blob: 1688a5050f63a4e2754aa3b49974dd6f9bc57fa7 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Xilinx Versal memory controller driver
* Copyright (C) 2023 Advanced Micro Devices, Inc.
*/
#include <linux/bitfield.h>
#include <linux/edac.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/sizes.h>
#include <linux/firmware/xlnx-zynqmp.h>
#include <linux/firmware/xlnx-event-manager.h>
#include "edac_module.h"
/* Granularity of reported error in bytes */
#define XDDR_EDAC_ERR_GRAIN 1
#define XDDR_EDAC_MSG_SIZE 256
#define EVENT 2
#define XDDR_PCSR_OFFSET 0xC
#define XDDR_ISR_OFFSET 0x14
#define XDDR_IRQ_EN_OFFSET 0x20
#define XDDR_IRQ1_EN_OFFSET 0x2C
#define XDDR_IRQ_DIS_OFFSET 0x24
#define XDDR_IRQ_CE_MASK GENMASK(18, 15)
#define XDDR_IRQ_UE_MASK GENMASK(14, 11)
#define XDDR_REG_CONFIG0_OFFSET 0x258
#define XDDR_REG_CONFIG0_BUS_WIDTH_MASK GENMASK(19, 18)
#define XDDR_REG_CONFIG0_NUM_CHANS_MASK BIT(17)
#define XDDR_REG_CONFIG0_NUM_RANKS_MASK GENMASK(15, 14)
#define XDDR_REG_CONFIG0_SIZE_MASK GENMASK(10, 8)
#define XDDR_REG_PINOUT_OFFSET 0x25C
#define XDDR_REG_PINOUT_ECC_EN_MASK GENMASK(7, 5)
#define ECCW0_FLIP_CTRL 0x109C
#define ECCW0_FLIP0_OFFSET 0x10A0
#define ECCW0_FLIP0_BITS 31
#define ECCW0_FLIP1_OFFSET 0x10A4
#define ECCW1_FLIP_CTRL 0x10AC
#define ECCW1_FLIP0_OFFSET 0x10B0
#define ECCW1_FLIP1_OFFSET 0x10B4
#define ECCR0_CERR_STAT_OFFSET 0x10BC
#define ECCR0_CE_ADDR_LO_OFFSET 0x10C0
#define ECCR0_CE_ADDR_HI_OFFSET 0x10C4
#define ECCR0_CE_DATA_LO_OFFSET 0x10C8
#define ECCR0_CE_DATA_HI_OFFSET 0x10CC
#define ECCR0_CE_DATA_PAR_OFFSET 0x10D0
#define ECCR0_UERR_STAT_OFFSET 0x10D4
#define ECCR0_UE_ADDR_LO_OFFSET 0x10D8
#define ECCR0_UE_ADDR_HI_OFFSET 0x10DC
#define ECCR0_UE_DATA_LO_OFFSET 0x10E0
#define ECCR0_UE_DATA_HI_OFFSET 0x10E4
#define ECCR0_UE_DATA_PAR_OFFSET 0x10E8
#define ECCR1_CERR_STAT_OFFSET 0x10F4
#define ECCR1_CE_ADDR_LO_OFFSET 0x10F8
#define ECCR1_CE_ADDR_HI_OFFSET 0x10FC
#define ECCR1_CE_DATA_LO_OFFSET 0x1100
#define ECCR1_CE_DATA_HI_OFFSET 0x110C
#define ECCR1_CE_DATA_PAR_OFFSET 0x1108
#define ECCR1_UERR_STAT_OFFSET 0x110C
#define ECCR1_UE_ADDR_LO_OFFSET 0x1110
#define ECCR1_UE_ADDR_HI_OFFSET 0x1114
#define ECCR1_UE_DATA_LO_OFFSET 0x1118
#define ECCR1_UE_DATA_HI_OFFSET 0x111C
#define ECCR1_UE_DATA_PAR_OFFSET 0x1120
#define XDDR_NOC_REG_ADEC4_OFFSET 0x44
#define RANK_1_MASK GENMASK(11, 6)
#define LRANK_0_MASK GENMASK(17, 12)
#define LRANK_1_MASK GENMASK(23, 18)
#define MASK_24 GENMASK(29, 24)
#define XDDR_NOC_REG_ADEC5_OFFSET 0x48
#define XDDR_NOC_REG_ADEC6_OFFSET 0x4C
#define XDDR_NOC_REG_ADEC7_OFFSET 0x50
#define XDDR_NOC_REG_ADEC8_OFFSET 0x54
#define XDDR_NOC_REG_ADEC9_OFFSET 0x58
#define XDDR_NOC_REG_ADEC10_OFFSET 0x5C
#define XDDR_NOC_REG_ADEC11_OFFSET 0x60
#define MASK_0 GENMASK(5, 0)
#define GRP_0_MASK GENMASK(11, 6)
#define GRP_1_MASK GENMASK(17, 12)
#define CH_0_MASK GENMASK(23, 18)
#define XDDR_NOC_REG_ADEC12_OFFSET 0x71C
#define XDDR_NOC_REG_ADEC13_OFFSET 0x720
#define XDDR_NOC_REG_ADEC14_OFFSET 0x724
#define XDDR_NOC_ROW_MATCH_MASK GENMASK(17, 0)
#define XDDR_NOC_COL_MATCH_MASK GENMASK(27, 18)
#define XDDR_NOC_BANK_MATCH_MASK GENMASK(29, 28)
#define XDDR_NOC_GRP_MATCH_MASK GENMASK(31, 30)
#define XDDR_NOC_REG_ADEC15_OFFSET 0x728
#define XDDR_NOC_RANK_MATCH_MASK GENMASK(1, 0)
#define XDDR_NOC_LRANK_MATCH_MASK GENMASK(4, 2)
#define XDDR_NOC_CH_MATCH_MASK BIT(5)
#define XDDR_NOC_MOD_SEL_MASK BIT(6)
#define XDDR_NOC_MATCH_EN_MASK BIT(8)
#define ECCR_UE_CE_ADDR_HI_ROW_MASK GENMASK(7, 0)
#define XDDR_EDAC_NR_CSROWS 1
#define XDDR_EDAC_NR_CHANS 1
#define XDDR_BUS_WIDTH_64 0
#define XDDR_BUS_WIDTH_32 1
#define XDDR_BUS_WIDTH_16 2
#define XDDR_MAX_ROW_CNT 18
#define XDDR_MAX_COL_CNT 10
#define XDDR_MAX_RANK_CNT 2
#define XDDR_MAX_LRANK_CNT 3
#define XDDR_MAX_BANK_CNT 2
#define XDDR_MAX_GRP_CNT 2
/*
* Config and system registers are usually locked. This is the
* code which unlocks them in order to accept writes. See
*
* https://docs.xilinx.com/r/en-US/am012-versal-register-reference/PCSR_LOCK-XRAM_SLCR-Register
*/
#define PCSR_UNLOCK_VAL 0xF9E8D7C6
#define PCSR_LOCK_VAL 1
#define XDDR_ERR_TYPE_CE 0
#define XDDR_ERR_TYPE_UE 1
#define XILINX_DRAM_SIZE_4G 0
#define XILINX_DRAM_SIZE_6G 1
#define XILINX_DRAM_SIZE_8G 2
#define XILINX_DRAM_SIZE_12G 3
#define XILINX_DRAM_SIZE_16G 4
#define XILINX_DRAM_SIZE_32G 5
#define NUM_UE_BITPOS 2
/**
* struct ecc_error_info - ECC error log information.
* @burstpos: Burst position.
* @lrank: Logical Rank number.
* @rank: Rank number.
* @group: Group number.
* @bank: Bank number.
* @col: Column number.
* @row: Row number.
* @rowhi: Row number higher bits.
* @i: ECC error info.
*/
union ecc_error_info {
struct {
u32 burstpos:3;
u32 lrank:3;
u32 rank:2;
u32 group:2;
u32 bank:2;
u32 col:10;
u32 row:10;
u32 rowhi;
};
u64 i;
} __packed;
union edac_info {
struct {
u32 row0:6;
u32 row1:6;
u32 row2:6;
u32 row3:6;
u32 row4:6;
u32 reserved:2;
};
struct {
u32 col1:6;
u32 col2:6;
u32 col3:6;
u32 col4:6;
u32 col5:6;
u32 reservedcol:2;
};
u32 i;
} __packed;
/**
* struct ecc_status - ECC status information to report.
* @ceinfo: Correctable error log information.
* @ueinfo: Uncorrectable error log information.
* @channel: Channel number.
* @error_type: Error type information.
*/
struct ecc_status {
union ecc_error_info ceinfo[2];
union ecc_error_info ueinfo[2];
u8 channel;
u8 error_type;
};
/**
* struct edac_priv - DDR memory controller private instance data.
* @ddrmc_baseaddr: Base address of the DDR controller.
* @ddrmc_noc_baseaddr: Base address of the DDRMC NOC.
* @message: Buffer for framing the event specific info.
* @mc_id: Memory controller ID.
* @ce_cnt: Correctable error count.
* @ue_cnt: UnCorrectable error count.
* @stat: ECC status information.
* @lrank_bit: Bit shifts for lrank bit.
* @rank_bit: Bit shifts for rank bit.
* @row_bit: Bit shifts for row bit.
* @col_bit: Bit shifts for column bit.
* @bank_bit: Bit shifts for bank bit.
* @grp_bit: Bit shifts for group bit.
* @ch_bit: Bit shifts for channel bit.
* @err_inject_addr: Data poison address.
* @debugfs: Debugfs handle.
*/
struct edac_priv {
void __iomem *ddrmc_baseaddr;
void __iomem *ddrmc_noc_baseaddr;
char message[XDDR_EDAC_MSG_SIZE];
u32 mc_id;
u32 ce_cnt;
u32 ue_cnt;
struct ecc_status stat;
u32 lrank_bit[3];
u32 rank_bit[2];
u32 row_bit[18];
u32 col_bit[10];
u32 bank_bit[2];
u32 grp_bit[2];
u32 ch_bit;
#ifdef CONFIG_EDAC_DEBUG
u64 err_inject_addr;
struct dentry *debugfs;
#endif
};
static void get_ce_error_info(struct edac_priv *priv)
{
void __iomem *ddrmc_base;
struct ecc_status *p;
u32 regval;
u64 reghi;
ddrmc_base = priv->ddrmc_baseaddr;
p = &priv->stat;
p->error_type = XDDR_ERR_TYPE_CE;
regval = readl(ddrmc_base + ECCR0_CE_ADDR_LO_OFFSET);
reghi = regval & ECCR_UE_CE_ADDR_HI_ROW_MASK;
p->ceinfo[0].i = regval | reghi << 32;
regval = readl(ddrmc_base + ECCR0_CE_ADDR_HI_OFFSET);
edac_dbg(2, "ERR DATA: 0x%08X%08X ERR DATA PARITY: 0x%08X\n",
readl(ddrmc_base + ECCR0_CE_DATA_LO_OFFSET),
readl(ddrmc_base + ECCR0_CE_DATA_HI_OFFSET),
readl(ddrmc_base + ECCR0_CE_DATA_PAR_OFFSET));
regval = readl(ddrmc_base + ECCR1_CE_ADDR_LO_OFFSET);
reghi = readl(ddrmc_base + ECCR1_CE_ADDR_HI_OFFSET);
p->ceinfo[1].i = regval | reghi << 32;
regval = readl(ddrmc_base + ECCR1_CE_ADDR_HI_OFFSET);
edac_dbg(2, "ERR DATA: 0x%08X%08X ERR DATA PARITY: 0x%08X\n",
readl(ddrmc_base + ECCR1_CE_DATA_LO_OFFSET),
readl(ddrmc_base + ECCR1_CE_DATA_HI_OFFSET),
readl(ddrmc_base + ECCR1_CE_DATA_PAR_OFFSET));
}
static void get_ue_error_info(struct edac_priv *priv)
{
void __iomem *ddrmc_base;
struct ecc_status *p;
u32 regval;
u64 reghi;
ddrmc_base = priv->ddrmc_baseaddr;
p = &priv->stat;
p->error_type = XDDR_ERR_TYPE_UE;
regval = readl(ddrmc_base + ECCR0_UE_ADDR_LO_OFFSET);
reghi = readl(ddrmc_base + ECCR0_UE_ADDR_HI_OFFSET);
p->ueinfo[0].i = regval | reghi << 32;
regval = readl(ddrmc_base + ECCR0_UE_ADDR_HI_OFFSET);
edac_dbg(2, "ERR DATA: 0x%08X%08X ERR DATA PARITY: 0x%08X\n",
readl(ddrmc_base + ECCR0_UE_DATA_LO_OFFSET),
readl(ddrmc_base + ECCR0_UE_DATA_HI_OFFSET),
readl(ddrmc_base + ECCR0_UE_DATA_PAR_OFFSET));
regval = readl(ddrmc_base + ECCR1_UE_ADDR_LO_OFFSET);
reghi = readl(ddrmc_base + ECCR1_UE_ADDR_HI_OFFSET);
p->ueinfo[1].i = regval | reghi << 32;
edac_dbg(2, "ERR DATA: 0x%08X%08X ERR DATA PARITY: 0x%08X\n",
readl(ddrmc_base + ECCR1_UE_DATA_LO_OFFSET),
readl(ddrmc_base + ECCR1_UE_DATA_HI_OFFSET),
readl(ddrmc_base + ECCR1_UE_DATA_PAR_OFFSET));
}
static bool get_error_info(struct edac_priv *priv)
{
u32 eccr0_ceval, eccr1_ceval, eccr0_ueval, eccr1_ueval;
void __iomem *ddrmc_base;
struct ecc_status *p;
ddrmc_base = priv->ddrmc_baseaddr;
p = &priv->stat;
eccr0_ceval = readl(ddrmc_base + ECCR0_CERR_STAT_OFFSET);
eccr1_ceval = readl(ddrmc_base + ECCR1_CERR_STAT_OFFSET);
eccr0_ueval = readl(ddrmc_base + ECCR0_UERR_STAT_OFFSET);
eccr1_ueval = readl(ddrmc_base + ECCR1_UERR_STAT_OFFSET);
if (!eccr0_ceval && !eccr1_ceval && !eccr0_ueval && !eccr1_ueval)
return 1;
if (!eccr0_ceval)
p->channel = 1;
else
p->channel = 0;
if (eccr0_ceval || eccr1_ceval)
get_ce_error_info(priv);
if (eccr0_ueval || eccr1_ueval) {
if (!eccr0_ueval)
p->channel = 1;
else
p->channel = 0;
get_ue_error_info(priv);
}
/* Unlock the PCSR registers */
writel(PCSR_UNLOCK_VAL, ddrmc_base + XDDR_PCSR_OFFSET);
writel(0, ddrmc_base + ECCR0_CERR_STAT_OFFSET);
writel(0, ddrmc_base + ECCR1_CERR_STAT_OFFSET);
writel(0, ddrmc_base + ECCR0_UERR_STAT_OFFSET);
writel(0, ddrmc_base + ECCR1_UERR_STAT_OFFSET);
/* Lock the PCSR registers */
writel(1, ddrmc_base + XDDR_PCSR_OFFSET);
return 0;
}
/**
* convert_to_physical - Convert to physical address.
* @priv: DDR memory controller private instance data.
* @pinf: ECC error info structure.
*
* Return: Physical address of the DDR memory.
*/
static unsigned long convert_to_physical(struct edac_priv *priv, union ecc_error_info pinf)
{
unsigned long err_addr = 0;
u32 index;
u32 row;
row = pinf.rowhi << 10 | pinf.row;
for (index = 0; index < XDDR_MAX_ROW_CNT; index++) {
err_addr |= (row & BIT(0)) << priv->row_bit[index];
row >>= 1;
}
for (index = 0; index < XDDR_MAX_COL_CNT; index++) {
err_addr |= (pinf.col & BIT(0)) << priv->col_bit[index];
pinf.col >>= 1;
}
for (index = 0; index < XDDR_MAX_BANK_CNT; index++) {
err_addr |= (pinf.bank & BIT(0)) << priv->bank_bit[index];
pinf.bank >>= 1;
}
for (index = 0; index < XDDR_MAX_GRP_CNT; index++) {
err_addr |= (pinf.group & BIT(0)) << priv->grp_bit[index];
pinf.group >>= 1;
}
for (index = 0; index < XDDR_MAX_RANK_CNT; index++) {
err_addr |= (pinf.rank & BIT(0)) << priv->rank_bit[index];
pinf.rank >>= 1;
}
for (index = 0; index < XDDR_MAX_LRANK_CNT; index++) {
err_addr |= (pinf.lrank & BIT(0)) << priv->lrank_bit[index];
pinf.lrank >>= 1;
}
err_addr |= (priv->stat.channel & BIT(0)) << priv->ch_bit;
return err_addr;
}
/**
* handle_error - Handle Correctable and Uncorrectable errors.
* @mci: EDAC memory controller instance.
* @stat: ECC status structure.
*
* Handles ECC correctable and uncorrectable errors.
*/
static void handle_error(struct mem_ctl_info *mci, struct ecc_status *stat)
{
struct edac_priv *priv = mci->pvt_info;
union ecc_error_info pinf;
if (stat->error_type == XDDR_ERR_TYPE_CE) {
priv->ce_cnt++;
pinf = stat->ceinfo[stat->channel];
snprintf(priv->message, XDDR_EDAC_MSG_SIZE,
"Error type:%s MC ID: %d Addr at %lx Burst Pos: %d\n",
"CE", priv->mc_id,
convert_to_physical(priv, pinf), pinf.burstpos);
edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
priv->ce_cnt, 0, 0, 0, 0, 0, -1,
priv->message, "");
}
if (stat->error_type == XDDR_ERR_TYPE_UE) {
priv->ue_cnt++;
pinf = stat->ueinfo[stat->channel];
snprintf(priv->message, XDDR_EDAC_MSG_SIZE,
"Error type:%s MC ID: %d Addr at %lx Burst Pos: %d\n",
"UE", priv->mc_id,
convert_to_physical(priv, pinf), pinf.burstpos);
edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
priv->ue_cnt, 0, 0, 0, 0, 0, -1,
priv->message, "");
}
memset(stat, 0, sizeof(*stat));
}
/**
* err_callback - Handle Correctable and Uncorrectable errors.
* @payload: payload data.
* @data: mci controller data.
*
* Handles ECC correctable and uncorrectable errors.
*/
static void err_callback(const u32 *payload, void *data)
{
struct mem_ctl_info *mci = (struct mem_ctl_info *)data;
struct edac_priv *priv;
struct ecc_status *p;
int regval;
priv = mci->pvt_info;
p = &priv->stat;
regval = readl(priv->ddrmc_baseaddr + XDDR_ISR_OFFSET);
if (payload[EVENT] == XPM_EVENT_ERROR_MASK_DDRMC_CR)
p->error_type = XDDR_ERR_TYPE_CE;
if (payload[EVENT] == XPM_EVENT_ERROR_MASK_DDRMC_NCR)
p->error_type = XDDR_ERR_TYPE_UE;
if (get_error_info(priv))
return;
handle_error(mci, &priv->stat);
/* Unlock the PCSR registers */
writel(PCSR_UNLOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET);
/* Clear the ISR */
writel(regval, priv->ddrmc_baseaddr + XDDR_ISR_OFFSET);
/* Lock the PCSR registers */
writel(PCSR_LOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET);
edac_dbg(3, "Total error count CE %d UE %d\n",
priv->ce_cnt, priv->ue_cnt);
}
/**
* get_dwidth - Return the controller memory width.
* @base: DDR memory controller base address.
*
* Get the EDAC device type width appropriate for the controller
* configuration.
*
* Return: a device type width enumeration.
*/
static enum dev_type get_dwidth(const void __iomem *base)
{
enum dev_type dt;
u32 regval;
u32 width;
regval = readl(base + XDDR_REG_CONFIG0_OFFSET);
width = FIELD_GET(XDDR_REG_CONFIG0_BUS_WIDTH_MASK, regval);
switch (width) {
case XDDR_BUS_WIDTH_16:
dt = DEV_X2;
break;
case XDDR_BUS_WIDTH_32:
dt = DEV_X4;
break;
case XDDR_BUS_WIDTH_64:
dt = DEV_X8;
break;
default:
dt = DEV_UNKNOWN;
}
return dt;
}
/**
* get_ecc_state - Return the controller ECC enable/disable status.
* @base: DDR memory controller base address.
*
* Get the ECC enable/disable status for the controller.
*
* Return: a ECC status boolean i.e true/false - enabled/disabled.
*/
static bool get_ecc_state(void __iomem *base)
{
enum dev_type dt;
u32 ecctype;
dt = get_dwidth(base);
if (dt == DEV_UNKNOWN)
return false;
ecctype = readl(base + XDDR_REG_PINOUT_OFFSET);
ecctype &= XDDR_REG_PINOUT_ECC_EN_MASK;
return !!ecctype;
}
/**
* get_memsize - Get the size of the attached memory device.
* @priv: DDR memory controller private instance data.
*
* Return: the memory size in bytes.
*/
static u64 get_memsize(struct edac_priv *priv)
{
u32 regval;
u64 size;
regval = readl(priv->ddrmc_baseaddr + XDDR_REG_CONFIG0_OFFSET);
regval = FIELD_GET(XDDR_REG_CONFIG0_SIZE_MASK, regval);
switch (regval) {
case XILINX_DRAM_SIZE_4G:
size = 4U; break;
case XILINX_DRAM_SIZE_6G:
size = 6U; break;
case XILINX_DRAM_SIZE_8G:
size = 8U; break;
case XILINX_DRAM_SIZE_12G:
size = 12U; break;
case XILINX_DRAM_SIZE_16G:
size = 16U; break;
case XILINX_DRAM_SIZE_32G:
size = 32U; break;
/* Invalid configuration */
default:
size = 0; break;
}
size *= SZ_1G;
return size;
}
/**
* init_csrows - Initialize the csrow data.
* @mci: EDAC memory controller instance.
*
* Initialize the chip select rows associated with the EDAC memory
* controller instance.
*/
static void init_csrows(struct mem_ctl_info *mci)
{
struct edac_priv *priv = mci->pvt_info;
struct csrow_info *csi;
struct dimm_info *dimm;
unsigned long size;
u32 row;
int ch;
size = get_memsize(priv);
for (row = 0; row < mci->nr_csrows; row++) {
csi = mci->csrows[row];
for (ch = 0; ch < csi->nr_channels; ch++) {
dimm = csi->channels[ch]->dimm;
dimm->edac_mode = EDAC_SECDED;
dimm->mtype = MEM_DDR4;
dimm->nr_pages = (size >> PAGE_SHIFT) / csi->nr_channels;
dimm->grain = XDDR_EDAC_ERR_GRAIN;
dimm->dtype = get_dwidth(priv->ddrmc_baseaddr);
}
}
}
/**
* mc_init - Initialize one driver instance.
* @mci: EDAC memory controller instance.
* @pdev: platform device.
*
* Perform initialization of the EDAC memory controller instance and
* related driver-private data associated with the memory controller the
* instance is bound to.
*/
static void mc_init(struct mem_ctl_info *mci, struct platform_device *pdev)
{
mci->pdev = &pdev->dev;
platform_set_drvdata(pdev, mci);
/* Initialize controller capabilities and configuration */
mci->mtype_cap = MEM_FLAG_DDR4;
mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
mci->scrub_cap = SCRUB_HW_SRC;
mci->scrub_mode = SCRUB_NONE;
mci->edac_cap = EDAC_FLAG_SECDED;
mci->ctl_name = "xlnx_ddr_controller";
mci->dev_name = dev_name(&pdev->dev);
mci->mod_name = "xlnx_edac";
edac_op_state = EDAC_OPSTATE_INT;
init_csrows(mci);
}
static void enable_intr(struct edac_priv *priv)
{
/* Unlock the PCSR registers */
writel(PCSR_UNLOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET);
/* Enable UE and CE Interrupts to support the interrupt case */
writel(XDDR_IRQ_CE_MASK | XDDR_IRQ_UE_MASK,
priv->ddrmc_baseaddr + XDDR_IRQ_EN_OFFSET);
writel(XDDR_IRQ_UE_MASK,
priv->ddrmc_baseaddr + XDDR_IRQ1_EN_OFFSET);
/* Lock the PCSR registers */
writel(PCSR_LOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET);
}
static void disable_intr(struct edac_priv *priv)
{
/* Unlock the PCSR registers */
writel(PCSR_UNLOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET);
/* Disable UE/CE Interrupts */
writel(XDDR_IRQ_CE_MASK | XDDR_IRQ_UE_MASK,
priv->ddrmc_baseaddr + XDDR_IRQ_DIS_OFFSET);
/* Lock the PCSR registers */
writel(PCSR_LOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET);
}
#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
#ifdef CONFIG_EDAC_DEBUG
/**
* poison_setup - Update poison registers.
* @priv: DDR memory controller private instance data.
*
* Update poison registers as per DDR mapping upon write of the address
* location the fault is injected.
* Return: none.
*/
static void poison_setup(struct edac_priv *priv)
{
u32 col = 0, row = 0, bank = 0, grp = 0, rank = 0, lrank = 0, ch = 0;
u32 index, regval;
for (index = 0; index < XDDR_MAX_ROW_CNT; index++) {
row |= (((priv->err_inject_addr >> priv->row_bit[index]) &
BIT(0)) << index);
}
for (index = 0; index < XDDR_MAX_COL_CNT; index++) {
col |= (((priv->err_inject_addr >> priv->col_bit[index]) &
BIT(0)) << index);
}
for (index = 0; index < XDDR_MAX_BANK_CNT; index++) {
bank |= (((priv->err_inject_addr >> priv->bank_bit[index]) &
BIT(0)) << index);
}
for (index = 0; index < XDDR_MAX_GRP_CNT; index++) {
grp |= (((priv->err_inject_addr >> priv->grp_bit[index]) &
BIT(0)) << index);
}
for (index = 0; index < XDDR_MAX_RANK_CNT; index++) {
rank |= (((priv->err_inject_addr >> priv->rank_bit[index]) &
BIT(0)) << index);
}
for (index = 0; index < XDDR_MAX_LRANK_CNT; index++) {
lrank |= (((priv->err_inject_addr >> priv->lrank_bit[index]) &
BIT(0)) << index);
}
ch = (priv->err_inject_addr >> priv->ch_bit) & BIT(0);
if (ch)
writel(0xFF, priv->ddrmc_baseaddr + ECCW1_FLIP_CTRL);
else
writel(0xFF, priv->ddrmc_baseaddr + ECCW0_FLIP_CTRL);
writel(0, priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC12_OFFSET);
writel(0, priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC13_OFFSET);
regval = row & XDDR_NOC_ROW_MATCH_MASK;
regval |= FIELD_PREP(XDDR_NOC_COL_MATCH_MASK, col);
regval |= FIELD_PREP(XDDR_NOC_BANK_MATCH_MASK, bank);
regval |= FIELD_PREP(XDDR_NOC_GRP_MATCH_MASK, grp);
writel(regval, priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC14_OFFSET);
regval = rank & XDDR_NOC_RANK_MATCH_MASK;
regval |= FIELD_PREP(XDDR_NOC_LRANK_MATCH_MASK, lrank);
regval |= FIELD_PREP(XDDR_NOC_CH_MATCH_MASK, ch);
regval |= (XDDR_NOC_MOD_SEL_MASK | XDDR_NOC_MATCH_EN_MASK);
writel(regval, priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC15_OFFSET);
}
static void xddr_inject_data_ce_store(struct mem_ctl_info *mci, u8 ce_bitpos)
{
u32 ecc0_flip0, ecc1_flip0, ecc0_flip1, ecc1_flip1;
struct edac_priv *priv = mci->pvt_info;
if (ce_bitpos < ECCW0_FLIP0_BITS) {
ecc0_flip0 = BIT(ce_bitpos);
ecc1_flip0 = BIT(ce_bitpos);
ecc0_flip1 = 0;
ecc1_flip1 = 0;
} else {
ce_bitpos = ce_bitpos - ECCW0_FLIP0_BITS;
ecc0_flip1 = BIT(ce_bitpos);
ecc1_flip1 = BIT(ce_bitpos);
ecc0_flip0 = 0;
ecc1_flip0 = 0;
}
writel(ecc0_flip0, priv->ddrmc_baseaddr + ECCW0_FLIP0_OFFSET);
writel(ecc1_flip0, priv->ddrmc_baseaddr + ECCW1_FLIP0_OFFSET);
writel(ecc0_flip1, priv->ddrmc_baseaddr + ECCW0_FLIP1_OFFSET);
writel(ecc1_flip1, priv->ddrmc_baseaddr + ECCW1_FLIP1_OFFSET);
}
/*
* To inject a correctable error, the following steps are needed:
*
* - Write the correctable error bit position value:
* echo <bit_pos val> > /sys/kernel/debug/edac/<controller instance>/inject_ce
*
* poison_setup() derives the row, column, bank, group and rank and
* writes to the ADEC registers based on the address given by the user.
*
* The ADEC12 and ADEC13 are mask registers; write 0 to make sure default
* configuration is there and no addresses are masked.
*
* The row, column, bank, group and rank registers are written to the
* match ADEC bit to generate errors at the particular address. ADEC14
* and ADEC15 have the match bits.
*
* xddr_inject_data_ce_store() updates the ECC FLIP registers with the
* bits to be corrupted based on the bit position given by the user.
*
* Upon doing a read to the address the errors are injected.
*/
static ssize_t inject_data_ce_store(struct file *file, const char __user *data,
size_t count, loff_t *ppos)
{
struct device *dev = file->private_data;
struct mem_ctl_info *mci = to_mci(dev);
struct edac_priv *priv = mci->pvt_info;
u8 ce_bitpos;
int ret;
ret = kstrtou8_from_user(data, count, 0, &ce_bitpos);
if (ret)
return ret;
/* Unlock the PCSR registers */
writel(PCSR_UNLOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET);
writel(PCSR_UNLOCK_VAL, priv->ddrmc_noc_baseaddr + XDDR_PCSR_OFFSET);
poison_setup(priv);
xddr_inject_data_ce_store(mci, ce_bitpos);
ret = count;
/* Lock the PCSR registers */
writel(PCSR_LOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET);
writel(PCSR_LOCK_VAL, priv->ddrmc_noc_baseaddr + XDDR_PCSR_OFFSET);
return ret;
}
static const struct file_operations xddr_inject_ce_fops = {
.open = simple_open,
.write = inject_data_ce_store,
.llseek = generic_file_llseek,
};
static void xddr_inject_data_ue_store(struct mem_ctl_info *mci, u32 val0, u32 val1)
{
struct edac_priv *priv = mci->pvt_info;
writel(val0, priv->ddrmc_baseaddr + ECCW0_FLIP0_OFFSET);
writel(val0, priv->ddrmc_baseaddr + ECCW0_FLIP1_OFFSET);
writel(val1, priv->ddrmc_baseaddr + ECCW1_FLIP1_OFFSET);
writel(val1, priv->ddrmc_baseaddr + ECCW1_FLIP1_OFFSET);
}
/*
* To inject an uncorrectable error, the following steps are needed:
* echo <bit_pos val> > /sys/kernel/debug/edac/<controller instance>/inject_ue
*
* poison_setup() derives the row, column, bank, group and rank and
* writes to the ADEC registers based on the address given by the user.
*
* The ADEC12 and ADEC13 are mask registers; write 0 so that none of the
* addresses are masked. The row, column, bank, group and rank registers
* are written to the match ADEC bit to generate errors at the
* particular address. ADEC14 and ADEC15 have the match bits.
*
* xddr_inject_data_ue_store() updates the ECC FLIP registers with the
* bits to be corrupted based on the bit position given by the user. For
* uncorrectable errors
* 2 bit errors are injected.
*
* Upon doing a read to the address the errors are injected.
*/
static ssize_t inject_data_ue_store(struct file *file, const char __user *data,
size_t count, loff_t *ppos)
{
struct device *dev = file->private_data;
struct mem_ctl_info *mci = to_mci(dev);
struct edac_priv *priv = mci->pvt_info;
char buf[6], *pbuf, *token[2];
u32 val0 = 0, val1 = 0;
u8 len, ue0, ue1;
int i, ret;
len = min_t(size_t, count, sizeof(buf));
if (copy_from_user(buf, data, len))
return -EFAULT;
buf[len] = '\0';
pbuf = &buf[0];
for (i = 0; i < NUM_UE_BITPOS; i++)
token[i] = strsep(&pbuf, ",");
ret = kstrtou8(token[0], 0, &ue0);
if (ret)
return ret;
ret = kstrtou8(token[1], 0, &ue1);
if (ret)
return ret;
if (ue0 < ECCW0_FLIP0_BITS) {
val0 = BIT(ue0);
} else {
ue0 = ue0 - ECCW0_FLIP0_BITS;
val1 = BIT(ue0);
}
if (ue1 < ECCW0_FLIP0_BITS) {
val0 |= BIT(ue1);
} else {
ue1 = ue1 - ECCW0_FLIP0_BITS;
val1 |= BIT(ue1);
}
/* Unlock the PCSR registers */
writel(PCSR_UNLOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET);
writel(PCSR_UNLOCK_VAL, priv->ddrmc_noc_baseaddr + XDDR_PCSR_OFFSET);
poison_setup(priv);
xddr_inject_data_ue_store(mci, val0, val1);
/* Lock the PCSR registers */
writel(PCSR_LOCK_VAL, priv->ddrmc_noc_baseaddr + XDDR_PCSR_OFFSET);
writel(PCSR_LOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET);
return count;
}
static const struct file_operations xddr_inject_ue_fops = {
.open = simple_open,
.write = inject_data_ue_store,
.llseek = generic_file_llseek,
};
static void create_debugfs_attributes(struct mem_ctl_info *mci)
{
struct edac_priv *priv = mci->pvt_info;
priv->debugfs = edac_debugfs_create_dir(mci->dev_name);
if (!priv->debugfs)
return;
if (!edac_debugfs_create_file("inject_ce", 0200, priv->debugfs,
&mci->dev, &xddr_inject_ce_fops)) {
debugfs_remove_recursive(priv->debugfs);
return;
}
if (!edac_debugfs_create_file("inject_ue", 0200, priv->debugfs,
&mci->dev, &xddr_inject_ue_fops)) {
debugfs_remove_recursive(priv->debugfs);
return;
}
debugfs_create_x64("address", 0600, priv->debugfs,
&priv->err_inject_addr);
mci->debugfs = priv->debugfs;
}
static inline void process_bit(struct edac_priv *priv, unsigned int start, u32 regval)
{
union edac_info rows;
rows.i = regval;
priv->row_bit[start] = rows.row0;
priv->row_bit[start + 1] = rows.row1;
priv->row_bit[start + 2] = rows.row2;
priv->row_bit[start + 3] = rows.row3;
priv->row_bit[start + 4] = rows.row4;
}
static void setup_row_address_map(struct edac_priv *priv)
{
u32 regval;
union edac_info rows;
regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC5_OFFSET);
process_bit(priv, 0, regval);
regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC6_OFFSET);
process_bit(priv, 5, regval);
regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC7_OFFSET);
process_bit(priv, 10, regval);
regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC8_OFFSET);
rows.i = regval;
priv->row_bit[15] = rows.row0;
priv->row_bit[16] = rows.row1;
priv->row_bit[17] = rows.row2;
}
static void setup_column_address_map(struct edac_priv *priv)
{
u32 regval;
union edac_info cols;
regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC8_OFFSET);
priv->col_bit[0] = FIELD_GET(MASK_24, regval);
regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC9_OFFSET);
cols.i = regval;
priv->col_bit[1] = cols.col1;
priv->col_bit[2] = cols.col2;
priv->col_bit[3] = cols.col3;
priv->col_bit[4] = cols.col4;
priv->col_bit[5] = cols.col5;
regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC10_OFFSET);
cols.i = regval;
priv->col_bit[6] = cols.col1;
priv->col_bit[7] = cols.col2;
priv->col_bit[8] = cols.col3;
priv->col_bit[9] = cols.col4;
}
static void setup_bank_grp_ch_address_map(struct edac_priv *priv)
{
u32 regval;
regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC10_OFFSET);
priv->bank_bit[0] = FIELD_GET(MASK_24, regval);
regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC11_OFFSET);
priv->bank_bit[1] = (regval & MASK_0);
priv->grp_bit[0] = FIELD_GET(GRP_0_MASK, regval);
priv->grp_bit[1] = FIELD_GET(GRP_1_MASK, regval);
priv->ch_bit = FIELD_GET(CH_0_MASK, regval);
}
static void setup_rank_lrank_address_map(struct edac_priv *priv)
{
u32 regval;
regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC4_OFFSET);
priv->rank_bit[0] = (regval & MASK_0);
priv->rank_bit[1] = FIELD_GET(RANK_1_MASK, regval);
priv->lrank_bit[0] = FIELD_GET(LRANK_0_MASK, regval);
priv->lrank_bit[1] = FIELD_GET(LRANK_1_MASK, regval);
priv->lrank_bit[2] = FIELD_GET(MASK_24, regval);
}
/**
* setup_address_map - Set Address Map by querying ADDRMAP registers.
* @priv: DDR memory controller private instance data.
*
* Set Address Map by querying ADDRMAP registers.
*
* Return: none.
*/
static void setup_address_map(struct edac_priv *priv)
{
setup_row_address_map(priv);
setup_column_address_map(priv);
setup_bank_grp_ch_address_map(priv);
setup_rank_lrank_address_map(priv);
}
#endif /* CONFIG_EDAC_DEBUG */
static const struct of_device_id xlnx_edac_match[] = {
{ .compatible = "xlnx,versal-ddrmc", },
{
/* end of table */
}
};
MODULE_DEVICE_TABLE(of, xlnx_edac_match);
static u32 emif_get_id(struct device_node *node)
{
u32 addr, my_addr, my_id = 0;
struct device_node *np;
const __be32 *addrp;
addrp = of_get_address(node, 0, NULL, NULL);
my_addr = (u32)of_translate_address(node, addrp);
for_each_matching_node(np, xlnx_edac_match) {
if (np == node)
continue;
addrp = of_get_address(np, 0, NULL, NULL);
addr = (u32)of_translate_address(np, addrp);
edac_printk(KERN_INFO, EDAC_MC,
"addr=%x, my_addr=%x\n",
addr, my_addr);
if (addr < my_addr)
my_id++;
}
return my_id;
}
static int mc_probe(struct platform_device *pdev)
{
void __iomem *ddrmc_baseaddr, *ddrmc_noc_baseaddr;
struct edac_mc_layer layers[2];
struct mem_ctl_info *mci;
u8 num_chans, num_csrows;
struct edac_priv *priv;
u32 edac_mc_id, regval;
int rc;
ddrmc_baseaddr = devm_platform_ioremap_resource_byname(pdev, "base");
if (IS_ERR(ddrmc_baseaddr))
return PTR_ERR(ddrmc_baseaddr);
ddrmc_noc_baseaddr = devm_platform_ioremap_resource_byname(pdev, "noc");
if (IS_ERR(ddrmc_noc_baseaddr))
return PTR_ERR(ddrmc_noc_baseaddr);
if (!get_ecc_state(ddrmc_baseaddr))
return -ENXIO;
/* Allocate ID number for the EMIF controller */
edac_mc_id = emif_get_id(pdev->dev.of_node);
regval = readl(ddrmc_baseaddr + XDDR_REG_CONFIG0_OFFSET);
num_chans = FIELD_GET(XDDR_REG_CONFIG0_NUM_CHANS_MASK, regval);
num_chans++;
num_csrows = FIELD_GET(XDDR_REG_CONFIG0_NUM_RANKS_MASK, regval);
num_csrows *= 2;
if (!num_csrows)
num_csrows = 1;
layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
layers[0].size = num_csrows;
layers[0].is_virt_csrow = true;
layers[1].type = EDAC_MC_LAYER_CHANNEL;
layers[1].size = num_chans;
layers[1].is_virt_csrow = false;
mci = edac_mc_alloc(edac_mc_id, ARRAY_SIZE(layers), layers,
sizeof(struct edac_priv));
if (!mci) {
edac_printk(KERN_ERR, EDAC_MC,
"Failed memory allocation for mc instance\n");
return -ENOMEM;
}
priv = mci->pvt_info;
priv->ddrmc_baseaddr = ddrmc_baseaddr;
priv->ddrmc_noc_baseaddr = ddrmc_noc_baseaddr;
priv->ce_cnt = 0;
priv->ue_cnt = 0;
priv->mc_id = edac_mc_id;
mc_init(mci, pdev);
rc = edac_mc_add_mc(mci);
if (rc) {
edac_printk(KERN_ERR, EDAC_MC,
"Failed to register with EDAC core\n");
goto free_edac_mc;
}
rc = xlnx_register_event(PM_NOTIFY_CB, VERSAL_EVENT_ERROR_PMC_ERR1,
XPM_EVENT_ERROR_MASK_DDRMC_CR | XPM_EVENT_ERROR_MASK_DDRMC_NCR |
XPM_EVENT_ERROR_MASK_NOC_CR | XPM_EVENT_ERROR_MASK_NOC_NCR,
false, err_callback, mci);
if (rc) {
if (rc == -EACCES)
rc = -EPROBE_DEFER;
goto del_mc;
}
#ifdef CONFIG_EDAC_DEBUG
create_debugfs_attributes(mci);
setup_address_map(priv);
#endif
enable_intr(priv);
return rc;
del_mc:
edac_mc_del_mc(&pdev->dev);
free_edac_mc:
edac_mc_free(mci);
return rc;
}
static void mc_remove(struct platform_device *pdev)
{
struct mem_ctl_info *mci = platform_get_drvdata(pdev);
struct edac_priv *priv = mci->pvt_info;
disable_intr(priv);
#ifdef CONFIG_EDAC_DEBUG
debugfs_remove_recursive(priv->debugfs);
#endif
xlnx_unregister_event(PM_NOTIFY_CB, VERSAL_EVENT_ERROR_PMC_ERR1,
XPM_EVENT_ERROR_MASK_DDRMC_CR |
XPM_EVENT_ERROR_MASK_NOC_CR |
XPM_EVENT_ERROR_MASK_NOC_NCR |
XPM_EVENT_ERROR_MASK_DDRMC_NCR, err_callback, mci);
edac_mc_del_mc(&pdev->dev);
edac_mc_free(mci);
}
static struct platform_driver xilinx_ddr_edac_mc_driver = {
.driver = {
.name = "xilinx-ddrmc-edac",
.of_match_table = xlnx_edac_match,
},
.probe = mc_probe,
.remove_new = mc_remove,
};
module_platform_driver(xilinx_ddr_edac_mc_driver);
MODULE_AUTHOR("AMD Inc");
MODULE_DESCRIPTION("Xilinx DDRMC ECC driver");
MODULE_LICENSE("GPL");