blob: 6cdcbf4de7632fa0a8065b5e79f2460d8ef871c5 [file] [log] [blame]
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2004-2016 Cavium, Inc.
*/
#include <linux/of_address.h>
#include <linux/interrupt.h>
#include <linux/irqdomain.h>
#include <linux/bitops.h>
#include <linux/of_irq.h>
#include <linux/percpu.h>
#include <linux/slab.h>
#include <linux/irq.h>
#include <linux/smp.h>
#include <linux/of.h>
#include <asm/octeon/octeon.h>
#include <asm/octeon/cvmx-ciu2-defs.h>
#include <asm/octeon/cvmx-ciu3-defs.h>
static DEFINE_PER_CPU(unsigned long, octeon_irq_ciu0_en_mirror);
static DEFINE_PER_CPU(unsigned long, octeon_irq_ciu1_en_mirror);
static DEFINE_PER_CPU(raw_spinlock_t, octeon_irq_ciu_spinlock);
static DEFINE_PER_CPU(unsigned int, octeon_irq_ciu3_idt_ip2);
static DEFINE_PER_CPU(unsigned int, octeon_irq_ciu3_idt_ip3);
static DEFINE_PER_CPU(struct octeon_ciu3_info *, octeon_ciu3_info);
#define CIU3_MBOX_PER_CORE 10
/*
* The 8 most significant bits of the intsn identify the interrupt major block.
* Each major block might use its own interrupt domain. Thus 256 domains are
* needed.
*/
#define MAX_CIU3_DOMAINS 256
typedef irq_hw_number_t (*octeon_ciu3_intsn2hw_t)(struct irq_domain *, unsigned int);
/* Information for each ciu3 in the system */
struct octeon_ciu3_info {
u64 ciu3_addr;
int node;
struct irq_domain *domain[MAX_CIU3_DOMAINS];
octeon_ciu3_intsn2hw_t intsn2hw[MAX_CIU3_DOMAINS];
};
/* Each ciu3 in the system uses its own data (one ciu3 per node) */
static struct octeon_ciu3_info *octeon_ciu3_info_per_node[4];
struct octeon_irq_ciu_domain_data {
int num_sum; /* number of sum registers (2 or 3). */
};
/* Register offsets from ciu3_addr */
#define CIU3_CONST 0x220
#define CIU3_IDT_CTL(_idt) ((_idt) * 8 + 0x110000)
#define CIU3_IDT_PP(_idt, _idx) ((_idt) * 32 + (_idx) * 8 + 0x120000)
#define CIU3_IDT_IO(_idt) ((_idt) * 8 + 0x130000)
#define CIU3_DEST_PP_INT(_pp_ip) ((_pp_ip) * 8 + 0x200000)
#define CIU3_DEST_IO_INT(_io) ((_io) * 8 + 0x210000)
#define CIU3_ISC_CTL(_intsn) ((_intsn) * 8 + 0x80000000)
#define CIU3_ISC_W1C(_intsn) ((_intsn) * 8 + 0x90000000)
#define CIU3_ISC_W1S(_intsn) ((_intsn) * 8 + 0xa0000000)
static __read_mostly int octeon_irq_ciu_to_irq[8][64];
struct octeon_ciu_chip_data {
union {
struct { /* only used for ciu3 */
u64 ciu3_addr;
unsigned int intsn;
};
struct { /* only used for ciu/ciu2 */
u8 line;
u8 bit;
};
};
int gpio_line;
int current_cpu; /* Next CPU expected to take this irq */
int ciu_node; /* NUMA node number of the CIU */
};
struct octeon_core_chip_data {
struct mutex core_irq_mutex;
bool current_en;
bool desired_en;
u8 bit;
};
#define MIPS_CORE_IRQ_LINES 8
static struct octeon_core_chip_data octeon_irq_core_chip_data[MIPS_CORE_IRQ_LINES];
static int octeon_irq_set_ciu_mapping(int irq, int line, int bit, int gpio_line,
struct irq_chip *chip,
irq_flow_handler_t handler)
{
struct octeon_ciu_chip_data *cd;
cd = kzalloc(sizeof(*cd), GFP_KERNEL);
if (!cd)
return -ENOMEM;
irq_set_chip_and_handler(irq, chip, handler);
cd->line = line;
cd->bit = bit;
cd->gpio_line = gpio_line;
irq_set_chip_data(irq, cd);
octeon_irq_ciu_to_irq[line][bit] = irq;
return 0;
}
static void octeon_irq_free_cd(struct irq_domain *d, unsigned int irq)
{
struct irq_data *data = irq_get_irq_data(irq);
struct octeon_ciu_chip_data *cd = irq_data_get_irq_chip_data(data);
irq_set_chip_data(irq, NULL);
kfree(cd);
}
static int octeon_irq_force_ciu_mapping(struct irq_domain *domain,
int irq, int line, int bit)
{
return irq_domain_associate(domain, irq, line << 6 | bit);
}
static int octeon_coreid_for_cpu(int cpu)
{
#ifdef CONFIG_SMP
return cpu_logical_map(cpu);
#else
return cvmx_get_core_num();
#endif
}
static int octeon_cpu_for_coreid(int coreid)
{
#ifdef CONFIG_SMP
return cpu_number_map(coreid);
#else
return smp_processor_id();
#endif
}
static void octeon_irq_core_ack(struct irq_data *data)
{
struct octeon_core_chip_data *cd = irq_data_get_irq_chip_data(data);
unsigned int bit = cd->bit;
/*
* We don't need to disable IRQs to make these atomic since
* they are already disabled earlier in the low level
* interrupt code.
*/
clear_c0_status(0x100 << bit);
/* The two user interrupts must be cleared manually. */
if (bit < 2)
clear_c0_cause(0x100 << bit);
}
static void octeon_irq_core_eoi(struct irq_data *data)
{
struct octeon_core_chip_data *cd = irq_data_get_irq_chip_data(data);
/*
* We don't need to disable IRQs to make these atomic since
* they are already disabled earlier in the low level
* interrupt code.
*/
set_c0_status(0x100 << cd->bit);
}
static void octeon_irq_core_set_enable_local(void *arg)
{
struct irq_data *data = arg;
struct octeon_core_chip_data *cd = irq_data_get_irq_chip_data(data);
unsigned int mask = 0x100 << cd->bit;
/*
* Interrupts are already disabled, so these are atomic.
*/
if (cd->desired_en)
set_c0_status(mask);
else
clear_c0_status(mask);
}
static void octeon_irq_core_disable(struct irq_data *data)
{
struct octeon_core_chip_data *cd = irq_data_get_irq_chip_data(data);
cd->desired_en = false;
}
static void octeon_irq_core_enable(struct irq_data *data)
{
struct octeon_core_chip_data *cd = irq_data_get_irq_chip_data(data);
cd->desired_en = true;
}
static void octeon_irq_core_bus_lock(struct irq_data *data)
{
struct octeon_core_chip_data *cd = irq_data_get_irq_chip_data(data);
mutex_lock(&cd->core_irq_mutex);
}
static void octeon_irq_core_bus_sync_unlock(struct irq_data *data)
{
struct octeon_core_chip_data *cd = irq_data_get_irq_chip_data(data);
if (cd->desired_en != cd->current_en) {
on_each_cpu(octeon_irq_core_set_enable_local, data, 1);
cd->current_en = cd->desired_en;
}
mutex_unlock(&cd->core_irq_mutex);
}
static struct irq_chip octeon_irq_chip_core = {
.name = "Core",
.irq_enable = octeon_irq_core_enable,
.irq_disable = octeon_irq_core_disable,
.irq_ack = octeon_irq_core_ack,
.irq_eoi = octeon_irq_core_eoi,
.irq_bus_lock = octeon_irq_core_bus_lock,
.irq_bus_sync_unlock = octeon_irq_core_bus_sync_unlock,
.irq_cpu_online = octeon_irq_core_eoi,
.irq_cpu_offline = octeon_irq_core_ack,
.flags = IRQCHIP_ONOFFLINE_ENABLED,
};
static void __init octeon_irq_init_core(void)
{
int i;
int irq;
struct octeon_core_chip_data *cd;
for (i = 0; i < MIPS_CORE_IRQ_LINES; i++) {
cd = &octeon_irq_core_chip_data[i];
cd->current_en = false;
cd->desired_en = false;
cd->bit = i;
mutex_init(&cd->core_irq_mutex);
irq = OCTEON_IRQ_SW0 + i;
irq_set_chip_data(irq, cd);
irq_set_chip_and_handler(irq, &octeon_irq_chip_core,
handle_percpu_irq);
}
}
static int next_cpu_for_irq(struct irq_data *data)
{
#ifdef CONFIG_SMP
int cpu;
struct cpumask *mask = irq_data_get_affinity_mask(data);
int weight = cpumask_weight(mask);
struct octeon_ciu_chip_data *cd = irq_data_get_irq_chip_data(data);
if (weight > 1) {
cpu = cd->current_cpu;
for (;;) {
cpu = cpumask_next(cpu, mask);
if (cpu >= nr_cpu_ids) {
cpu = -1;
continue;
} else if (cpumask_test_cpu(cpu, cpu_online_mask)) {
break;
}
}
} else if (weight == 1) {
cpu = cpumask_first(mask);
} else {
cpu = smp_processor_id();
}
cd->current_cpu = cpu;
return cpu;
#else
return smp_processor_id();
#endif
}
static void octeon_irq_ciu_enable(struct irq_data *data)
{
int cpu = next_cpu_for_irq(data);
int coreid = octeon_coreid_for_cpu(cpu);
unsigned long *pen;
unsigned long flags;
struct octeon_ciu_chip_data *cd;
raw_spinlock_t *lock = &per_cpu(octeon_irq_ciu_spinlock, cpu);
cd = irq_data_get_irq_chip_data(data);
raw_spin_lock_irqsave(lock, flags);
if (cd->line == 0) {
pen = &per_cpu(octeon_irq_ciu0_en_mirror, cpu);
__set_bit(cd->bit, pen);
/*
* Must be visible to octeon_irq_ip{2,3}_ciu() before
* enabling the irq.
*/
wmb();
cvmx_write_csr(CVMX_CIU_INTX_EN0(coreid * 2), *pen);
} else {
pen = &per_cpu(octeon_irq_ciu1_en_mirror, cpu);
__set_bit(cd->bit, pen);
/*
* Must be visible to octeon_irq_ip{2,3}_ciu() before
* enabling the irq.
*/
wmb();
cvmx_write_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1), *pen);
}
raw_spin_unlock_irqrestore(lock, flags);
}
static void octeon_irq_ciu_enable_local(struct irq_data *data)
{
unsigned long *pen;
unsigned long flags;
struct octeon_ciu_chip_data *cd;
raw_spinlock_t *lock = this_cpu_ptr(&octeon_irq_ciu_spinlock);
cd = irq_data_get_irq_chip_data(data);
raw_spin_lock_irqsave(lock, flags);
if (cd->line == 0) {
pen = this_cpu_ptr(&octeon_irq_ciu0_en_mirror);
__set_bit(cd->bit, pen);
/*
* Must be visible to octeon_irq_ip{2,3}_ciu() before
* enabling the irq.
*/
wmb();
cvmx_write_csr(CVMX_CIU_INTX_EN0(cvmx_get_core_num() * 2), *pen);
} else {
pen = this_cpu_ptr(&octeon_irq_ciu1_en_mirror);
__set_bit(cd->bit, pen);
/*
* Must be visible to octeon_irq_ip{2,3}_ciu() before
* enabling the irq.
*/
wmb();
cvmx_write_csr(CVMX_CIU_INTX_EN1(cvmx_get_core_num() * 2 + 1), *pen);
}
raw_spin_unlock_irqrestore(lock, flags);
}
static void octeon_irq_ciu_disable_local(struct irq_data *data)
{
unsigned long *pen;
unsigned long flags;
struct octeon_ciu_chip_data *cd;
raw_spinlock_t *lock = this_cpu_ptr(&octeon_irq_ciu_spinlock);
cd = irq_data_get_irq_chip_data(data);
raw_spin_lock_irqsave(lock, flags);
if (cd->line == 0) {
pen = this_cpu_ptr(&octeon_irq_ciu0_en_mirror);
__clear_bit(cd->bit, pen);
/*
* Must be visible to octeon_irq_ip{2,3}_ciu() before
* enabling the irq.
*/
wmb();
cvmx_write_csr(CVMX_CIU_INTX_EN0(cvmx_get_core_num() * 2), *pen);
} else {
pen = this_cpu_ptr(&octeon_irq_ciu1_en_mirror);
__clear_bit(cd->bit, pen);
/*
* Must be visible to octeon_irq_ip{2,3}_ciu() before
* enabling the irq.
*/
wmb();
cvmx_write_csr(CVMX_CIU_INTX_EN1(cvmx_get_core_num() * 2 + 1), *pen);
}
raw_spin_unlock_irqrestore(lock, flags);
}
static void octeon_irq_ciu_disable_all(struct irq_data *data)
{
unsigned long flags;
unsigned long *pen;
int cpu;
struct octeon_ciu_chip_data *cd;
raw_spinlock_t *lock;
cd = irq_data_get_irq_chip_data(data);
for_each_online_cpu(cpu) {
int coreid = octeon_coreid_for_cpu(cpu);
lock = &per_cpu(octeon_irq_ciu_spinlock, cpu);
if (cd->line == 0)
pen = &per_cpu(octeon_irq_ciu0_en_mirror, cpu);
else
pen = &per_cpu(octeon_irq_ciu1_en_mirror, cpu);
raw_spin_lock_irqsave(lock, flags);
__clear_bit(cd->bit, pen);
/*
* Must be visible to octeon_irq_ip{2,3}_ciu() before
* enabling the irq.
*/
wmb();
if (cd->line == 0)
cvmx_write_csr(CVMX_CIU_INTX_EN0(coreid * 2), *pen);
else
cvmx_write_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1), *pen);
raw_spin_unlock_irqrestore(lock, flags);
}
}
static void octeon_irq_ciu_enable_all(struct irq_data *data)
{
unsigned long flags;
unsigned long *pen;
int cpu;
struct octeon_ciu_chip_data *cd;
raw_spinlock_t *lock;
cd = irq_data_get_irq_chip_data(data);
for_each_online_cpu(cpu) {
int coreid = octeon_coreid_for_cpu(cpu);
lock = &per_cpu(octeon_irq_ciu_spinlock, cpu);
if (cd->line == 0)
pen = &per_cpu(octeon_irq_ciu0_en_mirror, cpu);
else
pen = &per_cpu(octeon_irq_ciu1_en_mirror, cpu);
raw_spin_lock_irqsave(lock, flags);
__set_bit(cd->bit, pen);
/*
* Must be visible to octeon_irq_ip{2,3}_ciu() before
* enabling the irq.
*/
wmb();
if (cd->line == 0)
cvmx_write_csr(CVMX_CIU_INTX_EN0(coreid * 2), *pen);
else
cvmx_write_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1), *pen);
raw_spin_unlock_irqrestore(lock, flags);
}
}
/*
* Enable the irq on the next core in the affinity set for chips that
* have the EN*_W1{S,C} registers.
*/
static void octeon_irq_ciu_enable_v2(struct irq_data *data)
{
u64 mask;
int cpu = next_cpu_for_irq(data);
struct octeon_ciu_chip_data *cd;
cd = irq_data_get_irq_chip_data(data);
mask = 1ull << (cd->bit);
/*
* Called under the desc lock, so these should never get out
* of sync.
*/
if (cd->line == 0) {
int index = octeon_coreid_for_cpu(cpu) * 2;
set_bit(cd->bit, &per_cpu(octeon_irq_ciu0_en_mirror, cpu));
cvmx_write_csr(CVMX_CIU_INTX_EN0_W1S(index), mask);
} else {
int index = octeon_coreid_for_cpu(cpu) * 2 + 1;
set_bit(cd->bit, &per_cpu(octeon_irq_ciu1_en_mirror, cpu));
cvmx_write_csr(CVMX_CIU_INTX_EN1_W1S(index), mask);
}
}
/*
* Enable the irq in the sum2 registers.
*/
static void octeon_irq_ciu_enable_sum2(struct irq_data *data)
{
u64 mask;
int cpu = next_cpu_for_irq(data);
int index = octeon_coreid_for_cpu(cpu);
struct octeon_ciu_chip_data *cd;
cd = irq_data_get_irq_chip_data(data);
mask = 1ull << (cd->bit);
cvmx_write_csr(CVMX_CIU_EN2_PPX_IP4_W1S(index), mask);
}
/*
* Disable the irq in the sum2 registers.
*/
static void octeon_irq_ciu_disable_local_sum2(struct irq_data *data)
{
u64 mask;
int cpu = next_cpu_for_irq(data);
int index = octeon_coreid_for_cpu(cpu);
struct octeon_ciu_chip_data *cd;
cd = irq_data_get_irq_chip_data(data);
mask = 1ull << (cd->bit);
cvmx_write_csr(CVMX_CIU_EN2_PPX_IP4_W1C(index), mask);
}
static void octeon_irq_ciu_ack_sum2(struct irq_data *data)
{
u64 mask;
int cpu = next_cpu_for_irq(data);
int index = octeon_coreid_for_cpu(cpu);
struct octeon_ciu_chip_data *cd;
cd = irq_data_get_irq_chip_data(data);
mask = 1ull << (cd->bit);
cvmx_write_csr(CVMX_CIU_SUM2_PPX_IP4(index), mask);
}
static void octeon_irq_ciu_disable_all_sum2(struct irq_data *data)
{
int cpu;
struct octeon_ciu_chip_data *cd;
u64 mask;
cd = irq_data_get_irq_chip_data(data);
mask = 1ull << (cd->bit);
for_each_online_cpu(cpu) {
int coreid = octeon_coreid_for_cpu(cpu);
cvmx_write_csr(CVMX_CIU_EN2_PPX_IP4_W1C(coreid), mask);
}
}
/*
* Enable the irq on the current CPU for chips that
* have the EN*_W1{S,C} registers.
*/
static void octeon_irq_ciu_enable_local_v2(struct irq_data *data)
{
u64 mask;
struct octeon_ciu_chip_data *cd;
cd = irq_data_get_irq_chip_data(data);
mask = 1ull << (cd->bit);
if (cd->line == 0) {
int index = cvmx_get_core_num() * 2;
set_bit(cd->bit, this_cpu_ptr(&octeon_irq_ciu0_en_mirror));
cvmx_write_csr(CVMX_CIU_INTX_EN0_W1S(index), mask);
} else {
int index = cvmx_get_core_num() * 2 + 1;
set_bit(cd->bit, this_cpu_ptr(&octeon_irq_ciu1_en_mirror));
cvmx_write_csr(CVMX_CIU_INTX_EN1_W1S(index), mask);
}
}
static void octeon_irq_ciu_disable_local_v2(struct irq_data *data)
{
u64 mask;
struct octeon_ciu_chip_data *cd;
cd = irq_data_get_irq_chip_data(data);
mask = 1ull << (cd->bit);
if (cd->line == 0) {
int index = cvmx_get_core_num() * 2;
clear_bit(cd->bit, this_cpu_ptr(&octeon_irq_ciu0_en_mirror));
cvmx_write_csr(CVMX_CIU_INTX_EN0_W1C(index), mask);
} else {
int index = cvmx_get_core_num() * 2 + 1;
clear_bit(cd->bit, this_cpu_ptr(&octeon_irq_ciu1_en_mirror));
cvmx_write_csr(CVMX_CIU_INTX_EN1_W1C(index), mask);
}
}
/*
* Write to the W1C bit in CVMX_CIU_INTX_SUM0 to clear the irq.
*/
static void octeon_irq_ciu_ack(struct irq_data *data)
{
u64 mask;
struct octeon_ciu_chip_data *cd;
cd = irq_data_get_irq_chip_data(data);
mask = 1ull << (cd->bit);
if (cd->line == 0) {
int index = cvmx_get_core_num() * 2;
cvmx_write_csr(CVMX_CIU_INTX_SUM0(index), mask);
} else {
cvmx_write_csr(CVMX_CIU_INT_SUM1, mask);
}
}
/*
* Disable the irq on the all cores for chips that have the EN*_W1{S,C}
* registers.
*/
static void octeon_irq_ciu_disable_all_v2(struct irq_data *data)
{
int cpu;
u64 mask;
struct octeon_ciu_chip_data *cd;
cd = irq_data_get_irq_chip_data(data);
mask = 1ull << (cd->bit);
if (cd->line == 0) {
for_each_online_cpu(cpu) {
int index = octeon_coreid_for_cpu(cpu) * 2;
clear_bit(cd->bit,
&per_cpu(octeon_irq_ciu0_en_mirror, cpu));
cvmx_write_csr(CVMX_CIU_INTX_EN0_W1C(index), mask);
}
} else {
for_each_online_cpu(cpu) {
int index = octeon_coreid_for_cpu(cpu) * 2 + 1;
clear_bit(cd->bit,
&per_cpu(octeon_irq_ciu1_en_mirror, cpu));
cvmx_write_csr(CVMX_CIU_INTX_EN1_W1C(index), mask);
}
}
}
/*
* Enable the irq on the all cores for chips that have the EN*_W1{S,C}
* registers.
*/
static void octeon_irq_ciu_enable_all_v2(struct irq_data *data)
{
int cpu;
u64 mask;
struct octeon_ciu_chip_data *cd;
cd = irq_data_get_irq_chip_data(data);
mask = 1ull << (cd->bit);
if (cd->line == 0) {
for_each_online_cpu(cpu) {
int index = octeon_coreid_for_cpu(cpu) * 2;
set_bit(cd->bit,
&per_cpu(octeon_irq_ciu0_en_mirror, cpu));
cvmx_write_csr(CVMX_CIU_INTX_EN0_W1S(index), mask);
}
} else {
for_each_online_cpu(cpu) {
int index = octeon_coreid_for_cpu(cpu) * 2 + 1;
set_bit(cd->bit,
&per_cpu(octeon_irq_ciu1_en_mirror, cpu));
cvmx_write_csr(CVMX_CIU_INTX_EN1_W1S(index), mask);
}
}
}
static int octeon_irq_ciu_set_type(struct irq_data *data, unsigned int t)
{
irqd_set_trigger_type(data, t);
if (t & IRQ_TYPE_EDGE_BOTH)
irq_set_handler_locked(data, handle_edge_irq);
else
irq_set_handler_locked(data, handle_level_irq);
return IRQ_SET_MASK_OK;
}
static void octeon_irq_gpio_setup(struct irq_data *data)
{
union cvmx_gpio_bit_cfgx cfg;
struct octeon_ciu_chip_data *cd;
u32 t = irqd_get_trigger_type(data);
cd = irq_data_get_irq_chip_data(data);
cfg.u64 = 0;
cfg.s.int_en = 1;
cfg.s.int_type = (t & IRQ_TYPE_EDGE_BOTH) != 0;
cfg.s.rx_xor = (t & (IRQ_TYPE_LEVEL_LOW | IRQ_TYPE_EDGE_FALLING)) != 0;
/* 140 nS glitch filter*/
cfg.s.fil_cnt = 7;
cfg.s.fil_sel = 3;
cvmx_write_csr(CVMX_GPIO_BIT_CFGX(cd->gpio_line), cfg.u64);
}
static void octeon_irq_ciu_enable_gpio_v2(struct irq_data *data)
{
octeon_irq_gpio_setup(data);
octeon_irq_ciu_enable_v2(data);
}
static void octeon_irq_ciu_enable_gpio(struct irq_data *data)
{
octeon_irq_gpio_setup(data);
octeon_irq_ciu_enable(data);
}
static int octeon_irq_ciu_gpio_set_type(struct irq_data *data, unsigned int t)
{
irqd_set_trigger_type(data, t);
octeon_irq_gpio_setup(data);
if (t & IRQ_TYPE_EDGE_BOTH)
irq_set_handler_locked(data, handle_edge_irq);
else
irq_set_handler_locked(data, handle_level_irq);
return IRQ_SET_MASK_OK;
}
static void octeon_irq_ciu_disable_gpio_v2(struct irq_data *data)
{
struct octeon_ciu_chip_data *cd;
cd = irq_data_get_irq_chip_data(data);
cvmx_write_csr(CVMX_GPIO_BIT_CFGX(cd->gpio_line), 0);
octeon_irq_ciu_disable_all_v2(data);
}
static void octeon_irq_ciu_disable_gpio(struct irq_data *data)
{
struct octeon_ciu_chip_data *cd;
cd = irq_data_get_irq_chip_data(data);
cvmx_write_csr(CVMX_GPIO_BIT_CFGX(cd->gpio_line), 0);
octeon_irq_ciu_disable_all(data);
}
static void octeon_irq_ciu_gpio_ack(struct irq_data *data)
{
struct octeon_ciu_chip_data *cd;
u64 mask;
cd = irq_data_get_irq_chip_data(data);
mask = 1ull << (cd->gpio_line);
cvmx_write_csr(CVMX_GPIO_INT_CLR, mask);
}
#ifdef CONFIG_SMP
static void octeon_irq_cpu_offline_ciu(struct irq_data *data)
{
int cpu = smp_processor_id();
cpumask_t new_affinity;
struct cpumask *mask = irq_data_get_affinity_mask(data);
if (!cpumask_test_cpu(cpu, mask))
return;
if (cpumask_weight(mask) > 1) {
/*
* It has multi CPU affinity, just remove this CPU
* from the affinity set.
*/
cpumask_copy(&new_affinity, mask);
cpumask_clear_cpu(cpu, &new_affinity);
} else {
/* Otherwise, put it on lowest numbered online CPU. */
cpumask_clear(&new_affinity);
cpumask_set_cpu(cpumask_first(cpu_online_mask), &new_affinity);
}
irq_set_affinity_locked(data, &new_affinity, false);
}
static int octeon_irq_ciu_set_affinity(struct irq_data *data,
const struct cpumask *dest, bool force)
{
int cpu;
bool enable_one = !irqd_irq_disabled(data) && !irqd_irq_masked(data);
unsigned long flags;
struct octeon_ciu_chip_data *cd;
unsigned long *pen;
raw_spinlock_t *lock;
cd = irq_data_get_irq_chip_data(data);
/*
* For non-v2 CIU, we will allow only single CPU affinity.
* This removes the need to do locking in the .ack/.eoi
* functions.
*/
if (cpumask_weight(dest) != 1)
return -EINVAL;
if (!enable_one)
return 0;
for_each_online_cpu(cpu) {
int coreid = octeon_coreid_for_cpu(cpu);
lock = &per_cpu(octeon_irq_ciu_spinlock, cpu);
raw_spin_lock_irqsave(lock, flags);
if (cd->line == 0)
pen = &per_cpu(octeon_irq_ciu0_en_mirror, cpu);
else
pen = &per_cpu(octeon_irq_ciu1_en_mirror, cpu);
if (cpumask_test_cpu(cpu, dest) && enable_one) {
enable_one = false;
__set_bit(cd->bit, pen);
} else {
__clear_bit(cd->bit, pen);
}
/*
* Must be visible to octeon_irq_ip{2,3}_ciu() before
* enabling the irq.
*/
wmb();
if (cd->line == 0)
cvmx_write_csr(CVMX_CIU_INTX_EN0(coreid * 2), *pen);
else
cvmx_write_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1), *pen);
raw_spin_unlock_irqrestore(lock, flags);
}
return 0;
}
/*
* Set affinity for the irq for chips that have the EN*_W1{S,C}
* registers.
*/
static int octeon_irq_ciu_set_affinity_v2(struct irq_data *data,
const struct cpumask *dest,
bool force)
{
int cpu;
bool enable_one = !irqd_irq_disabled(data) && !irqd_irq_masked(data);
u64 mask;
struct octeon_ciu_chip_data *cd;
if (!enable_one)
return 0;
cd = irq_data_get_irq_chip_data(data);
mask = 1ull << cd->bit;
if (cd->line == 0) {
for_each_online_cpu(cpu) {
unsigned long *pen = &per_cpu(octeon_irq_ciu0_en_mirror, cpu);
int index = octeon_coreid_for_cpu(cpu) * 2;
if (cpumask_test_cpu(cpu, dest) && enable_one) {
enable_one = false;
set_bit(cd->bit, pen);
cvmx_write_csr(CVMX_CIU_INTX_EN0_W1S(index), mask);
} else {
clear_bit(cd->bit, pen);
cvmx_write_csr(CVMX_CIU_INTX_EN0_W1C(index), mask);
}
}
} else {
for_each_online_cpu(cpu) {
unsigned long *pen = &per_cpu(octeon_irq_ciu1_en_mirror, cpu);
int index = octeon_coreid_for_cpu(cpu) * 2 + 1;
if (cpumask_test_cpu(cpu, dest) && enable_one) {
enable_one = false;
set_bit(cd->bit, pen);
cvmx_write_csr(CVMX_CIU_INTX_EN1_W1S(index), mask);
} else {
clear_bit(cd->bit, pen);
cvmx_write_csr(CVMX_CIU_INTX_EN1_W1C(index), mask);
}
}
}
return 0;
}
static int octeon_irq_ciu_set_affinity_sum2(struct irq_data *data,
const struct cpumask *dest,
bool force)
{
int cpu;
bool enable_one = !irqd_irq_disabled(data) && !irqd_irq_masked(data);
u64 mask;
struct octeon_ciu_chip_data *cd;
if (!enable_one)
return 0;
cd = irq_data_get_irq_chip_data(data);
mask = 1ull << cd->bit;
for_each_online_cpu(cpu) {
int index = octeon_coreid_for_cpu(cpu);
if (cpumask_test_cpu(cpu, dest) && enable_one) {
enable_one = false;
cvmx_write_csr(CVMX_CIU_EN2_PPX_IP4_W1S(index), mask);
} else {
cvmx_write_csr(CVMX_CIU_EN2_PPX_IP4_W1C(index), mask);
}
}
return 0;
}
#endif
static unsigned int edge_startup(struct irq_data *data)
{
/* ack any pending edge-irq at startup, so there is
* an _edge_ to fire on when the event reappears.
*/
data->chip->irq_ack(data);
data->chip->irq_enable(data);
return 0;
}
/*
* Newer octeon chips have support for lockless CIU operation.
*/
static struct irq_chip octeon_irq_chip_ciu_v2 = {
.name = "CIU",
.irq_enable = octeon_irq_ciu_enable_v2,
.irq_disable = octeon_irq_ciu_disable_all_v2,
.irq_mask = octeon_irq_ciu_disable_local_v2,
.irq_unmask = octeon_irq_ciu_enable_v2,
#ifdef CONFIG_SMP
.irq_set_affinity = octeon_irq_ciu_set_affinity_v2,
.irq_cpu_offline = octeon_irq_cpu_offline_ciu,
#endif
};
static struct irq_chip octeon_irq_chip_ciu_v2_edge = {
.name = "CIU",
.irq_enable = octeon_irq_ciu_enable_v2,
.irq_disable = octeon_irq_ciu_disable_all_v2,
.irq_ack = octeon_irq_ciu_ack,
.irq_mask = octeon_irq_ciu_disable_local_v2,
.irq_unmask = octeon_irq_ciu_enable_v2,
#ifdef CONFIG_SMP
.irq_set_affinity = octeon_irq_ciu_set_affinity_v2,
.irq_cpu_offline = octeon_irq_cpu_offline_ciu,
#endif
};
/*
* Newer octeon chips have support for lockless CIU operation.
*/
static struct irq_chip octeon_irq_chip_ciu_sum2 = {
.name = "CIU",
.irq_enable = octeon_irq_ciu_enable_sum2,
.irq_disable = octeon_irq_ciu_disable_all_sum2,
.irq_mask = octeon_irq_ciu_disable_local_sum2,
.irq_unmask = octeon_irq_ciu_enable_sum2,
#ifdef CONFIG_SMP
.irq_set_affinity = octeon_irq_ciu_set_affinity_sum2,
.irq_cpu_offline = octeon_irq_cpu_offline_ciu,
#endif
};
static struct irq_chip octeon_irq_chip_ciu_sum2_edge = {
.name = "CIU",
.irq_enable = octeon_irq_ciu_enable_sum2,
.irq_disable = octeon_irq_ciu_disable_all_sum2,
.irq_ack = octeon_irq_ciu_ack_sum2,
.irq_mask = octeon_irq_ciu_disable_local_sum2,
.irq_unmask = octeon_irq_ciu_enable_sum2,
#ifdef CONFIG_SMP
.irq_set_affinity = octeon_irq_ciu_set_affinity_sum2,
.irq_cpu_offline = octeon_irq_cpu_offline_ciu,
#endif
};
static struct irq_chip octeon_irq_chip_ciu = {
.name = "CIU",
.irq_enable = octeon_irq_ciu_enable,
.irq_disable = octeon_irq_ciu_disable_all,
.irq_mask = octeon_irq_ciu_disable_local,
.irq_unmask = octeon_irq_ciu_enable,
#ifdef CONFIG_SMP
.irq_set_affinity = octeon_irq_ciu_set_affinity,
.irq_cpu_offline = octeon_irq_cpu_offline_ciu,
#endif
};
static struct irq_chip octeon_irq_chip_ciu_edge = {
.name = "CIU",
.irq_enable = octeon_irq_ciu_enable,
.irq_disable = octeon_irq_ciu_disable_all,
.irq_ack = octeon_irq_ciu_ack,
.irq_mask = octeon_irq_ciu_disable_local,
.irq_unmask = octeon_irq_ciu_enable,
#ifdef CONFIG_SMP
.irq_set_affinity = octeon_irq_ciu_set_affinity,
.irq_cpu_offline = octeon_irq_cpu_offline_ciu,
#endif
};
/* The mbox versions don't do any affinity or round-robin. */
static struct irq_chip octeon_irq_chip_ciu_mbox_v2 = {
.name = "CIU-M",
.irq_enable = octeon_irq_ciu_enable_all_v2,
.irq_disable = octeon_irq_ciu_disable_all_v2,
.irq_ack = octeon_irq_ciu_disable_local_v2,
.irq_eoi = octeon_irq_ciu_enable_local_v2,
.irq_cpu_online = octeon_irq_ciu_enable_local_v2,
.irq_cpu_offline = octeon_irq_ciu_disable_local_v2,
.flags = IRQCHIP_ONOFFLINE_ENABLED,
};
static struct irq_chip octeon_irq_chip_ciu_mbox = {
.name = "CIU-M",
.irq_enable = octeon_irq_ciu_enable_all,
.irq_disable = octeon_irq_ciu_disable_all,
.irq_ack = octeon_irq_ciu_disable_local,
.irq_eoi = octeon_irq_ciu_enable_local,
.irq_cpu_online = octeon_irq_ciu_enable_local,
.irq_cpu_offline = octeon_irq_ciu_disable_local,
.flags = IRQCHIP_ONOFFLINE_ENABLED,
};
static struct irq_chip octeon_irq_chip_ciu_gpio_v2 = {
.name = "CIU-GPIO",
.irq_enable = octeon_irq_ciu_enable_gpio_v2,
.irq_disable = octeon_irq_ciu_disable_gpio_v2,
.irq_ack = octeon_irq_ciu_gpio_ack,
.irq_mask = octeon_irq_ciu_disable_local_v2,
.irq_unmask = octeon_irq_ciu_enable_v2,
.irq_set_type = octeon_irq_ciu_gpio_set_type,
#ifdef CONFIG_SMP
.irq_set_affinity = octeon_irq_ciu_set_affinity_v2,
.irq_cpu_offline = octeon_irq_cpu_offline_ciu,
#endif
.flags = IRQCHIP_SET_TYPE_MASKED,
};
static struct irq_chip octeon_irq_chip_ciu_gpio = {
.name = "CIU-GPIO",
.irq_enable = octeon_irq_ciu_enable_gpio,
.irq_disable = octeon_irq_ciu_disable_gpio,
.irq_mask = octeon_irq_ciu_disable_local,
.irq_unmask = octeon_irq_ciu_enable,
.irq_ack = octeon_irq_ciu_gpio_ack,
.irq_set_type = octeon_irq_ciu_gpio_set_type,
#ifdef CONFIG_SMP
.irq_set_affinity = octeon_irq_ciu_set_affinity,
.irq_cpu_offline = octeon_irq_cpu_offline_ciu,
#endif
.flags = IRQCHIP_SET_TYPE_MASKED,
};
/*
* Watchdog interrupts are special. They are associated with a single
* core, so we hardwire the affinity to that core.
*/
static void octeon_irq_ciu_wd_enable(struct irq_data *data)
{
unsigned long flags;
unsigned long *pen;
int coreid = data->irq - OCTEON_IRQ_WDOG0; /* Bit 0-63 of EN1 */
int cpu = octeon_cpu_for_coreid(coreid);
raw_spinlock_t *lock = &per_cpu(octeon_irq_ciu_spinlock, cpu);
raw_spin_lock_irqsave(lock, flags);
pen = &per_cpu(octeon_irq_ciu1_en_mirror, cpu);
__set_bit(coreid, pen);
/*
* Must be visible to octeon_irq_ip{2,3}_ciu() before enabling
* the irq.
*/
wmb();
cvmx_write_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1), *pen);
raw_spin_unlock_irqrestore(lock, flags);
}
/*
* Watchdog interrupts are special. They are associated with a single
* core, so we hardwire the affinity to that core.
*/
static void octeon_irq_ciu1_wd_enable_v2(struct irq_data *data)
{
int coreid = data->irq - OCTEON_IRQ_WDOG0;
int cpu = octeon_cpu_for_coreid(coreid);
set_bit(coreid, &per_cpu(octeon_irq_ciu1_en_mirror, cpu));
cvmx_write_csr(CVMX_CIU_INTX_EN1_W1S(coreid * 2 + 1), 1ull << coreid);
}
static struct irq_chip octeon_irq_chip_ciu_wd_v2 = {
.name = "CIU-W",
.irq_enable = octeon_irq_ciu1_wd_enable_v2,
.irq_disable = octeon_irq_ciu_disable_all_v2,
.irq_mask = octeon_irq_ciu_disable_local_v2,
.irq_unmask = octeon_irq_ciu_enable_local_v2,
};
static struct irq_chip octeon_irq_chip_ciu_wd = {
.name = "CIU-W",
.irq_enable = octeon_irq_ciu_wd_enable,
.irq_disable = octeon_irq_ciu_disable_all,
.irq_mask = octeon_irq_ciu_disable_local,
.irq_unmask = octeon_irq_ciu_enable_local,
};
static bool octeon_irq_ciu_is_edge(unsigned int line, unsigned int bit)
{
bool edge = false;
if (line == 0)
switch (bit) {
case 48 ... 49: /* GMX DRP */
case 50: /* IPD_DRP */
case 52 ... 55: /* Timers */
case 58: /* MPI */
edge = true;
break;
default:
break;
}
else /* line == 1 */
switch (bit) {
case 47: /* PTP */
edge = true;
break;
default:
break;
}
return edge;
}
struct octeon_irq_gpio_domain_data {
unsigned int base_hwirq;
};
static int octeon_irq_gpio_xlat(struct irq_domain *d,
struct device_node *node,
const u32 *intspec,
unsigned int intsize,
unsigned long *out_hwirq,
unsigned int *out_type)
{
unsigned int type;
unsigned int pin;
unsigned int trigger;
if (irq_domain_get_of_node(d) != node)
return -EINVAL;
if (intsize < 2)
return -EINVAL;
pin = intspec[0];
if (pin >= 16)
return -EINVAL;
trigger = intspec[1];
switch (trigger) {
case 1:
type = IRQ_TYPE_EDGE_RISING;
break;
case 2:
type = IRQ_TYPE_EDGE_FALLING;
break;
case 4:
type = IRQ_TYPE_LEVEL_HIGH;
break;
case 8:
type = IRQ_TYPE_LEVEL_LOW;
break;
default:
pr_err("Error: (%pOFn) Invalid irq trigger specification: %x\n",
node,
trigger);
type = IRQ_TYPE_LEVEL_LOW;
break;
}
*out_type = type;
*out_hwirq = pin;
return 0;
}
static int octeon_irq_ciu_xlat(struct irq_domain *d,
struct device_node *node,
const u32 *intspec,
unsigned int intsize,
unsigned long *out_hwirq,
unsigned int *out_type)
{
unsigned int ciu, bit;
struct octeon_irq_ciu_domain_data *dd = d->host_data;
ciu = intspec[0];
bit = intspec[1];
if (ciu >= dd->num_sum || bit > 63)
return -EINVAL;
*out_hwirq = (ciu << 6) | bit;
*out_type = 0;
return 0;
}
static struct irq_chip *octeon_irq_ciu_chip;
static struct irq_chip *octeon_irq_ciu_chip_edge;
static struct irq_chip *octeon_irq_gpio_chip;
static int octeon_irq_ciu_map(struct irq_domain *d,
unsigned int virq, irq_hw_number_t hw)
{
int rv;
unsigned int line = hw >> 6;
unsigned int bit = hw & 63;
struct octeon_irq_ciu_domain_data *dd = d->host_data;
if (line >= dd->num_sum || octeon_irq_ciu_to_irq[line][bit] != 0)
return -EINVAL;
if (line == 2) {
if (octeon_irq_ciu_is_edge(line, bit))
rv = octeon_irq_set_ciu_mapping(virq, line, bit, 0,
&octeon_irq_chip_ciu_sum2_edge,
handle_edge_irq);
else
rv = octeon_irq_set_ciu_mapping(virq, line, bit, 0,
&octeon_irq_chip_ciu_sum2,
handle_level_irq);
} else {
if (octeon_irq_ciu_is_edge(line, bit))
rv = octeon_irq_set_ciu_mapping(virq, line, bit, 0,
octeon_irq_ciu_chip_edge,
handle_edge_irq);
else
rv = octeon_irq_set_ciu_mapping(virq, line, bit, 0,
octeon_irq_ciu_chip,
handle_level_irq);
}
return rv;
}
static int octeon_irq_gpio_map(struct irq_domain *d,
unsigned int virq, irq_hw_number_t hw)
{
struct octeon_irq_gpio_domain_data *gpiod = d->host_data;
unsigned int line, bit;
int r;
line = (hw + gpiod->base_hwirq) >> 6;
bit = (hw + gpiod->base_hwirq) & 63;
if (line >= ARRAY_SIZE(octeon_irq_ciu_to_irq) ||
octeon_irq_ciu_to_irq[line][bit] != 0)
return -EINVAL;
/*
* Default to handle_level_irq. If the DT contains a different
* trigger type, it will call the irq_set_type callback and
* the handler gets updated.
*/
r = octeon_irq_set_ciu_mapping(virq, line, bit, hw,
octeon_irq_gpio_chip, handle_level_irq);
return r;
}
static const struct irq_domain_ops octeon_irq_domain_ciu_ops = {
.map = octeon_irq_ciu_map,
.unmap = octeon_irq_free_cd,
.xlate = octeon_irq_ciu_xlat,
};
static const struct irq_domain_ops octeon_irq_domain_gpio_ops = {
.map = octeon_irq_gpio_map,
.unmap = octeon_irq_free_cd,
.xlate = octeon_irq_gpio_xlat,
};
static void octeon_irq_ip2_ciu(void)
{
const unsigned long core_id = cvmx_get_core_num();
u64 ciu_sum = cvmx_read_csr(CVMX_CIU_INTX_SUM0(core_id * 2));
ciu_sum &= __this_cpu_read(octeon_irq_ciu0_en_mirror);
if (likely(ciu_sum)) {
int bit = fls64(ciu_sum) - 1;
int irq = octeon_irq_ciu_to_irq[0][bit];
if (likely(irq))
do_IRQ(irq);
else
spurious_interrupt();
} else {
spurious_interrupt();
}
}
static void octeon_irq_ip3_ciu(void)
{
u64 ciu_sum = cvmx_read_csr(CVMX_CIU_INT_SUM1);
ciu_sum &= __this_cpu_read(octeon_irq_ciu1_en_mirror);
if (likely(ciu_sum)) {
int bit = fls64(ciu_sum) - 1;
int irq = octeon_irq_ciu_to_irq[1][bit];
if (likely(irq))
do_IRQ(irq);
else
spurious_interrupt();
} else {
spurious_interrupt();
}
}
static void octeon_irq_ip4_ciu(void)
{
int coreid = cvmx_get_core_num();
u64 ciu_sum = cvmx_read_csr(CVMX_CIU_SUM2_PPX_IP4(coreid));
u64 ciu_en = cvmx_read_csr(CVMX_CIU_EN2_PPX_IP4(coreid));
ciu_sum &= ciu_en;
if (likely(ciu_sum)) {
int bit = fls64(ciu_sum) - 1;
int irq = octeon_irq_ciu_to_irq[2][bit];
if (likely(irq))
do_IRQ(irq);
else
spurious_interrupt();
} else {
spurious_interrupt();
}
}
static bool octeon_irq_use_ip4;
static void octeon_irq_local_enable_ip4(void *arg)
{
set_c0_status(STATUSF_IP4);
}
static void octeon_irq_ip4_mask(void)
{
clear_c0_status(STATUSF_IP4);
spurious_interrupt();
}
static void (*octeon_irq_ip2)(void);
static void (*octeon_irq_ip3)(void);
static void (*octeon_irq_ip4)(void);
void (*octeon_irq_setup_secondary)(void);
void octeon_irq_set_ip4_handler(octeon_irq_ip4_handler_t h)
{
octeon_irq_ip4 = h;
octeon_irq_use_ip4 = true;
on_each_cpu(octeon_irq_local_enable_ip4, NULL, 1);
}
static void octeon_irq_percpu_enable(void)
{
irq_cpu_online();
}
static void octeon_irq_init_ciu_percpu(void)
{
int coreid = cvmx_get_core_num();
__this_cpu_write(octeon_irq_ciu0_en_mirror, 0);
__this_cpu_write(octeon_irq_ciu1_en_mirror, 0);
wmb();
raw_spin_lock_init(this_cpu_ptr(&octeon_irq_ciu_spinlock));
/*
* Disable All CIU Interrupts. The ones we need will be
* enabled later. Read the SUM register so we know the write
* completed.
*/
cvmx_write_csr(CVMX_CIU_INTX_EN0((coreid * 2)), 0);
cvmx_write_csr(CVMX_CIU_INTX_EN0((coreid * 2 + 1)), 0);
cvmx_write_csr(CVMX_CIU_INTX_EN1((coreid * 2)), 0);
cvmx_write_csr(CVMX_CIU_INTX_EN1((coreid * 2 + 1)), 0);
cvmx_read_csr(CVMX_CIU_INTX_SUM0((coreid * 2)));
}
static void octeon_irq_init_ciu2_percpu(void)
{
u64 regx, ipx;
int coreid = cvmx_get_core_num();
u64 base = CVMX_CIU2_EN_PPX_IP2_WRKQ(coreid);
/*
* Disable All CIU2 Interrupts. The ones we need will be
* enabled later. Read the SUM register so we know the write
* completed.
*
* There are 9 registers and 3 IPX levels with strides 0x1000
* and 0x200 respectively. Use loops to clear them.
*/
for (regx = 0; regx <= 0x8000; regx += 0x1000) {
for (ipx = 0; ipx <= 0x400; ipx += 0x200)
cvmx_write_csr(base + regx + ipx, 0);
}
cvmx_read_csr(CVMX_CIU2_SUM_PPX_IP2(coreid));
}
static void octeon_irq_setup_secondary_ciu(void)
{
octeon_irq_init_ciu_percpu();
octeon_irq_percpu_enable();
/* Enable the CIU lines */
set_c0_status(STATUSF_IP3 | STATUSF_IP2);
if (octeon_irq_use_ip4)
set_c0_status(STATUSF_IP4);
else
clear_c0_status(STATUSF_IP4);
}
static void octeon_irq_setup_secondary_ciu2(void)
{
octeon_irq_init_ciu2_percpu();
octeon_irq_percpu_enable();
/* Enable the CIU lines */
set_c0_status(STATUSF_IP3 | STATUSF_IP2);
if (octeon_irq_use_ip4)
set_c0_status(STATUSF_IP4);
else
clear_c0_status(STATUSF_IP4);
}
static int __init octeon_irq_init_ciu(
struct device_node *ciu_node, struct device_node *parent)
{
int i, r;
struct irq_chip *chip;
struct irq_chip *chip_edge;
struct irq_chip *chip_mbox;
struct irq_chip *chip_wd;
struct irq_domain *ciu_domain = NULL;
struct octeon_irq_ciu_domain_data *dd;
dd = kzalloc(sizeof(*dd), GFP_KERNEL);
if (!dd)
return -ENOMEM;
octeon_irq_init_ciu_percpu();
octeon_irq_setup_secondary = octeon_irq_setup_secondary_ciu;
octeon_irq_ip2 = octeon_irq_ip2_ciu;
octeon_irq_ip3 = octeon_irq_ip3_ciu;
if ((OCTEON_IS_OCTEON2() || OCTEON_IS_OCTEON3())
&& !OCTEON_IS_MODEL(OCTEON_CN63XX)) {
octeon_irq_ip4 = octeon_irq_ip4_ciu;
dd->num_sum = 3;
octeon_irq_use_ip4 = true;
} else {
octeon_irq_ip4 = octeon_irq_ip4_mask;
dd->num_sum = 2;
octeon_irq_use_ip4 = false;
}
if (OCTEON_IS_MODEL(OCTEON_CN58XX_PASS2_X) ||
OCTEON_IS_MODEL(OCTEON_CN56XX_PASS2_X) ||
OCTEON_IS_MODEL(OCTEON_CN52XX_PASS2_X) ||
OCTEON_IS_OCTEON2() || OCTEON_IS_OCTEON3()) {
chip = &octeon_irq_chip_ciu_v2;
chip_edge = &octeon_irq_chip_ciu_v2_edge;
chip_mbox = &octeon_irq_chip_ciu_mbox_v2;
chip_wd = &octeon_irq_chip_ciu_wd_v2;
octeon_irq_gpio_chip = &octeon_irq_chip_ciu_gpio_v2;
} else {
chip = &octeon_irq_chip_ciu;
chip_edge = &octeon_irq_chip_ciu_edge;
chip_mbox = &octeon_irq_chip_ciu_mbox;
chip_wd = &octeon_irq_chip_ciu_wd;
octeon_irq_gpio_chip = &octeon_irq_chip_ciu_gpio;
}
octeon_irq_ciu_chip = chip;
octeon_irq_ciu_chip_edge = chip_edge;
/* Mips internal */
octeon_irq_init_core();
ciu_domain = irq_domain_add_tree(
ciu_node, &octeon_irq_domain_ciu_ops, dd);
irq_set_default_host(ciu_domain);
/* CIU_0 */
for (i = 0; i < 16; i++) {
r = octeon_irq_force_ciu_mapping(
ciu_domain, i + OCTEON_IRQ_WORKQ0, 0, i + 0);
if (r)
goto err;
}
r = irq_alloc_desc_at(OCTEON_IRQ_MBOX0, -1);
if (r < 0) {
pr_err("Failed to allocate desc for %s\n", "OCTEON_IRQ_MBOX0");
goto err;
}
r = octeon_irq_set_ciu_mapping(
OCTEON_IRQ_MBOX0, 0, 32, 0, chip_mbox, handle_percpu_irq);
if (r)
goto err;
r = irq_alloc_desc_at(OCTEON_IRQ_MBOX1, -1);
if (r < 0) {
pr_err("Failed to allocate desc for %s\n", "OCTEON_IRQ_MBOX1");
goto err;
}
r = octeon_irq_set_ciu_mapping(
OCTEON_IRQ_MBOX1, 0, 33, 0, chip_mbox, handle_percpu_irq);
if (r)
goto err;
for (i = 0; i < 4; i++) {
r = octeon_irq_force_ciu_mapping(
ciu_domain, i + OCTEON_IRQ_PCI_INT0, 0, i + 36);
if (r)
goto err;
}
for (i = 0; i < 4; i++) {
r = octeon_irq_force_ciu_mapping(
ciu_domain, i + OCTEON_IRQ_PCI_MSI0, 0, i + 40);
if (r)
goto err;
}
r = octeon_irq_force_ciu_mapping(ciu_domain, OCTEON_IRQ_TWSI, 0, 45);
if (r)
goto err;
r = octeon_irq_force_ciu_mapping(ciu_domain, OCTEON_IRQ_RML, 0, 46);
if (r)
goto err;
for (i = 0; i < 4; i++) {
r = octeon_irq_force_ciu_mapping(
ciu_domain, i + OCTEON_IRQ_TIMER0, 0, i + 52);
if (r)
goto err;
}
r = octeon_irq_force_ciu_mapping(ciu_domain, OCTEON_IRQ_TWSI2, 0, 59);
if (r)
goto err;
r = irq_alloc_descs(OCTEON_IRQ_WDOG0, OCTEON_IRQ_WDOG0, 16, -1);
if (r < 0) {
pr_err("Failed to allocate desc for %s\n", "OCTEON_IRQ_WDOGx");
goto err;
}
/* CIU_1 */
for (i = 0; i < 16; i++) {
r = octeon_irq_set_ciu_mapping(
i + OCTEON_IRQ_WDOG0, 1, i + 0, 0, chip_wd,
handle_level_irq);
if (r)
goto err;
}
/* Enable the CIU lines */
set_c0_status(STATUSF_IP3 | STATUSF_IP2);
if (octeon_irq_use_ip4)
set_c0_status(STATUSF_IP4);
else
clear_c0_status(STATUSF_IP4);
return 0;
err:
return r;
}
static int __init octeon_irq_init_gpio(
struct device_node *gpio_node, struct device_node *parent)
{
struct octeon_irq_gpio_domain_data *gpiod;
u32 interrupt_cells;
unsigned int base_hwirq;
int r;
r = of_property_read_u32(parent, "#interrupt-cells", &interrupt_cells);
if (r)
return r;
if (interrupt_cells == 1) {
u32 v;
r = of_property_read_u32_index(gpio_node, "interrupts", 0, &v);
if (r) {
pr_warn("No \"interrupts\" property.\n");
return r;
}
base_hwirq = v;
} else if (interrupt_cells == 2) {
u32 v0, v1;
r = of_property_read_u32_index(gpio_node, "interrupts", 0, &v0);
if (r) {
pr_warn("No \"interrupts\" property.\n");
return r;
}
r = of_property_read_u32_index(gpio_node, "interrupts", 1, &v1);
if (r) {
pr_warn("No \"interrupts\" property.\n");
return r;
}
base_hwirq = (v0 << 6) | v1;
} else {
pr_warn("Bad \"#interrupt-cells\" property: %u\n",
interrupt_cells);
return -EINVAL;
}
gpiod = kzalloc(sizeof(*gpiod), GFP_KERNEL);
if (gpiod) {
/* gpio domain host_data is the base hwirq number. */
gpiod->base_hwirq = base_hwirq;
irq_domain_add_linear(
gpio_node, 16, &octeon_irq_domain_gpio_ops, gpiod);
} else {
pr_warn("Cannot allocate memory for GPIO irq_domain.\n");
return -ENOMEM;
}
/*
* Clear the OF_POPULATED flag that was set by of_irq_init()
* so that all GPIO devices will be probed.
*/
of_node_clear_flag(gpio_node, OF_POPULATED);
return 0;
}
/*
* Watchdog interrupts are special. They are associated with a single
* core, so we hardwire the affinity to that core.
*/
static void octeon_irq_ciu2_wd_enable(struct irq_data *data)
{
u64 mask;
u64 en_addr;
int coreid = data->irq - OCTEON_IRQ_WDOG0;
struct octeon_ciu_chip_data *cd;
cd = irq_data_get_irq_chip_data(data);
mask = 1ull << (cd->bit);
en_addr = CVMX_CIU2_EN_PPX_IP2_WRKQ_W1S(coreid) +
(0x1000ull * cd->line);
cvmx_write_csr(en_addr, mask);
}
static void octeon_irq_ciu2_enable(struct irq_data *data)
{
u64 mask;
u64 en_addr;
int cpu = next_cpu_for_irq(data);
int coreid = octeon_coreid_for_cpu(cpu);
struct octeon_ciu_chip_data *cd;
cd = irq_data_get_irq_chip_data(data);
mask = 1ull << (cd->bit);
en_addr = CVMX_CIU2_EN_PPX_IP2_WRKQ_W1S(coreid) +
(0x1000ull * cd->line);
cvmx_write_csr(en_addr, mask);
}
static void octeon_irq_ciu2_enable_local(struct irq_data *data)
{
u64 mask;
u64 en_addr;
int coreid = cvmx_get_core_num();
struct octeon_ciu_chip_data *cd;
cd = irq_data_get_irq_chip_data(data);
mask = 1ull << (cd->bit);
en_addr = CVMX_CIU2_EN_PPX_IP2_WRKQ_W1S(coreid) +
(0x1000ull * cd->line);
cvmx_write_csr(en_addr, mask);
}
static void octeon_irq_ciu2_disable_local(struct irq_data *data)
{
u64 mask;
u64 en_addr;
int coreid = cvmx_get_core_num();
struct octeon_ciu_chip_data *cd;
cd = irq_data_get_irq_chip_data(data);
mask = 1ull << (cd->bit);
en_addr = CVMX_CIU2_EN_PPX_IP2_WRKQ_W1C(coreid) +
(0x1000ull * cd->line);
cvmx_write_csr(en_addr, mask);
}
static void octeon_irq_ciu2_ack(struct irq_data *data)
{
u64 mask;
u64 en_addr;
int coreid = cvmx_get_core_num();
struct octeon_ciu_chip_data *cd;
cd = irq_data_get_irq_chip_data(data);
mask = 1ull << (cd->bit);
en_addr = CVMX_CIU2_RAW_PPX_IP2_WRKQ(coreid) + (0x1000ull * cd->line);
cvmx_write_csr(en_addr, mask);
}
static void octeon_irq_ciu2_disable_all(struct irq_data *data)
{
int cpu;
u64 mask;
struct octeon_ciu_chip_data *cd;
cd = irq_data_get_irq_chip_data(data);
mask = 1ull << (cd->bit);
for_each_online_cpu(cpu) {
u64 en_addr = CVMX_CIU2_EN_PPX_IP2_WRKQ_W1C(
octeon_coreid_for_cpu(cpu)) + (0x1000ull * cd->line);
cvmx_write_csr(en_addr, mask);
}
}
static void octeon_irq_ciu2_mbox_enable_all(struct irq_data *data)
{
int cpu;
u64 mask;
mask = 1ull << (data->irq - OCTEON_IRQ_MBOX0);
for_each_online_cpu(cpu) {
u64 en_addr = CVMX_CIU2_EN_PPX_IP3_MBOX_W1S(
octeon_coreid_for_cpu(cpu));
cvmx_write_csr(en_addr, mask);
}
}
static void octeon_irq_ciu2_mbox_disable_all(struct irq_data *data)
{
int cpu;
u64 mask;
mask = 1ull << (data->irq - OCTEON_IRQ_MBOX0);
for_each_online_cpu(cpu) {
u64 en_addr = CVMX_CIU2_EN_PPX_IP3_MBOX_W1C(
octeon_coreid_for_cpu(cpu));
cvmx_write_csr(en_addr, mask);
}
}
static void octeon_irq_ciu2_mbox_enable_local(struct irq_data *data)
{
u64 mask;
u64 en_addr;
int coreid = cvmx_get_core_num();
mask = 1ull << (data->irq - OCTEON_IRQ_MBOX0);
en_addr = CVMX_CIU2_EN_PPX_IP3_MBOX_W1S(coreid);
cvmx_write_csr(en_addr, mask);
}
static void octeon_irq_ciu2_mbox_disable_local(struct irq_data *data)
{
u64 mask;
u64 en_addr;
int coreid = cvmx_get_core_num();
mask = 1ull << (data->irq - OCTEON_IRQ_MBOX0);
en_addr = CVMX_CIU2_EN_PPX_IP3_MBOX_W1C(coreid);
cvmx_write_csr(en_addr, mask);
}
#ifdef CONFIG_SMP
static int octeon_irq_ciu2_set_affinity(struct irq_data *data,
const struct cpumask *dest, bool force)
{
int cpu;
bool enable_one = !irqd_irq_disabled(data) && !irqd_irq_masked(data);
u64 mask;
struct octeon_ciu_chip_data *cd;
if (!enable_one)
return 0;
cd = irq_data_get_irq_chip_data(data);
mask = 1ull << cd->bit;
for_each_online_cpu(cpu) {
u64 en_addr;
if (cpumask_test_cpu(cpu, dest) && enable_one) {
enable_one = false;
en_addr = CVMX_CIU2_EN_PPX_IP2_WRKQ_W1S(
octeon_coreid_for_cpu(cpu)) +
(0x1000ull * cd->line);
} else {
en_addr = CVMX_CIU2_EN_PPX_IP2_WRKQ_W1C(
octeon_coreid_for_cpu(cpu)) +
(0x1000ull * cd->line);
}
cvmx_write_csr(en_addr, mask);
}
return 0;
}
#endif
static void octeon_irq_ciu2_enable_gpio(struct irq_data *data)
{
octeon_irq_gpio_setup(data);
octeon_irq_ciu2_enable(data);
}
static void octeon_irq_ciu2_disable_gpio(struct irq_data *data)
{
struct octeon_ciu_chip_data *cd;
cd = irq_data_get_irq_chip_data(data);
cvmx_write_csr(CVMX_GPIO_BIT_CFGX(cd->gpio_line), 0);
octeon_irq_ciu2_disable_all(data);
}
static struct irq_chip octeon_irq_chip_ciu2 = {
.name = "CIU2-E",
.irq_enable = octeon_irq_ciu2_enable,
.irq_disable = octeon_irq_ciu2_disable_all,
.irq_mask = octeon_irq_ciu2_disable_local,
.irq_unmask = octeon_irq_ciu2_enable,
#ifdef CONFIG_SMP
.irq_set_affinity = octeon_irq_ciu2_set_affinity,
.irq_cpu_offline = octeon_irq_cpu_offline_ciu,
#endif
};
static struct irq_chip octeon_irq_chip_ciu2_edge = {
.name = "CIU2-E",
.irq_enable = octeon_irq_ciu2_enable,
.irq_disable = octeon_irq_ciu2_disable_all,
.irq_ack = octeon_irq_ciu2_ack,
.irq_mask = octeon_irq_ciu2_disable_local,
.irq_unmask = octeon_irq_ciu2_enable,
#ifdef CONFIG_SMP
.irq_set_affinity = octeon_irq_ciu2_set_affinity,
.irq_cpu_offline = octeon_irq_cpu_offline_ciu,
#endif
};
static struct irq_chip octeon_irq_chip_ciu2_mbox = {
.name = "CIU2-M",
.irq_enable = octeon_irq_ciu2_mbox_enable_all,
.irq_disable = octeon_irq_ciu2_mbox_disable_all,
.irq_ack = octeon_irq_ciu2_mbox_disable_local,
.irq_eoi = octeon_irq_ciu2_mbox_enable_local,
.irq_cpu_online = octeon_irq_ciu2_mbox_enable_local,
.irq_cpu_offline = octeon_irq_ciu2_mbox_disable_local,
.flags = IRQCHIP_ONOFFLINE_ENABLED,
};
static struct irq_chip octeon_irq_chip_ciu2_wd = {
.name = "CIU2-W",
.irq_enable = octeon_irq_ciu2_wd_enable,
.irq_disable = octeon_irq_ciu2_disable_all,
.irq_mask = octeon_irq_ciu2_disable_local,
.irq_unmask = octeon_irq_ciu2_enable_local,
};
static struct irq_chip octeon_irq_chip_ciu2_gpio = {
.name = "CIU-GPIO",
.irq_enable = octeon_irq_ciu2_enable_gpio,
.irq_disable = octeon_irq_ciu2_disable_gpio,
.irq_ack = octeon_irq_ciu_gpio_ack,
.irq_mask = octeon_irq_ciu2_disable_local,
.irq_unmask = octeon_irq_ciu2_enable,
.irq_set_type = octeon_irq_ciu_gpio_set_type,
#ifdef CONFIG_SMP
.irq_set_affinity = octeon_irq_ciu2_set_affinity,
.irq_cpu_offline = octeon_irq_cpu_offline_ciu,
#endif
.flags = IRQCHIP_SET_TYPE_MASKED,
};
static int octeon_irq_ciu2_xlat(struct irq_domain *d,
struct device_node *node,
const u32 *intspec,
unsigned int intsize,
unsigned long *out_hwirq,
unsigned int *out_type)
{
unsigned int ciu, bit;
ciu = intspec[0];
bit = intspec[1];
*out_hwirq = (ciu << 6) | bit;
*out_type = 0;
return 0;
}
static bool octeon_irq_ciu2_is_edge(unsigned int line, unsigned int bit)
{
bool edge = false;
if (line == 3) /* MIO */
switch (bit) {
case 2: /* IPD_DRP */
case 8 ... 11: /* Timers */
case 48: /* PTP */
edge = true;
break;
default:
break;
}
else if (line == 6) /* PKT */
switch (bit) {
case 52 ... 53: /* ILK_DRP */
case 8 ... 12: /* GMX_DRP */
edge = true;
break;
default:
break;
}
return edge;
}
static int octeon_irq_ciu2_map(struct irq_domain *d,
unsigned int virq, irq_hw_number_t hw)
{
unsigned int line = hw >> 6;
unsigned int bit = hw & 63;
/*
* Don't map irq if it is reserved for GPIO.
* (Line 7 are the GPIO lines.)
*/
if (line == 7)
return 0;
if (line > 7 || octeon_irq_ciu_to_irq[line][bit] != 0)
return -EINVAL;
if (octeon_irq_ciu2_is_edge(line, bit))
octeon_irq_set_ciu_mapping(virq, line, bit, 0,
&octeon_irq_chip_ciu2_edge,
handle_edge_irq);
else
octeon_irq_set_ciu_mapping(virq, line, bit, 0,
&octeon_irq_chip_ciu2,
handle_level_irq);
return 0;
}
static const struct irq_domain_ops octeon_irq_domain_ciu2_ops = {
.map = octeon_irq_ciu2_map,
.unmap = octeon_irq_free_cd,
.xlate = octeon_irq_ciu2_xlat,
};
static void octeon_irq_ciu2(void)
{
int line;
int bit;
int irq;
u64 src_reg, src, sum;
const unsigned long core_id = cvmx_get_core_num();
sum = cvmx_read_csr(CVMX_CIU2_SUM_PPX_IP2(core_id)) & 0xfful;
if (unlikely(!sum))
goto spurious;
line = fls64(sum) - 1;
src_reg = CVMX_CIU2_SRC_PPX_IP2_WRKQ(core_id) + (0x1000 * line);
src = cvmx_read_csr(src_reg);
if (unlikely(!src))
goto spurious;
bit = fls64(src) - 1;
irq = octeon_irq_ciu_to_irq[line][bit];
if (unlikely(!irq))
goto spurious;
do_IRQ(irq);
goto out;
spurious:
spurious_interrupt();
out:
/* CN68XX pass 1.x has an errata that accessing the ACK registers
can stop interrupts from propagating */
if (OCTEON_IS_MODEL(OCTEON_CN68XX))
cvmx_read_csr(CVMX_CIU2_INTR_CIU_READY);
else
cvmx_read_csr(CVMX_CIU2_ACK_PPX_IP2(core_id));
return;
}
static void octeon_irq_ciu2_mbox(void)
{
int line;
const unsigned long core_id = cvmx_get_core_num();
u64 sum = cvmx_read_csr(CVMX_CIU2_SUM_PPX_IP3(core_id)) >> 60;
if (unlikely(!sum))
goto spurious;
line = fls64(sum) - 1;
do_IRQ(OCTEON_IRQ_MBOX0 + line);
goto out;
spurious:
spurious_interrupt();
out:
/* CN68XX pass 1.x has an errata that accessing the ACK registers
can stop interrupts from propagating */
if (OCTEON_IS_MODEL(OCTEON_CN68XX))
cvmx_read_csr(CVMX_CIU2_INTR_CIU_READY);
else
cvmx_read_csr(CVMX_CIU2_ACK_PPX_IP3(core_id));
return;
}
static int __init octeon_irq_init_ciu2(
struct device_node *ciu_node, struct device_node *parent)
{
unsigned int i, r;
struct irq_domain *ciu_domain = NULL;
octeon_irq_init_ciu2_percpu();
octeon_irq_setup_secondary = octeon_irq_setup_secondary_ciu2;
octeon_irq_gpio_chip = &octeon_irq_chip_ciu2_gpio;
octeon_irq_ip2 = octeon_irq_ciu2;
octeon_irq_ip3 = octeon_irq_ciu2_mbox;
octeon_irq_ip4 = octeon_irq_ip4_mask;
/* Mips internal */
octeon_irq_init_core();
ciu_domain = irq_domain_add_tree(
ciu_node, &octeon_irq_domain_ciu2_ops, NULL);
irq_set_default_host(ciu_domain);
/* CUI2 */
for (i = 0; i < 64; i++) {
r = octeon_irq_force_ciu_mapping(
ciu_domain, i + OCTEON_IRQ_WORKQ0, 0, i);
if (r)
goto err;
}
for (i = 0; i < 32; i++) {
r = octeon_irq_set_ciu_mapping(i + OCTEON_IRQ_WDOG0, 1, i, 0,
&octeon_irq_chip_ciu2_wd, handle_level_irq);
if (r)
goto err;
}
for (i = 0; i < 4; i++) {
r = octeon_irq_force_ciu_mapping(
ciu_domain, i + OCTEON_IRQ_TIMER0, 3, i + 8);
if (r)
goto err;
}
for (i = 0; i < 4; i++) {
r = octeon_irq_force_ciu_mapping(
ciu_domain, i + OCTEON_IRQ_PCI_INT0, 4, i);
if (r)
goto err;
}
for (i = 0; i < 4; i++) {
r = octeon_irq_force_ciu_mapping(
ciu_domain, i + OCTEON_IRQ_PCI_MSI0, 4, i + 8);
if (r)
goto err;
}
irq_set_chip_and_handler(OCTEON_IRQ_MBOX0, &octeon_irq_chip_ciu2_mbox, handle_percpu_irq);
irq_set_chip_and_handler(OCTEON_IRQ_MBOX1, &octeon_irq_chip_ciu2_mbox, handle_percpu_irq);
irq_set_chip_and_handler(OCTEON_IRQ_MBOX2, &octeon_irq_chip_ciu2_mbox, handle_percpu_irq);
irq_set_chip_and_handler(OCTEON_IRQ_MBOX3, &octeon_irq_chip_ciu2_mbox, handle_percpu_irq);
/* Enable the CIU lines */
set_c0_status(STATUSF_IP3 | STATUSF_IP2);
clear_c0_status(STATUSF_IP4);
return 0;
err:
return r;
}
struct octeon_irq_cib_host_data {
raw_spinlock_t lock;
u64 raw_reg;
u64 en_reg;
int max_bits;
};
struct octeon_irq_cib_chip_data {
struct octeon_irq_cib_host_data *host_data;
int bit;
};
static void octeon_irq_cib_enable(struct irq_data *data)
{
unsigned long flags;
u64 en;
struct octeon_irq_cib_chip_data *cd = irq_data_get_irq_chip_data(data);
struct octeon_irq_cib_host_data *host_data = cd->host_data;
raw_spin_lock_irqsave(&host_data->lock, flags);
en = cvmx_read_csr(host_data->en_reg);
en |= 1ull << cd->bit;
cvmx_write_csr(host_data->en_reg, en);
raw_spin_unlock_irqrestore(&host_data->lock, flags);
}
static void octeon_irq_cib_disable(struct irq_data *data)
{
unsigned long flags;
u64 en;
struct octeon_irq_cib_chip_data *cd = irq_data_get_irq_chip_data(data);
struct octeon_irq_cib_host_data *host_data = cd->host_data;
raw_spin_lock_irqsave(&host_data->lock, flags);
en = cvmx_read_csr(host_data->en_reg);
en &= ~(1ull << cd->bit);
cvmx_write_csr(host_data->en_reg, en);
raw_spin_unlock_irqrestore(&host_data->lock, flags);
}
static int octeon_irq_cib_set_type(struct irq_data *data, unsigned int t)
{
irqd_set_trigger_type(data, t);
return IRQ_SET_MASK_OK;
}
static struct irq_chip octeon_irq_chip_cib = {
.name = "CIB",
.irq_enable = octeon_irq_cib_enable,
.irq_disable = octeon_irq_cib_disable,
.irq_mask = octeon_irq_cib_disable,
.irq_unmask = octeon_irq_cib_enable,
.irq_set_type = octeon_irq_cib_set_type,
};
static int octeon_irq_cib_xlat(struct irq_domain *d,
struct device_node *node,
const u32 *intspec,
unsigned int intsize,
unsigned long *out_hwirq,
unsigned int *out_type)
{
unsigned int type = 0;
if (intsize == 2)
type = intspec[1];
switch (type) {
case 0: /* unofficial value, but we might as well let it work. */
case 4: /* official value for level triggering. */
*out_type = IRQ_TYPE_LEVEL_HIGH;
break;
case 1: /* official value for edge triggering. */
*out_type = IRQ_TYPE_EDGE_RISING;
break;
default: /* Nothing else is acceptable. */
return -EINVAL;
}
*out_hwirq = intspec[0];
return 0;
}
static int octeon_irq_cib_map(struct irq_domain *d,
unsigned int virq, irq_hw_number_t hw)
{
struct octeon_irq_cib_host_data *host_data = d->host_data;
struct octeon_irq_cib_chip_data *cd;
if (hw >= host_data->max_bits) {
pr_err("ERROR: %s mapping %u is too big!\n",
irq_domain_get_of_node(d)->name, (unsigned)hw);
return -EINVAL;
}
cd = kzalloc(sizeof(*cd), GFP_KERNEL);
if (!cd)
return -ENOMEM;
cd->host_data = host_data;
cd->bit = hw;
irq_set_chip_and_handler(virq, &octeon_irq_chip_cib,
handle_simple_irq);
irq_set_chip_data(virq, cd);
return 0;
}
static const struct irq_domain_ops octeon_irq_domain_cib_ops = {
.map = octeon_irq_cib_map,
.unmap = octeon_irq_free_cd,
.xlate = octeon_irq_cib_xlat,
};
/* Chain to real handler. */
static irqreturn_t octeon_irq_cib_handler(int my_irq, void *data)
{
u64 en;
u64 raw;
u64 bits;
int i;
int irq;
struct irq_domain *cib_domain = data;
struct octeon_irq_cib_host_data *host_data = cib_domain->host_data;
en = cvmx_read_csr(host_data->en_reg);
raw = cvmx_read_csr(host_data->raw_reg);
bits = en & raw;
for (i = 0; i < host_data->max_bits; i++) {
if ((bits & 1ull << i) == 0)
continue;
irq = irq_find_mapping(cib_domain, i);
if (!irq) {
unsigned long flags;
pr_err("ERROR: CIB bit %d@%llx IRQ unhandled, disabling\n",
i, host_data->raw_reg);
raw_spin_lock_irqsave(&host_data->lock, flags);
en = cvmx_read_csr(host_data->en_reg);
en &= ~(1ull << i);
cvmx_write_csr(host_data->en_reg, en);
cvmx_write_csr(host_data->raw_reg, 1ull << i);
raw_spin_unlock_irqrestore(&host_data->lock, flags);
} else {
struct irq_desc *desc = irq_to_desc(irq);
struct irq_data *irq_data = irq_desc_get_irq_data(desc);
/* If edge, acknowledge the bit we will be sending. */
if (irqd_get_trigger_type(irq_data) &
IRQ_TYPE_EDGE_BOTH)
cvmx_write_csr(host_data->raw_reg, 1ull << i);
generic_handle_irq_desc(desc);
}
}
return IRQ_HANDLED;
}
static int __init octeon_irq_init_cib(struct device_node *ciu_node,
struct device_node *parent)
{
const __be32 *addr;
u32 val;
struct octeon_irq_cib_host_data *host_data;
int parent_irq;
int r;
struct irq_domain *cib_domain;
parent_irq = irq_of_parse_and_map(ciu_node, 0);
if (!parent_irq) {
pr_err("ERROR: Couldn't acquire parent_irq for %pOFn\n",
ciu_node);
return -EINVAL;
}
host_data = kzalloc(sizeof(*host_data), GFP_KERNEL);
if (!host_data)
return -ENOMEM;
raw_spin_lock_init(&host_data->lock);
addr = of_get_address(ciu_node, 0, NULL, NULL);
if (!addr) {
pr_err("ERROR: Couldn't acquire reg(0) %pOFn\n", ciu_node);
return -EINVAL;
}
host_data->raw_reg = (u64)phys_to_virt(
of_translate_address(ciu_node, addr));
addr = of_get_address(ciu_node, 1, NULL, NULL);
if (!addr) {
pr_err("ERROR: Couldn't acquire reg(1) %pOFn\n", ciu_node);
return -EINVAL;
}
host_data->en_reg = (u64)phys_to_virt(
of_translate_address(ciu_node, addr));
r = of_property_read_u32(ciu_node, "cavium,max-bits", &val);
if (r) {
pr_err("ERROR: Couldn't read cavium,max-bits from %pOFn\n",
ciu_node);
return r;
}
host_data->max_bits = val;
cib_domain = irq_domain_add_linear(ciu_node, host_data->max_bits,
&octeon_irq_domain_cib_ops,
host_data);
if (!cib_domain) {
pr_err("ERROR: Couldn't irq_domain_add_linear()\n");
return -ENOMEM;
}
cvmx_write_csr(host_data->en_reg, 0); /* disable all IRQs */
cvmx_write_csr(host_data->raw_reg, ~0); /* ack any outstanding */
r = request_irq(parent_irq, octeon_irq_cib_handler,
IRQF_NO_THREAD, "cib", cib_domain);
if (r) {
pr_err("request_irq cib failed %d\n", r);
return r;
}
pr_info("CIB interrupt controller probed: %llx %d\n",
host_data->raw_reg, host_data->max_bits);
return 0;
}
int octeon_irq_ciu3_xlat(struct irq_domain *d,
struct device_node *node,
const u32 *intspec,
unsigned int intsize,
unsigned long *out_hwirq,
unsigned int *out_type)
{
struct octeon_ciu3_info *ciu3_info = d->host_data;
unsigned int hwirq, type, intsn_major;
union cvmx_ciu3_iscx_ctl isc;
if (intsize < 2)
return -EINVAL;
hwirq = intspec[0];
type = intspec[1];
if (hwirq >= (1 << 20))
return -EINVAL;
intsn_major = hwirq >> 12;
switch (intsn_major) {
case 0x04: /* Software handled separately. */
return -EINVAL;
default:
break;
}
isc.u64 = cvmx_read_csr(ciu3_info->ciu3_addr + CIU3_ISC_CTL(hwirq));
if (!isc.s.imp)
return -EINVAL;
switch (type) {
case 4: /* official value for level triggering. */
*out_type = IRQ_TYPE_LEVEL_HIGH;
break;
case 0: /* unofficial value, but we might as well let it work. */
case 1: /* official value for edge triggering. */
*out_type = IRQ_TYPE_EDGE_RISING;
break;
default: /* Nothing else is acceptable. */
return -EINVAL;
}
*out_hwirq = hwirq;
return 0;
}
void octeon_irq_ciu3_enable(struct irq_data *data)
{
int cpu;
union cvmx_ciu3_iscx_ctl isc_ctl;
union cvmx_ciu3_iscx_w1c isc_w1c;
u64 isc_ctl_addr;
struct octeon_ciu_chip_data *cd;
cpu = next_cpu_for_irq(data);
cd = irq_data_get_irq_chip_data(data);
isc_w1c.u64 = 0;
isc_w1c.s.en = 1;
cvmx_write_csr(cd->ciu3_addr + CIU3_ISC_W1C(cd->intsn), isc_w1c.u64);
isc_ctl_addr = cd->ciu3_addr + CIU3_ISC_CTL(cd->intsn);
isc_ctl.u64 = 0;
isc_ctl.s.en = 1;
isc_ctl.s.idt = per_cpu(octeon_irq_ciu3_idt_ip2, cpu);
cvmx_write_csr(isc_ctl_addr, isc_ctl.u64);
cvmx_read_csr(isc_ctl_addr);
}
void octeon_irq_ciu3_disable(struct irq_data *data)
{
u64 isc_ctl_addr;
union cvmx_ciu3_iscx_w1c isc_w1c;
struct octeon_ciu_chip_data *cd;
cd = irq_data_get_irq_chip_data(data);
isc_w1c.u64 = 0;
isc_w1c.s.en = 1;
isc_ctl_addr = cd->ciu3_addr + CIU3_ISC_CTL(cd->intsn);
cvmx_write_csr(cd->ciu3_addr + CIU3_ISC_W1C(cd->intsn), isc_w1c.u64);
cvmx_write_csr(isc_ctl_addr, 0);
cvmx_read_csr(isc_ctl_addr);
}
void octeon_irq_ciu3_ack(struct irq_data *data)
{
u64 isc_w1c_addr;
union cvmx_ciu3_iscx_w1c isc_w1c;
struct octeon_ciu_chip_data *cd;
u32 trigger_type = irqd_get_trigger_type(data);
/*
* We use a single irq_chip, so we have to do nothing to ack a
* level interrupt.
*/
if (!(trigger_type & IRQ_TYPE_EDGE_BOTH))
return;
cd = irq_data_get_irq_chip_data(data);
isc_w1c.u64 = 0;
isc_w1c.s.raw = 1;
isc_w1c_addr = cd->ciu3_addr + CIU3_ISC_W1C(cd->intsn);
cvmx_write_csr(isc_w1c_addr, isc_w1c.u64);
cvmx_read_csr(isc_w1c_addr);
}
void octeon_irq_ciu3_mask(struct irq_data *data)
{
union cvmx_ciu3_iscx_w1c isc_w1c;
u64 isc_w1c_addr;
struct octeon_ciu_chip_data *cd;
cd = irq_data_get_irq_chip_data(data);
isc_w1c.u64 = 0;
isc_w1c.s.en = 1;
isc_w1c_addr = cd->ciu3_addr + CIU3_ISC_W1C(cd->intsn);
cvmx_write_csr(isc_w1c_addr, isc_w1c.u64);
cvmx_read_csr(isc_w1c_addr);
}
void octeon_irq_ciu3_mask_ack(struct irq_data *data)
{
union cvmx_ciu3_iscx_w1c isc_w1c;
u64 isc_w1c_addr;
struct octeon_ciu_chip_data *cd;
u32 trigger_type = irqd_get_trigger_type(data);
cd = irq_data_get_irq_chip_data(data);
isc_w1c.u64 = 0;
isc_w1c.s.en = 1;
/*
* We use a single irq_chip, so only ack an edge (!level)
* interrupt.
*/
if (trigger_type & IRQ_TYPE_EDGE_BOTH)
isc_w1c.s.raw = 1;
isc_w1c_addr = cd->ciu3_addr + CIU3_ISC_W1C(cd->intsn);
cvmx_write_csr(isc_w1c_addr, isc_w1c.u64);
cvmx_read_csr(isc_w1c_addr);
}
#ifdef CONFIG_SMP
static int octeon_irq_ciu3_set_affinity(struct irq_data *data,
const struct cpumask *dest, bool force)
{
union cvmx_ciu3_iscx_ctl isc_ctl;
union cvmx_ciu3_iscx_w1c isc_w1c;
u64 isc_ctl_addr;
int cpu;
bool enable_one = !irqd_irq_disabled(data) && !irqd_irq_masked(data);
struct octeon_ciu_chip_data *cd = irq_data_get_irq_chip_data(data);
if (!cpumask_subset(dest, cpumask_of_node(cd->ciu_node)))
return -EINVAL;
if (!enable_one)
return IRQ_SET_MASK_OK;
cd = irq_data_get_irq_chip_data(data);
cpu = cpumask_first(dest);
if (cpu >= nr_cpu_ids)
cpu = smp_processor_id();
cd->current_cpu = cpu;
isc_w1c.u64 = 0;
isc_w1c.s.en = 1;
cvmx_write_csr(cd->ciu3_addr + CIU3_ISC_W1C(cd->intsn), isc_w1c.u64);
isc_ctl_addr = cd->ciu3_addr + CIU3_ISC_CTL(cd->intsn);
isc_ctl.u64 = 0;
isc_ctl.s.en = 1;
isc_ctl.s.idt = per_cpu(octeon_irq_ciu3_idt_ip2, cpu);
cvmx_write_csr(isc_ctl_addr, isc_ctl.u64);
cvmx_read_csr(isc_ctl_addr);
return IRQ_SET_MASK_OK;
}
#endif
static struct irq_chip octeon_irq_chip_ciu3 = {
.name = "CIU3",
.irq_startup = edge_startup,
.irq_enable = octeon_irq_ciu3_enable,
.irq_disable = octeon_irq_ciu3_disable,
.irq_ack = octeon_irq_ciu3_ack,
.irq_mask = octeon_irq_ciu3_mask,
.irq_mask_ack = octeon_irq_ciu3_mask_ack,
.irq_unmask = octeon_irq_ciu3_enable,
.irq_set_type = octeon_irq_ciu_set_type,
#ifdef CONFIG_SMP
.irq_set_affinity = octeon_irq_ciu3_set_affinity,
.irq_cpu_offline = octeon_irq_cpu_offline_ciu,
#endif
};
int octeon_irq_ciu3_mapx(struct irq_domain *d, unsigned int virq,
irq_hw_number_t hw, struct irq_chip *chip)
{
struct octeon_ciu3_info *ciu3_info = d->host_data;
struct octeon_ciu_chip_data *cd = kzalloc_node(sizeof(*cd), GFP_KERNEL,
ciu3_info->node);
if (!cd)
return -ENOMEM;
cd->intsn = hw;
cd->current_cpu = -1;
cd->ciu3_addr = ciu3_info->ciu3_addr;
cd->ciu_node = ciu3_info->node;
irq_set_chip_and_handler(virq, chip, handle_edge_irq);
irq_set_chip_data(virq, cd);
return 0;
}
static int octeon_irq_ciu3_map(struct irq_domain *d,
unsigned int virq, irq_hw_number_t hw)
{
return octeon_irq_ciu3_mapx(d, virq, hw, &octeon_irq_chip_ciu3);
}
static const struct irq_domain_ops octeon_dflt_domain_ciu3_ops = {
.map = octeon_irq_ciu3_map,
.unmap = octeon_irq_free_cd,
.xlate = octeon_irq_ciu3_xlat,
};
static void octeon_irq_ciu3_ip2(void)
{
union cvmx_ciu3_destx_pp_int dest_pp_int;
struct octeon_ciu3_info *ciu3_info;
u64 ciu3_addr;
ciu3_info = __this_cpu_read(octeon_ciu3_info);
ciu3_addr = ciu3_info->ciu3_addr;
dest_pp_int.u64 = cvmx_read_csr(ciu3_addr + CIU3_DEST_PP_INT(3 * cvmx_get_local_core_num()));
if (likely(dest_pp_int.s.intr)) {
irq_hw_number_t intsn = dest_pp_int.s.intsn;
irq_hw_number_t hw;
struct irq_domain *domain;
/* Get the domain to use from the major block */
int block = intsn >> 12;
int ret;
domain = ciu3_info->domain[block];
if (ciu3_info->intsn2hw[block])
hw = ciu3_info->intsn2hw[block](domain, intsn);
else
hw = intsn;
irq_enter();
ret = generic_handle_domain_irq(domain, hw);
irq_exit();
if (ret < 0) {
union cvmx_ciu3_iscx_w1c isc_w1c;
u64 isc_w1c_addr = ciu3_addr + CIU3_ISC_W1C(intsn);
isc_w1c.u64 = 0;
isc_w1c.s.en = 1;
cvmx_write_csr(isc_w1c_addr, isc_w1c.u64);
cvmx_read_csr(isc_w1c_addr);
spurious_interrupt();
}
} else {
spurious_interrupt();
}
}
/*
* 10 mbox per core starting from zero.
* Base mbox is core * 10
*/
static unsigned int octeon_irq_ciu3_base_mbox_intsn(int core)
{
/* SW (mbox) are 0x04 in bits 12..19 */
return 0x04000 + CIU3_MBOX_PER_CORE * core;
}
static unsigned int octeon_irq_ciu3_mbox_intsn_for_core(int core, unsigned int mbox)
{
return octeon_irq_ciu3_base_mbox_intsn(core) + mbox;
}
static unsigned int octeon_irq_ciu3_mbox_intsn_for_cpu(int cpu, unsigned int mbox)
{
int local_core = octeon_coreid_for_cpu(cpu) & 0x3f;
return octeon_irq_ciu3_mbox_intsn_for_core(local_core, mbox);
}
static void octeon_irq_ciu3_mbox(void)
{
union cvmx_ciu3_destx_pp_int dest_pp_int;
struct octeon_ciu3_info *ciu3_info;
u64 ciu3_addr;
int core = cvmx_get_local_core_num();
ciu3_info = __this_cpu_read(octeon_ciu3_info);
ciu3_addr = ciu3_info->ciu3_addr;
dest_pp_int.u64 = cvmx_read_csr(ciu3_addr + CIU3_DEST_PP_INT(1 + 3 * core));
if (likely(dest_pp_int.s.intr)) {
irq_hw_number_t intsn = dest_pp_int.s.intsn;
int mbox = intsn - octeon_irq_ciu3_base_mbox_intsn(core);
if (likely(mbox >= 0 && mbox < CIU3_MBOX_PER_CORE)) {
do_IRQ(mbox + OCTEON_IRQ_MBOX0);
} else {
union cvmx_ciu3_iscx_w1c isc_w1c;
u64 isc_w1c_addr = ciu3_addr + CIU3_ISC_W1C(intsn);
isc_w1c.u64 = 0;
isc_w1c.s.en = 1;
cvmx_write_csr(isc_w1c_addr, isc_w1c.u64);
cvmx_read_csr(isc_w1c_addr);
spurious_interrupt();
}
} else {
spurious_interrupt();
}
}
void octeon_ciu3_mbox_send(int cpu, unsigned int mbox)
{
struct octeon_ciu3_info *ciu3_info;
unsigned int intsn;
union cvmx_ciu3_iscx_w1s isc_w1s;
u64 isc_w1s_addr;
if (WARN_ON_ONCE(mbox >= CIU3_MBOX_PER_CORE))
return;
intsn = octeon_irq_ciu3_mbox_intsn_for_cpu(cpu, mbox);
ciu3_info = per_cpu(octeon_ciu3_info, cpu);
isc_w1s_addr = ciu3_info->ciu3_addr + CIU3_ISC_W1S(intsn);
isc_w1s.u64 = 0;
isc_w1s.s.raw = 1;
cvmx_write_csr(isc_w1s_addr, isc_w1s.u64);
cvmx_read_csr(isc_w1s_addr);
}
static void octeon_irq_ciu3_mbox_set_enable(struct irq_data *data, int cpu, bool en)
{
struct octeon_ciu3_info *ciu3_info;
unsigned int intsn;
u64 isc_ctl_addr, isc_w1c_addr;
union cvmx_ciu3_iscx_ctl isc_ctl;
unsigned int mbox = data->irq - OCTEON_IRQ_MBOX0;
intsn = octeon_irq_ciu3_mbox_intsn_for_cpu(cpu, mbox);
ciu3_info = per_cpu(octeon_ciu3_info, cpu);
isc_w1c_addr = ciu3_info->ciu3_addr + CIU3_ISC_W1C(intsn);
isc_ctl_addr = ciu3_info->ciu3_addr + CIU3_ISC_CTL(intsn);
isc_ctl.u64 = 0;
isc_ctl.s.en = 1;
cvmx_write_csr(isc_w1c_addr, isc_ctl.u64);
cvmx_write_csr(isc_ctl_addr, 0);
if (en) {
unsigned int idt = per_cpu(octeon_irq_ciu3_idt_ip3, cpu);
isc_ctl.u64 = 0;
isc_ctl.s.en = 1;
isc_ctl.s.idt = idt;
cvmx_write_csr(isc_ctl_addr, isc_ctl.u64);
}
cvmx_read_csr(isc_ctl_addr);
}
static void octeon_irq_ciu3_mbox_enable(struct irq_data *data)
{
int cpu;
unsigned int mbox = data->irq - OCTEON_IRQ_MBOX0;
WARN_ON(mbox >= CIU3_MBOX_PER_CORE);
for_each_online_cpu(cpu)
octeon_irq_ciu3_mbox_set_enable(data, cpu, true);
}
static void octeon_irq_ciu3_mbox_disable(struct irq_data *data)
{
int cpu;
unsigned int mbox = data->irq - OCTEON_IRQ_MBOX0;
WARN_ON(mbox >= CIU3_MBOX_PER_CORE);
for_each_online_cpu(cpu)
octeon_irq_ciu3_mbox_set_enable(data, cpu, false);
}
static void octeon_irq_ciu3_mbox_ack(struct irq_data *data)
{
struct octeon_ciu3_info *ciu3_info;
unsigned int intsn;
u64 isc_w1c_addr;
union cvmx_ciu3_iscx_w1c isc_w1c;
unsigned int mbox = data->irq - OCTEON_IRQ_MBOX0;
intsn = octeon_irq_ciu3_mbox_intsn_for_core(cvmx_get_local_core_num(), mbox);
isc_w1c.u64 = 0;
isc_w1c.s.raw = 1;
ciu3_info = __this_cpu_read(octeon_ciu3_info);
isc_w1c_addr = ciu3_info->ciu3_addr + CIU3_ISC_W1C(intsn);
cvmx_write_csr(isc_w1c_addr, isc_w1c.u64);
cvmx_read_csr(isc_w1c_addr);
}
static void octeon_irq_ciu3_mbox_cpu_online(struct irq_data *data)
{
octeon_irq_ciu3_mbox_set_enable(data, smp_processor_id(), true);
}
static void octeon_irq_ciu3_mbox_cpu_offline(struct irq_data *data)
{
octeon_irq_ciu3_mbox_set_enable(data, smp_processor_id(), false);
}
static int octeon_irq_ciu3_alloc_resources(struct octeon_ciu3_info *ciu3_info)
{
u64 b = ciu3_info->ciu3_addr;
int idt_ip2, idt_ip3, idt_ip4;
int unused_idt2;
int core = cvmx_get_local_core_num();
int i;
__this_cpu_write(octeon_ciu3_info, ciu3_info);
/*
* 4 idt per core starting from 1 because zero is reserved.
* Base idt per core is 4 * core + 1
*/
idt_ip2 = core * 4 + 1;
idt_ip3 = core * 4 + 2;
idt_ip4 = core * 4 + 3;
unused_idt2 = core * 4 + 4;
__this_cpu_write(octeon_irq_ciu3_idt_ip2, idt_ip2);
__this_cpu_write(octeon_irq_ciu3_idt_ip3, idt_ip3);
/* ip2 interrupts for this CPU */
cvmx_write_csr(b + CIU3_IDT_CTL(idt_ip2), 0);
cvmx_write_csr(b + CIU3_IDT_PP(idt_ip2, 0), 1ull << core);
cvmx_write_csr(b + CIU3_IDT_IO(idt_ip2), 0);
/* ip3 interrupts for this CPU */
cvmx_write_csr(b + CIU3_IDT_CTL(idt_ip3), 1);
cvmx_write_csr(b + CIU3_IDT_PP(idt_ip3, 0), 1ull << core);
cvmx_write_csr(b + CIU3_IDT_IO(idt_ip3), 0);
/* ip4 interrupts for this CPU */
cvmx_write_csr(b + CIU3_IDT_CTL(idt_ip4), 2);
cvmx_write_csr(b + CIU3_IDT_PP(idt_ip4, 0), 0);
cvmx_write_csr(b + CIU3_IDT_IO(idt_ip4), 0);
cvmx_write_csr(b + CIU3_IDT_CTL(unused_idt2), 0);
cvmx_write_csr(b + CIU3_IDT_PP(unused_idt2, 0), 0);
cvmx_write_csr(b + CIU3_IDT_IO(unused_idt2), 0);
for (i = 0; i < CIU3_MBOX_PER_CORE; i++) {
unsigned int intsn = octeon_irq_ciu3_mbox_intsn_for_core(core, i);
cvmx_write_csr(b + CIU3_ISC_W1C(intsn), 2);
cvmx_write_csr(b + CIU3_ISC_CTL(intsn), 0);
}
return 0;
}
static void octeon_irq_setup_secondary_ciu3(void)
{
struct octeon_ciu3_info *ciu3_info;
ciu3_info = octeon_ciu3_info_per_node[cvmx_get_node_num()];
octeon_irq_ciu3_alloc_resources(ciu3_info);
irq_cpu_online();
/* Enable the CIU lines */
set_c0_status(STATUSF_IP3 | STATUSF_IP2);
if (octeon_irq_use_ip4)
set_c0_status(STATUSF_IP4);
else
clear_c0_status(STATUSF_IP4);
}
static struct irq_chip octeon_irq_chip_ciu3_mbox = {
.name = "CIU3-M",
.irq_enable = octeon_irq_ciu3_mbox_enable,
.irq_disable = octeon_irq_ciu3_mbox_disable,
.irq_ack = octeon_irq_ciu3_mbox_ack,
.irq_cpu_online = octeon_irq_ciu3_mbox_cpu_online,
.irq_cpu_offline = octeon_irq_ciu3_mbox_cpu_offline,
.flags = IRQCHIP_ONOFFLINE_ENABLED,
};
static int __init octeon_irq_init_ciu3(struct device_node *ciu_node,
struct device_node *parent)
{
int i;
int node;
struct irq_domain *domain;
struct octeon_ciu3_info *ciu3_info;
const __be32 *zero_addr;
u64 base_addr;
union cvmx_ciu3_const consts;
node = 0; /* of_node_to_nid(ciu_node); */
ciu3_info = kzalloc_node(sizeof(*ciu3_info), GFP_KERNEL, node);
if (!ciu3_info)
return -ENOMEM;
zero_addr = of_get_address(ciu_node, 0, NULL, NULL);
if (WARN_ON(!zero_addr))
return -EINVAL;
base_addr = of_translate_address(ciu_node, zero_addr);
base_addr = (u64)phys_to_virt(base_addr);
ciu3_info->ciu3_addr = base_addr;
ciu3_info->node = node;
consts.u64 = cvmx_read_csr(base_addr + CIU3_CONST);
octeon_irq_setup_secondary = octeon_irq_setup_secondary_ciu3;
octeon_irq_ip2 = octeon_irq_ciu3_ip2;
octeon_irq_ip3 = octeon_irq_ciu3_mbox;
octeon_irq_ip4 = octeon_irq_ip4_mask;
if (node == cvmx_get_node_num()) {
/* Mips internal */
octeon_irq_init_core();
/* Only do per CPU things if it is the CIU of the boot node. */
i = irq_alloc_descs_from(OCTEON_IRQ_MBOX0, 8, node);
WARN_ON(i < 0);
for (i = 0; i < 8; i++)
irq_set_chip_and_handler(i + OCTEON_IRQ_MBOX0,
&octeon_irq_chip_ciu3_mbox, handle_percpu_irq);
}
/*
* Initialize all domains to use the default domain. Specific major
* blocks will overwrite the default domain as needed.
*/
domain = irq_domain_add_tree(ciu_node, &octeon_dflt_domain_ciu3_ops,
ciu3_info);
for (i = 0; i < MAX_CIU3_DOMAINS; i++)
ciu3_info->domain[i] = domain;
octeon_ciu3_info_per_node[node] = ciu3_info;
if (node == cvmx_get_node_num()) {
/* Only do per CPU things if it is the CIU of the boot node. */
octeon_irq_ciu3_alloc_resources(ciu3_info);
if (node == 0)
irq_set_default_host(domain);
octeon_irq_use_ip4 = false;
/* Enable the CIU lines */
set_c0_status(STATUSF_IP2 | STATUSF_IP3);
clear_c0_status(STATUSF_IP4);
}
return 0;
}
static struct of_device_id ciu_types[] __initdata = {
{.compatible = "cavium,octeon-3860-ciu", .data = octeon_irq_init_ciu},
{.compatible = "cavium,octeon-3860-gpio", .data = octeon_irq_init_gpio},
{.compatible = "cavium,octeon-6880-ciu2", .data = octeon_irq_init_ciu2},
{.compatible = "cavium,octeon-7890-ciu3", .data = octeon_irq_init_ciu3},
{.compatible = "cavium,octeon-7130-cib", .data = octeon_irq_init_cib},
{}
};
void __init arch_init_irq(void)
{
#ifdef CONFIG_SMP
/* Set the default affinity to the boot cpu. */
cpumask_clear(irq_default_affinity);
cpumask_set_cpu(smp_processor_id(), irq_default_affinity);
#endif
of_irq_init(ciu_types);
}
asmlinkage void plat_irq_dispatch(void)
{
unsigned long cop0_cause;
unsigned long cop0_status;
while (1) {
cop0_cause = read_c0_cause();
cop0_status = read_c0_status();
cop0_cause &= cop0_status;
cop0_cause &= ST0_IM;
if (cop0_cause & STATUSF_IP2)
octeon_irq_ip2();
else if (cop0_cause & STATUSF_IP3)
octeon_irq_ip3();
else if (cop0_cause & STATUSF_IP4)
octeon_irq_ip4();
else if (cop0_cause)
do_IRQ(fls(cop0_cause) - 9 + MIPS_CPU_IRQ_BASE);
else
break;
}
}
#ifdef CONFIG_HOTPLUG_CPU
void octeon_fixup_irqs(void)
{
irq_cpu_offline();
}
#endif /* CONFIG_HOTPLUG_CPU */
struct irq_domain *octeon_irq_get_block_domain(int node, uint8_t block)
{
struct octeon_ciu3_info *ciu3_info;
ciu3_info = octeon_ciu3_info_per_node[node & CVMX_NODE_MASK];
return ciu3_info->domain[block];
}
EXPORT_SYMBOL(octeon_irq_get_block_domain);