blob: 7edcf10317182a32c4ffeef84b5c6dd1d7ed091c [file] [log] [blame]
#include <linux/completion.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/kernel.h>
#include <linux/kref.h>
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/spinlock.h>
#include <linux/sysfs.h>
#include <linux/timer.h>
#include <linux/types.h>
#include <linux/workqueue.h>
#include <linux/atomic.h>
#include <asm/byteorder.h>
#define CSR_REGISTER_BASE 0xfffff0000000ULL
/* register offsets are relative to CSR_REGISTER_BASE */
#define CSR_STATE_CLEAR 0x0
#define CSR_STATE_SET 0x4
#define CSR_NODE_IDS 0x8
#define CSR_RESET_START 0xc
#define CSR_CYCLE_TIME 0x200
#define CSR_BUS_TIME 0x204
#define CSR_BUSY_TIMEOUT 0x210
#define CSR_BUS_MANAGER_ID 0x21c
#define CSR_MAINT_UTILITY 0x230
#define CSR_CONFIG_ROM 0x400
#define CSR_CONFIG_ROM_END 0x800
#define CSR_OMPR 0x900
#define CSR_OPCR(i) (0x904 + (i) * 4)
#define CSR_IMPR 0x980
#define CSR_IPCR(i) (0x984 + (i) * 4)
#define CSR_FCP_COMMAND 0xB00
#define CSR_FCP_RESPONSE 0xD00
#define CSR_FCP_END 0xF00
#define CSR_TOPOLOGY_MAP 0x1000
#define CSR_TOPOLOGY_MAP_END 0x1400
#define CSR_SPEED_MAP 0x2000
#define CSR_SPEED_MAP_END 0x3000
#define CSR_OFFSET 0x40
#define CSR_LEAF 0x80
#define CSR_DIRECTORY 0xc0
#define CSR_DESCRIPTOR 0x01
#define CSR_VENDOR 0x03
#define CSR_UNIT 0x11
#define CSR_SPECIFIER_ID 0x12
#define CSR_VERSION 0x13
#define CSR_MODEL 0x17
#define CSR_DIRECTORY_ID 0x20
struct fw_csr_iterator {
const u32 *p;
const u32 *end;
void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p);
int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value);
int fw_csr_string(const u32 *directory, int key, char *buf, size_t size);
extern struct bus_type fw_bus_type;
struct fw_card_driver;
struct fw_node;
struct fw_card {
const struct fw_card_driver *driver;
struct device *device;
struct kref kref;
struct completion done;
int node_id;
int generation;
int current_tlabel;
u64 tlabel_mask;
struct list_head transaction_list;
u64 reset_jiffies;
u32 split_timeout_hi;
u32 split_timeout_lo;
unsigned int split_timeout_cycles;
unsigned int split_timeout_jiffies;
unsigned long long guid;
unsigned max_receive;
int link_speed;
int config_rom_generation;
spinlock_t lock; /* Take this lock when handling the lists in
* this struct. */
struct fw_node *local_node;
struct fw_node *root_node;
struct fw_node *irm_node;
u8 color; /* must be u8 to match the definition in struct fw_node */
int gap_count;
bool beta_repeaters_present;
int index;
struct list_head link;
struct list_head phy_receiver_list;
struct delayed_work br_work; /* bus reset job */
bool br_short;
struct delayed_work bm_work; /* bus manager job */
int bm_retries;
int bm_generation;
int bm_node_id;
bool bm_abdicate;
bool priority_budget_implemented; /* controller feature */
bool broadcast_channel_auto_allocated; /* controller feature */
bool broadcast_channel_allocated;
u32 broadcast_channel;
__be32 topology_map[(CSR_TOPOLOGY_MAP_END - CSR_TOPOLOGY_MAP) / 4];
__be32 maint_utility_register;
static inline struct fw_card *fw_card_get(struct fw_card *card)
return card;
void fw_card_release(struct kref *kref);
static inline void fw_card_put(struct fw_card *card)
kref_put(&card->kref, fw_card_release);
struct fw_attribute_group {
struct attribute_group *groups[2];
struct attribute_group group;
struct attribute *attrs[12];
enum fw_device_state {
* Note, fw_device.generation always has to be read before fw_device.node_id.
* Use SMP memory barriers to ensure this. Otherwise requests will be sent
* to an outdated node_id if the generation was updated in the meantime due
* to a bus reset.
* Likewise, fw-core will take care to update .node_id before .generation so
* that whenever fw_device.generation is current WRT the actual bus generation,
* fw_device.node_id is guaranteed to be current too.
* The same applies to fw_device.card->node_id vs. fw_device.generation.
* fw_device.config_rom and fw_device.config_rom_length may be accessed during
* the lifetime of any fw_unit belonging to the fw_device, before device_del()
* was called on the last fw_unit. Alternatively, they may be accessed while
* holding fw_device_rwsem.
struct fw_device {
atomic_t state;
struct fw_node *node;
int node_id;
int generation;
unsigned max_speed;
struct fw_card *card;
struct device device;
struct mutex client_list_mutex;
struct list_head client_list;
const u32 *config_rom;
size_t config_rom_length;
int config_rom_retries;
unsigned is_local:1;
unsigned max_rec:4;
unsigned cmc:1;
unsigned irmc:1;
unsigned bc_implemented:2;
struct delayed_work work;
struct fw_attribute_group attribute_group;
static inline struct fw_device *fw_device(struct device *dev)
return container_of(dev, struct fw_device, device);
static inline int fw_device_is_shutdown(struct fw_device *device)
return atomic_read(&device->state) == FW_DEVICE_SHUTDOWN;
int fw_device_enable_phys_dma(struct fw_device *device);
* must not be accessed after device_del(&fw_unit.device).
struct fw_unit {
struct device device;
const u32 *directory;
struct fw_attribute_group attribute_group;
static inline struct fw_unit *fw_unit(struct device *dev)
return container_of(dev, struct fw_unit, device);
static inline struct fw_unit *fw_unit_get(struct fw_unit *unit)
return unit;
static inline void fw_unit_put(struct fw_unit *unit)
static inline struct fw_device *fw_parent_device(struct fw_unit *unit)
return fw_device(unit->device.parent);
struct ieee1394_device_id;
struct fw_driver {
struct device_driver driver;
/* Called when the parent device sits through a bus reset. */
void (*update)(struct fw_unit *unit);
const struct ieee1394_device_id *id_table;
struct fw_packet;
struct fw_request;
typedef void (*fw_packet_callback_t)(struct fw_packet *packet,
struct fw_card *card, int status);
typedef void (*fw_transaction_callback_t)(struct fw_card *card, int rcode,
void *data, size_t length,
void *callback_data);
* Important note: Except for the FCP registers, the callback must guarantee
* that either fw_send_response() or kfree() is called on the @request.
typedef void (*fw_address_callback_t)(struct fw_card *card,
struct fw_request *request,
int tcode, int destination, int source,
int generation,
unsigned long long offset,
void *data, size_t length,
void *callback_data);
struct fw_packet {
int speed;
int generation;
u32 header[4];
size_t header_length;
void *payload;
size_t payload_length;
dma_addr_t payload_bus;
bool payload_mapped;
u32 timestamp;
* This callback is called when the packet transmission has completed.
* For successful transmission, the status code is the ack received
* from the destination. Otherwise it is one of the juju-specific
* The callback can be called from tasklet context and thus
* must never block.
fw_packet_callback_t callback;
int ack;
struct list_head link;
void *driver_data;
struct fw_transaction {
int node_id; /* The generation is implied; it is always the current. */
int tlabel;
struct list_head link;
struct fw_card *card;
bool is_split_transaction;
struct timer_list split_timeout_timer;
struct fw_packet packet;
* The data passed to the callback is valid only during the
* callback.
fw_transaction_callback_t callback;
void *callback_data;
struct fw_address_handler {
u64 offset;
size_t length;
fw_address_callback_t address_callback;
void *callback_data;
struct list_head link;
struct fw_address_region {
u64 start;
u64 end;
extern const struct fw_address_region fw_high_memory_region;
int fw_core_add_address_handler(struct fw_address_handler *handler,
const struct fw_address_region *region);
void fw_core_remove_address_handler(struct fw_address_handler *handler);
void fw_send_response(struct fw_card *card,
struct fw_request *request, int rcode);
int fw_get_request_speed(struct fw_request *request);
void fw_send_request(struct fw_card *card, struct fw_transaction *t,
int tcode, int destination_id, int generation, int speed,
unsigned long long offset, void *payload, size_t length,
fw_transaction_callback_t callback, void *callback_data);
int fw_cancel_transaction(struct fw_card *card,
struct fw_transaction *transaction);
int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
int generation, int speed, unsigned long long offset,
void *payload, size_t length);
const char *fw_rcode_string(int rcode);
static inline int fw_stream_packet_destination_id(int tag, int channel, int sy)
return tag << 14 | channel << 8 | sy;
struct fw_descriptor {
struct list_head link;
size_t length;
u32 immediate;
u32 key;
const u32 *data;
int fw_core_add_descriptor(struct fw_descriptor *desc);
void fw_core_remove_descriptor(struct fw_descriptor *desc);
* The iso packet format allows for an immediate header/payload part
* stored in 'header' immediately after the packet info plus an
* indirect payload part that is pointer to by the 'payload' field.
* Applications can use one or the other or both to implement simple
* low-bandwidth streaming (e.g. audio) or more advanced
* scatter-gather streaming (e.g. assembling video frame automatically).
struct fw_iso_packet {
u16 payload_length; /* Length of indirect payload */
u32 interrupt:1; /* Generate interrupt on this packet */
u32 skip:1; /* tx: Set to not send packet at all */
/* rx: Sync bit, wait for matching sy */
u32 tag:2; /* tx: Tag in packet header */
u32 sy:4; /* tx: Sy in packet header */
u32 header_length:8; /* Length of immediate header */
u32 header[0]; /* tx: Top of 1394 isoch. data_block */
* An iso buffer is just a set of pages mapped for DMA in the
* specified direction. Since the pages are to be used for DMA, they
* are not mapped into the kernel virtual address space. We store the
* DMA address in the page private. The helper function
* fw_iso_buffer_map() will map the pages into a given vma.
struct fw_iso_buffer {
enum dma_data_direction direction;
struct page **pages;
int page_count;
int page_count_mapped;
int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
int page_count, enum dma_data_direction direction);
void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer, struct fw_card *card);
size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed);
struct fw_iso_context;
typedef void (*fw_iso_callback_t)(struct fw_iso_context *context,
u32 cycle, size_t header_length,
void *header, void *data);
typedef void (*fw_iso_mc_callback_t)(struct fw_iso_context *context,
dma_addr_t completed, void *data);
struct fw_iso_context {
struct fw_card *card;
int type;
int channel;
int speed;
size_t header_size;
union {
fw_iso_callback_t sc;
fw_iso_mc_callback_t mc;
} callback;
void *callback_data;
struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
int type, int channel, int speed, size_t header_size,
fw_iso_callback_t callback, void *callback_data);
int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels);
int fw_iso_context_queue(struct fw_iso_context *ctx,
struct fw_iso_packet *packet,
struct fw_iso_buffer *buffer,
unsigned long payload);
void fw_iso_context_queue_flush(struct fw_iso_context *ctx);
int fw_iso_context_flush_completions(struct fw_iso_context *ctx);
int fw_iso_context_start(struct fw_iso_context *ctx,
int cycle, int sync, int tags);
int fw_iso_context_stop(struct fw_iso_context *ctx);
void fw_iso_context_destroy(struct fw_iso_context *ctx);
void fw_iso_resource_manage(struct fw_card *card, int generation,
u64 channels_mask, int *channel, int *bandwidth,
bool allocate);
extern struct workqueue_struct *fw_workqueue;
#endif /* _LINUX_FIREWIRE_H */