with preemption | 
|  | * disabled. On error, return -ENOMEM with preemption not disabled. | 
|  | */ | 
|  | int radix_tree_maybe_preload(gfp_t gfp_mask) | 
|  | { | 
|  | if (gfpflags_allow_blocking(gfp_mask)) | 
|  | return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE); | 
|  | /* Preloading doesn't help anything with this gfp mask, skip it */ | 
|  | preempt_disable(); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_maybe_preload); | 
|  |  | 
|  | /* | 
|  | * The same as function above, but preload number of nodes required to insert | 
|  | * (1 << order) continuous naturally-aligned elements. | 
|  | */ | 
|  | int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order) | 
|  | { | 
|  | unsigned long nr_subtrees; | 
|  | int nr_nodes, subtree_height; | 
|  |  | 
|  | /* Preloading doesn't help anything with this gfp mask, skip it */ | 
|  | if (!gfpflags_allow_blocking(gfp_mask)) { | 
|  | preempt_disable(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate number and height of fully populated subtrees it takes to | 
|  | * store (1 << order) elements. | 
|  | */ | 
|  | nr_subtrees = 1 << order; | 
|  | for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE; | 
|  | subtree_height++) | 
|  | nr_subtrees >>= RADIX_TREE_MAP_SHIFT; | 
|  |  | 
|  | /* | 
|  | * The worst case is zero height tree with a single item at index 0 and | 
|  | * then inserting items starting at ULONG_MAX - (1 << order). | 
|  | * | 
|  | * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to | 
|  | * 0-index item. | 
|  | */ | 
|  | nr_nodes = RADIX_TREE_MAX_PATH; | 
|  |  | 
|  | /* Plus branch to fully populated subtrees. */ | 
|  | nr_nodes += RADIX_TREE_MAX_PATH - subtree_height; | 
|  |  | 
|  | /* Root node is shared. */ | 
|  | nr_nodes--; | 
|  |  | 
|  | /* Plus nodes required to build subtrees. */ | 
|  | nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height]; | 
|  |  | 
|  | return __radix_tree_preload(gfp_mask, nr_nodes); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The maximum index which can be stored in a radix tree | 
|  | */ | 
|  | static inline unsigned long shift_maxindex(unsigned int shift) | 
|  | { | 
|  | return (RADIX_TREE_MAP_SIZE << shift) - 1; | 
|  | } | 
|  |  | 
|  | static inline unsigned long node_maxindex(struct radix_tree_node *node) | 
|  | { | 
|  | return shift_maxindex(node->shift); | 
|  | } | 
|  |  | 
|  | static unsigned radix_tree_load_root(struct radix_tree_root *root, | 
|  | struct radix_tree_node **nodep, unsigned long *maxindex) | 
|  | { | 
|  | struct radix_tree_node *node = rcu_dereference_raw(root->rnode); | 
|  |  | 
|  | *nodep = node; | 
|  |  | 
|  | if (likely(radix_tree_is_internal_node(node))) { | 
|  | node = entry_to_node(node); | 
|  | *maxindex = node_maxindex(node); | 
|  | return node->shift + RADIX_TREE_MAP_SHIFT; | 
|  | } | 
|  |  | 
|  | *maxindex = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Extend a radix tree so it can store key @index. | 
|  | */ | 
|  | static int radix_tree_extend(struct radix_tree_root *root, | 
|  | unsigned long index, unsigned int shift) | 
|  | { | 
|  | struct radix_tree_node *slot; | 
|  | unsigned int maxshift; | 
|  | int tag; | 
|  |  | 
|  | /* Figure out what the shift should be.  */ | 
|  | maxshift = shift; | 
|  | while (index > shift_maxindex(maxshift)) | 
|  | maxshift += RADIX_TREE_MAP_SHIFT; | 
|  |  | 
|  | slot = root->rnode; | 
|  | if (!slot) | 
|  | goto out; | 
|  |  | 
|  | do { | 
|  | struct radix_tree_node *node = radix_tree_node_alloc(root); | 
|  |  | 
|  | if (!node) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Propagate the aggregated tag info into the new root */ | 
|  | for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) { | 
|  | if (root_tag_get(root, tag)) | 
|  | tag_set(node, tag, 0); | 
|  | } | 
|  |  | 
|  | BUG_ON(shift > BITS_PER_LONG); | 
|  | node->shift = shift; | 
|  | node->offset = 0; | 
|  | node->count = 1; | 
|  | node->parent = NULL; | 
|  | if (radix_tree_is_internal_node(slot)) | 
|  | entry_to_node(slot)->parent = node; | 
|  | node->slots[0] = slot; | 
|  | slot = node_to_entry(node); | 
|  | rcu_assign_pointer(root->rnode, slot); | 
|  | shift += RADIX_TREE_MAP_SHIFT; | 
|  | } while (shift <= maxshift); | 
|  | out: | 
|  | return maxshift + RADIX_TREE_MAP_SHIFT; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	__radix_tree_create	-	create a slot in a radix tree | 
|  | *	@root:		radix tree root | 
|  | *	@index:		index key | 
|  | *	@order:		index occupies 2^order aligned slots | 
|  | *	@nodep:		returns node | 
|  | *	@slotp:		returns slot | 
|  | * | 
|  | *	Create, if necessary, and return the node and slot for an item | 
|  | *	at position @index in the radix tree @root. | 
|  | * | 
|  | *	Until there is more than one item in the tree, no nodes are | 
|  | *	allocated and @root->rnode is used as a direct slot instead of | 
|  | *	pointing to a node, in which case *@nodep will be NULL. | 
|  | * | 
|  | *	Returns -ENOMEM, or 0 for success. | 
|  | */ | 
|  | int __radix_tree_create(struct radix_tree_root *root, unsigned long index, | 
|  | unsigned order, struct radix_tree_node **nodep, | 
|  | void ***slotp) | 
|  | { | 
|  | struct radix_tree_node *node = NULL, *child; | 
|  | void **slot = (void **)&root->rnode; | 
|  | unsigned long maxindex; | 
|  | unsigned int shift, offset = 0; | 
|  | unsigned long max = index | ((1UL << order) - 1); | 
|  |  | 
|  | shift = radix_tree_load_root(root, &child, &maxindex); | 
|  |  | 
|  | /* Make sure the tree is high enough.  */ | 
|  | if (max > maxindex) { | 
|  | int error = radix_tree_extend(root, max, shift); | 
|  | if (error < 0) | 
|  | return error; | 
|  | shift = error; | 
|  | child = root->rnode; | 
|  | if (order == shift) | 
|  | shift += RADIX_TREE_MAP_SHIFT; | 
|  | } | 
|  |  | 
|  | while (shift > order) { | 
|  | shift -= RADIX_TREE_MAP_SHIFT; | 
|  | if (child == NULL) { | 
|  | /* Have to add a child node.  */ | 
|  | child = radix_tree_node_alloc(root); | 
|  | if (!child) | 
|  | return -ENOMEM; | 
|  | child->shift = shift; | 
|  | child->offset = offset; | 
|  | child->parent = node; | 
|  | rcu_assign_pointer(*slot, node_to_entry(child)); | 
|  | if (node) | 
|  | node->count++; | 
|  | } else if (!radix_tree_is_internal_node(child)) | 
|  | break; | 
|  |  | 
|  | /* Go a level down */ | 
|  | node = entry_to_node(child); | 
|  | offset = radix_tree_descend(node, &child, index); | 
|  | slot = &node->slots[offset]; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_RADIX_TREE_MULTIORDER | 
|  | /* Insert pointers to the canonical entry */ | 
|  | if (order > shift) { | 
|  | unsigned i, n = 1 << (order - shift); | 
|  | offset = offset & ~(n - 1); | 
|  | slot = &node->slots[offset]; | 
|  | child = node_to_entry(slot); | 
|  | for (i = 0; i < n; i++) { | 
|  | if (slot[i]) | 
|  | return -EEXIST; | 
|  | } | 
|  |  | 
|  | for (i = 1; i < n; i++) { | 
|  | rcu_assign_pointer(slot[i], child); | 
|  | node->count++; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (nodep) | 
|  | *nodep = node; | 
|  | if (slotp) | 
|  | *slotp = slot; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	__radix_tree_insert    -    insert into a radix tree | 
|  | *	@root:		radix tree root | 
|  | *	@index:		index key | 
|  | *	@order:		key covers the 2^order indices around index | 
|  | *	@item:		item to insert | 
|  | * | 
|  | *	Insert an item into the radix tree at position @index. | 
|  | */ | 
|  | int __radix_tree_insert(struct radix_tree_root *root, unsigned long index, | 
|  | unsigned order, void *item) | 
|  | { | 
|  | struct radix_tree_node *node; | 
|  | void **slot; | 
|  | int error; | 
|  |  | 
|  | BUG_ON(radix_tree_is_internal_node(item)); | 
|  |  | 
|  | error = __radix_tree_create(root, index, order, &node, &slot); | 
|  | if (error) | 
|  | return error; | 
|  | if (*slot != NULL) | 
|  | return -EEXIST; | 
|  | rcu_assign_pointer(*slot, item); | 
|  |  | 
|  | if (node) { | 
|  | unsigned offset = get_slot_offset(node, slot); | 
|  | node->count++; | 
|  | BUG_ON(tag_get(node, 0, offset)); | 
|  | BUG_ON(tag_get(node, 1, offset)); | 
|  | BUG_ON(tag_get(node, 2, offset)); | 
|  | } else { | 
|  | BUG_ON(root_tags_get(root)); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(__radix_tree_insert); | 
|  |  | 
|  | /** | 
|  | *	__radix_tree_lookup	-	lookup an item in a radix tree | 
|  | *	@root:		radix tree root | 
|  | *	@index:		index key | 
|  | *	@nodep:		returns node | 
|  | *	@slotp:		returns slot | 
|  | * | 
|  | *	Lookup and return the item at position @index in the radix | 
|  | *	tree @root. | 
|  | * | 
|  | *	Until there is more than one item in the tree, no nodes are | 
|  | *	allocated and @root->rnode is used as a direct slot instead of | 
|  | *	pointing to a node, in which case *@nodep will be NULL. | 
|  | */ | 
|  | void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index, | 
|  | struct radix_tree_node **nodep, void ***slotp) | 
|  | { | 
|  | struct radix_tree_node *node, *parent; | 
|  | unsigned long maxindex; | 
|  | void **slot; | 
|  |  | 
|  | restart: | 
|  | parent = NULL; | 
|  | slot = (void **)&root->rnode; | 
|  | radix_tree_load_root(root, &node, &maxindex); | 
|  | if (index > maxindex) | 
|  | return NULL; | 
|  |  | 
|  | while (radix_tree_is_internal_node(node)) { | 
|  | unsigned offset; | 
|  |  | 
|  | if (node == RADIX_TREE_RETRY) | 
|  | goto restart; | 
|  | parent = entry_to_node(node); | 
|  | offset = radix_tree_descend(parent, &node, index); | 
|  | slot = parent->slots + offset; | 
|  | } | 
|  |  | 
|  | if (nodep) | 
|  | *nodep = parent; | 
|  | if (slotp) | 
|  | *slotp = slot; | 
|  | return node; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	radix_tree_lookup_slot    -    lookup a slot in a radix tree | 
|  | *	@root:		radix tree root | 
|  | *	@index:		index key | 
|  | * | 
|  | *	Returns:  the slot corresponding to the position @index in the | 
|  | *	radix tree @root. This is useful for update-if-exists operations. | 
|  | * | 
|  | *	This function can be called under rcu_read_lock iff the slot is not | 
|  | *	modified by radix_tree_replace_slot, otherwise it must be called | 
|  | *	exclusive from other writers. Any dereference of the slot must be done | 
|  | *	using radix_tree_deref_slot. | 
|  | */ | 
|  | void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index) | 
|  | { | 
|  | void **slot; | 
|  |  | 
|  | if (!__radix_tree_lookup(root, index, NULL, &slot)) | 
|  | return NULL; | 
|  | return slot; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_lookup_slot); | 
|  |  | 
|  | /** | 
|  | *	radix_tree_lookup    -    perform lookup operation on a radix tree | 
|  | *	@root:		radix tree root | 
|  | *	@index:		index key | 
|  | * | 
|  | *	Lookup the item at the position @index in the radix tree @root. | 
|  | * | 
|  | *	This function can be called under rcu_read_lock, however the caller | 
|  | *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free | 
|  | *	them safely). No RCU barriers are required to access or modify the | 
|  | *	returned item, however. | 
|  | */ | 
|  | void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index) | 
|  | { | 
|  | return __radix_tree_lookup(root, index, NULL, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_lookup); | 
|  |  | 
|  | /** | 
|  | *	radix_tree_tag_set - set a tag on a radix tree node | 
|  | *	@root:		radix tree root | 
|  | *	@index:		index key | 
|  | *	@tag:		tag index | 
|  | * | 
|  | *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS) | 
|  | *	corresponding to @index in the radix tree.  From | 
|  | *	the root all the way down to the leaf node. | 
|  | * | 
|  | *	Returns the address of the tagged item.  Setting a tag on a not-present | 
|  | *	item is a bug. | 
|  | */ | 
|  | void *radix_tree_tag_set(struct radix_tree_root *root, | 
|  | unsigned long index, unsigned int tag) | 
|  | { | 
|  | struct radix_tree_node *node, *parent; | 
|  | unsigned long maxindex; | 
|  |  | 
|  | radix_tree_load_root(root, &node, &maxindex); | 
|  | BUG_ON(index > maxindex); | 
|  |  | 
|  | while (radix_tree_is_internal_node(node)) { | 
|  | unsigned offset; | 
|  |  | 
|  | parent = entry_to_node(node); | 
|  | offset = radix_tree_descend(parent, &node, index); | 
|  | BUG_ON(!node); | 
|  |  | 
|  | if (!tag_get(parent, tag, offset)) | 
|  | tag_set(parent, tag, offset); | 
|  | } | 
|  |  | 
|  | /* set the root's tag bit */ | 
|  | if (!root_tag_get(root, tag)) | 
|  | root_tag_set(root, tag); | 
|  |  | 
|  | return node; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_tag_set); | 
|  |  | 
|  | static void node_tag_clear(struct radix_tree_root *root, | 
|  | struct radix_tree_node *node, | 
|  | unsigned int tag, unsigned int offset) | 
|  | { | 
|  | while (node) { | 
|  | if (!tag_get(node, tag, offset)) | 
|  | return; | 
|  | tag_clear(node, tag, offset); | 
|  | if (any_tag_set(node, tag)) | 
|  | return; | 
|  |  | 
|  | offset = node->offset; | 
|  | node = node->parent; | 
|  | } | 
|  |  | 
|  | /* clear the root's tag bit */ | 
|  | if (root_tag_get(root, tag)) | 
|  | root_tag_clear(root, tag); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	radix_tree_tag_clear - clear a tag on a radix tree node | 
|  | *	@root:		radix tree root | 
|  | *	@index:		index key | 
|  | *	@tag:		tag index | 
|  | * | 
|  | *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS) | 
|  | *	corresponding to @index in the radix tree.  If this causes | 
|  | *	the leaf node to have no tags set then clear the tag in the | 
|  | *	next-to-leaf node, etc. | 
|  | * | 
|  | *	Returns the address of the tagged item on success, else NULL.  ie: | 
|  | *	has the same return value and semantics as radix_tree_lookup(). | 
|  | */ | 
|  | void *radix_tree_tag_clear(struct radix_tree_root *root, | 
|  | unsigned long index, unsigned int tag) | 
|  | { | 
|  | struct radix_tree_node *node, *parent; | 
|  | unsigned long maxindex; | 
|  | int uninitialized_var(offset); | 
|  |  | 
|  | radix_tree_load_root(root, &node, &maxindex); | 
|  | if (index > maxindex) | 
|  | return NULL; | 
|  |  | 
|  | parent = NULL; | 
|  |  | 
|  | while (radix_tree_is_internal_node(node)) { | 
|  | parent = entry_to_node(node); | 
|  | offset = radix_tree_descend(parent, &node, index); | 
|  | } | 
|  |  | 
|  | if (node) | 
|  | node_tag_clear(root, parent, tag, offset); | 
|  |  | 
|  | return node; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_tag_clear); | 
|  |  | 
|  | /** | 
|  | * radix_tree_tag_get - get a tag on a radix tree node | 
|  | * @root:		radix tree root | 
|  | * @index:		index key | 
|  | * @tag:		tag index (< RADIX_TREE_MAX_TAGS) | 
|  | * | 
|  | * Return values: | 
|  | * | 
|  | *  0: tag not present or not set | 
|  | *  1: tag set | 
|  | * | 
|  | * Note that the return value of this function may not be relied on, even if | 
|  | * the RCU lock is held, unless tag modification and node deletion are excluded | 
|  | * from concurrency. | 
|  | */ | 
|  | int radix_tree_tag_get(struct radix_tree_root *root, | 
|  | unsigned long index, unsigned int tag) | 
|  | { | 
|  | struct radix_tree_node *node, *parent; | 
|  | unsigned long maxindex; | 
|  |  | 
|  | if (!root_tag_get(root, tag)) | 
|  | return 0; | 
|  |  | 
|  | radix_tree_load_root(root, &node, &maxindex); | 
|  | if (index > maxindex) | 
|  | return 0; | 
|  | if (node == NULL) | 
|  | return 0; | 
|  |  | 
|  | while (radix_tree_is_internal_node(node)) { | 
|  | unsigned offset; | 
|  |  | 
|  | parent = entry_to_node(node); | 
|  | offset = radix_tree_descend(parent, &node, index); | 
|  |  | 
|  | if (!node) | 
|  | return 0; | 
|  | if (!tag_get(parent, tag, offset)) | 
|  | return 0; | 
|  | if (node == RADIX_TREE_RETRY) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_tag_get); | 
|  |  | 
|  | static inline void __set_iter_shift(struct radix_tree_iter *iter, | 
|  | unsigned int shift) | 
|  | { | 
|  | #ifdef CONFIG_RADIX_TREE_MULTIORDER | 
|  | iter->shift = shift; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /** | 
|  | * radix_tree_next_chunk - find next chunk of slots for iteration | 
|  | * | 
|  | * @root:	radix tree root | 
|  | * @iter:	iterator state | 
|  | * @flags:	RADIX_TREE_ITER_* flags and tag index | 
|  | * Returns:	pointer to chunk first slot, or NULL if iteration is over | 
|  | */ | 
|  | void **radix_tree_next_chunk(struct radix_tree_root *root, | 
|  | struct radix_tree_iter *iter, unsigned flags) | 
|  | { | 
|  | unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK; | 
|  | struct radix_tree_node *node, *child; | 
|  | unsigned long index, offset, maxindex; | 
|  |  | 
|  | if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag)) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * Catch next_index overflow after ~0UL. iter->index never overflows | 
|  | * during iterating; it can be zero only at the beginning. | 
|  | * And we cannot overflow iter->next_index in a single step, | 
|  | * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG. | 
|  | * | 
|  | * This condition also used by radix_tree_next_slot() to stop | 
|  | * contiguous iterating, and forbid swithing to the next chunk. | 
|  | */ | 
|  | index = iter->next_index; | 
|  | if (!index && iter->index) | 
|  | return NULL; | 
|  |  | 
|  | restart: | 
|  | radix_tree_load_root(root, &child, &maxindex); | 
|  | if (index > maxindex) | 
|  | return NULL; | 
|  | if (!child) | 
|  | return NULL; | 
|  |  | 
|  | if (!radix_tree_is_internal_node(child)) { | 
|  | /* Single-slot tree */ | 
|  | iter->index = index; | 
|  | iter->next_index = maxindex + 1; | 
|  | iter->tags = 1; | 
|  | __set_iter_shift(iter, 0); | 
|  | return (void **)&root->rnode; | 
|  | } | 
|  |  | 
|  | do { | 
|  | node = entry_to_node(child); | 
|  | offset = radix_tree_descend(node, &child, index); | 
|  |  | 
|  | if ((flags & RADIX_TREE_ITER_TAGGED) ? | 
|  | !tag_get(node, tag, offset) : !child) { | 
|  | /* Hole detected */ | 
|  | if (flags & RADIX_TREE_ITER_CONTIG) | 
|  | return NULL; | 
|  |  | 
|  | if (flags & RADIX_TREE_ITER_TAGGED) | 
|  | offset = radix_tree_find_next_bit( | 
|  | node->tags[tag], | 
|  | RADIX_TREE_MAP_SIZE, | 
|  | offset + 1); | 
|  | else | 
|  | while (++offset	< RADIX_TREE_MAP_SIZE) { | 
|  | void *slot = node->slots[offset]; | 
|  | if (is_sibling_entry(node, slot)) | 
|  | continue; | 
|  | if (slot) | 
|  | break; | 
|  | } | 
|  | index &= ~node_maxindex(node); | 
|  | index += offset << node->shift; | 
|  | /* Overflow after ~0UL */ | 
|  | if (!index) | 
|  | return NULL; | 
|  | if (offset == RADIX_TREE_MAP_SIZE) | 
|  | goto restart; | 
|  | child = rcu_dereference_raw(node->slots[offset]); | 
|  | } | 
|  |  | 
|  | if ((child == NULL) || (child == RADIX_TREE_RETRY)) | 
|  | goto restart; | 
|  | } while (radix_tree_is_internal_node(child)); | 
|  |  | 
|  | /* Update the iterator state */ | 
|  | iter->index = (index &~ node_maxindex(node)) | (offset << node->shift); | 
|  | iter->next_index = (index | node_maxindex(node)) + 1; | 
|  | __set_iter_shift(iter, node->shift); | 
|  |  | 
|  | /* Construct iter->tags bit-mask from node->tags[tag] array */ | 
|  | if (flags & RADIX_TREE_ITER_TAGGED) { | 
|  | unsigned tag_long, tag_bit; | 
|  |  | 
|  | tag_long = offset / BITS_PER_LONG; | 
|  | tag_bit  = offset % BITS_PER_LONG; | 
|  | iter->tags = node->tags[tag][tag_long] >> tag_bit; | 
|  | /* This never happens if RADIX_TREE_TAG_LONGS == 1 */ | 
|  | if (tag_long < RADIX_TREE_TAG_LONGS - 1) { | 
|  | /* Pick tags from next element */ | 
|  | if (tag_bit) | 
|  | iter->tags |= node->tags[tag][tag_long + 1] << | 
|  | (BITS_PER_LONG - tag_bit); | 
|  | /* Clip chunk size, here only BITS_PER_LONG tags */ | 
|  | iter->next_index = index + BITS_PER_LONG; | 
|  | } | 
|  | } | 
|  |  | 
|  | return node->slots + offset; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_next_chunk); | 
|  |  | 
|  | /** | 
|  | * radix_tree_range_tag_if_tagged - for each item in given range set given | 
|  | *				   tag if item has another tag set | 
|  | * @root:		radix tree root | 
|  | * @first_indexp:	pointer to a starting index of a range to scan | 
|  | * @last_index:		last index of a range to scan | 
|  | * @nr_to_tag:		maximum number items to tag | 
|  | * @iftag:		tag index to test | 
|  | * @settag:		tag index to set if tested tag is set | 
|  | * | 
|  | * This function scans range of radix tree from first_index to last_index | 
|  | * (inclusive).  For each item in the range if iftag is set, the function sets | 
|  | * also settag. The function stops either after tagging nr_to_tag items or | 
|  | * after reaching last_index. | 
|  | * | 
|  | * The tags must be set from the leaf level only and propagated back up the | 
|  | * path to the root. We must do this so that we resolve the full path before | 
|  | * setting any tags on intermediate nodes. If we set tags as we descend, then | 
|  | * we can get to the leaf node and find that the index that has the iftag | 
|  | * set is outside the range we are scanning. This reults in dangling tags and | 
|  | * can lead to problems with later tag operations (e.g. livelocks on lookups). | 
|  | * | 
|  | * The function returns the number of leaves where the tag was set and sets | 
|  | * *first_indexp to the first unscanned index. | 
|  | * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must | 
|  | * be prepared to handle that. | 
|  | */ | 
|  | unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root, | 
|  | unsigned long *first_indexp, unsigned long last_index, | 
|  | unsigned long nr_to_tag, | 
|  | unsigned int iftag, unsigned int settag) | 
|  | { | 
|  | struct radix_tree_node *parent, *node, *child; | 
|  | unsigned long maxindex; | 
|  | unsigned long tagged = 0; | 
|  | unsigned long index = *first_indexp; | 
|  |  | 
|  | radix_tree_load_root(root, &child, &maxindex); | 
|  | last_index = min(last_index, maxindex); | 
|  | if (index > last_index) | 
|  | return 0; | 
|  | if (!nr_to_tag) | 
|  | return 0; | 
|  | if (!root_tag_get(root, iftag)) { | 
|  | *first_indexp = last_index + 1; | 
|  | return 0; | 
|  | } | 
|  | if (!radix_tree_is_internal_node(child)) { | 
|  | *first_indexp = last_index + 1; | 
|  | root_tag_set(root, settag); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | node = entry_to_node(child); | 
|  |  | 
|  | for (;;) { | 
|  | unsigned offset = radix_tree_descend(node, &child, index); | 
|  | if (!child) | 
|  | goto next; | 
|  | if (!tag_get(node, iftag, offset)) | 
|  | goto next; | 
|  | /* Sibling slots never have tags set on them */ | 
|  | if (radix_tree_is_internal_node(child)) { | 
|  | node = entry_to_node(child); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* tag the leaf */ | 
|  | tagged++; | 
|  | tag_set(node, settag, offset); | 
|  |  | 
|  | /* walk back up the path tagging interior nodes */ | 
|  | parent = node; | 
|  | for (;;) { | 
|  | offset = parent->offset; | 
|  | parent = parent->parent; | 
|  | if (!parent) | 
|  | break; | 
|  | /* stop if we find a node with the tag already set */ | 
|  | if (tag_get(parent, settag, offset)) | 
|  | break; | 
|  | tag_set(parent, settag, offset); | 
|  | } | 
|  | next: | 
|  | /* Go to next entry in node */ | 
|  | index = ((index >> node->shift) + 1) << node->shift; | 
|  | /* Overflow can happen when last_index is ~0UL... */ | 
|  | if (index > last_index || !index) | 
|  | break; | 
|  | offset = (index >> node->shift) & RADIX_TREE_MAP_MASK; | 
|  | while (offset == 0) { | 
|  | /* | 
|  | * We've fully scanned this node. Go up. Because | 
|  | * last_index is guaranteed to be in the tree, what | 
|  | * we do below cannot wander astray. | 
|  | */ | 
|  | node = node->parent; | 
|  | offset = (index >> node->shift) & RADIX_TREE_MAP_MASK; | 
|  | } | 
|  | if (is_sibling_entry(node, node->slots[offset])) | 
|  | goto next; | 
|  | if (tagged >= nr_to_tag) | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * We need not to tag the root tag if there is no tag which is set with | 
|  | * settag within the range from *first_indexp to last_index. | 
|  | */ | 
|  | if (tagged > 0) | 
|  | root_tag_set(root, settag); | 
|  | *first_indexp = index; | 
|  |  | 
|  | return tagged; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_range_tag_if_tagged); | 
|  |  | 
|  | /** | 
|  | *	radix_tree_gang_lookup - perform multiple lookup on a radix tree | 
|  | *	@root:		radix tree root | 
|  | *	@results:	where the results of the lookup are placed | 
|  | *	@first_index:	start the lookup from this key | 
|  | *	@max_items:	place up to this many items at *results | 
|  | * | 
|  | *	Performs an index-ascending scan of the tree for present items.  Places | 
|  | *	them at *@results and returns the number of items which were placed at | 
|  | *	*@results. | 
|  | * | 
|  | *	The implementation is naive. | 
|  | * | 
|  | *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under | 
|  | *	rcu_read_lock. In this case, rather than the returned results being | 
|  | *	an atomic snapshot of the tree at a single point in time, the | 
|  | *	semantics of an RCU protected gang lookup are as though multiple | 
|  | *	radix_tree_lookups have been issued in individual locks, and results | 
|  | *	stored in 'results'. | 
|  | */ | 
|  | unsigned int | 
|  | radix_tree_gang_lookup(struct radix_tree_root *root, void **results, | 
|  | unsigned long first_index, unsigned int max_items) | 
|  | { | 
|  | struct radix_tree_iter iter; | 
|  | void **slot; | 
|  | unsigned int ret = 0; | 
|  |  | 
|  | if (unlikely(!max_items)) | 
|  | return 0; | 
|  |  | 
|  | radix_tree_for_each_slot(slot, root, &iter, first_index) { | 
|  | results[ret] = rcu_dereference_raw(*slot); | 
|  | if (!results[ret]) | 
|  | continue; | 
|  | if (radix_tree_is_internal_node(results[ret])) { | 
|  | slot = radix_tree_iter_retry(&iter); | 
|  | continue; | 
|  | } | 
|  | if (++ret == max_items) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_gang_lookup); | 
|  |  | 
|  | /** | 
|  | *	radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree | 
|  | *	@root:		radix tree root | 
|  | *	@results:	where the results of the lookup are placed | 
|  | *	@indices:	where their indices should be placed (but usually NULL) | 
|  | *	@first_index:	start the lookup from this key | 
|  | *	@max_items:	place up to this many items at *results | 
|  | * | 
|  | *	Performs an index-ascending scan of the tree for present items.  Places | 
|  | *	their slots at *@results and returns the number of items which were | 
|  | *	placed at *@results. | 
|  | * | 
|  | *	The implementation is naive. | 
|  | * | 
|  | *	Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must | 
|  | *	be dereferenced with radix_tree_deref_slot, and if using only RCU | 
|  | *	protection, radix_tree_deref_slot may fail requiring a retry. | 
|  | */ | 
|  | unsigned int | 
|  | radix_tree_gang_lookup_slot(struct radix_tree_root *root, | 
|  | void ***results, unsigned long *indices, | 
|  | unsigned long first_index, unsigned int max_items) | 
|  | { | 
|  | struct radix_tree_iter iter; | 
|  | void **slot; | 
|  | unsigned int ret = 0; | 
|  |  | 
|  | if (unlikely(!max_items)) | 
|  | return 0; | 
|  |  | 
|  | radix_tree_for_each_slot(slot, root, &iter, first_index) { | 
|  | results[ret] = slot; | 
|  | if (indices) | 
|  | indices[ret] = iter.index; | 
|  | if (++ret == max_items) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_gang_lookup_slot); | 
|  |  | 
|  | /** | 
|  | *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree | 
|  | *	                             based on a tag | 
|  | *	@root:		radix tree root | 
|  | *	@results:	where the results of the lookup are placed | 
|  | *	@first_index:	start the lookup from this key | 
|  | *	@max_items:	place up to this many items at *results | 
|  | *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS) | 
|  | * | 
|  | *	Performs an index-ascending scan of the tree for present items which | 
|  | *	have the tag indexed by @tag set.  Places the items at *@results and | 
|  | *	returns the number of items which were placed at *@results. | 
|  | */ | 
|  | unsigned int | 
|  | radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results, | 
|  | unsigned long first_index, unsigned int max_items, | 
|  | unsigned int tag) | 
|  | { | 
|  | struct radix_tree_iter iter; | 
|  | void **slot; | 
|  | unsigned int ret = 0; | 
|  |  | 
|  | if (unlikely(!max_items)) | 
|  | return 0; | 
|  |  | 
|  | radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) { | 
|  | results[ret] = rcu_dereference_raw(*slot); | 
|  | if (!results[ret]) | 
|  | continue; | 
|  | if (radix_tree_is_internal_node(results[ret])) { | 
|  | slot = radix_tree_iter_retry(&iter); | 
|  | continue; | 
|  | } | 
|  | if (++ret == max_items) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_gang_lookup_tag); | 
|  |  | 
|  | /** | 
|  | *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a | 
|  | *					  radix tree based on a tag | 
|  | *	@root:		radix tree root | 
|  | *	@results:	where the results of the lookup are placed | 
|  | *	@first_index:	start the lookup from this key | 
|  | *	@max_items:	place up to this many items at *results | 
|  | *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS) | 
|  | * | 
|  | *	Performs an index-ascending scan of the tree for present items which | 
|  | *	have the tag indexed by @tag set.  Places the slots at *@results and | 
|  | *	returns the number of slots which were placed at *@results. | 
|  | */ | 
|  | unsigned int | 
|  | radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results, | 
|  | unsigned long first_index, unsigned int max_items, | 
|  | unsigned int tag) | 
|  | { | 
|  | struct radix_tree_iter iter; | 
|  | void **slot; | 
|  | unsigned int ret = 0; | 
|  |  | 
|  | if (unlikely(!max_items)) | 
|  | return 0; | 
|  |  | 
|  | radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) { | 
|  | results[ret] = slot; | 
|  | if (++ret == max_items) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot); | 
|  |  | 
|  | #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP) | 
|  | #include <linux/sched.h> /* for cond_resched() */ | 
|  |  | 
|  | struct locate_info { | 
|  | unsigned long found_index; | 
|  | bool stop; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * This linear search is at present only useful to shmem_unuse_inode(). | 
|  | */ | 
|  | static unsigned long __locate(struct radix_tree_node *slot, void *item, | 
|  | unsigned long index, struct locate_info *info) | 
|  | { | 
|  | unsigned long i; | 
|  |  | 
|  | do { | 
|  | unsigned int shift = slot->shift; | 
|  |  | 
|  | for (i = (index >> shift) & RADIX_TREE_MAP_MASK; | 
|  | i < RADIX_TREE_MAP_SIZE; | 
|  | i++, index += (1UL << shift)) { | 
|  | struct radix_tree_node *node = | 
|  | rcu_dereference_raw(slot->slots[i]); | 
|  | if (node == RADIX_TREE_RETRY) | 
|  | goto out; | 
|  | if (!radix_tree_is_internal_node(node)) { | 
|  | if (node == item) { | 
|  | info->found_index = index; | 
|  | info->stop = true; | 
|  | goto out; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | node = entry_to_node(node); | 
|  | if (is_sibling_entry(slot, node)) | 
|  | continue; | 
|  | slot = node; | 
|  | break; | 
|  | } | 
|  | } while (i < RADIX_TREE_MAP_SIZE); | 
|  |  | 
|  | out: | 
|  | if ((index == 0) && (i == RADIX_TREE_MAP_SIZE)) | 
|  | info->stop = true; | 
|  | return index; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	radix_tree_locate_item - search through radix tree for item | 
|  | *	@root:		radix tree root | 
|  | *	@item:		item to be found | 
|  | * | 
|  | *	Returns index where item was found, or -1 if not found. | 
|  | *	Caller must hold no lock (since this time-consuming function needs | 
|  | *	to be preemptible), and must check afterwards if item is still there. | 
|  | */ | 
|  | unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item) | 
|  | { | 
|  | struct radix_tree_node *node; | 
|  | unsigned long max_index; | 
|  | unsigned long cur_index = 0; | 
|  | struct locate_info info = { | 
|  | .found_index = -1, | 
|  | .stop = false, | 
|  | }; | 
|  |  | 
|  | do { | 
|  | rcu_read_lock(); | 
|  | node = rcu_dereference_raw(root->rnode); | 
|  | if (!radix_tree_is_internal_node(node)) { | 
|  | rcu_read_unlock(); | 
|  | if (node == item) | 
|  | info.found_index = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | node = entry_to_node(node); | 
|  |  | 
|  | max_index = node_maxindex(node); | 
|  | if (cur_index > max_index) { | 
|  | rcu_read_unlock(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | cur_index = __locate(node, item, cur_index, &info); | 
|  | rcu_read_unlock(); | 
|  | cond_resched(); | 
|  | } while (!info.stop && cur_index <= max_index); | 
|  |  | 
|  | return info.found_index; | 
|  | } | 
|  | #else | 
|  | unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item) | 
|  | { | 
|  | return -1; | 
|  | } | 
|  | #endif /* CONFIG_SHMEM && CONFIG_SWAP */ | 
|  |  | 
|  | /** | 
|  | *	radix_tree_shrink    -    shrink radix tree to minimum height | 
|  | *	@root		radix tree root | 
|  | */ | 
|  | static inline bool radix_tree_shrink(struct radix_tree_root *root) | 
|  | { | 
|  | bool shrunk = false; | 
|  |  | 
|  | for (;;) { | 
|  | struct radix_tree_node *node = root->rnode; | 
|  | struct radix_tree_node *child; | 
|  |  | 
|  | if (!radix_tree_is_internal_node(node)) | 
|  | break; | 
|  | node = entry_to_node(node); | 
|  |  | 
|  | /* | 
|  | * The candidate node has more than one child, or its child | 
|  | * is not at the leftmost slot, or the child is a multiorder | 
|  | * entry, we cannot shrink. | 
|  | */ | 
|  | if (node->count != 1) | 
|  | break; | 
|  | child = node->slots[0]; | 
|  | if (!child) | 
|  | break; | 
|  | if (!radix_tree_is_internal_node(child) && node->shift) | 
|  | break; | 
|  |  | 
|  | if (radix_tree_is_internal_node(child)) | 
|  | entry_to_node(child)->parent = NULL; | 
|  |  | 
|  | /* | 
|  | * We don't need rcu_assign_pointer(), since we are simply | 
|  | * moving the node from one part of the tree to another: if it | 
|  | * was safe to dereference the old pointer to it | 
|  | * (node->slots[0]), it will be safe to dereference the new | 
|  | * one (root->rnode) as far as dependent read barriers go. | 
|  | */ | 
|  | root->rnode = child; | 
|  |  | 
|  | /* | 
|  | * We have a dilemma here. The node's slot[0] must not be | 
|  | * NULLed in case there are concurrent lookups expecting to | 
|  | * find the item. However if this was a bottom-level node, | 
|  | * then it may be subject to the slot pointer being visible | 
|  | * to callers dereferencing it. If item corresponding to | 
|  | * slot[0] is subsequently deleted, these callers would expect | 
|  | * their slot to become empty sooner or later. | 
|  | * | 
|  | * For example, lockless pagecache will look up a slot, deref | 
|  | * the page pointer, and if the page has 0 refcount it means it | 
|  | * was concurrently deleted from pagecache so try the deref | 
|  | * again. Fortunately there is already a requirement for logic | 
|  | * to retry the entire slot lookup -- the indirect pointer | 
|  | * problem (replacing direct root node with an indirect pointer | 
|  | * also results in a stale slot). So tag the slot as indirect | 
|  | * to force callers to retry. | 
|  | */ | 
|  | if (!radix_tree_is_internal_node(child)) | 
|  | node->slots[0] = RADIX_TREE_RETRY; | 
|  |  | 
|  | radix_tree_node_free(node); | 
|  | shrunk = true; | 
|  | } | 
|  |  | 
|  | return shrunk; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	__radix_tree_delete_node    -    try to free node after clearing a slot | 
|  | *	@root:		radix tree root | 
|  | *	@node:		node containing @index | 
|  | * | 
|  | *	After clearing the slot at @index in @node from radix tree | 
|  | *	rooted at @root, call this function to attempt freeing the | 
|  | *	node and shrinking the tree. | 
|  | * | 
|  | *	Returns %true if @node was freed, %false otherwise. | 
|  | */ | 
|  | bool __radix_tree_delete_node(struct radix_tree_root *root, | 
|  | struct radix_tree_node *node) | 
|  | { | 
|  | bool deleted = false; | 
|  |  | 
|  | do { | 
|  | struct radix_tree_node *parent; | 
|  |  | 
|  | if (node->count) { | 
|  | if (node == entry_to_node(root->rnode)) | 
|  | deleted |= radix_tree_shrink(root); | 
|  | return deleted; | 
|  | } | 
|  |  | 
|  | parent = node->parent; | 
|  | if (parent) { | 
|  | parent->slots[node->offset] = NULL; | 
|  | parent->count--; | 
|  | } else { | 
|  | root_tag_clear_all(root); | 
|  | root->rnode = NULL; | 
|  | } | 
|  |  | 
|  | radix_tree_node_free(node); | 
|  | deleted = true; | 
|  |  | 
|  | node = parent; | 
|  | } while (node); | 
|  |  | 
|  | return deleted; | 
|  | } | 
|  |  | 
|  | static inline void delete_sibling_entries(struct radix_tree_node *node, | 
|  | void *ptr, unsigned offset) | 
|  | { | 
|  | #ifdef CONFIG_RADIX_TREE_MULTIORDER | 
|  | int i; | 
|  | for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) { | 
|  | if (node->slots[offset + i] != ptr) | 
|  | break; | 
|  | node->slots[offset + i] = NULL; | 
|  | node->count--; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	radix_tree_delete_item    -    delete an item from a radix tree | 
|  | *	@root:		radix tree root | 
|  | *	@index:		index key | 
|  | *	@item:		expected item | 
|  | * | 
|  | *	Remove @item at @index from the radix tree rooted at @root. | 
|  | * | 
|  | *	Returns the address of the deleted item, or NULL if it was not present | 
|  | *	or the entry at the given @index was not @item. | 
|  | */ | 
|  | void *radix_tree_delete_item(struct radix_tree_root *root, | 
|  | unsigned long index, void *item) | 
|  | { | 
|  | struct radix_tree_node *node; | 
|  | unsigned int offset; | 
|  | void **slot; | 
|  | void *entry; | 
|  | int tag; | 
|  |  | 
|  | entry = __radix_tree_lookup(root, index, &node, &slot); | 
|  | if (!entry) | 
|  | return NULL; | 
|  |  | 
|  | if (item && entry != item) | 
|  | return NULL; | 
|  |  | 
|  | if (!node) { | 
|  | root_tag_clear_all(root); | 
|  | root->rnode = NULL; | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | offset = get_slot_offset(node, slot); | 
|  |  | 
|  | /* Clear all tags associated with the item to be deleted.  */ | 
|  | for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) | 
|  | node_tag_clear(root, node, tag, offset); | 
|  |  | 
|  | delete_sibling_entries(node, node_to_entry(slot), offset); | 
|  | node->slots[offset] = NULL; | 
|  | node->count--; | 
|  |  | 
|  | __radix_tree_delete_node(root, node); | 
|  |  | 
|  | return entry; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_delete_item); | 
|  |  | 
|  | /** | 
|  | *	radix_tree_delete    -    delete an item from a radix tree | 
|  | *	@root:		radix tree root | 
|  | *	@index:		index key | 
|  | * | 
|  | *	Remove the item at @index from the radix tree rooted at @root. | 
|  | * | 
|  | *	Returns the address of the deleted item, or NULL if it was not present. | 
|  | */ | 
|  | void *radix_tree_delete(struct radix_tree_root *root, unsigned long index) | 
|  | { | 
|  | return radix_tree_delete_item(root, index, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_delete); | 
|  |  | 
|  | struct radix_tree_node *radix_tree_replace_clear_tags( | 
|  | struct radix_tree_root *root, | 
|  | unsigned long index, void *entry) | 
|  | { | 
|  | struct radix_tree_node *node; | 
|  | void **slot; | 
|  |  | 
|  | __radix_tree_lookup(root, index, &node, &slot); | 
|  |  | 
|  | if (node) { | 
|  | unsigned int tag, offset = get_slot_offset(node, slot); | 
|  | for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) | 
|  | node_tag_clear(root, node, tag, offset); | 
|  | } else { | 
|  | /* Clear root node tags */ | 
|  | root->gfp_mask &= __GFP_BITS_MASK; | 
|  | } | 
|  |  | 
|  | radix_tree_replace_slot(slot, entry); | 
|  | return node; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	radix_tree_tagged - test whether any items in the tree are tagged | 
|  | *	@root:		radix tree root | 
|  | *	@tag:		tag to test | 
|  | */ | 
|  | int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag) | 
|  | { | 
|  | return root_tag_get(root, tag); | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_tagged); | 
|  |  | 
|  | static void | 
|  | radix_tree_node_ctor(void *arg) | 
|  | { | 
|  | struct radix_tree_node *node = arg; | 
|  |  | 
|  | memset(node, 0, sizeof(*node)); | 
|  | INIT_LIST_HEAD(&node->private_list); | 
|  | } | 
|  |  | 
|  | static __init unsigned long __maxindex(unsigned int height) | 
|  | { | 
|  | unsigned int width = height * RADIX_TREE_MAP_SHIFT; | 
|  | int shift = RADIX_TREE_INDEX_BITS - width; | 
|  |  | 
|  | if (shift < 0) | 
|  | return ~0UL; | 
|  | if (shift >= BITS_PER_LONG) | 
|  | return 0UL; | 
|  | return ~0UL >> shift; | 
|  | } | 
|  |  | 
|  | static __init void radix_tree_init_maxnodes(void) | 
|  | { | 
|  | unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1]; | 
|  | unsigned int i, j; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++) | 
|  | height_to_maxindex[i] = __maxindex(i); | 
|  | for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) { | 
|  | for (j = i; j > 0; j--) | 
|  | height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int radix_tree_callback(struct notifier_block *nfb, | 
|  | unsigned long action, void *hcpu) | 
|  | { | 
|  | int cpu = (long)hcpu; | 
|  | struct radix_tree_preload *rtp; | 
|  | struct radix_tree_node *node; | 
|  |  | 
|  | /* Free per-cpu pool of preloaded nodes */ | 
|  | if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { | 
|  | rtp = &per_cpu(radix_tree_preloads, cpu); | 
|  | while (rtp->nr) { | 
|  | node = rtp->nodes; | 
|  | rtp->nodes = node->private_data; | 
|  | kmem_cache_free(radix_tree_node_cachep, node); | 
|  | rtp->nr--; | 
|  | } | 
|  | } | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | void __init radix_tree_init(void) | 
|  | { | 
|  | radix_tree_node_cachep = kmem_cache_create("radix_tree_node", | 
|  | sizeof(struct radix_tree_node), 0, | 
|  | SLAB_PANIC | SLAB_RECLAIM_ACCOUNT, | 
|  | radix_tree_node_ctor); | 
|  | radix_tree_init_maxnodes(); | 
|  | hotcpu_notifier(radix_tree_callback, 0); | 
|  | } |