|  | /* | 
|  | * Resizable virtual memory filesystem for Linux. | 
|  | * | 
|  | * Copyright (C) 2000 Linus Torvalds. | 
|  | *		 2000 Transmeta Corp. | 
|  | *		 2000-2001 Christoph Rohland | 
|  | *		 2000-2001 SAP AG | 
|  | *		 2002 Red Hat Inc. | 
|  | * Copyright (C) 2002-2011 Hugh Dickins. | 
|  | * Copyright (C) 2011 Google Inc. | 
|  | * Copyright (C) 2002-2005 VERITAS Software Corporation. | 
|  | * Copyright (C) 2004 Andi Kleen, SuSE Labs | 
|  | * | 
|  | * Extended attribute support for tmpfs: | 
|  | * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> | 
|  | * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> | 
|  | * | 
|  | * tiny-shmem: | 
|  | * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> | 
|  | * | 
|  | * This file is released under the GPL. | 
|  | */ | 
|  |  | 
|  | #include <linux/fs.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/vfs.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/ramfs.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/uio.h> | 
|  |  | 
|  | static struct vfsmount *shm_mnt; | 
|  |  | 
|  | #ifdef CONFIG_SHMEM | 
|  | /* | 
|  | * This virtual memory filesystem is heavily based on the ramfs. It | 
|  | * extends ramfs by the ability to use swap and honor resource limits | 
|  | * which makes it a completely usable filesystem. | 
|  | */ | 
|  |  | 
|  | #include <linux/xattr.h> | 
|  | #include <linux/exportfs.h> | 
|  | #include <linux/posix_acl.h> | 
|  | #include <linux/posix_acl_xattr.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/shmem_fs.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include <linux/percpu_counter.h> | 
|  | #include <linux/falloc.h> | 
|  | #include <linux/splice.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/mempolicy.h> | 
|  | #include <linux/namei.h> | 
|  | #include <linux/ctype.h> | 
|  | #include <linux/migrate.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/magic.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/fcntl.h> | 
|  | #include <uapi/linux/memfd.h> | 
|  |  | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/pgtable.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  | #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512) | 
|  | #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT) | 
|  |  | 
|  | /* Pretend that each entry is of this size in directory's i_size */ | 
|  | #define BOGO_DIRENT_SIZE 20 | 
|  |  | 
|  | /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ | 
|  | #define SHORT_SYMLINK_LEN 128 | 
|  |  | 
|  | /* | 
|  | * shmem_fallocate communicates with shmem_fault or shmem_writepage via | 
|  | * inode->i_private (with i_mutex making sure that it has only one user at | 
|  | * a time): we would prefer not to enlarge the shmem inode just for that. | 
|  | */ | 
|  | struct shmem_falloc { | 
|  | wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ | 
|  | pgoff_t start;		/* start of range currently being fallocated */ | 
|  | pgoff_t next;		/* the next page offset to be fallocated */ | 
|  | pgoff_t nr_falloced;	/* how many new pages have been fallocated */ | 
|  | pgoff_t nr_unswapped;	/* how often writepage refused to swap out */ | 
|  | }; | 
|  |  | 
|  | /* Flag allocation requirements to shmem_getpage */ | 
|  | enum sgp_type { | 
|  | SGP_READ,	/* don't exceed i_size, don't allocate page */ | 
|  | SGP_CACHE,	/* don't exceed i_size, may allocate page */ | 
|  | SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */ | 
|  | SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */ | 
|  | SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */ | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_TMPFS | 
|  | static unsigned long shmem_default_max_blocks(void) | 
|  | { | 
|  | return totalram_pages / 2; | 
|  | } | 
|  |  | 
|  | static unsigned long shmem_default_max_inodes(void) | 
|  | { | 
|  | return min(totalram_pages - totalhigh_pages, totalram_pages / 2); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static bool shmem_should_replace_page(struct page *page, gfp_t gfp); | 
|  | static int shmem_replace_page(struct page **pagep, gfp_t gfp, | 
|  | struct shmem_inode_info *info, pgoff_t index); | 
|  | static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, | 
|  | struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type); | 
|  |  | 
|  | static inline int shmem_getpage(struct inode *inode, pgoff_t index, | 
|  | struct page **pagep, enum sgp_type sgp, int *fault_type) | 
|  | { | 
|  | return shmem_getpage_gfp(inode, index, pagep, sgp, | 
|  | mapping_gfp_mask(inode->i_mapping), fault_type); | 
|  | } | 
|  |  | 
|  | static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) | 
|  | { | 
|  | return sb->s_fs_info; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * shmem_file_setup pre-accounts the whole fixed size of a VM object, | 
|  | * for shared memory and for shared anonymous (/dev/zero) mappings | 
|  | * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), | 
|  | * consistent with the pre-accounting of private mappings ... | 
|  | */ | 
|  | static inline int shmem_acct_size(unsigned long flags, loff_t size) | 
|  | { | 
|  | return (flags & VM_NORESERVE) ? | 
|  | 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); | 
|  | } | 
|  |  | 
|  | static inline void shmem_unacct_size(unsigned long flags, loff_t size) | 
|  | { | 
|  | if (!(flags & VM_NORESERVE)) | 
|  | vm_unacct_memory(VM_ACCT(size)); | 
|  | } | 
|  |  | 
|  | static inline int shmem_reacct_size(unsigned long flags, | 
|  | loff_t oldsize, loff_t newsize) | 
|  | { | 
|  | if (!(flags & VM_NORESERVE)) { | 
|  | if (VM_ACCT(newsize) > VM_ACCT(oldsize)) | 
|  | return security_vm_enough_memory_mm(current->mm, | 
|  | VM_ACCT(newsize) - VM_ACCT(oldsize)); | 
|  | else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) | 
|  | vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ... whereas tmpfs objects are accounted incrementally as | 
|  | * pages are allocated, in order to allow huge sparse files. | 
|  | * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, | 
|  | * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. | 
|  | */ | 
|  | static inline int shmem_acct_block(unsigned long flags) | 
|  | { | 
|  | return (flags & VM_NORESERVE) ? | 
|  | security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0; | 
|  | } | 
|  |  | 
|  | static inline void shmem_unacct_blocks(unsigned long flags, long pages) | 
|  | { | 
|  | if (flags & VM_NORESERVE) | 
|  | vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE)); | 
|  | } | 
|  |  | 
|  | static const struct super_operations shmem_ops; | 
|  | static const struct address_space_operations shmem_aops; | 
|  | static const struct file_operations shmem_file_operations; | 
|  | static const struct inode_operations shmem_inode_operations; | 
|  | static const struct inode_operations shmem_dir_inode_operations; | 
|  | static const struct inode_operations shmem_special_inode_operations; | 
|  | static const struct vm_operations_struct shmem_vm_ops; | 
|  |  | 
|  | static LIST_HEAD(shmem_swaplist); | 
|  | static DEFINE_MUTEX(shmem_swaplist_mutex); | 
|  |  | 
|  | static int shmem_reserve_inode(struct super_block *sb) | 
|  | { | 
|  | struct shmem_sb_info *sbinfo = SHMEM_SB(sb); | 
|  | if (sbinfo->max_inodes) { | 
|  | spin_lock(&sbinfo->stat_lock); | 
|  | if (!sbinfo->free_inodes) { | 
|  | spin_unlock(&sbinfo->stat_lock); | 
|  | return -ENOSPC; | 
|  | } | 
|  | sbinfo->free_inodes--; | 
|  | spin_unlock(&sbinfo->stat_lock); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void shmem_free_inode(struct super_block *sb) | 
|  | { | 
|  | struct shmem_sb_info *sbinfo = SHMEM_SB(sb); | 
|  | if (sbinfo->max_inodes) { | 
|  | spin_lock(&sbinfo->stat_lock); | 
|  | sbinfo->free_inodes++; | 
|  | spin_unlock(&sbinfo->stat_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * shmem_recalc_inode - recalculate the block usage of an inode | 
|  | * @inode: inode to recalc | 
|  | * | 
|  | * We have to calculate the free blocks since the mm can drop | 
|  | * undirtied hole pages behind our back. | 
|  | * | 
|  | * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped | 
|  | * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) | 
|  | * | 
|  | * It has to be called with the spinlock held. | 
|  | */ | 
|  | static void shmem_recalc_inode(struct inode *inode) | 
|  | { | 
|  | struct shmem_inode_info *info = SHMEM_I(inode); | 
|  | long freed; | 
|  |  | 
|  | freed = info->alloced - info->swapped - inode->i_mapping->nrpages; | 
|  | if (freed > 0) { | 
|  | struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); | 
|  | if (sbinfo->max_blocks) | 
|  | percpu_counter_add(&sbinfo->used_blocks, -freed); | 
|  | info->alloced -= freed; | 
|  | inode->i_blocks -= freed * BLOCKS_PER_PAGE; | 
|  | shmem_unacct_blocks(info->flags, freed); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Replace item expected in radix tree by a new item, while holding tree lock. | 
|  | */ | 
|  | static int shmem_radix_tree_replace(struct address_space *mapping, | 
|  | pgoff_t index, void *expected, void *replacement) | 
|  | { | 
|  | void **pslot; | 
|  | void *item; | 
|  |  | 
|  | VM_BUG_ON(!expected); | 
|  | VM_BUG_ON(!replacement); | 
|  | pslot = radix_tree_lookup_slot(&mapping->page_tree, index); | 
|  | if (!pslot) | 
|  | return -ENOENT; | 
|  | item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock); | 
|  | if (item != expected) | 
|  | return -ENOENT; | 
|  | radix_tree_replace_slot(pslot, replacement); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sometimes, before we decide whether to proceed or to fail, we must check | 
|  | * that an entry was not already brought back from swap by a racing thread. | 
|  | * | 
|  | * Checking page is not enough: by the time a SwapCache page is locked, it | 
|  | * might be reused, and again be SwapCache, using the same swap as before. | 
|  | */ | 
|  | static bool shmem_confirm_swap(struct address_space *mapping, | 
|  | pgoff_t index, swp_entry_t swap) | 
|  | { | 
|  | void *item; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | item = radix_tree_lookup(&mapping->page_tree, index); | 
|  | rcu_read_unlock(); | 
|  | return item == swp_to_radix_entry(swap); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Like add_to_page_cache_locked, but error if expected item has gone. | 
|  | */ | 
|  | static int shmem_add_to_page_cache(struct page *page, | 
|  | struct address_space *mapping, | 
|  | pgoff_t index, void *expected) | 
|  | { | 
|  | int error; | 
|  |  | 
|  | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  | VM_BUG_ON_PAGE(!PageSwapBacked(page), page); | 
|  |  | 
|  | page_cache_get(page); | 
|  | page->mapping = mapping; | 
|  | page->index = index; | 
|  |  | 
|  | spin_lock_irq(&mapping->tree_lock); | 
|  | if (!expected) | 
|  | error = radix_tree_insert(&mapping->page_tree, index, page); | 
|  | else | 
|  | error = shmem_radix_tree_replace(mapping, index, expected, | 
|  | page); | 
|  | if (!error) { | 
|  | mapping->nrpages++; | 
|  | __inc_zone_page_state(page, NR_FILE_PAGES); | 
|  | __inc_zone_page_state(page, NR_SHMEM); | 
|  | spin_unlock_irq(&mapping->tree_lock); | 
|  | } else { | 
|  | page->mapping = NULL; | 
|  | spin_unlock_irq(&mapping->tree_lock); | 
|  | page_cache_release(page); | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Like delete_from_page_cache, but substitutes swap for page. | 
|  | */ | 
|  | static void shmem_delete_from_page_cache(struct page *page, void *radswap) | 
|  | { | 
|  | struct address_space *mapping = page->mapping; | 
|  | int error; | 
|  |  | 
|  | spin_lock_irq(&mapping->tree_lock); | 
|  | error = shmem_radix_tree_replace(mapping, page->index, page, radswap); | 
|  | page->mapping = NULL; | 
|  | mapping->nrpages--; | 
|  | __dec_zone_page_state(page, NR_FILE_PAGES); | 
|  | __dec_zone_page_state(page, NR_SHMEM); | 
|  | spin_unlock_irq(&mapping->tree_lock); | 
|  | page_cache_release(page); | 
|  | BUG_ON(error); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove swap entry from radix tree, free the swap and its page cache. | 
|  | */ | 
|  | static int shmem_free_swap(struct address_space *mapping, | 
|  | pgoff_t index, void *radswap) | 
|  | { | 
|  | void *old; | 
|  |  | 
|  | spin_lock_irq(&mapping->tree_lock); | 
|  | old = radix_tree_delete_item(&mapping->page_tree, index, radswap); | 
|  | spin_unlock_irq(&mapping->tree_lock); | 
|  | if (old != radswap) | 
|  | return -ENOENT; | 
|  | free_swap_and_cache(radix_to_swp_entry(radswap)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. | 
|  | */ | 
|  | void shmem_unlock_mapping(struct address_space *mapping) | 
|  | { | 
|  | struct pagevec pvec; | 
|  | pgoff_t indices[PAGEVEC_SIZE]; | 
|  | pgoff_t index = 0; | 
|  |  | 
|  | pagevec_init(&pvec, 0); | 
|  | /* | 
|  | * Minor point, but we might as well stop if someone else SHM_LOCKs it. | 
|  | */ | 
|  | while (!mapping_unevictable(mapping)) { | 
|  | /* | 
|  | * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it | 
|  | * has finished, if it hits a row of PAGEVEC_SIZE swap entries. | 
|  | */ | 
|  | pvec.nr = find_get_entries(mapping, index, | 
|  | PAGEVEC_SIZE, pvec.pages, indices); | 
|  | if (!pvec.nr) | 
|  | break; | 
|  | index = indices[pvec.nr - 1] + 1; | 
|  | pagevec_remove_exceptionals(&pvec); | 
|  | check_move_unevictable_pages(pvec.pages, pvec.nr); | 
|  | pagevec_release(&pvec); | 
|  | cond_resched(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove range of pages and swap entries from radix tree, and free them. | 
|  | * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. | 
|  | */ | 
|  | static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, | 
|  | bool unfalloc) | 
|  | { | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  | struct shmem_inode_info *info = SHMEM_I(inode); | 
|  | pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; | 
|  | pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT; | 
|  | unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1); | 
|  | unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1); | 
|  | struct pagevec pvec; | 
|  | pgoff_t indices[PAGEVEC_SIZE]; | 
|  | long nr_swaps_freed = 0; | 
|  | pgoff_t index; | 
|  | int i; | 
|  |  | 
|  | if (lend == -1) | 
|  | end = -1;	/* unsigned, so actually very big */ | 
|  |  | 
|  | pagevec_init(&pvec, 0); | 
|  | index = start; | 
|  | while (index < end) { | 
|  | pvec.nr = find_get_entries(mapping, index, | 
|  | min(end - index, (pgoff_t)PAGEVEC_SIZE), | 
|  | pvec.pages, indices); | 
|  | if (!pvec.nr) | 
|  | break; | 
|  | for (i = 0; i < pagevec_count(&pvec); i++) { | 
|  | struct page *page = pvec.pages[i]; | 
|  |  | 
|  | index = indices[i]; | 
|  | if (index >= end) | 
|  | break; | 
|  |  | 
|  | if (radix_tree_exceptional_entry(page)) { | 
|  | if (unfalloc) | 
|  | continue; | 
|  | nr_swaps_freed += !shmem_free_swap(mapping, | 
|  | index, page); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!trylock_page(page)) | 
|  | continue; | 
|  | if (!unfalloc || !PageUptodate(page)) { | 
|  | if (page->mapping == mapping) { | 
|  | VM_BUG_ON_PAGE(PageWriteback(page), page); | 
|  | truncate_inode_page(mapping, page); | 
|  | } | 
|  | } | 
|  | unlock_page(page); | 
|  | } | 
|  | pagevec_remove_exceptionals(&pvec); | 
|  | pagevec_release(&pvec); | 
|  | cond_resched(); | 
|  | index++; | 
|  | } | 
|  |  | 
|  | if (partial_start) { | 
|  | struct page *page = NULL; | 
|  | shmem_getpage(inode, start - 1, &page, SGP_READ, NULL); | 
|  | if (page) { | 
|  | unsigned int top = PAGE_CACHE_SIZE; | 
|  | if (start > end) { | 
|  | top = partial_end; | 
|  | partial_end = 0; | 
|  | } | 
|  | zero_user_segment(page, partial_start, top); | 
|  | set_page_dirty(page); | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  | } | 
|  | } | 
|  | if (partial_end) { | 
|  | struct page *page = NULL; | 
|  | shmem_getpage(inode, end, &page, SGP_READ, NULL); | 
|  | if (page) { | 
|  | zero_user_segment(page, 0, partial_end); | 
|  | set_page_dirty(page); | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  | } | 
|  | } | 
|  | if (start >= end) | 
|  | return; | 
|  |  | 
|  | index = start; | 
|  | while (index < end) { | 
|  | cond_resched(); | 
|  |  | 
|  | pvec.nr = find_get_entries(mapping, index, | 
|  | min(end - index, (pgoff_t)PAGEVEC_SIZE), | 
|  | pvec.pages, indices); | 
|  | if (!pvec.nr) { | 
|  | /* If all gone or hole-punch or unfalloc, we're done */ | 
|  | if (index == start || end != -1) | 
|  | break; | 
|  | /* But if truncating, restart to make sure all gone */ | 
|  | index = start; | 
|  | continue; | 
|  | } | 
|  | for (i = 0; i < pagevec_count(&pvec); i++) { | 
|  | struct page *page = pvec.pages[i]; | 
|  |  | 
|  | index = indices[i]; | 
|  | if (index >= end) | 
|  | break; | 
|  |  | 
|  | if (radix_tree_exceptional_entry(page)) { | 
|  | if (unfalloc) | 
|  | continue; | 
|  | if (shmem_free_swap(mapping, index, page)) { | 
|  | /* Swap was replaced by page: retry */ | 
|  | index--; | 
|  | break; | 
|  | } | 
|  | nr_swaps_freed++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | lock_page(page); | 
|  | if (!unfalloc || !PageUptodate(page)) { | 
|  | if (page->mapping == mapping) { | 
|  | VM_BUG_ON_PAGE(PageWriteback(page), page); | 
|  | truncate_inode_page(mapping, page); | 
|  | } else { | 
|  | /* Page was replaced by swap: retry */ | 
|  | unlock_page(page); | 
|  | index--; | 
|  | break; | 
|  | } | 
|  | } | 
|  | unlock_page(page); | 
|  | } | 
|  | pagevec_remove_exceptionals(&pvec); | 
|  | pagevec_release(&pvec); | 
|  | index++; | 
|  | } | 
|  |  | 
|  | spin_lock(&info->lock); | 
|  | info->swapped -= nr_swaps_freed; | 
|  | shmem_recalc_inode(inode); | 
|  | spin_unlock(&info->lock); | 
|  | } | 
|  |  | 
|  | void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) | 
|  | { | 
|  | shmem_undo_range(inode, lstart, lend, false); | 
|  | inode->i_ctime = inode->i_mtime = CURRENT_TIME; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(shmem_truncate_range); | 
|  |  | 
|  | static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry, | 
|  | struct kstat *stat) | 
|  | { | 
|  | struct inode *inode = dentry->d_inode; | 
|  | struct shmem_inode_info *info = SHMEM_I(inode); | 
|  |  | 
|  | if (info->alloced - info->swapped != inode->i_mapping->nrpages) { | 
|  | spin_lock(&info->lock); | 
|  | shmem_recalc_inode(inode); | 
|  | spin_unlock(&info->lock); | 
|  | } | 
|  | generic_fillattr(inode, stat); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int shmem_setattr(struct dentry *dentry, struct iattr *attr) | 
|  | { | 
|  | struct inode *inode = d_inode(dentry); | 
|  | struct shmem_inode_info *info = SHMEM_I(inode); | 
|  | int error; | 
|  |  | 
|  | error = inode_change_ok(inode, attr); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { | 
|  | loff_t oldsize = inode->i_size; | 
|  | loff_t newsize = attr->ia_size; | 
|  |  | 
|  | /* protected by i_mutex */ | 
|  | if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || | 
|  | (newsize > oldsize && (info->seals & F_SEAL_GROW))) | 
|  | return -EPERM; | 
|  |  | 
|  | if (newsize != oldsize) { | 
|  | error = shmem_reacct_size(SHMEM_I(inode)->flags, | 
|  | oldsize, newsize); | 
|  | if (error) | 
|  | return error; | 
|  | i_size_write(inode, newsize); | 
|  | inode->i_ctime = inode->i_mtime = CURRENT_TIME; | 
|  | } | 
|  | if (newsize <= oldsize) { | 
|  | loff_t holebegin = round_up(newsize, PAGE_SIZE); | 
|  | if (oldsize > holebegin) | 
|  | unmap_mapping_range(inode->i_mapping, | 
|  | holebegin, 0, 1); | 
|  | if (info->alloced) | 
|  | shmem_truncate_range(inode, | 
|  | newsize, (loff_t)-1); | 
|  | /* unmap again to remove racily COWed private pages */ | 
|  | if (oldsize > holebegin) | 
|  | unmap_mapping_range(inode->i_mapping, | 
|  | holebegin, 0, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | setattr_copy(inode, attr); | 
|  | if (attr->ia_valid & ATTR_MODE) | 
|  | error = posix_acl_chmod(inode, inode->i_mode); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static void shmem_evict_inode(struct inode *inode) | 
|  | { | 
|  | struct shmem_inode_info *info = SHMEM_I(inode); | 
|  |  | 
|  | if (inode->i_mapping->a_ops == &shmem_aops) { | 
|  | shmem_unacct_size(info->flags, inode->i_size); | 
|  | inode->i_size = 0; | 
|  | shmem_truncate_range(inode, 0, (loff_t)-1); | 
|  | if (!list_empty(&info->swaplist)) { | 
|  | mutex_lock(&shmem_swaplist_mutex); | 
|  | list_del_init(&info->swaplist); | 
|  | mutex_unlock(&shmem_swaplist_mutex); | 
|  | } | 
|  | } else | 
|  | kfree(info->symlink); | 
|  |  | 
|  | simple_xattrs_free(&info->xattrs); | 
|  | WARN_ON(inode->i_blocks); | 
|  | shmem_free_inode(inode->i_sb); | 
|  | clear_inode(inode); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If swap found in inode, free it and move page from swapcache to filecache. | 
|  | */ | 
|  | static int shmem_unuse_inode(struct shmem_inode_info *info, | 
|  | swp_entry_t swap, struct page **pagep) | 
|  | { | 
|  | struct address_space *mapping = info->vfs_inode.i_mapping; | 
|  | void *radswap; | 
|  | pgoff_t index; | 
|  | gfp_t gfp; | 
|  | int error = 0; | 
|  |  | 
|  | radswap = swp_to_radix_entry(swap); | 
|  | index = radix_tree_locate_item(&mapping->page_tree, radswap); | 
|  | if (index == -1) | 
|  | return -EAGAIN;	/* tell shmem_unuse we found nothing */ | 
|  |  | 
|  | /* | 
|  | * Move _head_ to start search for next from here. | 
|  | * But be careful: shmem_evict_inode checks list_empty without taking | 
|  | * mutex, and there's an instant in list_move_tail when info->swaplist | 
|  | * would appear empty, if it were the only one on shmem_swaplist. | 
|  | */ | 
|  | if (shmem_swaplist.next != &info->swaplist) | 
|  | list_move_tail(&shmem_swaplist, &info->swaplist); | 
|  |  | 
|  | gfp = mapping_gfp_mask(mapping); | 
|  | if (shmem_should_replace_page(*pagep, gfp)) { | 
|  | mutex_unlock(&shmem_swaplist_mutex); | 
|  | error = shmem_replace_page(pagep, gfp, info, index); | 
|  | mutex_lock(&shmem_swaplist_mutex); | 
|  | /* | 
|  | * We needed to drop mutex to make that restrictive page | 
|  | * allocation, but the inode might have been freed while we | 
|  | * dropped it: although a racing shmem_evict_inode() cannot | 
|  | * complete without emptying the radix_tree, our page lock | 
|  | * on this swapcache page is not enough to prevent that - | 
|  | * free_swap_and_cache() of our swap entry will only | 
|  | * trylock_page(), removing swap from radix_tree whatever. | 
|  | * | 
|  | * We must not proceed to shmem_add_to_page_cache() if the | 
|  | * inode has been freed, but of course we cannot rely on | 
|  | * inode or mapping or info to check that.  However, we can | 
|  | * safely check if our swap entry is still in use (and here | 
|  | * it can't have got reused for another page): if it's still | 
|  | * in use, then the inode cannot have been freed yet, and we | 
|  | * can safely proceed (if it's no longer in use, that tells | 
|  | * nothing about the inode, but we don't need to unuse swap). | 
|  | */ | 
|  | if (!page_swapcount(*pagep)) | 
|  | error = -ENOENT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We rely on shmem_swaplist_mutex, not only to protect the swaplist, | 
|  | * but also to hold up shmem_evict_inode(): so inode cannot be freed | 
|  | * beneath us (pagelock doesn't help until the page is in pagecache). | 
|  | */ | 
|  | if (!error) | 
|  | error = shmem_add_to_page_cache(*pagep, mapping, index, | 
|  | radswap); | 
|  | if (error != -ENOMEM) { | 
|  | /* | 
|  | * Truncation and eviction use free_swap_and_cache(), which | 
|  | * only does trylock page: if we raced, best clean up here. | 
|  | */ | 
|  | delete_from_swap_cache(*pagep); | 
|  | set_page_dirty(*pagep); | 
|  | if (!error) { | 
|  | spin_lock(&info->lock); | 
|  | info->swapped--; | 
|  | spin_unlock(&info->lock); | 
|  | swap_free(swap); | 
|  | } | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Search through swapped inodes to find and replace swap by page. | 
|  | */ | 
|  | int shmem_unuse(swp_entry_t swap, struct page *page) | 
|  | { | 
|  | struct list_head *this, *next; | 
|  | struct shmem_inode_info *info; | 
|  | struct mem_cgroup *memcg; | 
|  | int error = 0; | 
|  |  | 
|  | /* | 
|  | * There's a faint possibility that swap page was replaced before | 
|  | * caller locked it: caller will come back later with the right page. | 
|  | */ | 
|  | if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Charge page using GFP_KERNEL while we can wait, before taking | 
|  | * the shmem_swaplist_mutex which might hold up shmem_writepage(). | 
|  | * Charged back to the user (not to caller) when swap account is used. | 
|  | */ | 
|  | error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg); | 
|  | if (error) | 
|  | goto out; | 
|  | /* No radix_tree_preload: swap entry keeps a place for page in tree */ | 
|  | error = -EAGAIN; | 
|  |  | 
|  | mutex_lock(&shmem_swaplist_mutex); | 
|  | list_for_each_safe(this, next, &shmem_swaplist) { | 
|  | info = list_entry(this, struct shmem_inode_info, swaplist); | 
|  | if (info->swapped) | 
|  | error = shmem_unuse_inode(info, swap, &page); | 
|  | else | 
|  | list_del_init(&info->swaplist); | 
|  | cond_resched(); | 
|  | if (error != -EAGAIN) | 
|  | break; | 
|  | /* found nothing in this: move on to search the next */ | 
|  | } | 
|  | mutex_unlock(&shmem_swaplist_mutex); | 
|  |  | 
|  | if (error) { | 
|  | if (error != -ENOMEM) | 
|  | error = 0; | 
|  | mem_cgroup_cancel_charge(page, memcg); | 
|  | } else | 
|  | mem_cgroup_commit_charge(page, memcg, true); | 
|  | out: | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Move the page from the page cache to the swap cache. | 
|  | */ | 
|  | static int shmem_writepage(struct page *page, struct writeback_control *wbc) | 
|  | { | 
|  | struct shmem_inode_info *info; | 
|  | struct address_space *mapping; | 
|  | struct inode *inode; | 
|  | swp_entry_t swap; | 
|  | pgoff_t index; | 
|  |  | 
|  | BUG_ON(!PageLocked(page)); | 
|  | mapping = page->mapping; | 
|  | index = page->index; | 
|  | inode = mapping->host; | 
|  | info = SHMEM_I(inode); | 
|  | if (info->flags & VM_LOCKED) | 
|  | goto redirty; | 
|  | if (!total_swap_pages) | 
|  | goto redirty; | 
|  |  | 
|  | /* | 
|  | * Our capabilities prevent regular writeback or sync from ever calling | 
|  | * shmem_writepage; but a stacking filesystem might use ->writepage of | 
|  | * its underlying filesystem, in which case tmpfs should write out to | 
|  | * swap only in response to memory pressure, and not for the writeback | 
|  | * threads or sync. | 
|  | */ | 
|  | if (!wbc->for_reclaim) { | 
|  | WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */ | 
|  | goto redirty; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC | 
|  | * value into swapfile.c, the only way we can correctly account for a | 
|  | * fallocated page arriving here is now to initialize it and write it. | 
|  | * | 
|  | * That's okay for a page already fallocated earlier, but if we have | 
|  | * not yet completed the fallocation, then (a) we want to keep track | 
|  | * of this page in case we have to undo it, and (b) it may not be a | 
|  | * good idea to continue anyway, once we're pushing into swap.  So | 
|  | * reactivate the page, and let shmem_fallocate() quit when too many. | 
|  | */ | 
|  | if (!PageUptodate(page)) { | 
|  | if (inode->i_private) { | 
|  | struct shmem_falloc *shmem_falloc; | 
|  | spin_lock(&inode->i_lock); | 
|  | shmem_falloc = inode->i_private; | 
|  | if (shmem_falloc && | 
|  | !shmem_falloc->waitq && | 
|  | index >= shmem_falloc->start && | 
|  | index < shmem_falloc->next) | 
|  | shmem_falloc->nr_unswapped++; | 
|  | else | 
|  | shmem_falloc = NULL; | 
|  | spin_unlock(&inode->i_lock); | 
|  | if (shmem_falloc) | 
|  | goto redirty; | 
|  | } | 
|  | clear_highpage(page); | 
|  | flush_dcache_page(page); | 
|  | SetPageUptodate(page); | 
|  | } | 
|  |  | 
|  | swap = get_swap_page(); | 
|  | if (!swap.val) | 
|  | goto redirty; | 
|  |  | 
|  | /* | 
|  | * Add inode to shmem_unuse()'s list of swapped-out inodes, | 
|  | * if it's not already there.  Do it now before the page is | 
|  | * moved to swap cache, when its pagelock no longer protects | 
|  | * the inode from eviction.  But don't unlock the mutex until | 
|  | * we've incremented swapped, because shmem_unuse_inode() will | 
|  | * prune a !swapped inode from the swaplist under this mutex. | 
|  | */ | 
|  | mutex_lock(&shmem_swaplist_mutex); | 
|  | if (list_empty(&info->swaplist)) | 
|  | list_add_tail(&info->swaplist, &shmem_swaplist); | 
|  |  | 
|  | if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { | 
|  | swap_shmem_alloc(swap); | 
|  | shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); | 
|  |  | 
|  | spin_lock(&info->lock); | 
|  | info->swapped++; | 
|  | shmem_recalc_inode(inode); | 
|  | spin_unlock(&info->lock); | 
|  |  | 
|  | mutex_unlock(&shmem_swaplist_mutex); | 
|  | BUG_ON(page_mapped(page)); | 
|  | swap_writepage(page, wbc); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&shmem_swaplist_mutex); | 
|  | swapcache_free(swap); | 
|  | redirty: | 
|  | set_page_dirty(page); | 
|  | if (wbc->for_reclaim) | 
|  | return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */ | 
|  | unlock_page(page); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | #ifdef CONFIG_TMPFS | 
|  | static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) | 
|  | { | 
|  | char buffer[64]; | 
|  |  | 
|  | if (!mpol || mpol->mode == MPOL_DEFAULT) | 
|  | return;		/* show nothing */ | 
|  |  | 
|  | mpol_to_str(buffer, sizeof(buffer), mpol); | 
|  |  | 
|  | seq_printf(seq, ",mpol=%s", buffer); | 
|  | } | 
|  |  | 
|  | static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) | 
|  | { | 
|  | struct mempolicy *mpol = NULL; | 
|  | if (sbinfo->mpol) { | 
|  | spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */ | 
|  | mpol = sbinfo->mpol; | 
|  | mpol_get(mpol); | 
|  | spin_unlock(&sbinfo->stat_lock); | 
|  | } | 
|  | return mpol; | 
|  | } | 
|  | #endif /* CONFIG_TMPFS */ | 
|  |  | 
|  | static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, | 
|  | struct shmem_inode_info *info, pgoff_t index) | 
|  | { | 
|  | struct vm_area_struct pvma; | 
|  | struct page *page; | 
|  |  | 
|  | /* Create a pseudo vma that just contains the policy */ | 
|  | pvma.vm_start = 0; | 
|  | /* Bias interleave by inode number to distribute better across nodes */ | 
|  | pvma.vm_pgoff = index + info->vfs_inode.i_ino; | 
|  | pvma.vm_ops = NULL; | 
|  | pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); | 
|  |  | 
|  | page = swapin_readahead(swap, gfp, &pvma, 0); | 
|  |  | 
|  | /* Drop reference taken by mpol_shared_policy_lookup() */ | 
|  | mpol_cond_put(pvma.vm_policy); | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static struct page *shmem_alloc_page(gfp_t gfp, | 
|  | struct shmem_inode_info *info, pgoff_t index) | 
|  | { | 
|  | struct vm_area_struct pvma; | 
|  | struct page *page; | 
|  |  | 
|  | /* Create a pseudo vma that just contains the policy */ | 
|  | pvma.vm_start = 0; | 
|  | /* Bias interleave by inode number to distribute better across nodes */ | 
|  | pvma.vm_pgoff = index + info->vfs_inode.i_ino; | 
|  | pvma.vm_ops = NULL; | 
|  | pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); | 
|  |  | 
|  | page = alloc_page_vma(gfp, &pvma, 0); | 
|  |  | 
|  | /* Drop reference taken by mpol_shared_policy_lookup() */ | 
|  | mpol_cond_put(pvma.vm_policy); | 
|  |  | 
|  | return page; | 
|  | } | 
|  | #else /* !CONFIG_NUMA */ | 
|  | #ifdef CONFIG_TMPFS | 
|  | static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_TMPFS */ | 
|  |  | 
|  | static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, | 
|  | struct shmem_inode_info *info, pgoff_t index) | 
|  | { | 
|  | return swapin_readahead(swap, gfp, NULL, 0); | 
|  | } | 
|  |  | 
|  | static inline struct page *shmem_alloc_page(gfp_t gfp, | 
|  | struct shmem_inode_info *info, pgoff_t index) | 
|  | { | 
|  | return alloc_page(gfp); | 
|  | } | 
|  | #endif /* CONFIG_NUMA */ | 
|  |  | 
|  | #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS) | 
|  | static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * When a page is moved from swapcache to shmem filecache (either by the | 
|  | * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of | 
|  | * shmem_unuse_inode()), it may have been read in earlier from swap, in | 
|  | * ignorance of the mapping it belongs to.  If that mapping has special | 
|  | * constraints (like the gma500 GEM driver, which requires RAM below 4GB), | 
|  | * we may need to copy to a suitable page before moving to filecache. | 
|  | * | 
|  | * In a future release, this may well be extended to respect cpuset and | 
|  | * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); | 
|  | * but for now it is a simple matter of zone. | 
|  | */ | 
|  | static bool shmem_should_replace_page(struct page *page, gfp_t gfp) | 
|  | { | 
|  | return page_zonenum(page) > gfp_zone(gfp); | 
|  | } | 
|  |  | 
|  | static int shmem_replace_page(struct page **pagep, gfp_t gfp, | 
|  | struct shmem_inode_info *info, pgoff_t index) | 
|  | { | 
|  | struct page *oldpage, *newpage; | 
|  | struct address_space *swap_mapping; | 
|  | pgoff_t swap_index; | 
|  | int error; | 
|  |  | 
|  | oldpage = *pagep; | 
|  | swap_index = page_private(oldpage); | 
|  | swap_mapping = page_mapping(oldpage); | 
|  |  | 
|  | /* | 
|  | * We have arrived here because our zones are constrained, so don't | 
|  | * limit chance of success by further cpuset and node constraints. | 
|  | */ | 
|  | gfp &= ~GFP_CONSTRAINT_MASK; | 
|  | newpage = shmem_alloc_page(gfp, info, index); | 
|  | if (!newpage) | 
|  | return -ENOMEM; | 
|  |  | 
|  | page_cache_get(newpage); | 
|  | copy_highpage(newpage, oldpage); | 
|  | flush_dcache_page(newpage); | 
|  |  | 
|  | __set_page_locked(newpage); | 
|  | SetPageUptodate(newpage); | 
|  | SetPageSwapBacked(newpage); | 
|  | set_page_private(newpage, swap_index); | 
|  | SetPageSwapCache(newpage); | 
|  |  | 
|  | /* | 
|  | * Our caller will very soon move newpage out of swapcache, but it's | 
|  | * a nice clean interface for us to replace oldpage by newpage there. | 
|  | */ | 
|  | spin_lock_irq(&swap_mapping->tree_lock); | 
|  | error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, | 
|  | newpage); | 
|  | if (!error) { | 
|  | __inc_zone_page_state(newpage, NR_FILE_PAGES); | 
|  | __dec_zone_page_state(oldpage, NR_FILE_PAGES); | 
|  | } | 
|  | spin_unlock_irq(&swap_mapping->tree_lock); | 
|  |  | 
|  | if (unlikely(error)) { | 
|  | /* | 
|  | * Is this possible?  I think not, now that our callers check | 
|  | * both PageSwapCache and page_private after getting page lock; | 
|  | * but be defensive.  Reverse old to newpage for clear and free. | 
|  | */ | 
|  | oldpage = newpage; | 
|  | } else { | 
|  | mem_cgroup_replace_page(oldpage, newpage); | 
|  | lru_cache_add_anon(newpage); | 
|  | *pagep = newpage; | 
|  | } | 
|  |  | 
|  | ClearPageSwapCache(oldpage); | 
|  | set_page_private(oldpage, 0); | 
|  |  | 
|  | unlock_page(oldpage); | 
|  | page_cache_release(oldpage); | 
|  | page_cache_release(oldpage); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * shmem_getpage_gfp - find page in cache, or get from swap, or allocate | 
|  | * | 
|  | * If we allocate a new one we do not mark it dirty. That's up to the | 
|  | * vm. If we swap it in we mark it dirty since we also free the swap | 
|  | * entry since a page cannot live in both the swap and page cache | 
|  | */ | 
|  | static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, | 
|  | struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type) | 
|  | { | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  | struct shmem_inode_info *info; | 
|  | struct shmem_sb_info *sbinfo; | 
|  | struct mem_cgroup *memcg; | 
|  | struct page *page; | 
|  | swp_entry_t swap; | 
|  | int error; | 
|  | int once = 0; | 
|  | int alloced = 0; | 
|  |  | 
|  | if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT)) | 
|  | return -EFBIG; | 
|  | repeat: | 
|  | swap.val = 0; | 
|  | page = find_lock_entry(mapping, index); | 
|  | if (radix_tree_exceptional_entry(page)) { | 
|  | swap = radix_to_swp_entry(page); | 
|  | page = NULL; | 
|  | } | 
|  |  | 
|  | if (sgp != SGP_WRITE && sgp != SGP_FALLOC && | 
|  | ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { | 
|  | error = -EINVAL; | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | if (page && sgp == SGP_WRITE) | 
|  | mark_page_accessed(page); | 
|  |  | 
|  | /* fallocated page? */ | 
|  | if (page && !PageUptodate(page)) { | 
|  | if (sgp != SGP_READ) | 
|  | goto clear; | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  | page = NULL; | 
|  | } | 
|  | if (page || (sgp == SGP_READ && !swap.val)) { | 
|  | *pagep = page; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fast cache lookup did not find it: | 
|  | * bring it back from swap or allocate. | 
|  | */ | 
|  | info = SHMEM_I(inode); | 
|  | sbinfo = SHMEM_SB(inode->i_sb); | 
|  |  | 
|  | if (swap.val) { | 
|  | /* Look it up and read it in.. */ | 
|  | page = lookup_swap_cache(swap); | 
|  | if (!page) { | 
|  | /* here we actually do the io */ | 
|  | if (fault_type) | 
|  | *fault_type |= VM_FAULT_MAJOR; | 
|  | page = shmem_swapin(swap, gfp, info, index); | 
|  | if (!page) { | 
|  | error = -ENOMEM; | 
|  | goto failed; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* We have to do this with page locked to prevent races */ | 
|  | lock_page(page); | 
|  | if (!PageSwapCache(page) || page_private(page) != swap.val || | 
|  | !shmem_confirm_swap(mapping, index, swap)) { | 
|  | error = -EEXIST;	/* try again */ | 
|  | goto unlock; | 
|  | } | 
|  | if (!PageUptodate(page)) { | 
|  | error = -EIO; | 
|  | goto failed; | 
|  | } | 
|  | wait_on_page_writeback(page); | 
|  |  | 
|  | if (shmem_should_replace_page(page, gfp)) { | 
|  | error = shmem_replace_page(&page, gfp, info, index); | 
|  | if (error) | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg); | 
|  | if (!error) { | 
|  | error = shmem_add_to_page_cache(page, mapping, index, | 
|  | swp_to_radix_entry(swap)); | 
|  | /* | 
|  | * We already confirmed swap under page lock, and make | 
|  | * no memory allocation here, so usually no possibility | 
|  | * of error; but free_swap_and_cache() only trylocks a | 
|  | * page, so it is just possible that the entry has been | 
|  | * truncated or holepunched since swap was confirmed. | 
|  | * shmem_undo_range() will have done some of the | 
|  | * unaccounting, now delete_from_swap_cache() will do | 
|  | * the rest. | 
|  | * Reset swap.val? No, leave it so "failed" goes back to | 
|  | * "repeat": reading a hole and writing should succeed. | 
|  | */ | 
|  | if (error) { | 
|  | mem_cgroup_cancel_charge(page, memcg); | 
|  | delete_from_swap_cache(page); | 
|  | } | 
|  | } | 
|  | if (error) | 
|  | goto failed; | 
|  |  | 
|  | mem_cgroup_commit_charge(page, memcg, true); | 
|  |  | 
|  | spin_lock(&info->lock); | 
|  | info->swapped--; | 
|  | shmem_recalc_inode(inode); | 
|  | spin_unlock(&info->lock); | 
|  |  | 
|  | if (sgp == SGP_WRITE) | 
|  | mark_page_accessed(page); | 
|  |  | 
|  | delete_from_swap_cache(page); | 
|  | set_page_dirty(page); | 
|  | swap_free(swap); | 
|  |  | 
|  | } else { | 
|  | if (shmem_acct_block(info->flags)) { | 
|  | error = -ENOSPC; | 
|  | goto failed; | 
|  | } | 
|  | if (sbinfo->max_blocks) { | 
|  | if (percpu_counter_compare(&sbinfo->used_blocks, | 
|  | sbinfo->max_blocks) >= 0) { | 
|  | error = -ENOSPC; | 
|  | goto unacct; | 
|  | } | 
|  | percpu_counter_inc(&sbinfo->used_blocks); | 
|  | } | 
|  |  | 
|  | page = shmem_alloc_page(gfp, info, index); | 
|  | if (!page) { | 
|  | error = -ENOMEM; | 
|  | goto decused; | 
|  | } | 
|  |  | 
|  | __SetPageSwapBacked(page); | 
|  | __set_page_locked(page); | 
|  | if (sgp == SGP_WRITE) | 
|  | __SetPageReferenced(page); | 
|  |  | 
|  | error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg); | 
|  | if (error) | 
|  | goto decused; | 
|  | error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK); | 
|  | if (!error) { | 
|  | error = shmem_add_to_page_cache(page, mapping, index, | 
|  | NULL); | 
|  | radix_tree_preload_end(); | 
|  | } | 
|  | if (error) { | 
|  | mem_cgroup_cancel_charge(page, memcg); | 
|  | goto decused; | 
|  | } | 
|  | mem_cgroup_commit_charge(page, memcg, false); | 
|  | lru_cache_add_anon(page); | 
|  |  | 
|  | spin_lock(&info->lock); | 
|  | info->alloced++; | 
|  | inode->i_blocks += BLOCKS_PER_PAGE; | 
|  | shmem_recalc_inode(inode); | 
|  | spin_unlock(&info->lock); | 
|  | alloced = true; | 
|  |  | 
|  | /* | 
|  | * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. | 
|  | */ | 
|  | if (sgp == SGP_FALLOC) | 
|  | sgp = SGP_WRITE; | 
|  | clear: | 
|  | /* | 
|  | * Let SGP_WRITE caller clear ends if write does not fill page; | 
|  | * but SGP_FALLOC on a page fallocated earlier must initialize | 
|  | * it now, lest undo on failure cancel our earlier guarantee. | 
|  | */ | 
|  | if (sgp != SGP_WRITE) { | 
|  | clear_highpage(page); | 
|  | flush_dcache_page(page); | 
|  | SetPageUptodate(page); | 
|  | } | 
|  | if (sgp == SGP_DIRTY) | 
|  | set_page_dirty(page); | 
|  | } | 
|  |  | 
|  | /* Perhaps the file has been truncated since we checked */ | 
|  | if (sgp != SGP_WRITE && sgp != SGP_FALLOC && | 
|  | ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { | 
|  | error = -EINVAL; | 
|  | if (alloced) | 
|  | goto trunc; | 
|  | else | 
|  | goto failed; | 
|  | } | 
|  | *pagep = page; | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Error recovery. | 
|  | */ | 
|  | trunc: | 
|  | info = SHMEM_I(inode); | 
|  | ClearPageDirty(page); | 
|  | delete_from_page_cache(page); | 
|  | spin_lock(&info->lock); | 
|  | info->alloced--; | 
|  | inode->i_blocks -= BLOCKS_PER_PAGE; | 
|  | spin_unlock(&info->lock); | 
|  | decused: | 
|  | sbinfo = SHMEM_SB(inode->i_sb); | 
|  | if (sbinfo->max_blocks) | 
|  | percpu_counter_add(&sbinfo->used_blocks, -1); | 
|  | unacct: | 
|  | shmem_unacct_blocks(info->flags, 1); | 
|  | failed: | 
|  | if (swap.val && error != -EINVAL && | 
|  | !shmem_confirm_swap(mapping, index, swap)) | 
|  | error = -EEXIST; | 
|  | unlock: | 
|  | if (page) { | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  | } | 
|  | if (error == -ENOSPC && !once++) { | 
|  | info = SHMEM_I(inode); | 
|  | spin_lock(&info->lock); | 
|  | shmem_recalc_inode(inode); | 
|  | spin_unlock(&info->lock); | 
|  | goto repeat; | 
|  | } | 
|  | if (error == -EEXIST)	/* from above or from radix_tree_insert */ | 
|  | goto repeat; | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | 
|  | { | 
|  | struct inode *inode = file_inode(vma->vm_file); | 
|  | int error; | 
|  | int ret = VM_FAULT_LOCKED; | 
|  |  | 
|  | /* | 
|  | * Trinity finds that probing a hole which tmpfs is punching can | 
|  | * prevent the hole-punch from ever completing: which in turn | 
|  | * locks writers out with its hold on i_mutex.  So refrain from | 
|  | * faulting pages into the hole while it's being punched.  Although | 
|  | * shmem_undo_range() does remove the additions, it may be unable to | 
|  | * keep up, as each new page needs its own unmap_mapping_range() call, | 
|  | * and the i_mmap tree grows ever slower to scan if new vmas are added. | 
|  | * | 
|  | * It does not matter if we sometimes reach this check just before the | 
|  | * hole-punch begins, so that one fault then races with the punch: | 
|  | * we just need to make racing faults a rare case. | 
|  | * | 
|  | * The implementation below would be much simpler if we just used a | 
|  | * standard mutex or completion: but we cannot take i_mutex in fault, | 
|  | * and bloating every shmem inode for this unlikely case would be sad. | 
|  | */ | 
|  | if (unlikely(inode->i_private)) { | 
|  | struct shmem_falloc *shmem_falloc; | 
|  |  | 
|  | spin_lock(&inode->i_lock); | 
|  | shmem_falloc = inode->i_private; | 
|  | if (shmem_falloc && | 
|  | shmem_falloc->waitq && | 
|  | vmf->pgoff >= shmem_falloc->start && | 
|  | vmf->pgoff < shmem_falloc->next) { | 
|  | wait_queue_head_t *shmem_falloc_waitq; | 
|  | DEFINE_WAIT(shmem_fault_wait); | 
|  |  | 
|  | ret = VM_FAULT_NOPAGE; | 
|  | if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) && | 
|  | !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) { | 
|  | /* It's polite to up mmap_sem if we can */ | 
|  | up_read(&vma->vm_mm->mmap_sem); | 
|  | ret = VM_FAULT_RETRY; | 
|  | } | 
|  |  | 
|  | shmem_falloc_waitq = shmem_falloc->waitq; | 
|  | prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, | 
|  | TASK_UNINTERRUPTIBLE); | 
|  | spin_unlock(&inode->i_lock); | 
|  | schedule(); | 
|  |  | 
|  | /* | 
|  | * shmem_falloc_waitq points into the shmem_fallocate() | 
|  | * stack of the hole-punching task: shmem_falloc_waitq | 
|  | * is usually invalid by the time we reach here, but | 
|  | * finish_wait() does not dereference it in that case; | 
|  | * though i_lock needed lest racing with wake_up_all(). | 
|  | */ | 
|  | spin_lock(&inode->i_lock); | 
|  | finish_wait(shmem_falloc_waitq, &shmem_fault_wait); | 
|  | spin_unlock(&inode->i_lock); | 
|  | return ret; | 
|  | } | 
|  | spin_unlock(&inode->i_lock); | 
|  | } | 
|  |  | 
|  | error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret); | 
|  | if (error) | 
|  | return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); | 
|  |  | 
|  | if (ret & VM_FAULT_MAJOR) { | 
|  | count_vm_event(PGMAJFAULT); | 
|  | mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) | 
|  | { | 
|  | struct inode *inode = file_inode(vma->vm_file); | 
|  | return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); | 
|  | } | 
|  |  | 
|  | static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, | 
|  | unsigned long addr) | 
|  | { | 
|  | struct inode *inode = file_inode(vma->vm_file); | 
|  | pgoff_t index; | 
|  |  | 
|  | index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; | 
|  | return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | int shmem_lock(struct file *file, int lock, struct user_struct *user) | 
|  | { | 
|  | struct inode *inode = file_inode(file); | 
|  | struct shmem_inode_info *info = SHMEM_I(inode); | 
|  | int retval = -ENOMEM; | 
|  |  | 
|  | spin_lock(&info->lock); | 
|  | if (lock && !(info->flags & VM_LOCKED)) { | 
|  | if (!user_shm_lock(inode->i_size, user)) | 
|  | goto out_nomem; | 
|  | info->flags |= VM_LOCKED; | 
|  | mapping_set_unevictable(file->f_mapping); | 
|  | } | 
|  | if (!lock && (info->flags & VM_LOCKED) && user) { | 
|  | user_shm_unlock(inode->i_size, user); | 
|  | info->flags &= ~VM_LOCKED; | 
|  | mapping_clear_unevictable(file->f_mapping); | 
|  | } | 
|  | retval = 0; | 
|  |  | 
|  | out_nomem: | 
|  | spin_unlock(&info->lock); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int shmem_mmap(struct file *file, struct vm_area_struct *vma) | 
|  | { | 
|  | file_accessed(file); | 
|  | vma->vm_ops = &shmem_vm_ops; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, | 
|  | umode_t mode, dev_t dev, unsigned long flags) | 
|  | { | 
|  | struct inode *inode; | 
|  | struct shmem_inode_info *info; | 
|  | struct shmem_sb_info *sbinfo = SHMEM_SB(sb); | 
|  |  | 
|  | if (shmem_reserve_inode(sb)) | 
|  | return NULL; | 
|  |  | 
|  | inode = new_inode(sb); | 
|  | if (inode) { | 
|  | inode->i_ino = get_next_ino(); | 
|  | inode_init_owner(inode, dir, mode); | 
|  | inode->i_blocks = 0; | 
|  | inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; | 
|  | inode->i_generation = get_seconds(); | 
|  | info = SHMEM_I(inode); | 
|  | memset(info, 0, (char *)inode - (char *)info); | 
|  | spin_lock_init(&info->lock); | 
|  | info->seals = F_SEAL_SEAL; | 
|  | info->flags = flags & VM_NORESERVE; | 
|  | INIT_LIST_HEAD(&info->swaplist); | 
|  | simple_xattrs_init(&info->xattrs); | 
|  | cache_no_acl(inode); | 
|  |  | 
|  | switch (mode & S_IFMT) { | 
|  | default: | 
|  | inode->i_op = &shmem_special_inode_operations; | 
|  | init_special_inode(inode, mode, dev); | 
|  | break; | 
|  | case S_IFREG: | 
|  | inode->i_mapping->a_ops = &shmem_aops; | 
|  | inode->i_op = &shmem_inode_operations; | 
|  | inode->i_fop = &shmem_file_operations; | 
|  | mpol_shared_policy_init(&info->policy, | 
|  | shmem_get_sbmpol(sbinfo)); | 
|  | break; | 
|  | case S_IFDIR: | 
|  | inc_nlink(inode); | 
|  | /* Some things misbehave if size == 0 on a directory */ | 
|  | inode->i_size = 2 * BOGO_DIRENT_SIZE; | 
|  | inode->i_op = &shmem_dir_inode_operations; | 
|  | inode->i_fop = &simple_dir_operations; | 
|  | break; | 
|  | case S_IFLNK: | 
|  | /* | 
|  | * Must not load anything in the rbtree, | 
|  | * mpol_free_shared_policy will not be called. | 
|  | */ | 
|  | mpol_shared_policy_init(&info->policy, NULL); | 
|  | break; | 
|  | } | 
|  | } else | 
|  | shmem_free_inode(sb); | 
|  | return inode; | 
|  | } | 
|  |  | 
|  | bool shmem_mapping(struct address_space *mapping) | 
|  | { | 
|  | if (!mapping->host) | 
|  | return false; | 
|  |  | 
|  | return mapping->host->i_sb->s_op == &shmem_ops; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TMPFS | 
|  | static const struct inode_operations shmem_symlink_inode_operations; | 
|  | static const struct inode_operations shmem_short_symlink_operations; | 
|  |  | 
|  | #ifdef CONFIG_TMPFS_XATTR | 
|  | static int shmem_initxattrs(struct inode *, const struct xattr *, void *); | 
|  | #else | 
|  | #define shmem_initxattrs NULL | 
|  | #endif | 
|  |  | 
|  | static int | 
|  | shmem_write_begin(struct file *file, struct address_space *mapping, | 
|  | loff_t pos, unsigned len, unsigned flags, | 
|  | struct page **pagep, void **fsdata) | 
|  | { | 
|  | struct inode *inode = mapping->host; | 
|  | struct shmem_inode_info *info = SHMEM_I(inode); | 
|  | pgoff_t index = pos >> PAGE_CACHE_SHIFT; | 
|  |  | 
|  | /* i_mutex is held by caller */ | 
|  | if (unlikely(info->seals)) { | 
|  | if (info->seals & F_SEAL_WRITE) | 
|  | return -EPERM; | 
|  | if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL); | 
|  | } | 
|  |  | 
|  | static int | 
|  | shmem_write_end(struct file *file, struct address_space *mapping, | 
|  | loff_t pos, unsigned len, unsigned copied, | 
|  | struct page *page, void *fsdata) | 
|  | { | 
|  | struct inode *inode = mapping->host; | 
|  |  | 
|  | if (pos + copied > inode->i_size) | 
|  | i_size_write(inode, pos + copied); | 
|  |  | 
|  | if (!PageUptodate(page)) { | 
|  | if (copied < PAGE_CACHE_SIZE) { | 
|  | unsigned from = pos & (PAGE_CACHE_SIZE - 1); | 
|  | zero_user_segments(page, 0, from, | 
|  | from + copied, PAGE_CACHE_SIZE); | 
|  | } | 
|  | SetPageUptodate(page); | 
|  | } | 
|  | set_page_dirty(page); | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  |  | 
|  | return copied; | 
|  | } | 
|  |  | 
|  | static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) | 
|  | { | 
|  | struct file *file = iocb->ki_filp; | 
|  | struct inode *inode = file_inode(file); | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  | pgoff_t index; | 
|  | unsigned long offset; | 
|  | enum sgp_type sgp = SGP_READ; | 
|  | int error = 0; | 
|  | ssize_t retval = 0; | 
|  | loff_t *ppos = &iocb->ki_pos; | 
|  |  | 
|  | /* | 
|  | * Might this read be for a stacking filesystem?  Then when reading | 
|  | * holes of a sparse file, we actually need to allocate those pages, | 
|  | * and even mark them dirty, so it cannot exceed the max_blocks limit. | 
|  | */ | 
|  | if (!iter_is_iovec(to)) | 
|  | sgp = SGP_DIRTY; | 
|  |  | 
|  | index = *ppos >> PAGE_CACHE_SHIFT; | 
|  | offset = *ppos & ~PAGE_CACHE_MASK; | 
|  |  | 
|  | for (;;) { | 
|  | struct page *page = NULL; | 
|  | pgoff_t end_index; | 
|  | unsigned long nr, ret; | 
|  | loff_t i_size = i_size_read(inode); | 
|  |  | 
|  | end_index = i_size >> PAGE_CACHE_SHIFT; | 
|  | if (index > end_index) | 
|  | break; | 
|  | if (index == end_index) { | 
|  | nr = i_size & ~PAGE_CACHE_MASK; | 
|  | if (nr <= offset) | 
|  | break; | 
|  | } | 
|  |  | 
|  | error = shmem_getpage(inode, index, &page, sgp, NULL); | 
|  | if (error) { | 
|  | if (error == -EINVAL) | 
|  | error = 0; | 
|  | break; | 
|  | } | 
|  | if (page) | 
|  | unlock_page(page); | 
|  |  | 
|  | /* | 
|  | * We must evaluate after, since reads (unlike writes) | 
|  | * are called without i_mutex protection against truncate | 
|  | */ | 
|  | nr = PAGE_CACHE_SIZE; | 
|  | i_size = i_size_read(inode); | 
|  | end_index = i_size >> PAGE_CACHE_SHIFT; | 
|  | if (index == end_index) { | 
|  | nr = i_size & ~PAGE_CACHE_MASK; | 
|  | if (nr <= offset) { | 
|  | if (page) | 
|  | page_cache_release(page); | 
|  | break; | 
|  | } | 
|  | } | 
|  | nr -= offset; | 
|  |  | 
|  | if (page) { | 
|  | /* | 
|  | * If users can be writing to this page using arbitrary | 
|  | * virtual addresses, take care about potential aliasing | 
|  | * before reading the page on the kernel side. | 
|  | */ | 
|  | if (mapping_writably_mapped(mapping)) | 
|  | flush_dcache_page(page); | 
|  | /* | 
|  | * Mark the page accessed if we read the beginning. | 
|  | */ | 
|  | if (!offset) | 
|  | mark_page_accessed(page); | 
|  | } else { | 
|  | page = ZERO_PAGE(0); | 
|  | page_cache_get(page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ok, we have the page, and it's up-to-date, so | 
|  | * now we can copy it to user space... | 
|  | */ | 
|  | ret = copy_page_to_iter(page, offset, nr, to); | 
|  | retval += ret; | 
|  | offset += ret; | 
|  | index += offset >> PAGE_CACHE_SHIFT; | 
|  | offset &= ~PAGE_CACHE_MASK; | 
|  |  | 
|  | page_cache_release(page); | 
|  | if (!iov_iter_count(to)) | 
|  | break; | 
|  | if (ret < nr) { | 
|  | error = -EFAULT; | 
|  | break; | 
|  | } | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; | 
|  | file_accessed(file); | 
|  | return retval ? retval : error; | 
|  | } | 
|  |  | 
|  | static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, | 
|  | struct pipe_inode_info *pipe, size_t len, | 
|  | unsigned int flags) | 
|  | { | 
|  | struct address_space *mapping = in->f_mapping; | 
|  | struct inode *inode = mapping->host; | 
|  | unsigned int loff, nr_pages, req_pages; | 
|  | struct page *pages[PIPE_DEF_BUFFERS]; | 
|  | struct partial_page partial[PIPE_DEF_BUFFERS]; | 
|  | struct page *page; | 
|  | pgoff_t index, end_index; | 
|  | loff_t isize, left; | 
|  | int error, page_nr; | 
|  | struct splice_pipe_desc spd = { | 
|  | .pages = pages, | 
|  | .partial = partial, | 
|  | .nr_pages_max = PIPE_DEF_BUFFERS, | 
|  | .flags = flags, | 
|  | .ops = &page_cache_pipe_buf_ops, | 
|  | .spd_release = spd_release_page, | 
|  | }; | 
|  |  | 
|  | isize = i_size_read(inode); | 
|  | if (unlikely(*ppos >= isize)) | 
|  | return 0; | 
|  |  | 
|  | left = isize - *ppos; | 
|  | if (unlikely(left < len)) | 
|  | len = left; | 
|  |  | 
|  | if (splice_grow_spd(pipe, &spd)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | index = *ppos >> PAGE_CACHE_SHIFT; | 
|  | loff = *ppos & ~PAGE_CACHE_MASK; | 
|  | req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; | 
|  | nr_pages = min(req_pages, spd.nr_pages_max); | 
|  |  | 
|  | spd.nr_pages = find_get_pages_contig(mapping, index, | 
|  | nr_pages, spd.pages); | 
|  | index += spd.nr_pages; | 
|  | error = 0; | 
|  |  | 
|  | while (spd.nr_pages < nr_pages) { | 
|  | error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL); | 
|  | if (error) | 
|  | break; | 
|  | unlock_page(page); | 
|  | spd.pages[spd.nr_pages++] = page; | 
|  | index++; | 
|  | } | 
|  |  | 
|  | index = *ppos >> PAGE_CACHE_SHIFT; | 
|  | nr_pages = spd.nr_pages; | 
|  | spd.nr_pages = 0; | 
|  |  | 
|  | for (page_nr = 0; page_nr < nr_pages; page_nr++) { | 
|  | unsigned int this_len; | 
|  |  | 
|  | if (!len) | 
|  | break; | 
|  |  | 
|  | this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); | 
|  | page = spd.pages[page_nr]; | 
|  |  | 
|  | if (!PageUptodate(page) || page->mapping != mapping) { | 
|  | error = shmem_getpage(inode, index, &page, | 
|  | SGP_CACHE, NULL); | 
|  | if (error) | 
|  | break; | 
|  | unlock_page(page); | 
|  | page_cache_release(spd.pages[page_nr]); | 
|  | spd.pages[page_nr] = page; | 
|  | } | 
|  |  | 
|  | isize = i_size_read(inode); | 
|  | end_index = (isize - 1) >> PAGE_CACHE_SHIFT; | 
|  | if (unlikely(!isize || index > end_index)) | 
|  | break; | 
|  |  | 
|  | if (end_index == index) { | 
|  | unsigned int plen; | 
|  |  | 
|  | plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; | 
|  | if (plen <= loff) | 
|  | break; | 
|  |  | 
|  | this_len = min(this_len, plen - loff); | 
|  | len = this_len; | 
|  | } | 
|  |  | 
|  | spd.partial[page_nr].offset = loff; | 
|  | spd.partial[page_nr].len = this_len; | 
|  | len -= this_len; | 
|  | loff = 0; | 
|  | spd.nr_pages++; | 
|  | index++; | 
|  | } | 
|  |  | 
|  | while (page_nr < nr_pages) | 
|  | page_cache_release(spd.pages[page_nr++]); | 
|  |  | 
|  | if (spd.nr_pages) | 
|  | error = splice_to_pipe(pipe, &spd); | 
|  |  | 
|  | splice_shrink_spd(&spd); | 
|  |  | 
|  | if (error > 0) { | 
|  | *ppos += error; | 
|  | file_accessed(in); | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * llseek SEEK_DATA or SEEK_HOLE through the radix_tree. | 
|  | */ | 
|  | static pgoff_t shmem_seek_hole_data(struct address_space *mapping, | 
|  | pgoff_t index, pgoff_t end, int whence) | 
|  | { | 
|  | struct page *page; | 
|  | struct pagevec pvec; | 
|  | pgoff_t indices[PAGEVEC_SIZE]; | 
|  | bool done = false; | 
|  | int i; | 
|  |  | 
|  | pagevec_init(&pvec, 0); | 
|  | pvec.nr = 1;		/* start small: we may be there already */ | 
|  | while (!done) { | 
|  | pvec.nr = find_get_entries(mapping, index, | 
|  | pvec.nr, pvec.pages, indices); | 
|  | if (!pvec.nr) { | 
|  | if (whence == SEEK_DATA) | 
|  | index = end; | 
|  | break; | 
|  | } | 
|  | for (i = 0; i < pvec.nr; i++, index++) { | 
|  | if (index < indices[i]) { | 
|  | if (whence == SEEK_HOLE) { | 
|  | done = true; | 
|  | break; | 
|  | } | 
|  | index = indices[i]; | 
|  | } | 
|  | page = pvec.pages[i]; | 
|  | if (page && !radix_tree_exceptional_entry(page)) { | 
|  | if (!PageUptodate(page)) | 
|  | page = NULL; | 
|  | } | 
|  | if (index >= end || | 
|  | (page && whence == SEEK_DATA) || | 
|  | (!page && whence == SEEK_HOLE)) { | 
|  | done = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | pagevec_remove_exceptionals(&pvec); | 
|  | pagevec_release(&pvec); | 
|  | pvec.nr = PAGEVEC_SIZE; | 
|  | cond_resched(); | 
|  | } | 
|  | return index; | 
|  | } | 
|  |  | 
|  | static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) | 
|  | { | 
|  | struct address_space *mapping = file->f_mapping; | 
|  | struct inode *inode = mapping->host; | 
|  | pgoff_t start, end; | 
|  | loff_t new_offset; | 
|  |  | 
|  | if (whence != SEEK_DATA && whence != SEEK_HOLE) | 
|  | return generic_file_llseek_size(file, offset, whence, | 
|  | MAX_LFS_FILESIZE, i_size_read(inode)); | 
|  | mutex_lock(&inode->i_mutex); | 
|  | /* We're holding i_mutex so we can access i_size directly */ | 
|  |  | 
|  | if (offset < 0) | 
|  | offset = -EINVAL; | 
|  | else if (offset >= inode->i_size) | 
|  | offset = -ENXIO; | 
|  | else { | 
|  | start = offset >> PAGE_CACHE_SHIFT; | 
|  | end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; | 
|  | new_offset = shmem_seek_hole_data(mapping, start, end, whence); | 
|  | new_offset <<= PAGE_CACHE_SHIFT; | 
|  | if (new_offset > offset) { | 
|  | if (new_offset < inode->i_size) | 
|  | offset = new_offset; | 
|  | else if (whence == SEEK_DATA) | 
|  | offset = -ENXIO; | 
|  | else | 
|  | offset = inode->i_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (offset >= 0) | 
|  | offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | return offset; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need a tag: a new tag would expand every radix_tree_node by 8 bytes, | 
|  | * so reuse a tag which we firmly believe is never set or cleared on shmem. | 
|  | */ | 
|  | #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE | 
|  | #define LAST_SCAN               4       /* about 150ms max */ | 
|  |  | 
|  | static void shmem_tag_pins(struct address_space *mapping) | 
|  | { | 
|  | struct radix_tree_iter iter; | 
|  | void **slot; | 
|  | pgoff_t start; | 
|  | struct page *page; | 
|  |  | 
|  | lru_add_drain(); | 
|  | start = 0; | 
|  | rcu_read_lock(); | 
|  |  | 
|  | restart: | 
|  | radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { | 
|  | page = radix_tree_deref_slot(slot); | 
|  | if (!page || radix_tree_exception(page)) { | 
|  | if (radix_tree_deref_retry(page)) | 
|  | goto restart; | 
|  | } else if (page_count(page) - page_mapcount(page) > 1) { | 
|  | spin_lock_irq(&mapping->tree_lock); | 
|  | radix_tree_tag_set(&mapping->page_tree, iter.index, | 
|  | SHMEM_TAG_PINNED); | 
|  | spin_unlock_irq(&mapping->tree_lock); | 
|  | } | 
|  |  | 
|  | if (need_resched()) { | 
|  | cond_resched_rcu(); | 
|  | start = iter.index + 1; | 
|  | goto restart; | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Setting SEAL_WRITE requires us to verify there's no pending writer. However, | 
|  | * via get_user_pages(), drivers might have some pending I/O without any active | 
|  | * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages | 
|  | * and see whether it has an elevated ref-count. If so, we tag them and wait for | 
|  | * them to be dropped. | 
|  | * The caller must guarantee that no new user will acquire writable references | 
|  | * to those pages to avoid races. | 
|  | */ | 
|  | static int shmem_wait_for_pins(struct address_space *mapping) | 
|  | { | 
|  | struct radix_tree_iter iter; | 
|  | void **slot; | 
|  | pgoff_t start; | 
|  | struct page *page; | 
|  | int error, scan; | 
|  |  | 
|  | shmem_tag_pins(mapping); | 
|  |  | 
|  | error = 0; | 
|  | for (scan = 0; scan <= LAST_SCAN; scan++) { | 
|  | if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED)) | 
|  | break; | 
|  |  | 
|  | if (!scan) | 
|  | lru_add_drain_all(); | 
|  | else if (schedule_timeout_killable((HZ << scan) / 200)) | 
|  | scan = LAST_SCAN; | 
|  |  | 
|  | start = 0; | 
|  | rcu_read_lock(); | 
|  | restart: | 
|  | radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, | 
|  | start, SHMEM_TAG_PINNED) { | 
|  |  | 
|  | page = radix_tree_deref_slot(slot); | 
|  | if (radix_tree_exception(page)) { | 
|  | if (radix_tree_deref_retry(page)) | 
|  | goto restart; | 
|  |  | 
|  | page = NULL; | 
|  | } | 
|  |  | 
|  | if (page && | 
|  | page_count(page) - page_mapcount(page) != 1) { | 
|  | if (scan < LAST_SCAN) | 
|  | goto continue_resched; | 
|  |  | 
|  | /* | 
|  | * On the last scan, we clean up all those tags | 
|  | * we inserted; but make a note that we still | 
|  | * found pages pinned. | 
|  | */ | 
|  | error = -EBUSY; | 
|  | } | 
|  |  | 
|  | spin_lock_irq(&mapping->tree_lock); | 
|  | radix_tree_tag_clear(&mapping->page_tree, | 
|  | iter.index, SHMEM_TAG_PINNED); | 
|  | spin_unlock_irq(&mapping->tree_lock); | 
|  | continue_resched: | 
|  | if (need_resched()) { | 
|  | cond_resched_rcu(); | 
|  | start = iter.index + 1; | 
|  | goto restart; | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | #define F_ALL_SEALS (F_SEAL_SEAL | \ | 
|  | F_SEAL_SHRINK | \ | 
|  | F_SEAL_GROW | \ | 
|  | F_SEAL_WRITE) | 
|  |  | 
|  | int shmem_add_seals(struct file *file, unsigned int seals) | 
|  | { | 
|  | struct inode *inode = file_inode(file); | 
|  | struct shmem_inode_info *info = SHMEM_I(inode); | 
|  | int error; | 
|  |  | 
|  | /* | 
|  | * SEALING | 
|  | * Sealing allows multiple parties to share a shmem-file but restrict | 
|  | * access to a specific subset of file operations. Seals can only be | 
|  | * added, but never removed. This way, mutually untrusted parties can | 
|  | * share common memory regions with a well-defined policy. A malicious | 
|  | * peer can thus never perform unwanted operations on a shared object. | 
|  | * | 
|  | * Seals are only supported on special shmem-files and always affect | 
|  | * the whole underlying inode. Once a seal is set, it may prevent some | 
|  | * kinds of access to the file. Currently, the following seals are | 
|  | * defined: | 
|  | *   SEAL_SEAL: Prevent further seals from being set on this file | 
|  | *   SEAL_SHRINK: Prevent the file from shrinking | 
|  | *   SEAL_GROW: Prevent the file from growing | 
|  | *   SEAL_WRITE: Prevent write access to the file | 
|  | * | 
|  | * As we don't require any trust relationship between two parties, we | 
|  | * must prevent seals from being removed. Therefore, sealing a file | 
|  | * only adds a given set of seals to the file, it never touches | 
|  | * existing seals. Furthermore, the "setting seals"-operation can be | 
|  | * sealed itself, which basically prevents any further seal from being | 
|  | * added. | 
|  | * | 
|  | * Semantics of sealing are only defined on volatile files. Only | 
|  | * anonymous shmem files support sealing. More importantly, seals are | 
|  | * never written to disk. Therefore, there's no plan to support it on | 
|  | * other file types. | 
|  | */ | 
|  |  | 
|  | if (file->f_op != &shmem_file_operations) | 
|  | return -EINVAL; | 
|  | if (!(file->f_mode & FMODE_WRITE)) | 
|  | return -EPERM; | 
|  | if (seals & ~(unsigned int)F_ALL_SEALS) | 
|  | return -EINVAL; | 
|  |  | 
|  | mutex_lock(&inode->i_mutex); | 
|  |  | 
|  | if (info->seals & F_SEAL_SEAL) { | 
|  | error = -EPERM; | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) { | 
|  | error = mapping_deny_writable(file->f_mapping); | 
|  | if (error) | 
|  | goto unlock; | 
|  |  | 
|  | error = shmem_wait_for_pins(file->f_mapping); | 
|  | if (error) { | 
|  | mapping_allow_writable(file->f_mapping); | 
|  | goto unlock; | 
|  | } | 
|  | } | 
|  |  | 
|  | info->seals |= seals; | 
|  | error = 0; | 
|  |  | 
|  | unlock: | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | return error; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(shmem_add_seals); | 
|  |  | 
|  | int shmem_get_seals(struct file *file) | 
|  | { | 
|  | if (file->f_op != &shmem_file_operations) | 
|  | return -EINVAL; | 
|  |  | 
|  | return SHMEM_I(file_inode(file))->seals; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(shmem_get_seals); | 
|  |  | 
|  | long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg) | 
|  | { | 
|  | long error; | 
|  |  | 
|  | switch (cmd) { | 
|  | case F_ADD_SEALS: | 
|  | /* disallow upper 32bit */ | 
|  | if (arg > UINT_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | error = shmem_add_seals(file, arg); | 
|  | break; | 
|  | case F_GET_SEALS: | 
|  | error = shmem_get_seals(file); | 
|  | break; | 
|  | default: | 
|  | error = -EINVAL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static long shmem_fallocate(struct file *file, int mode, loff_t offset, | 
|  | loff_t len) | 
|  | { | 
|  | struct inode *inode = file_inode(file); | 
|  | struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); | 
|  | struct shmem_inode_info *info = SHMEM_I(inode); | 
|  | struct shmem_falloc shmem_falloc; | 
|  | pgoff_t start, index, end; | 
|  | int error; | 
|  |  | 
|  | if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | mutex_lock(&inode->i_mutex); | 
|  |  | 
|  | if (mode & FALLOC_FL_PUNCH_HOLE) { | 
|  | struct address_space *mapping = file->f_mapping; | 
|  | loff_t unmap_start = round_up(offset, PAGE_SIZE); | 
|  | loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; | 
|  | DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); | 
|  |  | 
|  | /* protected by i_mutex */ | 
|  | if (info->seals & F_SEAL_WRITE) { | 
|  | error = -EPERM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | shmem_falloc.waitq = &shmem_falloc_waitq; | 
|  | shmem_falloc.start = unmap_start >> PAGE_SHIFT; | 
|  | shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; | 
|  | spin_lock(&inode->i_lock); | 
|  | inode->i_private = &shmem_falloc; | 
|  | spin_unlock(&inode->i_lock); | 
|  |  | 
|  | if ((u64)unmap_end > (u64)unmap_start) | 
|  | unmap_mapping_range(mapping, unmap_start, | 
|  | 1 + unmap_end - unmap_start, 0); | 
|  | shmem_truncate_range(inode, offset, offset + len - 1); | 
|  | /* No need to unmap again: hole-punching leaves COWed pages */ | 
|  |  | 
|  | spin_lock(&inode->i_lock); | 
|  | inode->i_private = NULL; | 
|  | wake_up_all(&shmem_falloc_waitq); | 
|  | spin_unlock(&inode->i_lock); | 
|  | error = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ | 
|  | error = inode_newsize_ok(inode, offset + len); | 
|  | if (error) | 
|  | goto out; | 
|  |  | 
|  | if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { | 
|  | error = -EPERM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | start = offset >> PAGE_CACHE_SHIFT; | 
|  | end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; | 
|  | /* Try to avoid a swapstorm if len is impossible to satisfy */ | 
|  | if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { | 
|  | error = -ENOSPC; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | shmem_falloc.waitq = NULL; | 
|  | shmem_falloc.start = start; | 
|  | shmem_falloc.next  = start; | 
|  | shmem_falloc.nr_falloced = 0; | 
|  | shmem_falloc.nr_unswapped = 0; | 
|  | spin_lock(&inode->i_lock); | 
|  | inode->i_private = &shmem_falloc; | 
|  | spin_unlock(&inode->i_lock); | 
|  |  | 
|  | for (index = start; index < end; index++) { | 
|  | struct page *page; | 
|  |  | 
|  | /* | 
|  | * Good, the fallocate(2) manpage permits EINTR: we may have | 
|  | * been interrupted because we are using up too much memory. | 
|  | */ | 
|  | if (signal_pending(current)) | 
|  | error = -EINTR; | 
|  | else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) | 
|  | error = -ENOMEM; | 
|  | else | 
|  | error = shmem_getpage(inode, index, &page, SGP_FALLOC, | 
|  | NULL); | 
|  | if (error) { | 
|  | /* Remove the !PageUptodate pages we added */ | 
|  | shmem_undo_range(inode, | 
|  | (loff_t)start << PAGE_CACHE_SHIFT, | 
|  | (loff_t)index << PAGE_CACHE_SHIFT, true); | 
|  | goto undone; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Inform shmem_writepage() how far we have reached. | 
|  | * No need for lock or barrier: we have the page lock. | 
|  | */ | 
|  | shmem_falloc.next++; | 
|  | if (!PageUptodate(page)) | 
|  | shmem_falloc.nr_falloced++; | 
|  |  | 
|  | /* | 
|  | * If !PageUptodate, leave it that way so that freeable pages | 
|  | * can be recognized if we need to rollback on error later. | 
|  | * But set_page_dirty so that memory pressure will swap rather | 
|  | * than free the pages we are allocating (and SGP_CACHE pages | 
|  | * might still be clean: we now need to mark those dirty too). | 
|  | */ | 
|  | set_page_dirty(page); | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) | 
|  | i_size_write(inode, offset + len); | 
|  | inode->i_ctime = CURRENT_TIME; | 
|  | undone: | 
|  | spin_lock(&inode->i_lock); | 
|  | inode->i_private = NULL; | 
|  | spin_unlock(&inode->i_lock); | 
|  | out: | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) | 
|  | { | 
|  | struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); | 
|  |  | 
|  | buf->f_type = TMPFS_MAGIC; | 
|  | buf->f_bsize = PAGE_CACHE_SIZE; | 
|  | buf->f_namelen = NAME_MAX; | 
|  | if (sbinfo->max_blocks) { | 
|  | buf->f_blocks = sbinfo->max_blocks; | 
|  | buf->f_bavail = | 
|  | buf->f_bfree  = sbinfo->max_blocks - | 
|  | percpu_counter_sum(&sbinfo->used_blocks); | 
|  | } | 
|  | if (sbinfo->max_inodes) { | 
|  | buf->f_files = sbinfo->max_inodes; | 
|  | buf->f_ffree = sbinfo->free_inodes; | 
|  | } | 
|  | /* else leave those fields 0 like simple_statfs */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * File creation. Allocate an inode, and we're done.. | 
|  | */ | 
|  | static int | 
|  | shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) | 
|  | { | 
|  | struct inode *inode; | 
|  | int error = -ENOSPC; | 
|  |  | 
|  | inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); | 
|  | if (inode) { | 
|  | error = simple_acl_create(dir, inode); | 
|  | if (error) | 
|  | goto out_iput; | 
|  | error = security_inode_init_security(inode, dir, | 
|  | &dentry->d_name, | 
|  | shmem_initxattrs, NULL); | 
|  | if (error && error != -EOPNOTSUPP) | 
|  | goto out_iput; | 
|  |  | 
|  | error = 0; | 
|  | dir->i_size += BOGO_DIRENT_SIZE; | 
|  | dir->i_ctime = dir->i_mtime = CURRENT_TIME; | 
|  | d_instantiate(dentry, inode); | 
|  | dget(dentry); /* Extra count - pin the dentry in core */ | 
|  | } | 
|  | return error; | 
|  | out_iput: | 
|  | iput(inode); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static int | 
|  | shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) | 
|  | { | 
|  | struct inode *inode; | 
|  | int error = -ENOSPC; | 
|  |  | 
|  | inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); | 
|  | if (inode) { | 
|  | error = security_inode_init_security(inode, dir, | 
|  | NULL, | 
|  | shmem_initxattrs, NULL); | 
|  | if (error && error != -EOPNOTSUPP) | 
|  | goto out_iput; | 
|  | error = simple_acl_create(dir, inode); | 
|  | if (error) | 
|  | goto out_iput; | 
|  | d_tmpfile(dentry, inode); | 
|  | } | 
|  | return error; | 
|  | out_iput: | 
|  | iput(inode); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) | 
|  | { | 
|  | int error; | 
|  |  | 
|  | if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) | 
|  | return error; | 
|  | inc_nlink(dir); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, | 
|  | bool excl) | 
|  | { | 
|  | return shmem_mknod(dir, dentry, mode | S_IFREG, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Link a file.. | 
|  | */ | 
|  | static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) | 
|  | { | 
|  | struct inode *inode = d_inode(old_dentry); | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * No ordinary (disk based) filesystem counts links as inodes; | 
|  | * but each new link needs a new dentry, pinning lowmem, and | 
|  | * tmpfs dentries cannot be pruned until they are unlinked. | 
|  | */ | 
|  | ret = shmem_reserve_inode(inode->i_sb); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | dir->i_size += BOGO_DIRENT_SIZE; | 
|  | inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; | 
|  | inc_nlink(inode); | 
|  | ihold(inode);	/* New dentry reference */ | 
|  | dget(dentry);		/* Extra pinning count for the created dentry */ | 
|  | d_instantiate(dentry, inode); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int shmem_unlink(struct inode *dir, struct dentry *dentry) | 
|  | { | 
|  | struct inode *inode = d_inode(dentry); | 
|  |  | 
|  | if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) | 
|  | shmem_free_inode(inode->i_sb); | 
|  |  | 
|  | dir->i_size -= BOGO_DIRENT_SIZE; | 
|  | inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; | 
|  | drop_nlink(inode); | 
|  | dput(dentry);	/* Undo the count from "create" - this does all the work */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int shmem_rmdir(struct inode *dir, struct dentry *dentry) | 
|  | { | 
|  | if (!simple_empty(dentry)) | 
|  | return -ENOTEMPTY; | 
|  |  | 
|  | drop_nlink(d_inode(dentry)); | 
|  | drop_nlink(dir); | 
|  | return shmem_unlink(dir, dentry); | 
|  | } | 
|  |  | 
|  | static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) | 
|  | { | 
|  | bool old_is_dir = d_is_dir(old_dentry); | 
|  | bool new_is_dir = d_is_dir(new_dentry); | 
|  |  | 
|  | if (old_dir != new_dir && old_is_dir != new_is_dir) { | 
|  | if (old_is_dir) { | 
|  | drop_nlink(old_dir); | 
|  | inc_nlink(new_dir); | 
|  | } else { | 
|  | drop_nlink(new_dir); | 
|  | inc_nlink(old_dir); | 
|  | } | 
|  | } | 
|  | old_dir->i_ctime = old_dir->i_mtime = | 
|  | new_dir->i_ctime = new_dir->i_mtime = | 
|  | d_inode(old_dentry)->i_ctime = | 
|  | d_inode(new_dentry)->i_ctime = CURRENT_TIME; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) | 
|  | { | 
|  | struct dentry *whiteout; | 
|  | int error; | 
|  |  | 
|  | whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); | 
|  | if (!whiteout) | 
|  | return -ENOMEM; | 
|  |  | 
|  | error = shmem_mknod(old_dir, whiteout, | 
|  | S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); | 
|  | dput(whiteout); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | /* | 
|  | * Cheat and hash the whiteout while the old dentry is still in | 
|  | * place, instead of playing games with FS_RENAME_DOES_D_MOVE. | 
|  | * | 
|  | * d_lookup() will consistently find one of them at this point, | 
|  | * not sure which one, but that isn't even important. | 
|  | */ | 
|  | d_rehash(whiteout); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The VFS layer already does all the dentry stuff for rename, | 
|  | * we just have to decrement the usage count for the target if | 
|  | * it exists so that the VFS layer correctly free's it when it | 
|  | * gets overwritten. | 
|  | */ | 
|  | static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) | 
|  | { | 
|  | struct inode *inode = d_inode(old_dentry); | 
|  | int they_are_dirs = S_ISDIR(inode->i_mode); | 
|  |  | 
|  | if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (flags & RENAME_EXCHANGE) | 
|  | return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); | 
|  |  | 
|  | if (!simple_empty(new_dentry)) | 
|  | return -ENOTEMPTY; | 
|  |  | 
|  | if (flags & RENAME_WHITEOUT) { | 
|  | int error; | 
|  |  | 
|  | error = shmem_whiteout(old_dir, old_dentry); | 
|  | if (error) | 
|  | return error; | 
|  | } | 
|  |  | 
|  | if (d_really_is_positive(new_dentry)) { | 
|  | (void) shmem_unlink(new_dir, new_dentry); | 
|  | if (they_are_dirs) { | 
|  | drop_nlink(d_inode(new_dentry)); | 
|  | drop_nlink(old_dir); | 
|  | } | 
|  | } else if (they_are_dirs) { | 
|  | drop_nlink(old_dir); | 
|  | inc_nlink(new_dir); | 
|  | } | 
|  |  | 
|  | old_dir->i_size -= BOGO_DIRENT_SIZE; | 
|  | new_dir->i_size += BOGO_DIRENT_SIZE; | 
|  | old_dir->i_ctime = old_dir->i_mtime = | 
|  | new_dir->i_ctime = new_dir->i_mtime = | 
|  | inode->i_ctime = CURRENT_TIME; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) | 
|  | { | 
|  | int error; | 
|  | int len; | 
|  | struct inode *inode; | 
|  | struct page *page; | 
|  | struct shmem_inode_info *info; | 
|  |  | 
|  | len = strlen(symname) + 1; | 
|  | if (len > PAGE_CACHE_SIZE) | 
|  | return -ENAMETOOLONG; | 
|  |  | 
|  | inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); | 
|  | if (!inode) | 
|  | return -ENOSPC; | 
|  |  | 
|  | error = security_inode_init_security(inode, dir, &dentry->d_name, | 
|  | shmem_initxattrs, NULL); | 
|  | if (error) { | 
|  | if (error != -EOPNOTSUPP) { | 
|  | iput(inode); | 
|  | return error; | 
|  | } | 
|  | error = 0; | 
|  | } | 
|  |  | 
|  | info = SHMEM_I(inode); | 
|  | inode->i_size = len-1; | 
|  | if (len <= SHORT_SYMLINK_LEN) { | 
|  | info->symlink = kmemdup(symname, len, GFP_KERNEL); | 
|  | if (!info->symlink) { | 
|  | iput(inode); | 
|  | return -ENOMEM; | 
|  | } | 
|  | inode->i_op = &shmem_short_symlink_operations; | 
|  | inode->i_link = info->symlink; | 
|  | } else { | 
|  | error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL); | 
|  | if (error) { | 
|  | iput(inode); | 
|  | return error; | 
|  | } | 
|  | inode->i_mapping->a_ops = &shmem_aops; | 
|  | inode->i_op = &shmem_symlink_inode_operations; | 
|  | inode_nohighmem(inode); | 
|  | memcpy(page_address(page), symname, len); | 
|  | SetPageUptodate(page); | 
|  | set_page_dirty(page); | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  | } | 
|  | dir->i_size += BOGO_DIRENT_SIZE; | 
|  | dir->i_ctime = dir->i_mtime = CURRENT_TIME; | 
|  | d_instantiate(dentry, inode); | 
|  | dget(dentry); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void shmem_put_link(void *arg) | 
|  | { | 
|  | mark_page_accessed(arg); | 
|  | put_page(arg); | 
|  | } | 
|  |  | 
|  | static const char *shmem_get_link(struct dentry *dentry, | 
|  | struct inode *inode, | 
|  | struct delayed_call *done) | 
|  | { | 
|  | struct page *page = NULL; | 
|  | int error; | 
|  | if (!dentry) { | 
|  | page = find_get_page(inode->i_mapping, 0); | 
|  | if (!page) | 
|  | return ERR_PTR(-ECHILD); | 
|  | if (!PageUptodate(page)) { | 
|  | put_page(page); | 
|  | return ERR_PTR(-ECHILD); | 
|  | } | 
|  | } else { | 
|  | error = shmem_getpage(inode, 0, &page, SGP_READ, NULL); | 
|  | if (error) | 
|  | return ERR_PTR(error); | 
|  | unlock_page(page); | 
|  | } | 
|  | set_delayed_call(done, shmem_put_link, page); | 
|  | return page_address(page); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TMPFS_XATTR | 
|  | /* | 
|  | * Superblocks without xattr inode operations may get some security.* xattr | 
|  | * support from the LSM "for free". As soon as we have any other xattrs | 
|  | * like ACLs, we also need to implement the security.* handlers at | 
|  | * filesystem level, though. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Callback for security_inode_init_security() for acquiring xattrs. | 
|  | */ | 
|  | static int shmem_initxattrs(struct inode *inode, | 
|  | const struct xattr *xattr_array, | 
|  | void *fs_info) | 
|  | { | 
|  | struct shmem_inode_info *info = SHMEM_I(inode); | 
|  | const struct xattr *xattr; | 
|  | struct simple_xattr *new_xattr; | 
|  | size_t len; | 
|  |  | 
|  | for (xattr = xattr_array; xattr->name != NULL; xattr++) { | 
|  | new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); | 
|  | if (!new_xattr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | len = strlen(xattr->name) + 1; | 
|  | new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, | 
|  | GFP_KERNEL); | 
|  | if (!new_xattr->name) { | 
|  | kfree(new_xattr); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, | 
|  | XATTR_SECURITY_PREFIX_LEN); | 
|  | memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, | 
|  | xattr->name, len); | 
|  |  | 
|  | simple_xattr_list_add(&info->xattrs, new_xattr); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct xattr_handler *shmem_xattr_handlers[] = { | 
|  | #ifdef CONFIG_TMPFS_POSIX_ACL | 
|  | &posix_acl_access_xattr_handler, | 
|  | &posix_acl_default_xattr_handler, | 
|  | #endif | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | static int shmem_xattr_validate(const char *name) | 
|  | { | 
|  | struct { const char *prefix; size_t len; } arr[] = { | 
|  | { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN }, | 
|  | { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN } | 
|  | }; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(arr); i++) { | 
|  | size_t preflen = arr[i].len; | 
|  | if (strncmp(name, arr[i].prefix, preflen) == 0) { | 
|  | if (!name[preflen]) | 
|  | return -EINVAL; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | static ssize_t shmem_getxattr(struct dentry *dentry, const char *name, | 
|  | void *buffer, size_t size) | 
|  | { | 
|  | struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); | 
|  | int err; | 
|  |  | 
|  | /* | 
|  | * If this is a request for a synthetic attribute in the system.* | 
|  | * namespace use the generic infrastructure to resolve a handler | 
|  | * for it via sb->s_xattr. | 
|  | */ | 
|  | if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) | 
|  | return generic_getxattr(dentry, name, buffer, size); | 
|  |  | 
|  | err = shmem_xattr_validate(name); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | return simple_xattr_get(&info->xattrs, name, buffer, size); | 
|  | } | 
|  |  | 
|  | static int shmem_setxattr(struct dentry *dentry, const char *name, | 
|  | const void *value, size_t size, int flags) | 
|  | { | 
|  | struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); | 
|  | int err; | 
|  |  | 
|  | /* | 
|  | * If this is a request for a synthetic attribute in the system.* | 
|  | * namespace use the generic infrastructure to resolve a handler | 
|  | * for it via sb->s_xattr. | 
|  | */ | 
|  | if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) | 
|  | return generic_setxattr(dentry, name, value, size, flags); | 
|  |  | 
|  | err = shmem_xattr_validate(name); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | return simple_xattr_set(&info->xattrs, name, value, size, flags); | 
|  | } | 
|  |  | 
|  | static int shmem_removexattr(struct dentry *dentry, const char *name) | 
|  | { | 
|  | struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); | 
|  | int err; | 
|  |  | 
|  | /* | 
|  | * If this is a request for a synthetic attribute in the system.* | 
|  | * namespace use the generic infrastructure to resolve a handler | 
|  | * for it via sb->s_xattr. | 
|  | */ | 
|  | if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) | 
|  | return generic_removexattr(dentry, name); | 
|  |  | 
|  | err = shmem_xattr_validate(name); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | return simple_xattr_remove(&info->xattrs, name); | 
|  | } | 
|  |  | 
|  | static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) | 
|  | { | 
|  | struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); | 
|  | return simple_xattr_list(&info->xattrs, buffer, size); | 
|  | } | 
|  | #endif /* CONFIG_TMPFS_XATTR */ | 
|  |  | 
|  | static const struct inode_operations shmem_short_symlink_operations = { | 
|  | .readlink	= generic_readlink, | 
|  | .get_link	= simple_get_link, | 
|  | #ifdef CONFIG_TMPFS_XATTR | 
|  | .setxattr	= shmem_setxattr, | 
|  | .getxattr	= shmem_getxattr, | 
|  | .listxattr	= shmem_listxattr, | 
|  | .removexattr	= shmem_removexattr, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static const struct inode_operations shmem_symlink_inode_operations = { | 
|  | .readlink	= generic_readlink, | 
|  | .get_link	= shmem_get_link, | 
|  | #ifdef CONFIG_TMPFS_XATTR | 
|  | .setxattr	= shmem_setxattr, | 
|  | .getxattr	= shmem_getxattr, | 
|  | .listxattr	= shmem_listxattr, | 
|  | .removexattr	= shmem_removexattr, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static struct dentry *shmem_get_parent(struct dentry *child) | 
|  | { | 
|  | return ERR_PTR(-ESTALE); | 
|  | } | 
|  |  | 
|  | static int shmem_match(struct inode *ino, void *vfh) | 
|  | { | 
|  | __u32 *fh = vfh; | 
|  | __u64 inum = fh[2]; | 
|  | inum = (inum << 32) | fh[1]; | 
|  | return ino->i_ino == inum && fh[0] == ino->i_generation; | 
|  | } | 
|  |  | 
|  | static struct dentry *shmem_fh_to_dentry(struct super_block *sb, | 
|  | struct fid *fid, int fh_len, int fh_type) | 
|  | { | 
|  | struct inode *inode; | 
|  | struct dentry *dentry = NULL; | 
|  | u64 inum; | 
|  |  | 
|  | if (fh_len < 3) | 
|  | return NULL; | 
|  |  | 
|  | inum = fid->raw[2]; | 
|  | inum = (inum << 32) | fid->raw[1]; | 
|  |  | 
|  | inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), | 
|  | shmem_match, fid->raw); | 
|  | if (inode) { | 
|  | dentry = d_find_alias(inode); | 
|  | iput(inode); | 
|  | } | 
|  |  | 
|  | return dentry; | 
|  | } | 
|  |  | 
|  | static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, | 
|  | struct inode *parent) | 
|  | { | 
|  | if (*len < 3) { | 
|  | *len = 3; | 
|  | return FILEID_INVALID; | 
|  | } | 
|  |  | 
|  | if (inode_unhashed(inode)) { | 
|  | /* Unfortunately insert_inode_hash is not idempotent, | 
|  | * so as we hash inodes here rather than at creation | 
|  | * time, we need a lock to ensure we only try | 
|  | * to do it once | 
|  | */ | 
|  | static DEFINE_SPINLOCK(lock); | 
|  | spin_lock(&lock); | 
|  | if (inode_unhashed(inode)) | 
|  | __insert_inode_hash(inode, | 
|  | inode->i_ino + inode->i_generation); | 
|  | spin_unlock(&lock); | 
|  | } | 
|  |  | 
|  | fh[0] = inode->i_generation; | 
|  | fh[1] = inode->i_ino; | 
|  | fh[2] = ((__u64)inode->i_ino) >> 32; | 
|  |  | 
|  | *len = 3; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static const struct export_operations shmem_export_ops = { | 
|  | .get_parent     = shmem_get_parent, | 
|  | .encode_fh      = shmem_encode_fh, | 
|  | .fh_to_dentry	= shmem_fh_to_dentry, | 
|  | }; | 
|  |  | 
|  | static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, | 
|  | bool remount) | 
|  | { | 
|  | char *this_char, *value, *rest; | 
|  | struct mempolicy *mpol = NULL; | 
|  | uid_t uid; | 
|  | gid_t gid; | 
|  |  | 
|  | while (options != NULL) { | 
|  | this_char = options; | 
|  | for (;;) { | 
|  | /* | 
|  | * NUL-terminate this option: unfortunately, | 
|  | * mount options form a comma-separated list, | 
|  | * but mpol's nodelist may also contain commas. | 
|  | */ | 
|  | options = strchr(options, ','); | 
|  | if (options == NULL) | 
|  | break; | 
|  | options++; | 
|  | if (!isdigit(*options)) { | 
|  | options[-1] = '\0'; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!*this_char) | 
|  | continue; | 
|  | if ((value = strchr(this_char,'=')) != NULL) { | 
|  | *value++ = 0; | 
|  | } else { | 
|  | printk(KERN_ERR | 
|  | "tmpfs: No value for mount option '%s'\n", | 
|  | this_char); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | if (!strcmp(this_char,"size")) { | 
|  | unsigned long long size; | 
|  | size = memparse(value,&rest); | 
|  | if (*rest == '%') { | 
|  | size <<= PAGE_SHIFT; | 
|  | size *= totalram_pages; | 
|  | do_div(size, 100); | 
|  | rest++; | 
|  | } | 
|  | if (*rest) | 
|  | goto bad_val; | 
|  | sbinfo->max_blocks = | 
|  | DIV_ROUND_UP(size, PAGE_CACHE_SIZE); | 
|  | } else if (!strcmp(this_char,"nr_blocks")) { | 
|  | sbinfo->max_blocks = memparse(value, &rest); | 
|  | if (*rest) | 
|  | goto bad_val; | 
|  | } else if (!strcmp(this_char,"nr_inodes")) { | 
|  | sbinfo->max_inodes = memparse(value, &rest); | 
|  | if (*rest) | 
|  | goto bad_val; | 
|  | } else if (!strcmp(this_char,"mode")) { | 
|  | if (remount) | 
|  | continue; | 
|  | sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; | 
|  | if (*rest) | 
|  | goto bad_val; | 
|  | } else if (!strcmp(this_char,"uid")) { | 
|  | if (remount) | 
|  | continue; | 
|  | uid = simple_strtoul(value, &rest, 0); | 
|  | if (*rest) | 
|  | goto bad_val; | 
|  | sbinfo->uid = make_kuid(current_user_ns(), uid); | 
|  | if (!uid_valid(sbinfo->uid)) | 
|  | goto bad_val; | 
|  | } else if (!strcmp(this_char,"gid")) { | 
|  | if (remount) | 
|  | continue; | 
|  | gid = simple_strtoul(value, &rest, 0); | 
|  | if (*rest) | 
|  | goto bad_val; | 
|  | sbinfo->gid = make_kgid(current_user_ns(), gid); | 
|  | if (!gid_valid(sbinfo->gid)) | 
|  | goto bad_val; | 
|  | } else if (!strcmp(this_char,"mpol")) { | 
|  | mpol_put(mpol); | 
|  | mpol = NULL; | 
|  | if (mpol_parse_str(value, &mpol)) | 
|  | goto bad_val; | 
|  | } else { | 
|  | printk(KERN_ERR "tmpfs: Bad mount option %s\n", | 
|  | this_char); | 
|  | goto error; | 
|  | } | 
|  | } | 
|  | sbinfo->mpol = mpol; | 
|  | return 0; | 
|  |  | 
|  | bad_val: | 
|  | printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n", | 
|  | value, this_char); | 
|  | error: | 
|  | mpol_put(mpol); | 
|  | return 1; | 
|  |  | 
|  | } | 
|  |  | 
|  | static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) | 
|  | { | 
|  | struct shmem_sb_info *sbinfo = SHMEM_SB(sb); | 
|  | struct shmem_sb_info config = *sbinfo; | 
|  | unsigned long inodes; | 
|  | int error = -EINVAL; | 
|  |  | 
|  | config.mpol = NULL; | 
|  | if (shmem_parse_options(data, &config, true)) | 
|  | return error; | 
|  |  | 
|  | spin_lock(&sbinfo->stat_lock); | 
|  | inodes = sbinfo->max_inodes - sbinfo->free_inodes; | 
|  | if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) | 
|  | goto out; | 
|  | if (config.max_inodes < inodes) | 
|  | goto out; | 
|  | /* | 
|  | * Those tests disallow limited->unlimited while any are in use; | 
|  | * but we must separately disallow unlimited->limited, because | 
|  | * in that case we have no record of how much is already in use. | 
|  | */ | 
|  | if (config.max_blocks && !sbinfo->max_blocks) | 
|  | goto out; | 
|  | if (config.max_inodes && !sbinfo->max_inodes) | 
|  | goto out; | 
|  |  | 
|  | error = 0; | 
|  | sbinfo->max_blocks  = config.max_blocks; | 
|  | sbinfo->max_inodes  = config.max_inodes; | 
|  | sbinfo->free_inodes = config.max_inodes - inodes; | 
|  |  | 
|  | /* | 
|  | * Preserve previous mempolicy unless mpol remount option was specified. | 
|  | */ | 
|  | if (config.mpol) { | 
|  | mpol_put(sbinfo->mpol); | 
|  | sbinfo->mpol = config.mpol;	/* transfers initial ref */ | 
|  | } | 
|  | out: | 
|  | spin_unlock(&sbinfo->stat_lock); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static int shmem_show_options(struct seq_file *seq, struct dentry *root) | 
|  | { | 
|  | struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); | 
|  |  | 
|  | if (sbinfo->max_blocks != shmem_default_max_blocks()) | 
|  | seq_printf(seq, ",size=%luk", | 
|  | sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10)); | 
|  | if (sbinfo->max_inodes != shmem_default_max_inodes()) | 
|  | seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); | 
|  | if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) | 
|  | seq_printf(seq, ",mode=%03ho", sbinfo->mode); | 
|  | if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) | 
|  | seq_printf(seq, ",uid=%u", | 
|  | from_kuid_munged(&init_user_ns, sbinfo->uid)); | 
|  | if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) | 
|  | seq_printf(seq, ",gid=%u", | 
|  | from_kgid_munged(&init_user_ns, sbinfo->gid)); | 
|  | shmem_show_mpol(seq, sbinfo->mpol); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define MFD_NAME_PREFIX "memfd:" | 
|  | #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1) | 
|  | #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN) | 
|  |  | 
|  | #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING) | 
|  |  | 
|  | SYSCALL_DEFINE2(memfd_create, | 
|  | const char __user *, uname, | 
|  | unsigned int, flags) | 
|  | { | 
|  | struct shmem_inode_info *info; | 
|  | struct file *file; | 
|  | int fd, error; | 
|  | char *name; | 
|  | long len; | 
|  |  | 
|  | if (flags & ~(unsigned int)MFD_ALL_FLAGS) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* length includes terminating zero */ | 
|  | len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1); | 
|  | if (len <= 0) | 
|  | return -EFAULT; | 
|  | if (len > MFD_NAME_MAX_LEN + 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY); | 
|  | if (!name) | 
|  | return -ENOMEM; | 
|  |  | 
|  | strcpy(name, MFD_NAME_PREFIX); | 
|  | if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) { | 
|  | error = -EFAULT; | 
|  | goto err_name; | 
|  | } | 
|  |  | 
|  | /* terminating-zero may have changed after strnlen_user() returned */ | 
|  | if (name[len + MFD_NAME_PREFIX_LEN - 1]) { | 
|  | error = -EFAULT; | 
|  | goto err_name; | 
|  | } | 
|  |  | 
|  | fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0); | 
|  | if (fd < 0) { | 
|  | error = fd; | 
|  | goto err_name; | 
|  | } | 
|  |  | 
|  | file = shmem_file_setup(name, 0, VM_NORESERVE); | 
|  | if (IS_ERR(file)) { | 
|  | error = PTR_ERR(file); | 
|  | goto err_fd; | 
|  | } | 
|  | info = SHMEM_I(file_inode(file)); | 
|  | file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE; | 
|  | file->f_flags |= O_RDWR | O_LARGEFILE; | 
|  | if (flags & MFD_ALLOW_SEALING) | 
|  | info->seals &= ~F_SEAL_SEAL; | 
|  |  | 
|  | fd_install(fd, file); | 
|  | kfree(name); | 
|  | return fd; | 
|  |  | 
|  | err_fd: | 
|  | put_unused_fd(fd); | 
|  | err_name: | 
|  | kfree(name); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_TMPFS */ | 
|  |  | 
|  | static void shmem_put_super(struct super_block *sb) | 
|  | { | 
|  | struct shmem_sb_info *sbinfo = SHMEM_SB(sb); | 
|  |  | 
|  | percpu_counter_destroy(&sbinfo->used_blocks); | 
|  | mpol_put(sbinfo->mpol); | 
|  | kfree(sbinfo); | 
|  | sb->s_fs_info = NULL; | 
|  | } | 
|  |  | 
|  | int shmem_fill_super(struct super_block *sb, void *data, int silent) | 
|  | { | 
|  | struct inode *inode; | 
|  | struct shmem_sb_info *sbinfo; | 
|  | int err = -ENOMEM; | 
|  |  | 
|  | /* Round up to L1_CACHE_BYTES to resist false sharing */ | 
|  | sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), | 
|  | L1_CACHE_BYTES), GFP_KERNEL); | 
|  | if (!sbinfo) | 
|  | return -ENOMEM; | 
|  |  | 
|  | sbinfo->mode = S_IRWXUGO | S_ISVTX; | 
|  | sbinfo->uid = current_fsuid(); | 
|  | sbinfo->gid = current_fsgid(); | 
|  | sb->s_fs_info = sbinfo; | 
|  |  | 
|  | #ifdef CONFIG_TMPFS | 
|  | /* | 
|  | * Per default we only allow half of the physical ram per | 
|  | * tmpfs instance, limiting inodes to one per page of lowmem; | 
|  | * but the internal instance is left unlimited. | 
|  | */ | 
|  | if (!(sb->s_flags & MS_KERNMOUNT)) { | 
|  | sbinfo->max_blocks = shmem_default_max_blocks(); | 
|  | sbinfo->max_inodes = shmem_default_max_inodes(); | 
|  | if (shmem_parse_options(data, sbinfo, false)) { | 
|  | err = -EINVAL; | 
|  | goto failed; | 
|  | } | 
|  | } else { | 
|  | sb->s_flags |= MS_NOUSER; | 
|  | } | 
|  | sb->s_export_op = &shmem_export_ops; | 
|  | sb->s_flags |= MS_NOSEC; | 
|  | #else | 
|  | sb->s_flags |= MS_NOUSER; | 
|  | #endif | 
|  |  | 
|  | spin_lock_init(&sbinfo->stat_lock); | 
|  | if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) | 
|  | goto failed; | 
|  | sbinfo->free_inodes = sbinfo->max_inodes; | 
|  |  | 
|  | sb->s_maxbytes = MAX_LFS_FILESIZE; | 
|  | sb->s_blocksize = PAGE_CACHE_SIZE; | 
|  | sb->s_blocksize_bits = PAGE_CACHE_SHIFT; | 
|  | sb->s_magic = TMPFS_MAGIC; | 
|  | sb->s_op = &shmem_ops; | 
|  | sb->s_time_gran = 1; | 
|  | #ifdef CONFIG_TMPFS_XATTR | 
|  | sb->s_xattr = shmem_xattr_handlers; | 
|  | #endif | 
|  | #ifdef CONFIG_TMPFS_POSIX_ACL | 
|  | sb->s_flags |= MS_POSIXACL; | 
|  | #endif | 
|  |  | 
|  | inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); | 
|  | if (!inode) | 
|  | goto failed; | 
|  | inode->i_uid = sbinfo->uid; | 
|  | inode->i_gid = sbinfo->gid; | 
|  | sb->s_root = d_make_root(inode); | 
|  | if (!sb->s_root) | 
|  | goto failed; | 
|  | return 0; | 
|  |  | 
|  | failed: | 
|  | shmem_put_super(sb); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static struct kmem_cache *shmem_inode_cachep; | 
|  |  | 
|  | static struct inode *shmem_alloc_inode(struct super_block *sb) | 
|  | { | 
|  | struct shmem_inode_info *info; | 
|  | info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); | 
|  | if (!info) | 
|  | return NULL; | 
|  | return &info->vfs_inode; | 
|  | } | 
|  |  | 
|  | static void shmem_destroy_callback(struct rcu_head *head) | 
|  | { | 
|  | struct inode *inode = container_of(head, struct inode, i_rcu); | 
|  | kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); | 
|  | } | 
|  |  | 
|  | static void shmem_destroy_inode(struct inode *inode) | 
|  | { | 
|  | if (S_ISREG(inode->i_mode)) | 
|  | mpol_free_shared_policy(&SHMEM_I(inode)->policy); | 
|  | call_rcu(&inode->i_rcu, shmem_destroy_callback); | 
|  | } | 
|  |  | 
|  | static void shmem_init_inode(void *foo) | 
|  | { | 
|  | struct shmem_inode_info *info = foo; | 
|  | inode_init_once(&info->vfs_inode); | 
|  | } | 
|  |  | 
|  | static int shmem_init_inodecache(void) | 
|  | { | 
|  | shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", | 
|  | sizeof(struct shmem_inode_info), | 
|  | 0, SLAB_PANIC, shmem_init_inode); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void shmem_destroy_inodecache(void) | 
|  | { | 
|  | kmem_cache_destroy(shmem_inode_cachep); | 
|  | } | 
|  |  | 
|  | static const struct address_space_operations shmem_aops = { | 
|  | .writepage	= shmem_writepage, | 
|  | .set_page_dirty	= __set_page_dirty_no_writeback, | 
|  | #ifdef CONFIG_TMPFS | 
|  | .write_begin	= shmem_write_begin, | 
|  | .write_end	= shmem_write_end, | 
|  | #endif | 
|  | #ifdef CONFIG_MIGRATION | 
|  | .migratepage	= migrate_page, | 
|  | #endif | 
|  | .error_remove_page = generic_error_remove_page, | 
|  | }; | 
|  |  | 
|  | static const struct file_operations shmem_file_operations = { | 
|  | .mmap		= shmem_mmap, | 
|  | #ifdef CONFIG_TMPFS | 
|  | .llseek		= shmem_file_llseek, | 
|  | .read_iter	= shmem_file_read_iter, | 
|  | .write_iter	= generic_file_write_iter, | 
|  | .fsync		= noop_fsync, | 
|  | .splice_read	= shmem_file_splice_read, | 
|  | .splice_write	= iter_file_splice_write, | 
|  | .fallocate	= shmem_fallocate, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static const struct inode_operations shmem_inode_operations = { | 
|  | .getattr	= shmem_getattr, | 
|  | .setattr	= shmem_setattr, | 
|  | #ifdef CONFIG_TMPFS_XATTR | 
|  | .setxattr	= shmem_setxattr, | 
|  | .getxattr	= shmem_getxattr, | 
|  | .listxattr	= shmem_listxattr, | 
|  | .removexattr	= shmem_removexattr, | 
|  | .set_acl	= simple_set_acl, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static const struct inode_operations shmem_dir_inode_operations = { | 
|  | #ifdef CONFIG_TMPFS | 
|  | .create		= shmem_create, | 
|  | .lookup		= simple_lookup, | 
|  | .link		= shmem_link, | 
|  | .unlink		= shmem_unlink, | 
|  | .symlink	= shmem_symlink, | 
|  | .mkdir		= shmem_mkdir, | 
|  | .rmdir		= shmem_rmdir, | 
|  | .mknod		= shmem_mknod, | 
|  | .rename2	= shmem_rename2, | 
|  | .tmpfile	= shmem_tmpfile, | 
|  | #endif | 
|  | #ifdef CONFIG_TMPFS_XATTR | 
|  | .setxattr	= shmem_setxattr, | 
|  | .getxattr	= shmem_getxattr, | 
|  | .listxattr	= shmem_listxattr, | 
|  | .removexattr	= shmem_removexattr, | 
|  | #endif | 
|  | #ifdef CONFIG_TMPFS_POSIX_ACL | 
|  | .setattr	= shmem_setattr, | 
|  | .set_acl	= simple_set_acl, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static const struct inode_operations shmem_special_inode_operations = { | 
|  | #ifdef CONFIG_TMPFS_XATTR | 
|  | .setxattr	= shmem_setxattr, | 
|  | .getxattr	= shmem_getxattr, | 
|  | .listxattr	= shmem_listxattr, | 
|  | .removexattr	= shmem_removexattr, | 
|  | #endif | 
|  | #ifdef CONFIG_TMPFS_POSIX_ACL | 
|  | .setattr	= shmem_setattr, | 
|  | .set_acl	= simple_set_acl, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static const struct super_operations shmem_ops = { | 
|  | .alloc_inode	= shmem_alloc_inode, | 
|  | .destroy_inode	= shmem_destroy_inode, | 
|  | #ifdef CONFIG_TMPFS | 
|  | .statfs		= shmem_statfs, | 
|  | .remount_fs	= shmem_remount_fs, | 
|  | .show_options	= shmem_show_options, | 
|  | #endif | 
|  | .evict_inode	= shmem_evict_inode, | 
|  | .drop_inode	= generic_delete_inode, | 
|  | .put_super	= shmem_put_super, | 
|  | }; | 
|  |  | 
|  | static const struct vm_operations_struct shmem_vm_ops = { | 
|  | .fault		= shmem_fault, | 
|  | .map_pages	= filemap_map_pages, | 
|  | #ifdef CONFIG_NUMA | 
|  | .set_policy     = shmem_set_policy, | 
|  | .get_policy     = shmem_get_policy, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static struct dentry *shmem_mount(struct file_system_type *fs_type, | 
|  | int flags, const char *dev_name, void *data) | 
|  | { | 
|  | return mount_nodev(fs_type, flags, data, shmem_fill_super); | 
|  | } | 
|  |  | 
|  | static struct file_system_type shmem_fs_type = { | 
|  | .owner		= THIS_MODULE, | 
|  | .name		= "tmpfs", | 
|  | .mount		= shmem_mount, | 
|  | .kill_sb	= kill_litter_super, | 
|  | .fs_flags	= FS_USERNS_MOUNT, | 
|  | }; | 
|  |  | 
|  | int __init shmem_init(void) | 
|  | { | 
|  | int error; | 
|  |  | 
|  | /* If rootfs called this, don't re-init */ | 
|  | if (shmem_inode_cachep) | 
|  | return 0; | 
|  |  | 
|  | error = shmem_init_inodecache(); | 
|  | if (error) | 
|  | goto out3; | 
|  |  | 
|  | error = register_filesystem(&shmem_fs_type); | 
|  | if (error) { | 
|  | printk(KERN_ERR "Could not register tmpfs\n"); | 
|  | goto out2; | 
|  | } | 
|  |  | 
|  | shm_mnt = kern_mount(&shmem_fs_type); | 
|  | if (IS_ERR(shm_mnt)) { | 
|  | error = PTR_ERR(shm_mnt); | 
|  | printk(KERN_ERR "Could not kern_mount tmpfs\n"); | 
|  | goto out1; | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | out1: | 
|  | unregister_filesystem(&shmem_fs_type); | 
|  | out2: | 
|  | shmem_destroy_inodecache(); | 
|  | out3: | 
|  | shm_mnt = ERR_PTR(error); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | #else /* !CONFIG_SHMEM */ | 
|  |  | 
|  | /* | 
|  | * tiny-shmem: simple shmemfs and tmpfs using ramfs code | 
|  | * | 
|  | * This is intended for small system where the benefits of the full | 
|  | * shmem code (swap-backed and resource-limited) are outweighed by | 
|  | * their complexity. On systems without swap this code should be | 
|  | * effectively equivalent, but much lighter weight. | 
|  | */ | 
|  |  | 
|  | static struct file_system_type shmem_fs_type = { | 
|  | .name		= "tmpfs", | 
|  | .mount		= ramfs_mount, | 
|  | .kill_sb	= kill_litter_super, | 
|  | .fs_flags	= FS_USERNS_MOUNT, | 
|  | }; | 
|  |  | 
|  | int __init shmem_init(void) | 
|  | { | 
|  | BUG_ON(register_filesystem(&shmem_fs_type) != 0); | 
|  |  | 
|  | shm_mnt = kern_mount(&shmem_fs_type); | 
|  | BUG_ON(IS_ERR(shm_mnt)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int shmem_unuse(swp_entry_t swap, struct page *page) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int shmem_lock(struct file *file, int lock, struct user_struct *user) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void shmem_unlock_mapping(struct address_space *mapping) | 
|  | { | 
|  | } | 
|  |  | 
|  | void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) | 
|  | { | 
|  | truncate_inode_pages_range(inode->i_mapping, lstart, lend); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(shmem_truncate_range); | 
|  |  | 
|  | #define shmem_vm_ops				generic_file_vm_ops | 
|  | #define shmem_file_operations			ramfs_file_operations | 
|  | #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev) | 
|  | #define shmem_acct_size(flags, size)		0 | 
|  | #define shmem_unacct_size(flags, size)		do {} while (0) | 
|  |  | 
|  | #endif /* CONFIG_SHMEM */ | 
|  |  | 
|  | /* common code */ | 
|  |  | 
|  | static struct dentry_operations anon_ops = { | 
|  | .d_dname = simple_dname | 
|  | }; | 
|  |  | 
|  | static struct file *__shmem_file_setup(const char *name, loff_t size, | 
|  | unsigned long flags, unsigned int i_flags) | 
|  | { | 
|  | struct file *res; | 
|  | struct inode *inode; | 
|  | struct path path; | 
|  | struct super_block *sb; | 
|  | struct qstr this; | 
|  |  | 
|  | if (IS_ERR(shm_mnt)) | 
|  | return ERR_CAST(shm_mnt); | 
|  |  | 
|  | if (size < 0 || size > MAX_LFS_FILESIZE) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | if (shmem_acct_size(flags, size)) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | res = ERR_PTR(-ENOMEM); | 
|  | this.name = name; | 
|  | this.len = strlen(name); | 
|  | this.hash = 0; /* will go */ | 
|  | sb = shm_mnt->mnt_sb; | 
|  | path.mnt = mntget(shm_mnt); | 
|  | path.dentry = d_alloc_pseudo(sb, &this); | 
|  | if (!path.dentry) | 
|  | goto put_memory; | 
|  | d_set_d_op(path.dentry, &anon_ops); | 
|  |  | 
|  | res = ERR_PTR(-ENOSPC); | 
|  | inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); | 
|  | if (!inode) | 
|  | goto put_memory; | 
|  |  | 
|  | inode->i_flags |= i_flags; | 
|  | d_instantiate(path.dentry, inode); | 
|  | inode->i_size = size; | 
|  | clear_nlink(inode);	/* It is unlinked */ | 
|  | res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); | 
|  | if (IS_ERR(res)) | 
|  | goto put_path; | 
|  |  | 
|  | res = alloc_file(&path, FMODE_WRITE | FMODE_READ, | 
|  | &shmem_file_operations); | 
|  | if (IS_ERR(res)) | 
|  | goto put_path; | 
|  |  | 
|  | return res; | 
|  |  | 
|  | put_memory: | 
|  | shmem_unacct_size(flags, size); | 
|  | put_path: | 
|  | path_put(&path); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be | 
|  | * 	kernel internal.  There will be NO LSM permission checks against the | 
|  | * 	underlying inode.  So users of this interface must do LSM checks at a | 
|  | *	higher layer.  The users are the big_key and shm implementations.  LSM | 
|  | *	checks are provided at the key or shm level rather than the inode. | 
|  | * @name: name for dentry (to be seen in /proc/<pid>/maps | 
|  | * @size: size to be set for the file | 
|  | * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size | 
|  | */ | 
|  | struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) | 
|  | { | 
|  | return __shmem_file_setup(name, size, flags, S_PRIVATE); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * shmem_file_setup - get an unlinked file living in tmpfs | 
|  | * @name: name for dentry (to be seen in /proc/<pid>/maps | 
|  | * @size: size to be set for the file | 
|  | * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size | 
|  | */ | 
|  | struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) | 
|  | { | 
|  | return __shmem_file_setup(name, size, flags, 0); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(shmem_file_setup); | 
|  |  | 
|  | /** | 
|  | * shmem_zero_setup - setup a shared anonymous mapping | 
|  | * @vma: the vma to be mmapped is prepared by do_mmap_pgoff | 
|  | */ | 
|  | int shmem_zero_setup(struct vm_area_struct *vma) | 
|  | { | 
|  | struct file *file; | 
|  | loff_t size = vma->vm_end - vma->vm_start; | 
|  |  | 
|  | /* | 
|  | * Cloning a new file under mmap_sem leads to a lock ordering conflict | 
|  | * between XFS directory reading and selinux: since this file is only | 
|  | * accessible to the user through its mapping, use S_PRIVATE flag to | 
|  | * bypass file security, in the same way as shmem_kernel_file_setup(). | 
|  | */ | 
|  | file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE); | 
|  | if (IS_ERR(file)) | 
|  | return PTR_ERR(file); | 
|  |  | 
|  | if (vma->vm_file) | 
|  | fput(vma->vm_file); | 
|  | vma->vm_file = file; | 
|  | vma->vm_ops = &shmem_vm_ops; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. | 
|  | * @mapping:	the page's address_space | 
|  | * @index:	the page index | 
|  | * @gfp:	the page allocator flags to use if allocating | 
|  | * | 
|  | * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", | 
|  | * with any new page allocations done using the specified allocation flags. | 
|  | * But read_cache_page_gfp() uses the ->readpage() method: which does not | 
|  | * suit tmpfs, since it may have pages in swapcache, and needs to find those | 
|  | * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. | 
|  | * | 
|  | * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in | 
|  | * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. | 
|  | */ | 
|  | struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, | 
|  | pgoff_t index, gfp_t gfp) | 
|  | { | 
|  | #ifdef CONFIG_SHMEM | 
|  | struct inode *inode = mapping->host; | 
|  | struct page *page; | 
|  | int error; | 
|  |  | 
|  | BUG_ON(mapping->a_ops != &shmem_aops); | 
|  | error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL); | 
|  | if (error) | 
|  | page = ERR_PTR(error); | 
|  | else | 
|  | unlock_page(page); | 
|  | return page; | 
|  | #else | 
|  | /* | 
|  | * The tiny !SHMEM case uses ramfs without swap | 
|  | */ | 
|  | return read_cache_page_gfp(mapping, index, gfp); | 
|  | #endif | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); |