| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _LINUX_FORTIFY_STRING_H_ |
| #define _LINUX_FORTIFY_STRING_H_ |
| |
| #include <linux/bitfield.h> |
| #include <linux/bug.h> |
| #include <linux/const.h> |
| #include <linux/limits.h> |
| |
| #define __FORTIFY_INLINE extern __always_inline __gnu_inline __overloadable |
| #define __RENAME(x) __asm__(#x) |
| |
| #define FORTIFY_REASON_DIR(r) FIELD_GET(BIT(0), r) |
| #define FORTIFY_REASON_FUNC(r) FIELD_GET(GENMASK(7, 1), r) |
| #define FORTIFY_REASON(func, write) (FIELD_PREP(BIT(0), write) | \ |
| FIELD_PREP(GENMASK(7, 1), func)) |
| |
| #ifndef fortify_panic |
| # define fortify_panic(func, write, avail, size, retfail) \ |
| __fortify_panic(FORTIFY_REASON(func, write), avail, size) |
| #endif |
| |
| #define FORTIFY_READ 0 |
| #define FORTIFY_WRITE 1 |
| |
| #define EACH_FORTIFY_FUNC(macro) \ |
| macro(strncpy), \ |
| macro(strnlen), \ |
| macro(strlen), \ |
| macro(strscpy), \ |
| macro(strlcat), \ |
| macro(strcat), \ |
| macro(strncat), \ |
| macro(memset), \ |
| macro(memcpy), \ |
| macro(memmove), \ |
| macro(memscan), \ |
| macro(memcmp), \ |
| macro(memchr), \ |
| macro(memchr_inv), \ |
| macro(kmemdup), \ |
| macro(strcpy), \ |
| macro(UNKNOWN), |
| |
| #define MAKE_FORTIFY_FUNC(func) FORTIFY_FUNC_##func |
| |
| enum fortify_func { |
| EACH_FORTIFY_FUNC(MAKE_FORTIFY_FUNC) |
| }; |
| |
| void __fortify_report(const u8 reason, const size_t avail, const size_t size); |
| void __fortify_panic(const u8 reason, const size_t avail, const size_t size) __cold __noreturn; |
| void __read_overflow(void) __compiletime_error("detected read beyond size of object (1st parameter)"); |
| void __read_overflow2(void) __compiletime_error("detected read beyond size of object (2nd parameter)"); |
| void __read_overflow2_field(size_t avail, size_t wanted) __compiletime_warning("detected read beyond size of field (2nd parameter); maybe use struct_group()?"); |
| void __write_overflow(void) __compiletime_error("detected write beyond size of object (1st parameter)"); |
| void __write_overflow_field(size_t avail, size_t wanted) __compiletime_warning("detected write beyond size of field (1st parameter); maybe use struct_group()?"); |
| |
| #define __compiletime_strlen(p) \ |
| ({ \ |
| char *__p = (char *)(p); \ |
| size_t __ret = SIZE_MAX; \ |
| const size_t __p_size = __member_size(p); \ |
| if (__p_size != SIZE_MAX && \ |
| __builtin_constant_p(*__p)) { \ |
| size_t __p_len = __p_size - 1; \ |
| if (__builtin_constant_p(__p[__p_len]) && \ |
| __p[__p_len] == '\0') \ |
| __ret = __builtin_strlen(__p); \ |
| } \ |
| __ret; \ |
| }) |
| |
| #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) |
| extern void *__underlying_memchr(const void *p, int c, __kernel_size_t size) __RENAME(memchr); |
| extern int __underlying_memcmp(const void *p, const void *q, __kernel_size_t size) __RENAME(memcmp); |
| extern void *__underlying_memcpy(void *p, const void *q, __kernel_size_t size) __RENAME(memcpy); |
| extern void *__underlying_memmove(void *p, const void *q, __kernel_size_t size) __RENAME(memmove); |
| extern void *__underlying_memset(void *p, int c, __kernel_size_t size) __RENAME(memset); |
| extern char *__underlying_strcat(char *p, const char *q) __RENAME(strcat); |
| extern char *__underlying_strcpy(char *p, const char *q) __RENAME(strcpy); |
| extern __kernel_size_t __underlying_strlen(const char *p) __RENAME(strlen); |
| extern char *__underlying_strncat(char *p, const char *q, __kernel_size_t count) __RENAME(strncat); |
| extern char *__underlying_strncpy(char *p, const char *q, __kernel_size_t size) __RENAME(strncpy); |
| #else |
| |
| #if defined(__SANITIZE_MEMORY__) |
| /* |
| * For KMSAN builds all memcpy/memset/memmove calls should be replaced by the |
| * corresponding __msan_XXX functions. |
| */ |
| #include <linux/kmsan_string.h> |
| #define __underlying_memcpy __msan_memcpy |
| #define __underlying_memmove __msan_memmove |
| #define __underlying_memset __msan_memset |
| #else |
| #define __underlying_memcpy __builtin_memcpy |
| #define __underlying_memmove __builtin_memmove |
| #define __underlying_memset __builtin_memset |
| #endif |
| |
| #define __underlying_memchr __builtin_memchr |
| #define __underlying_memcmp __builtin_memcmp |
| #define __underlying_strcat __builtin_strcat |
| #define __underlying_strcpy __builtin_strcpy |
| #define __underlying_strlen __builtin_strlen |
| #define __underlying_strncat __builtin_strncat |
| #define __underlying_strncpy __builtin_strncpy |
| #endif |
| |
| /** |
| * unsafe_memcpy - memcpy implementation with no FORTIFY bounds checking |
| * |
| * @dst: Destination memory address to write to |
| * @src: Source memory address to read from |
| * @bytes: How many bytes to write to @dst from @src |
| * @justification: Free-form text or comment describing why the use is needed |
| * |
| * This should be used for corner cases where the compiler cannot do the |
| * right thing, or during transitions between APIs, etc. It should be used |
| * very rarely, and includes a place for justification detailing where bounds |
| * checking has happened, and why existing solutions cannot be employed. |
| */ |
| #define unsafe_memcpy(dst, src, bytes, justification) \ |
| __underlying_memcpy(dst, src, bytes) |
| |
| /* |
| * Clang's use of __builtin_*object_size() within inlines needs hinting via |
| * __pass_*object_size(). The preference is to only ever use type 1 (member |
| * size, rather than struct size), but there remain some stragglers using |
| * type 0 that will be converted in the future. |
| */ |
| #if __has_builtin(__builtin_dynamic_object_size) |
| #define POS __pass_dynamic_object_size(1) |
| #define POS0 __pass_dynamic_object_size(0) |
| #else |
| #define POS __pass_object_size(1) |
| #define POS0 __pass_object_size(0) |
| #endif |
| |
| #define __compiletime_lessthan(bounds, length) ( \ |
| __builtin_constant_p((bounds) < (length)) && \ |
| (bounds) < (length) \ |
| ) |
| |
| /** |
| * strncpy - Copy a string to memory with non-guaranteed NUL padding |
| * |
| * @p: pointer to destination of copy |
| * @q: pointer to NUL-terminated source string to copy |
| * @size: bytes to write at @p |
| * |
| * If strlen(@q) >= @size, the copy of @q will stop after @size bytes, |
| * and @p will NOT be NUL-terminated |
| * |
| * If strlen(@q) < @size, following the copy of @q, trailing NUL bytes |
| * will be written to @p until @size total bytes have been written. |
| * |
| * Do not use this function. While FORTIFY_SOURCE tries to avoid |
| * over-reads of @q, it cannot defend against writing unterminated |
| * results to @p. Using strncpy() remains ambiguous and fragile. |
| * Instead, please choose an alternative, so that the expectation |
| * of @p's contents is unambiguous: |
| * |
| * +--------------------+--------------------+------------+ |
| * | **p** needs to be: | padded to **size** | not padded | |
| * +====================+====================+============+ |
| * | NUL-terminated | strscpy_pad() | strscpy() | |
| * +--------------------+--------------------+------------+ |
| * | not NUL-terminated | strtomem_pad() | strtomem() | |
| * +--------------------+--------------------+------------+ |
| * |
| * Note strscpy*()'s differing return values for detecting truncation, |
| * and strtomem*()'s expectation that the destination is marked with |
| * __nonstring when it is a character array. |
| * |
| */ |
| __FORTIFY_INLINE __diagnose_as(__builtin_strncpy, 1, 2, 3) |
| char *strncpy(char * const POS p, const char *q, __kernel_size_t size) |
| { |
| const size_t p_size = __member_size(p); |
| |
| if (__compiletime_lessthan(p_size, size)) |
| __write_overflow(); |
| if (p_size < size) |
| fortify_panic(FORTIFY_FUNC_strncpy, FORTIFY_WRITE, p_size, size, p); |
| return __underlying_strncpy(p, q, size); |
| } |
| |
| extern __kernel_size_t __real_strnlen(const char *, __kernel_size_t) __RENAME(strnlen); |
| /** |
| * strnlen - Return bounded count of characters in a NUL-terminated string |
| * |
| * @p: pointer to NUL-terminated string to count. |
| * @maxlen: maximum number of characters to count. |
| * |
| * Returns number of characters in @p (NOT including the final NUL), or |
| * @maxlen, if no NUL has been found up to there. |
| * |
| */ |
| __FORTIFY_INLINE __kernel_size_t strnlen(const char * const POS p, __kernel_size_t maxlen) |
| { |
| const size_t p_size = __member_size(p); |
| const size_t p_len = __compiletime_strlen(p); |
| size_t ret; |
| |
| /* We can take compile-time actions when maxlen is const. */ |
| if (__builtin_constant_p(maxlen) && p_len != SIZE_MAX) { |
| /* If p is const, we can use its compile-time-known len. */ |
| if (maxlen >= p_size) |
| return p_len; |
| } |
| |
| /* Do not check characters beyond the end of p. */ |
| ret = __real_strnlen(p, maxlen < p_size ? maxlen : p_size); |
| if (p_size <= ret && maxlen != ret) |
| fortify_panic(FORTIFY_FUNC_strnlen, FORTIFY_READ, p_size, ret + 1, ret); |
| return ret; |
| } |
| |
| /* |
| * Defined after fortified strnlen to reuse it. However, it must still be |
| * possible for strlen() to be used on compile-time strings for use in |
| * static initializers (i.e. as a constant expression). |
| */ |
| /** |
| * strlen - Return count of characters in a NUL-terminated string |
| * |
| * @p: pointer to NUL-terminated string to count. |
| * |
| * Do not use this function unless the string length is known at |
| * compile-time. When @p is unterminated, this function may crash |
| * or return unexpected counts that could lead to memory content |
| * exposures. Prefer strnlen(). |
| * |
| * Returns number of characters in @p (NOT including the final NUL). |
| * |
| */ |
| #define strlen(p) \ |
| __builtin_choose_expr(__is_constexpr(__builtin_strlen(p)), \ |
| __builtin_strlen(p), __fortify_strlen(p)) |
| __FORTIFY_INLINE __diagnose_as(__builtin_strlen, 1) |
| __kernel_size_t __fortify_strlen(const char * const POS p) |
| { |
| const size_t p_size = __member_size(p); |
| __kernel_size_t ret; |
| |
| /* Give up if we don't know how large p is. */ |
| if (p_size == SIZE_MAX) |
| return __underlying_strlen(p); |
| ret = strnlen(p, p_size); |
| if (p_size <= ret) |
| fortify_panic(FORTIFY_FUNC_strlen, FORTIFY_READ, p_size, ret + 1, ret); |
| return ret; |
| } |
| |
| /* Defined after fortified strnlen() to reuse it. */ |
| extern ssize_t __real_strscpy(char *, const char *, size_t) __RENAME(sized_strscpy); |
| __FORTIFY_INLINE ssize_t sized_strscpy(char * const POS p, const char * const POS q, size_t size) |
| { |
| /* Use string size rather than possible enclosing struct size. */ |
| const size_t p_size = __member_size(p); |
| const size_t q_size = __member_size(q); |
| size_t len; |
| |
| /* If we cannot get size of p and q default to call strscpy. */ |
| if (p_size == SIZE_MAX && q_size == SIZE_MAX) |
| return __real_strscpy(p, q, size); |
| |
| /* |
| * If size can be known at compile time and is greater than |
| * p_size, generate a compile time write overflow error. |
| */ |
| if (__compiletime_lessthan(p_size, size)) |
| __write_overflow(); |
| |
| /* Short-circuit for compile-time known-safe lengths. */ |
| if (__compiletime_lessthan(p_size, SIZE_MAX)) { |
| len = __compiletime_strlen(q); |
| |
| if (len < SIZE_MAX && __compiletime_lessthan(len, size)) { |
| __underlying_memcpy(p, q, len + 1); |
| return len; |
| } |
| } |
| |
| /* |
| * This call protects from read overflow, because len will default to q |
| * length if it smaller than size. |
| */ |
| len = strnlen(q, size); |
| /* |
| * If len equals size, we will copy only size bytes which leads to |
| * -E2BIG being returned. |
| * Otherwise we will copy len + 1 because of the final '\O'. |
| */ |
| len = len == size ? size : len + 1; |
| |
| /* |
| * Generate a runtime write overflow error if len is greater than |
| * p_size. |
| */ |
| if (p_size < len) |
| fortify_panic(FORTIFY_FUNC_strscpy, FORTIFY_WRITE, p_size, len, -E2BIG); |
| |
| /* |
| * We can now safely call vanilla strscpy because we are protected from: |
| * 1. Read overflow thanks to call to strnlen(). |
| * 2. Write overflow thanks to above ifs. |
| */ |
| return __real_strscpy(p, q, len); |
| } |
| |
| /* Defined after fortified strlen() to reuse it. */ |
| extern size_t __real_strlcat(char *p, const char *q, size_t avail) __RENAME(strlcat); |
| /** |
| * strlcat - Append a string to an existing string |
| * |
| * @p: pointer to %NUL-terminated string to append to |
| * @q: pointer to %NUL-terminated string to append from |
| * @avail: Maximum bytes available in @p |
| * |
| * Appends %NUL-terminated string @q after the %NUL-terminated |
| * string at @p, but will not write beyond @avail bytes total, |
| * potentially truncating the copy from @q. @p will stay |
| * %NUL-terminated only if a %NUL already existed within |
| * the @avail bytes of @p. If so, the resulting number of |
| * bytes copied from @q will be at most "@avail - strlen(@p) - 1". |
| * |
| * Do not use this function. While FORTIFY_SOURCE tries to avoid |
| * read and write overflows, this is only possible when the sizes |
| * of @p and @q are known to the compiler. Prefer building the |
| * string with formatting, via scnprintf(), seq_buf, or similar. |
| * |
| * Returns total bytes that _would_ have been contained by @p |
| * regardless of truncation, similar to snprintf(). If return |
| * value is >= @avail, the string has been truncated. |
| * |
| */ |
| __FORTIFY_INLINE |
| size_t strlcat(char * const POS p, const char * const POS q, size_t avail) |
| { |
| const size_t p_size = __member_size(p); |
| const size_t q_size = __member_size(q); |
| size_t p_len, copy_len; |
| size_t actual, wanted; |
| |
| /* Give up immediately if both buffer sizes are unknown. */ |
| if (p_size == SIZE_MAX && q_size == SIZE_MAX) |
| return __real_strlcat(p, q, avail); |
| |
| p_len = strnlen(p, avail); |
| copy_len = strlen(q); |
| wanted = actual = p_len + copy_len; |
| |
| /* Cannot append any more: report truncation. */ |
| if (avail <= p_len) |
| return wanted; |
| |
| /* Give up if string is already overflowed. */ |
| if (p_size <= p_len) |
| fortify_panic(FORTIFY_FUNC_strlcat, FORTIFY_READ, p_size, p_len + 1, wanted); |
| |
| if (actual >= avail) { |
| copy_len = avail - p_len - 1; |
| actual = p_len + copy_len; |
| } |
| |
| /* Give up if copy will overflow. */ |
| if (p_size <= actual) |
| fortify_panic(FORTIFY_FUNC_strlcat, FORTIFY_WRITE, p_size, actual + 1, wanted); |
| __underlying_memcpy(p + p_len, q, copy_len); |
| p[actual] = '\0'; |
| |
| return wanted; |
| } |
| |
| /* Defined after fortified strlcat() to reuse it. */ |
| /** |
| * strcat - Append a string to an existing string |
| * |
| * @p: pointer to NUL-terminated string to append to |
| * @q: pointer to NUL-terminated source string to append from |
| * |
| * Do not use this function. While FORTIFY_SOURCE tries to avoid |
| * read and write overflows, this is only possible when the |
| * destination buffer size is known to the compiler. Prefer |
| * building the string with formatting, via scnprintf() or similar. |
| * At the very least, use strncat(). |
| * |
| * Returns @p. |
| * |
| */ |
| __FORTIFY_INLINE __diagnose_as(__builtin_strcat, 1, 2) |
| char *strcat(char * const POS p, const char *q) |
| { |
| const size_t p_size = __member_size(p); |
| const size_t wanted = strlcat(p, q, p_size); |
| |
| if (p_size <= wanted) |
| fortify_panic(FORTIFY_FUNC_strcat, FORTIFY_WRITE, p_size, wanted + 1, p); |
| return p; |
| } |
| |
| /** |
| * strncat - Append a string to an existing string |
| * |
| * @p: pointer to NUL-terminated string to append to |
| * @q: pointer to source string to append from |
| * @count: Maximum bytes to read from @q |
| * |
| * Appends at most @count bytes from @q (stopping at the first |
| * NUL byte) after the NUL-terminated string at @p. @p will be |
| * NUL-terminated. |
| * |
| * Do not use this function. While FORTIFY_SOURCE tries to avoid |
| * read and write overflows, this is only possible when the sizes |
| * of @p and @q are known to the compiler. Prefer building the |
| * string with formatting, via scnprintf() or similar. |
| * |
| * Returns @p. |
| * |
| */ |
| /* Defined after fortified strlen() and strnlen() to reuse them. */ |
| __FORTIFY_INLINE __diagnose_as(__builtin_strncat, 1, 2, 3) |
| char *strncat(char * const POS p, const char * const POS q, __kernel_size_t count) |
| { |
| const size_t p_size = __member_size(p); |
| const size_t q_size = __member_size(q); |
| size_t p_len, copy_len, total; |
| |
| if (p_size == SIZE_MAX && q_size == SIZE_MAX) |
| return __underlying_strncat(p, q, count); |
| p_len = strlen(p); |
| copy_len = strnlen(q, count); |
| total = p_len + copy_len + 1; |
| if (p_size < total) |
| fortify_panic(FORTIFY_FUNC_strncat, FORTIFY_WRITE, p_size, total, p); |
| __underlying_memcpy(p + p_len, q, copy_len); |
| p[p_len + copy_len] = '\0'; |
| return p; |
| } |
| |
| __FORTIFY_INLINE bool fortify_memset_chk(__kernel_size_t size, |
| const size_t p_size, |
| const size_t p_size_field) |
| { |
| if (__builtin_constant_p(size)) { |
| /* |
| * Length argument is a constant expression, so we |
| * can perform compile-time bounds checking where |
| * buffer sizes are also known at compile time. |
| */ |
| |
| /* Error when size is larger than enclosing struct. */ |
| if (__compiletime_lessthan(p_size_field, p_size) && |
| __compiletime_lessthan(p_size, size)) |
| __write_overflow(); |
| |
| /* Warn when write size is larger than dest field. */ |
| if (__compiletime_lessthan(p_size_field, size)) |
| __write_overflow_field(p_size_field, size); |
| } |
| /* |
| * At this point, length argument may not be a constant expression, |
| * so run-time bounds checking can be done where buffer sizes are |
| * known. (This is not an "else" because the above checks may only |
| * be compile-time warnings, and we want to still warn for run-time |
| * overflows.) |
| */ |
| |
| /* |
| * Always stop accesses beyond the struct that contains the |
| * field, when the buffer's remaining size is known. |
| * (The SIZE_MAX test is to optimize away checks where the buffer |
| * lengths are unknown.) |
| */ |
| if (p_size != SIZE_MAX && p_size < size) |
| fortify_panic(FORTIFY_FUNC_memset, FORTIFY_WRITE, p_size, size, true); |
| return false; |
| } |
| |
| #define __fortify_memset_chk(p, c, size, p_size, p_size_field) ({ \ |
| size_t __fortify_size = (size_t)(size); \ |
| fortify_memset_chk(__fortify_size, p_size, p_size_field), \ |
| __underlying_memset(p, c, __fortify_size); \ |
| }) |
| |
| /* |
| * __struct_size() vs __member_size() must be captured here to avoid |
| * evaluating argument side-effects further into the macro layers. |
| */ |
| #ifndef CONFIG_KMSAN |
| #define memset(p, c, s) __fortify_memset_chk(p, c, s, \ |
| __struct_size(p), __member_size(p)) |
| #endif |
| |
| /* |
| * To make sure the compiler can enforce protection against buffer overflows, |
| * memcpy(), memmove(), and memset() must not be used beyond individual |
| * struct members. If you need to copy across multiple members, please use |
| * struct_group() to create a named mirror of an anonymous struct union. |
| * (e.g. see struct sk_buff.) Read overflow checking is currently only |
| * done when a write overflow is also present, or when building with W=1. |
| * |
| * Mitigation coverage matrix |
| * Bounds checking at: |
| * +-------+-------+-------+-------+ |
| * | Compile time | Run time | |
| * memcpy() argument sizes: | write | read | write | read | |
| * dest source length +-------+-------+-------+-------+ |
| * memcpy(known, known, constant) | y | y | n/a | n/a | |
| * memcpy(known, unknown, constant) | y | n | n/a | V | |
| * memcpy(known, known, dynamic) | n | n | B | B | |
| * memcpy(known, unknown, dynamic) | n | n | B | V | |
| * memcpy(unknown, known, constant) | n | y | V | n/a | |
| * memcpy(unknown, unknown, constant) | n | n | V | V | |
| * memcpy(unknown, known, dynamic) | n | n | V | B | |
| * memcpy(unknown, unknown, dynamic) | n | n | V | V | |
| * +-------+-------+-------+-------+ |
| * |
| * y = perform deterministic compile-time bounds checking |
| * n = cannot perform deterministic compile-time bounds checking |
| * n/a = no run-time bounds checking needed since compile-time deterministic |
| * B = can perform run-time bounds checking (currently unimplemented) |
| * V = vulnerable to run-time overflow (will need refactoring to solve) |
| * |
| */ |
| __FORTIFY_INLINE bool fortify_memcpy_chk(__kernel_size_t size, |
| const size_t p_size, |
| const size_t q_size, |
| const size_t p_size_field, |
| const size_t q_size_field, |
| const u8 func) |
| { |
| if (__builtin_constant_p(size)) { |
| /* |
| * Length argument is a constant expression, so we |
| * can perform compile-time bounds checking where |
| * buffer sizes are also known at compile time. |
| */ |
| |
| /* Error when size is larger than enclosing struct. */ |
| if (__compiletime_lessthan(p_size_field, p_size) && |
| __compiletime_lessthan(p_size, size)) |
| __write_overflow(); |
| if (__compiletime_lessthan(q_size_field, q_size) && |
| __compiletime_lessthan(q_size, size)) |
| __read_overflow2(); |
| |
| /* Warn when write size argument larger than dest field. */ |
| if (__compiletime_lessthan(p_size_field, size)) |
| __write_overflow_field(p_size_field, size); |
| /* |
| * Warn for source field over-read when building with W=1 |
| * or when an over-write happened, so both can be fixed at |
| * the same time. |
| */ |
| if ((IS_ENABLED(KBUILD_EXTRA_WARN1) || |
| __compiletime_lessthan(p_size_field, size)) && |
| __compiletime_lessthan(q_size_field, size)) |
| __read_overflow2_field(q_size_field, size); |
| } |
| /* |
| * At this point, length argument may not be a constant expression, |
| * so run-time bounds checking can be done where buffer sizes are |
| * known. (This is not an "else" because the above checks may only |
| * be compile-time warnings, and we want to still warn for run-time |
| * overflows.) |
| */ |
| |
| /* |
| * Always stop accesses beyond the struct that contains the |
| * field, when the buffer's remaining size is known. |
| * (The SIZE_MAX test is to optimize away checks where the buffer |
| * lengths are unknown.) |
| */ |
| if (p_size != SIZE_MAX && p_size < size) |
| fortify_panic(func, FORTIFY_WRITE, p_size, size, true); |
| else if (q_size != SIZE_MAX && q_size < size) |
| fortify_panic(func, FORTIFY_READ, p_size, size, true); |
| |
| /* |
| * Warn when writing beyond destination field size. |
| * |
| * We must ignore p_size_field == 0 for existing 0-element |
| * fake flexible arrays, until they are all converted to |
| * proper flexible arrays. |
| * |
| * The implementation of __builtin_*object_size() behaves |
| * like sizeof() when not directly referencing a flexible |
| * array member, which means there will be many bounds checks |
| * that will appear at run-time, without a way for them to be |
| * detected at compile-time (as can be done when the destination |
| * is specifically the flexible array member). |
| * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101832 |
| */ |
| if (p_size_field != 0 && p_size_field != SIZE_MAX && |
| p_size != p_size_field && p_size_field < size) |
| return true; |
| |
| return false; |
| } |
| |
| #define __fortify_memcpy_chk(p, q, size, p_size, q_size, \ |
| p_size_field, q_size_field, op) ({ \ |
| const size_t __fortify_size = (size_t)(size); \ |
| const size_t __p_size = (p_size); \ |
| const size_t __q_size = (q_size); \ |
| const size_t __p_size_field = (p_size_field); \ |
| const size_t __q_size_field = (q_size_field); \ |
| WARN_ONCE(fortify_memcpy_chk(__fortify_size, __p_size, \ |
| __q_size, __p_size_field, \ |
| __q_size_field, FORTIFY_FUNC_ ##op), \ |
| #op ": detected field-spanning write (size %zu) of single %s (size %zu)\n", \ |
| __fortify_size, \ |
| "field \"" #p "\" at " FILE_LINE, \ |
| __p_size_field); \ |
| __underlying_##op(p, q, __fortify_size); \ |
| }) |
| |
| /* |
| * Notes about compile-time buffer size detection: |
| * |
| * With these types... |
| * |
| * struct middle { |
| * u16 a; |
| * u8 middle_buf[16]; |
| * int b; |
| * }; |
| * struct end { |
| * u16 a; |
| * u8 end_buf[16]; |
| * }; |
| * struct flex { |
| * int a; |
| * u8 flex_buf[]; |
| * }; |
| * |
| * void func(TYPE *ptr) { ... } |
| * |
| * Cases where destination size cannot be currently detected: |
| * - the size of ptr's object (seemingly by design, gcc & clang fail): |
| * __builtin_object_size(ptr, 1) == SIZE_MAX |
| * - the size of flexible arrays in ptr's obj (by design, dynamic size): |
| * __builtin_object_size(ptr->flex_buf, 1) == SIZE_MAX |
| * - the size of ANY array at the end of ptr's obj (gcc and clang bug): |
| * __builtin_object_size(ptr->end_buf, 1) == SIZE_MAX |
| * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101836 |
| * |
| * Cases where destination size is currently detected: |
| * - the size of non-array members within ptr's object: |
| * __builtin_object_size(ptr->a, 1) == 2 |
| * - the size of non-flexible-array in the middle of ptr's obj: |
| * __builtin_object_size(ptr->middle_buf, 1) == 16 |
| * |
| */ |
| |
| /* |
| * __struct_size() vs __member_size() must be captured here to avoid |
| * evaluating argument side-effects further into the macro layers. |
| */ |
| #define memcpy(p, q, s) __fortify_memcpy_chk(p, q, s, \ |
| __struct_size(p), __struct_size(q), \ |
| __member_size(p), __member_size(q), \ |
| memcpy) |
| #define memmove(p, q, s) __fortify_memcpy_chk(p, q, s, \ |
| __struct_size(p), __struct_size(q), \ |
| __member_size(p), __member_size(q), \ |
| memmove) |
| |
| extern void *__real_memscan(void *, int, __kernel_size_t) __RENAME(memscan); |
| __FORTIFY_INLINE void *memscan(void * const POS0 p, int c, __kernel_size_t size) |
| { |
| const size_t p_size = __struct_size(p); |
| |
| if (__compiletime_lessthan(p_size, size)) |
| __read_overflow(); |
| if (p_size < size) |
| fortify_panic(FORTIFY_FUNC_memscan, FORTIFY_READ, p_size, size, NULL); |
| return __real_memscan(p, c, size); |
| } |
| |
| __FORTIFY_INLINE __diagnose_as(__builtin_memcmp, 1, 2, 3) |
| int memcmp(const void * const POS0 p, const void * const POS0 q, __kernel_size_t size) |
| { |
| const size_t p_size = __struct_size(p); |
| const size_t q_size = __struct_size(q); |
| |
| if (__builtin_constant_p(size)) { |
| if (__compiletime_lessthan(p_size, size)) |
| __read_overflow(); |
| if (__compiletime_lessthan(q_size, size)) |
| __read_overflow2(); |
| } |
| if (p_size < size) |
| fortify_panic(FORTIFY_FUNC_memcmp, FORTIFY_READ, p_size, size, INT_MIN); |
| else if (q_size < size) |
| fortify_panic(FORTIFY_FUNC_memcmp, FORTIFY_READ, q_size, size, INT_MIN); |
| return __underlying_memcmp(p, q, size); |
| } |
| |
| __FORTIFY_INLINE __diagnose_as(__builtin_memchr, 1, 2, 3) |
| void *memchr(const void * const POS0 p, int c, __kernel_size_t size) |
| { |
| const size_t p_size = __struct_size(p); |
| |
| if (__compiletime_lessthan(p_size, size)) |
| __read_overflow(); |
| if (p_size < size) |
| fortify_panic(FORTIFY_FUNC_memchr, FORTIFY_READ, p_size, size, NULL); |
| return __underlying_memchr(p, c, size); |
| } |
| |
| void *__real_memchr_inv(const void *s, int c, size_t n) __RENAME(memchr_inv); |
| __FORTIFY_INLINE void *memchr_inv(const void * const POS0 p, int c, size_t size) |
| { |
| const size_t p_size = __struct_size(p); |
| |
| if (__compiletime_lessthan(p_size, size)) |
| __read_overflow(); |
| if (p_size < size) |
| fortify_panic(FORTIFY_FUNC_memchr_inv, FORTIFY_READ, p_size, size, NULL); |
| return __real_memchr_inv(p, c, size); |
| } |
| |
| extern void *__real_kmemdup(const void *src, size_t len, gfp_t gfp) __RENAME(kmemdup) |
| __realloc_size(2); |
| __FORTIFY_INLINE void *kmemdup(const void * const POS0 p, size_t size, gfp_t gfp) |
| { |
| const size_t p_size = __struct_size(p); |
| |
| if (__compiletime_lessthan(p_size, size)) |
| __read_overflow(); |
| if (p_size < size) |
| fortify_panic(FORTIFY_FUNC_kmemdup, FORTIFY_READ, p_size, size, NULL); |
| return __real_kmemdup(p, size, gfp); |
| } |
| |
| /** |
| * strcpy - Copy a string into another string buffer |
| * |
| * @p: pointer to destination of copy |
| * @q: pointer to NUL-terminated source string to copy |
| * |
| * Do not use this function. While FORTIFY_SOURCE tries to avoid |
| * overflows, this is only possible when the sizes of @q and @p are |
| * known to the compiler. Prefer strscpy(), though note its different |
| * return values for detecting truncation. |
| * |
| * Returns @p. |
| * |
| */ |
| /* Defined after fortified strlen to reuse it. */ |
| __FORTIFY_INLINE __diagnose_as(__builtin_strcpy, 1, 2) |
| char *strcpy(char * const POS p, const char * const POS q) |
| { |
| const size_t p_size = __member_size(p); |
| const size_t q_size = __member_size(q); |
| size_t size; |
| |
| /* If neither buffer size is known, immediately give up. */ |
| if (__builtin_constant_p(p_size) && |
| __builtin_constant_p(q_size) && |
| p_size == SIZE_MAX && q_size == SIZE_MAX) |
| return __underlying_strcpy(p, q); |
| size = strlen(q) + 1; |
| /* Compile-time check for const size overflow. */ |
| if (__compiletime_lessthan(p_size, size)) |
| __write_overflow(); |
| /* Run-time check for dynamic size overflow. */ |
| if (p_size < size) |
| fortify_panic(FORTIFY_FUNC_strcpy, FORTIFY_WRITE, p_size, size, p); |
| __underlying_memcpy(p, q, size); |
| return p; |
| } |
| |
| /* Don't use these outside the FORITFY_SOURCE implementation */ |
| #undef __underlying_memchr |
| #undef __underlying_memcmp |
| #undef __underlying_strcat |
| #undef __underlying_strcpy |
| #undef __underlying_strlen |
| #undef __underlying_strncat |
| #undef __underlying_strncpy |
| |
| #undef POS |
| #undef POS0 |
| |
| #endif /* _LINUX_FORTIFY_STRING_H_ */ |