|  | /* | 
|  | * index.c - NTFS kernel index handling.  Part of the Linux-NTFS project. | 
|  | * | 
|  | * Copyright (c) 2004-2005 Anton Altaparmakov | 
|  | * | 
|  | * This program/include file is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as published | 
|  | * by the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program/include file is distributed in the hope that it will be | 
|  | * useful, but WITHOUT ANY WARRANTY; without even the implied warranty | 
|  | * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program (in the main directory of the Linux-NTFS | 
|  | * distribution in the file COPYING); if not, write to the Free Software | 
|  | * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
|  | */ | 
|  |  | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include "aops.h" | 
|  | #include "collate.h" | 
|  | #include "debug.h" | 
|  | #include "index.h" | 
|  | #include "ntfs.h" | 
|  |  | 
|  | /** | 
|  | * ntfs_index_ctx_get - allocate and initialize a new index context | 
|  | * @idx_ni:	ntfs index inode with which to initialize the context | 
|  | * | 
|  | * Allocate a new index context, initialize it with @idx_ni and return it. | 
|  | * Return NULL if allocation failed. | 
|  | * | 
|  | * Locking:  Caller must hold i_mutex on the index inode. | 
|  | */ | 
|  | ntfs_index_context *ntfs_index_ctx_get(ntfs_inode *idx_ni) | 
|  | { | 
|  | ntfs_index_context *ictx; | 
|  |  | 
|  | ictx = kmem_cache_alloc(ntfs_index_ctx_cache, GFP_NOFS); | 
|  | if (ictx) | 
|  | *ictx = (ntfs_index_context){ .idx_ni = idx_ni }; | 
|  | return ictx; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_index_ctx_put - release an index context | 
|  | * @ictx:	index context to free | 
|  | * | 
|  | * Release the index context @ictx, releasing all associated resources. | 
|  | * | 
|  | * Locking:  Caller must hold i_mutex on the index inode. | 
|  | */ | 
|  | void ntfs_index_ctx_put(ntfs_index_context *ictx) | 
|  | { | 
|  | if (ictx->entry) { | 
|  | if (ictx->is_in_root) { | 
|  | if (ictx->actx) | 
|  | ntfs_attr_put_search_ctx(ictx->actx); | 
|  | if (ictx->base_ni) | 
|  | unmap_mft_record(ictx->base_ni); | 
|  | } else { | 
|  | struct page *page = ictx->page; | 
|  | if (page) { | 
|  | BUG_ON(!PageLocked(page)); | 
|  | unlock_page(page); | 
|  | ntfs_unmap_page(page); | 
|  | } | 
|  | } | 
|  | } | 
|  | kmem_cache_free(ntfs_index_ctx_cache, ictx); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_index_lookup - find a key in an index and return its index entry | 
|  | * @key:	[IN] key for which to search in the index | 
|  | * @key_len:	[IN] length of @key in bytes | 
|  | * @ictx:	[IN/OUT] context describing the index and the returned entry | 
|  | * | 
|  | * Before calling ntfs_index_lookup(), @ictx must have been obtained from a | 
|  | * call to ntfs_index_ctx_get(). | 
|  | * | 
|  | * Look for the @key in the index specified by the index lookup context @ictx. | 
|  | * ntfs_index_lookup() walks the contents of the index looking for the @key. | 
|  | * | 
|  | * If the @key is found in the index, 0 is returned and @ictx is setup to | 
|  | * describe the index entry containing the matching @key.  @ictx->entry is the | 
|  | * index entry and @ictx->data and @ictx->data_len are the index entry data and | 
|  | * its length in bytes, respectively. | 
|  | * | 
|  | * If the @key is not found in the index, -ENOENT is returned and @ictx is | 
|  | * setup to describe the index entry whose key collates immediately after the | 
|  | * search @key, i.e. this is the position in the index at which an index entry | 
|  | * with a key of @key would need to be inserted. | 
|  | * | 
|  | * If an error occurs return the negative error code and @ictx is left | 
|  | * untouched. | 
|  | * | 
|  | * When finished with the entry and its data, call ntfs_index_ctx_put() to free | 
|  | * the context and other associated resources. | 
|  | * | 
|  | * If the index entry was modified, call flush_dcache_index_entry_page() | 
|  | * immediately after the modification and either ntfs_index_entry_mark_dirty() | 
|  | * or ntfs_index_entry_write() before the call to ntfs_index_ctx_put() to | 
|  | * ensure that the changes are written to disk. | 
|  | * | 
|  | * Locking:  - Caller must hold i_mutex on the index inode. | 
|  | *	     - Each page cache page in the index allocation mapping must be | 
|  | *	       locked whilst being accessed otherwise we may find a corrupt | 
|  | *	       page due to it being under ->writepage at the moment which | 
|  | *	       applies the mst protection fixups before writing out and then | 
|  | *	       removes them again after the write is complete after which it | 
|  | *	       unlocks the page. | 
|  | */ | 
|  | int ntfs_index_lookup(const void *key, const int key_len, | 
|  | ntfs_index_context *ictx) | 
|  | { | 
|  | VCN vcn, old_vcn; | 
|  | ntfs_inode *idx_ni = ictx->idx_ni; | 
|  | ntfs_volume *vol = idx_ni->vol; | 
|  | struct super_block *sb = vol->sb; | 
|  | ntfs_inode *base_ni = idx_ni->ext.base_ntfs_ino; | 
|  | MFT_RECORD *m; | 
|  | INDEX_ROOT *ir; | 
|  | INDEX_ENTRY *ie; | 
|  | INDEX_ALLOCATION *ia; | 
|  | u8 *index_end, *kaddr; | 
|  | ntfs_attr_search_ctx *actx; | 
|  | struct address_space *ia_mapping; | 
|  | struct page *page; | 
|  | int rc, err = 0; | 
|  |  | 
|  | ntfs_debug("Entering."); | 
|  | BUG_ON(!NInoAttr(idx_ni)); | 
|  | BUG_ON(idx_ni->type != AT_INDEX_ALLOCATION); | 
|  | BUG_ON(idx_ni->nr_extents != -1); | 
|  | BUG_ON(!base_ni); | 
|  | BUG_ON(!key); | 
|  | BUG_ON(key_len <= 0); | 
|  | if (!ntfs_is_collation_rule_supported( | 
|  | idx_ni->itype.index.collation_rule)) { | 
|  | ntfs_error(sb, "Index uses unsupported collation rule 0x%x.  " | 
|  | "Aborting lookup.", le32_to_cpu( | 
|  | idx_ni->itype.index.collation_rule)); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | /* Get hold of the mft record for the index inode. */ | 
|  | m = map_mft_record(base_ni); | 
|  | if (IS_ERR(m)) { | 
|  | ntfs_error(sb, "map_mft_record() failed with error code %ld.", | 
|  | -PTR_ERR(m)); | 
|  | return PTR_ERR(m); | 
|  | } | 
|  | actx = ntfs_attr_get_search_ctx(base_ni, m); | 
|  | if (unlikely(!actx)) { | 
|  | err = -ENOMEM; | 
|  | goto err_out; | 
|  | } | 
|  | /* Find the index root attribute in the mft record. */ | 
|  | err = ntfs_attr_lookup(AT_INDEX_ROOT, idx_ni->name, idx_ni->name_len, | 
|  | CASE_SENSITIVE, 0, NULL, 0, actx); | 
|  | if (unlikely(err)) { | 
|  | if (err == -ENOENT) { | 
|  | ntfs_error(sb, "Index root attribute missing in inode " | 
|  | "0x%lx.", idx_ni->mft_no); | 
|  | err = -EIO; | 
|  | } | 
|  | goto err_out; | 
|  | } | 
|  | /* Get to the index root value (it has been verified in read_inode). */ | 
|  | ir = (INDEX_ROOT*)((u8*)actx->attr + | 
|  | le16_to_cpu(actx->attr->data.resident.value_offset)); | 
|  | index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length); | 
|  | /* The first index entry. */ | 
|  | ie = (INDEX_ENTRY*)((u8*)&ir->index + | 
|  | le32_to_cpu(ir->index.entries_offset)); | 
|  | /* | 
|  | * Loop until we exceed valid memory (corruption case) or until we | 
|  | * reach the last entry. | 
|  | */ | 
|  | for (;; ie = (INDEX_ENTRY*)((u8*)ie + le16_to_cpu(ie->length))) { | 
|  | /* Bounds checks. */ | 
|  | if ((u8*)ie < (u8*)actx->mrec || (u8*)ie + | 
|  | sizeof(INDEX_ENTRY_HEADER) > index_end || | 
|  | (u8*)ie + le16_to_cpu(ie->length) > index_end) | 
|  | goto idx_err_out; | 
|  | /* | 
|  | * The last entry cannot contain a key.  It can however contain | 
|  | * a pointer to a child node in the B+tree so we just break out. | 
|  | */ | 
|  | if (ie->flags & INDEX_ENTRY_END) | 
|  | break; | 
|  | /* Further bounds checks. */ | 
|  | if ((u32)sizeof(INDEX_ENTRY_HEADER) + | 
|  | le16_to_cpu(ie->key_length) > | 
|  | le16_to_cpu(ie->data.vi.data_offset) || | 
|  | (u32)le16_to_cpu(ie->data.vi.data_offset) + | 
|  | le16_to_cpu(ie->data.vi.data_length) > | 
|  | le16_to_cpu(ie->length)) | 
|  | goto idx_err_out; | 
|  | /* If the keys match perfectly, we setup @ictx and return 0. */ | 
|  | if ((key_len == le16_to_cpu(ie->key_length)) && !memcmp(key, | 
|  | &ie->key, key_len)) { | 
|  | ir_done: | 
|  | ictx->is_in_root = true; | 
|  | ictx->ir = ir; | 
|  | ictx->actx = actx; | 
|  | ictx->base_ni = base_ni; | 
|  | ictx->ia = NULL; | 
|  | ictx->page = NULL; | 
|  | done: | 
|  | ictx->entry = ie; | 
|  | ictx->data = (u8*)ie + | 
|  | le16_to_cpu(ie->data.vi.data_offset); | 
|  | ictx->data_len = le16_to_cpu(ie->data.vi.data_length); | 
|  | ntfs_debug("Done."); | 
|  | return err; | 
|  | } | 
|  | /* | 
|  | * Not a perfect match, need to do full blown collation so we | 
|  | * know which way in the B+tree we have to go. | 
|  | */ | 
|  | rc = ntfs_collate(vol, idx_ni->itype.index.collation_rule, key, | 
|  | key_len, &ie->key, le16_to_cpu(ie->key_length)); | 
|  | /* | 
|  | * If @key collates before the key of the current entry, there | 
|  | * is definitely no such key in this index but we might need to | 
|  | * descend into the B+tree so we just break out of the loop. | 
|  | */ | 
|  | if (rc == -1) | 
|  | break; | 
|  | /* | 
|  | * A match should never happen as the memcmp() call should have | 
|  | * cought it, but we still treat it correctly. | 
|  | */ | 
|  | if (!rc) | 
|  | goto ir_done; | 
|  | /* The keys are not equal, continue the search. */ | 
|  | } | 
|  | /* | 
|  | * We have finished with this index without success.  Check for the | 
|  | * presence of a child node and if not present setup @ictx and return | 
|  | * -ENOENT. | 
|  | */ | 
|  | if (!(ie->flags & INDEX_ENTRY_NODE)) { | 
|  | ntfs_debug("Entry not found."); | 
|  | err = -ENOENT; | 
|  | goto ir_done; | 
|  | } /* Child node present, descend into it. */ | 
|  | /* Consistency check: Verify that an index allocation exists. */ | 
|  | if (!NInoIndexAllocPresent(idx_ni)) { | 
|  | ntfs_error(sb, "No index allocation attribute but index entry " | 
|  | "requires one.  Inode 0x%lx is corrupt or " | 
|  | "driver bug.", idx_ni->mft_no); | 
|  | goto err_out; | 
|  | } | 
|  | /* Get the starting vcn of the index_block holding the child node. */ | 
|  | vcn = sle64_to_cpup((sle64*)((u8*)ie + le16_to_cpu(ie->length) - 8)); | 
|  | ia_mapping = VFS_I(idx_ni)->i_mapping; | 
|  | /* | 
|  | * We are done with the index root and the mft record.  Release them, | 
|  | * otherwise we deadlock with ntfs_map_page(). | 
|  | */ | 
|  | ntfs_attr_put_search_ctx(actx); | 
|  | unmap_mft_record(base_ni); | 
|  | m = NULL; | 
|  | actx = NULL; | 
|  | descend_into_child_node: | 
|  | /* | 
|  | * Convert vcn to index into the index allocation attribute in units | 
|  | * of PAGE_SIZE and map the page cache page, reading it from | 
|  | * disk if necessary. | 
|  | */ | 
|  | page = ntfs_map_page(ia_mapping, vcn << | 
|  | idx_ni->itype.index.vcn_size_bits >> PAGE_SHIFT); | 
|  | if (IS_ERR(page)) { | 
|  | ntfs_error(sb, "Failed to map index page, error %ld.", | 
|  | -PTR_ERR(page)); | 
|  | err = PTR_ERR(page); | 
|  | goto err_out; | 
|  | } | 
|  | lock_page(page); | 
|  | kaddr = (u8*)page_address(page); | 
|  | fast_descend_into_child_node: | 
|  | /* Get to the index allocation block. */ | 
|  | ia = (INDEX_ALLOCATION*)(kaddr + ((vcn << | 
|  | idx_ni->itype.index.vcn_size_bits) & ~PAGE_MASK)); | 
|  | /* Bounds checks. */ | 
|  | if ((u8*)ia < kaddr || (u8*)ia > kaddr + PAGE_SIZE) { | 
|  | ntfs_error(sb, "Out of bounds check failed.  Corrupt inode " | 
|  | "0x%lx or driver bug.", idx_ni->mft_no); | 
|  | goto unm_err_out; | 
|  | } | 
|  | /* Catch multi sector transfer fixup errors. */ | 
|  | if (unlikely(!ntfs_is_indx_record(ia->magic))) { | 
|  | ntfs_error(sb, "Index record with vcn 0x%llx is corrupt.  " | 
|  | "Corrupt inode 0x%lx.  Run chkdsk.", | 
|  | (long long)vcn, idx_ni->mft_no); | 
|  | goto unm_err_out; | 
|  | } | 
|  | if (sle64_to_cpu(ia->index_block_vcn) != vcn) { | 
|  | ntfs_error(sb, "Actual VCN (0x%llx) of index buffer is " | 
|  | "different from expected VCN (0x%llx).  Inode " | 
|  | "0x%lx is corrupt or driver bug.", | 
|  | (unsigned long long) | 
|  | sle64_to_cpu(ia->index_block_vcn), | 
|  | (unsigned long long)vcn, idx_ni->mft_no); | 
|  | goto unm_err_out; | 
|  | } | 
|  | if (le32_to_cpu(ia->index.allocated_size) + 0x18 != | 
|  | idx_ni->itype.index.block_size) { | 
|  | ntfs_error(sb, "Index buffer (VCN 0x%llx) of inode 0x%lx has " | 
|  | "a size (%u) differing from the index " | 
|  | "specified size (%u).  Inode is corrupt or " | 
|  | "driver bug.", (unsigned long long)vcn, | 
|  | idx_ni->mft_no, | 
|  | le32_to_cpu(ia->index.allocated_size) + 0x18, | 
|  | idx_ni->itype.index.block_size); | 
|  | goto unm_err_out; | 
|  | } | 
|  | index_end = (u8*)ia + idx_ni->itype.index.block_size; | 
|  | if (index_end > kaddr + PAGE_SIZE) { | 
|  | ntfs_error(sb, "Index buffer (VCN 0x%llx) of inode 0x%lx " | 
|  | "crosses page boundary.  Impossible!  Cannot " | 
|  | "access!  This is probably a bug in the " | 
|  | "driver.", (unsigned long long)vcn, | 
|  | idx_ni->mft_no); | 
|  | goto unm_err_out; | 
|  | } | 
|  | index_end = (u8*)&ia->index + le32_to_cpu(ia->index.index_length); | 
|  | if (index_end > (u8*)ia + idx_ni->itype.index.block_size) { | 
|  | ntfs_error(sb, "Size of index buffer (VCN 0x%llx) of inode " | 
|  | "0x%lx exceeds maximum size.", | 
|  | (unsigned long long)vcn, idx_ni->mft_no); | 
|  | goto unm_err_out; | 
|  | } | 
|  | /* The first index entry. */ | 
|  | ie = (INDEX_ENTRY*)((u8*)&ia->index + | 
|  | le32_to_cpu(ia->index.entries_offset)); | 
|  | /* | 
|  | * Iterate similar to above big loop but applied to index buffer, thus | 
|  | * loop until we exceed valid memory (corruption case) or until we | 
|  | * reach the last entry. | 
|  | */ | 
|  | for (;; ie = (INDEX_ENTRY*)((u8*)ie + le16_to_cpu(ie->length))) { | 
|  | /* Bounds checks. */ | 
|  | if ((u8*)ie < (u8*)ia || (u8*)ie + | 
|  | sizeof(INDEX_ENTRY_HEADER) > index_end || | 
|  | (u8*)ie + le16_to_cpu(ie->length) > index_end) { | 
|  | ntfs_error(sb, "Index entry out of bounds in inode " | 
|  | "0x%lx.", idx_ni->mft_no); | 
|  | goto unm_err_out; | 
|  | } | 
|  | /* | 
|  | * The last entry cannot contain a key.  It can however contain | 
|  | * a pointer to a child node in the B+tree so we just break out. | 
|  | */ | 
|  | if (ie->flags & INDEX_ENTRY_END) | 
|  | break; | 
|  | /* Further bounds checks. */ | 
|  | if ((u32)sizeof(INDEX_ENTRY_HEADER) + | 
|  | le16_to_cpu(ie->key_length) > | 
|  | le16_to_cpu(ie->data.vi.data_offset) || | 
|  | (u32)le16_to_cpu(ie->data.vi.data_offset) + | 
|  | le16_to_cpu(ie->data.vi.data_length) > | 
|  | le16_to_cpu(ie->length)) { | 
|  | ntfs_error(sb, "Index entry out of bounds in inode " | 
|  | "0x%lx.", idx_ni->mft_no); | 
|  | goto unm_err_out; | 
|  | } | 
|  | /* If the keys match perfectly, we setup @ictx and return 0. */ | 
|  | if ((key_len == le16_to_cpu(ie->key_length)) && !memcmp(key, | 
|  | &ie->key, key_len)) { | 
|  | ia_done: | 
|  | ictx->is_in_root = false; | 
|  | ictx->actx = NULL; | 
|  | ictx->base_ni = NULL; | 
|  | ictx->ia = ia; | 
|  | ictx->page = page; | 
|  | goto done; | 
|  | } | 
|  | /* | 
|  | * Not a perfect match, need to do full blown collation so we | 
|  | * know which way in the B+tree we have to go. | 
|  | */ | 
|  | rc = ntfs_collate(vol, idx_ni->itype.index.collation_rule, key, | 
|  | key_len, &ie->key, le16_to_cpu(ie->key_length)); | 
|  | /* | 
|  | * If @key collates before the key of the current entry, there | 
|  | * is definitely no such key in this index but we might need to | 
|  | * descend into the B+tree so we just break out of the loop. | 
|  | */ | 
|  | if (rc == -1) | 
|  | break; | 
|  | /* | 
|  | * A match should never happen as the memcmp() call should have | 
|  | * cought it, but we still treat it correctly. | 
|  | */ | 
|  | if (!rc) | 
|  | goto ia_done; | 
|  | /* The keys are not equal, continue the search. */ | 
|  | } | 
|  | /* | 
|  | * We have finished with this index buffer without success.  Check for | 
|  | * the presence of a child node and if not present return -ENOENT. | 
|  | */ | 
|  | if (!(ie->flags & INDEX_ENTRY_NODE)) { | 
|  | ntfs_debug("Entry not found."); | 
|  | err = -ENOENT; | 
|  | goto ia_done; | 
|  | } | 
|  | if ((ia->index.flags & NODE_MASK) == LEAF_NODE) { | 
|  | ntfs_error(sb, "Index entry with child node found in a leaf " | 
|  | "node in inode 0x%lx.", idx_ni->mft_no); | 
|  | goto unm_err_out; | 
|  | } | 
|  | /* Child node present, descend into it. */ | 
|  | old_vcn = vcn; | 
|  | vcn = sle64_to_cpup((sle64*)((u8*)ie + le16_to_cpu(ie->length) - 8)); | 
|  | if (vcn >= 0) { | 
|  | /* | 
|  | * If vcn is in the same page cache page as old_vcn we recycle | 
|  | * the mapped page. | 
|  | */ | 
|  | if (old_vcn << vol->cluster_size_bits >> | 
|  | PAGE_SHIFT == vcn << | 
|  | vol->cluster_size_bits >> | 
|  | PAGE_SHIFT) | 
|  | goto fast_descend_into_child_node; | 
|  | unlock_page(page); | 
|  | ntfs_unmap_page(page); | 
|  | goto descend_into_child_node; | 
|  | } | 
|  | ntfs_error(sb, "Negative child node vcn in inode 0x%lx.", | 
|  | idx_ni->mft_no); | 
|  | unm_err_out: | 
|  | unlock_page(page); | 
|  | ntfs_unmap_page(page); | 
|  | err_out: | 
|  | if (!err) | 
|  | err = -EIO; | 
|  | if (actx) | 
|  | ntfs_attr_put_search_ctx(actx); | 
|  | if (m) | 
|  | unmap_mft_record(base_ni); | 
|  | return err; | 
|  | idx_err_out: | 
|  | ntfs_error(sb, "Corrupt index.  Aborting lookup."); | 
|  | goto err_out; | 
|  | } |