blob: 356d19b7675cacf9ae9b1013b160248f1219c4d0 [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Driver for Texas Instruments INA238 power monitor chip
* Datasheet: https://www.ti.com/product/ina238
*
* Copyright (C) 2021 Nathan Rossi <nathan.rossi@digi.com>
*/
#include <linux/bitops.h>
#include <linux/err.h>
#include <linux/hwmon.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/regmap.h>
/* INA238 register definitions */
#define INA238_CONFIG 0x0
#define INA238_ADC_CONFIG 0x1
#define INA238_SHUNT_CALIBRATION 0x2
#define SQ52206_SHUNT_TEMPCO 0x3
#define INA238_SHUNT_VOLTAGE 0x4
#define INA238_BUS_VOLTAGE 0x5
#define INA238_DIE_TEMP 0x6
#define INA238_CURRENT 0x7
#define INA238_POWER 0x8
#define SQ52206_ENERGY 0x9
#define SQ52206_CHARGE 0xa
#define INA238_DIAG_ALERT 0xb
#define INA238_SHUNT_OVER_VOLTAGE 0xc
#define INA238_SHUNT_UNDER_VOLTAGE 0xd
#define INA238_BUS_OVER_VOLTAGE 0xe
#define INA238_BUS_UNDER_VOLTAGE 0xf
#define INA238_TEMP_LIMIT 0x10
#define INA238_POWER_LIMIT 0x11
#define SQ52206_POWER_PEAK 0x20
#define INA238_DEVICE_ID 0x3f /* not available on INA237 */
#define INA238_CONFIG_ADCRANGE BIT(4)
#define SQ52206_CONFIG_ADCRANGE_HIGH BIT(4)
#define SQ52206_CONFIG_ADCRANGE_LOW BIT(3)
#define INA238_DIAG_ALERT_TMPOL BIT(7)
#define INA238_DIAG_ALERT_SHNTOL BIT(6)
#define INA238_DIAG_ALERT_SHNTUL BIT(5)
#define INA238_DIAG_ALERT_BUSOL BIT(4)
#define INA238_DIAG_ALERT_BUSUL BIT(3)
#define INA238_DIAG_ALERT_POL BIT(2)
#define INA238_REGISTERS 0x20
#define INA238_RSHUNT_DEFAULT 2500 /* uOhm */
/* Default configuration of device on reset. */
#define INA238_CONFIG_DEFAULT 0
#define SQ52206_CONFIG_DEFAULT 0x0005
/* 16 sample averaging, 1052us conversion time, continuous mode */
#define INA238_ADC_CONFIG_DEFAULT 0xfb6a
/* Configure alerts to be based on averaged value (SLOWALERT) */
#define INA238_DIAG_ALERT_DEFAULT 0x2000
#define INA238_DIAG_ALERT_APOL BIT(12)
/*
* This driver uses a fixed calibration value in order to scale current/power
* based on a fixed shunt resistor value. This allows for conversion within the
* device to avoid integer limits whilst current/power accuracy is scaled
* relative to the shunt resistor value within the driver. This is similar to
* how the ina2xx driver handles current/power scaling.
*
* To achieve the best possible dynamic range, the value of the shunt voltage
* register should match the value of the current register. With that, the shunt
* voltage of 0x7fff = 32,767 uV = 163,785 uV matches the maximum current,
* and no accuracy is lost. Experiments with a real chip show that this is
* achieved by setting the SHUNT_CAL register to a value of 0x1000 = 4,096.
* Per datasheet,
* SHUNT_CAL = 819.2 x 10^6 x CURRENT_LSB x Rshunt
* = 819,200,000 x CURRENT_LSB x Rshunt
* With SHUNT_CAL set to 4,096, we get
* CURRENT_LSB = 4,096 / (819,200,000 x Rshunt)
* Assuming an Rshunt value of 5 mOhm, we get
* CURRENT_LSB = 4,096 / (819,200,000 x 0.005) = 1mA
* and thus a dynamic range of 1mA ... 32,767mA, which is sufficient for most
* applications. The actual dynamic range is of course determined by the actual
* shunt resistor value.
*
* Power and energy values are scaled accordingly.
*/
#define INA238_CALIBRATION_VALUE 4096
#define INA238_FIXED_SHUNT 5000
#define INA238_SHUNT_VOLTAGE_LSB 5000 /* 5 uV/lsb, in nV */
#define INA238_BUS_VOLTAGE_LSB 3125000 /* 3.125 mV/lsb, in nV */
#define SQ52206_BUS_VOLTAGE_LSB 3750000 /* 3.75 mV/lsb, in nV */
#define NUNIT_PER_MUNIT 1000000 /* n[AV] -> m[AV] */
static const struct regmap_config ina238_regmap_config = {
.max_register = INA238_REGISTERS,
.reg_bits = 8,
.val_bits = 16,
};
enum ina238_ids { ina228, ina237, ina238, ina700, ina780, sq52206 };
struct ina238_config {
bool has_20bit_voltage_current; /* vshunt, vbus and current are 20-bit fields */
bool has_power_highest; /* chip detection power peak */
bool has_energy; /* chip detection energy */
u8 temp_resolution; /* temperature register resolution in bit */
u16 config_default; /* Power-on default state */
u32 power_calculate_factor; /* fixed parameter for power calculation, from datasheet */
u32 bus_voltage_lsb; /* bus voltage LSB, in nV */
int current_lsb; /* current LSB, in uA */
};
struct ina238_data {
const struct ina238_config *config;
struct i2c_client *client;
struct mutex config_lock;
struct regmap *regmap;
u32 rshunt;
int gain;
u32 voltage_lsb[2]; /* shunt, bus voltage LSB, in nV */
int current_lsb; /* current LSB, in uA */
int power_lsb; /* power LSB, in uW */
int energy_lsb; /* energy LSB, in uJ */
};
static const struct ina238_config ina238_config[] = {
[ina228] = {
.has_20bit_voltage_current = true,
.has_energy = true,
.has_power_highest = false,
.power_calculate_factor = 20,
.config_default = INA238_CONFIG_DEFAULT,
.bus_voltage_lsb = INA238_BUS_VOLTAGE_LSB,
.temp_resolution = 16,
},
[ina237] = {
.has_20bit_voltage_current = false,
.has_energy = false,
.has_power_highest = false,
.power_calculate_factor = 20,
.config_default = INA238_CONFIG_DEFAULT,
.bus_voltage_lsb = INA238_BUS_VOLTAGE_LSB,
.temp_resolution = 12,
},
[ina238] = {
.has_20bit_voltage_current = false,
.has_energy = false,
.has_power_highest = false,
.power_calculate_factor = 20,
.config_default = INA238_CONFIG_DEFAULT,
.bus_voltage_lsb = INA238_BUS_VOLTAGE_LSB,
.temp_resolution = 12,
},
[ina700] = {
.has_20bit_voltage_current = false,
.has_energy = true,
.has_power_highest = false,
.power_calculate_factor = 20,
.config_default = INA238_CONFIG_DEFAULT,
.bus_voltage_lsb = INA238_BUS_VOLTAGE_LSB,
.temp_resolution = 12,
.current_lsb = 480,
},
[ina780] = {
.has_20bit_voltage_current = false,
.has_energy = true,
.has_power_highest = false,
.power_calculate_factor = 20,
.config_default = INA238_CONFIG_DEFAULT,
.bus_voltage_lsb = INA238_BUS_VOLTAGE_LSB,
.temp_resolution = 12,
.current_lsb = 2400,
},
[sq52206] = {
.has_20bit_voltage_current = false,
.has_energy = true,
.has_power_highest = true,
.power_calculate_factor = 24,
.config_default = SQ52206_CONFIG_DEFAULT,
.bus_voltage_lsb = SQ52206_BUS_VOLTAGE_LSB,
.temp_resolution = 16,
},
};
static int ina238_read_reg24(const struct i2c_client *client, u8 reg, u32 *val)
{
u8 data[3];
int err;
/* 24-bit register read */
err = i2c_smbus_read_i2c_block_data(client, reg, 3, data);
if (err < 0)
return err;
if (err != 3)
return -EIO;
*val = (data[0] << 16) | (data[1] << 8) | data[2];
return 0;
}
static int ina238_read_reg40(const struct i2c_client *client, u8 reg, u64 *val)
{
u8 data[5];
u32 low;
int err;
/* 40-bit register read */
err = i2c_smbus_read_i2c_block_data(client, reg, 5, data);
if (err < 0)
return err;
if (err != 5)
return -EIO;
low = (data[1] << 24) | (data[2] << 16) | (data[3] << 8) | data[4];
*val = ((long long)data[0] << 32) | low;
return 0;
}
static int ina238_read_field_s20(const struct i2c_client *client, u8 reg, s32 *val)
{
u32 regval;
int err;
err = ina238_read_reg24(client, reg, &regval);
if (err)
return err;
/* bits 3-0 Reserved, always zero */
regval >>= 4;
*val = sign_extend32(regval, 19);
return 0;
}
static int ina228_read_voltage(struct ina238_data *data, int channel, long *val)
{
int reg = channel ? INA238_BUS_VOLTAGE : INA238_CURRENT;
u32 lsb = data->voltage_lsb[channel];
u32 factor = NUNIT_PER_MUNIT;
int err, regval;
if (data->config->has_20bit_voltage_current) {
err = ina238_read_field_s20(data->client, reg, &regval);
if (err)
return err;
/* Adjust accuracy: LSB in units of 500 pV */
lsb /= 8;
factor *= 2;
} else {
err = regmap_read(data->regmap, reg, &regval);
if (err)
return err;
regval = (s16)regval;
}
*val = DIV_S64_ROUND_CLOSEST((s64)regval * lsb, factor);
return 0;
}
static int ina238_read_in(struct device *dev, u32 attr, int channel,
long *val)
{
struct ina238_data *data = dev_get_drvdata(dev);
int reg, mask = 0;
int regval;
int err;
if (attr == hwmon_in_input)
return ina228_read_voltage(data, channel, val);
switch (channel) {
case 0:
switch (attr) {
case hwmon_in_max:
reg = INA238_SHUNT_OVER_VOLTAGE;
break;
case hwmon_in_min:
reg = INA238_SHUNT_UNDER_VOLTAGE;
break;
case hwmon_in_max_alarm:
reg = INA238_DIAG_ALERT;
mask = INA238_DIAG_ALERT_SHNTOL;
break;
case hwmon_in_min_alarm:
reg = INA238_DIAG_ALERT;
mask = INA238_DIAG_ALERT_SHNTUL;
break;
default:
return -EOPNOTSUPP;
}
break;
case 1:
switch (attr) {
case hwmon_in_max:
reg = INA238_BUS_OVER_VOLTAGE;
break;
case hwmon_in_min:
reg = INA238_BUS_UNDER_VOLTAGE;
break;
case hwmon_in_max_alarm:
reg = INA238_DIAG_ALERT;
mask = INA238_DIAG_ALERT_BUSOL;
break;
case hwmon_in_min_alarm:
reg = INA238_DIAG_ALERT;
mask = INA238_DIAG_ALERT_BUSUL;
break;
default:
return -EOPNOTSUPP;
}
break;
default:
return -EOPNOTSUPP;
}
err = regmap_read(data->regmap, reg, &regval);
if (err < 0)
return err;
if (mask)
*val = !!(regval & mask);
else
*val = DIV_S64_ROUND_CLOSEST((s64)(s16)regval * data->voltage_lsb[channel],
NUNIT_PER_MUNIT);
return 0;
}
static int ina238_write_in(struct device *dev, u32 attr, int channel, long val)
{
struct ina238_data *data = dev_get_drvdata(dev);
static const int low_limits[2] = {-164, 0};
static const int high_limits[2] = {164, 150000};
static const u8 low_regs[2] = {INA238_SHUNT_UNDER_VOLTAGE, INA238_BUS_UNDER_VOLTAGE};
static const u8 high_regs[2] = {INA238_SHUNT_OVER_VOLTAGE, INA238_BUS_OVER_VOLTAGE};
int regval;
/* Initial clamp to avoid overflows */
val = clamp_val(val, low_limits[channel], high_limits[channel]);
val = DIV_S64_ROUND_CLOSEST((s64)val * NUNIT_PER_MUNIT, data->voltage_lsb[channel]);
/* Final clamp to register limits */
regval = clamp_val(val, S16_MIN, S16_MAX) & 0xffff;
switch (attr) {
case hwmon_in_min:
return regmap_write(data->regmap, low_regs[channel], regval);
case hwmon_in_max:
return regmap_write(data->regmap, high_regs[channel], regval);
default:
return -EOPNOTSUPP;
}
}
static int __ina238_read_curr(struct ina238_data *data, long *val)
{
u32 lsb = data->current_lsb;
int err, regval;
if (data->config->has_20bit_voltage_current) {
err = ina238_read_field_s20(data->client, INA238_CURRENT, &regval);
if (err)
return err;
lsb /= 16; /* Adjust accuracy */
} else {
err = regmap_read(data->regmap, INA238_CURRENT, &regval);
if (err)
return err;
regval = (s16)regval;
}
*val = DIV_S64_ROUND_CLOSEST((s64)regval * lsb, 1000);
return 0;
}
static int ina238_read_curr(struct device *dev, u32 attr, long *val)
{
struct ina238_data *data = dev_get_drvdata(dev);
int reg, mask = 0;
int regval;
int err;
if (attr == hwmon_curr_input)
return __ina238_read_curr(data, val);
switch (attr) {
case hwmon_curr_min:
reg = INA238_SHUNT_UNDER_VOLTAGE;
break;
case hwmon_curr_min_alarm:
reg = INA238_DIAG_ALERT;
mask = INA238_DIAG_ALERT_SHNTUL;
break;
case hwmon_curr_max:
reg = INA238_SHUNT_OVER_VOLTAGE;
break;
case hwmon_curr_max_alarm:
reg = INA238_DIAG_ALERT;
mask = INA238_DIAG_ALERT_SHNTOL;
break;
default:
return -EOPNOTSUPP;
}
err = regmap_read(data->regmap, reg, &regval);
if (err < 0)
return err;
if (mask)
*val = !!(regval & mask);
else
*val = DIV_S64_ROUND_CLOSEST((s64)(s16)regval * data->current_lsb, 1000);
return 0;
}
static int ina238_write_curr(struct device *dev, u32 attr, long val)
{
struct ina238_data *data = dev_get_drvdata(dev);
int regval;
/* Set baseline range to avoid over/underflows */
val = clamp_val(val, -1000000, 1000000);
/* Scale */
val = DIV_ROUND_CLOSEST(val * 1000, data->current_lsb);
/* Clamp to register size */
regval = clamp_val(val, S16_MIN, S16_MAX) & 0xffff;
switch (attr) {
case hwmon_curr_min:
return regmap_write(data->regmap, INA238_SHUNT_UNDER_VOLTAGE,
regval);
case hwmon_curr_max:
return regmap_write(data->regmap, INA238_SHUNT_OVER_VOLTAGE,
regval);
default:
return -EOPNOTSUPP;
}
}
static int ina238_read_power(struct device *dev, u32 attr, long *val)
{
struct ina238_data *data = dev_get_drvdata(dev);
long long power;
int regval;
int err;
switch (attr) {
case hwmon_power_input:
err = ina238_read_reg24(data->client, INA238_POWER, &regval);
if (err)
return err;
power = (long long)regval * data->power_lsb;
/* Clamp value to maximum value of long */
*val = clamp_val(power, 0, LONG_MAX);
break;
case hwmon_power_input_highest:
err = ina238_read_reg24(data->client, SQ52206_POWER_PEAK, &regval);
if (err)
return err;
power = (long long)regval * data->power_lsb;
/* Clamp value to maximum value of long */
*val = clamp_val(power, 0, LONG_MAX);
break;
case hwmon_power_max:
err = regmap_read(data->regmap, INA238_POWER_LIMIT, &regval);
if (err)
return err;
/*
* Truncated 24-bit compare register, lower 8-bits are
* truncated. Same conversion to/from uW as POWER register.
*/
power = ((long long)regval << 8) * data->power_lsb;
/* Clamp value to maximum value of long */
*val = clamp_val(power, 0, LONG_MAX);
break;
case hwmon_power_max_alarm:
err = regmap_read(data->regmap, INA238_DIAG_ALERT, &regval);
if (err)
return err;
*val = !!(regval & INA238_DIAG_ALERT_POL);
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int ina238_write_power_max(struct device *dev, long val)
{
struct ina238_data *data = dev_get_drvdata(dev);
/*
* Unsigned postive values. Compared against the 24-bit power register,
* lower 8-bits are truncated. Same conversion to/from uW as POWER
* register.
* The first clamp_val() is to establish a baseline to avoid overflows.
*/
val = clamp_val(val, 0, LONG_MAX / 2);
val = DIV_ROUND_CLOSEST(val, data->power_lsb);
val = clamp_val(val >> 8, 0, U16_MAX);
return regmap_write(data->regmap, INA238_POWER_LIMIT, val);
}
static int ina238_temp_from_reg(s16 regval, u8 resolution)
{
return ((regval >> (16 - resolution)) * 1000) >> (resolution - 9);
}
static int ina238_read_temp(struct device *dev, u32 attr, long *val)
{
struct ina238_data *data = dev_get_drvdata(dev);
int regval;
int err;
switch (attr) {
case hwmon_temp_input:
err = regmap_read(data->regmap, INA238_DIE_TEMP, &regval);
if (err)
return err;
*val = ina238_temp_from_reg(regval, data->config->temp_resolution);
break;
case hwmon_temp_max:
err = regmap_read(data->regmap, INA238_TEMP_LIMIT, &regval);
if (err)
return err;
/* Signed, result in mC */
*val = ina238_temp_from_reg(regval, data->config->temp_resolution);
break;
case hwmon_temp_max_alarm:
err = regmap_read(data->regmap, INA238_DIAG_ALERT, &regval);
if (err)
return err;
*val = !!(regval & INA238_DIAG_ALERT_TMPOL);
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static u16 ina238_temp_to_reg(long val, u8 resolution)
{
int fraction = 1000 - DIV_ROUND_CLOSEST(1000, BIT(resolution - 9));
val = clamp_val(val, -255000 - fraction, 255000 + fraction);
return (DIV_ROUND_CLOSEST(val << (resolution - 9), 1000) << (16 - resolution)) & 0xffff;
}
static int ina238_write_temp_max(struct device *dev, long val)
{
struct ina238_data *data = dev_get_drvdata(dev);
int regval;
regval = ina238_temp_to_reg(val, data->config->temp_resolution);
return regmap_write(data->regmap, INA238_TEMP_LIMIT, regval);
}
static int ina238_read_energy(struct device *dev, s64 *energy)
{
struct ina238_data *data = dev_get_drvdata(dev);
u64 regval;
int ret;
ret = ina238_read_reg40(data->client, SQ52206_ENERGY, &regval);
if (ret)
return ret;
/* result in uJ */
*energy = regval * data->energy_lsb;
return 0;
}
static int ina238_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
switch (type) {
case hwmon_in:
return ina238_read_in(dev, attr, channel, val);
case hwmon_curr:
return ina238_read_curr(dev, attr, val);
case hwmon_power:
return ina238_read_power(dev, attr, val);
case hwmon_energy64:
return ina238_read_energy(dev, (s64 *)val);
case hwmon_temp:
return ina238_read_temp(dev, attr, val);
default:
return -EOPNOTSUPP;
}
return 0;
}
static int ina238_write(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long val)
{
struct ina238_data *data = dev_get_drvdata(dev);
int err;
mutex_lock(&data->config_lock);
switch (type) {
case hwmon_in:
err = ina238_write_in(dev, attr, channel, val);
break;
case hwmon_curr:
err = ina238_write_curr(dev, attr, val);
break;
case hwmon_power:
err = ina238_write_power_max(dev, val);
break;
case hwmon_temp:
err = ina238_write_temp_max(dev, val);
break;
default:
err = -EOPNOTSUPP;
break;
}
mutex_unlock(&data->config_lock);
return err;
}
static umode_t ina238_is_visible(const void *drvdata,
enum hwmon_sensor_types type,
u32 attr, int channel)
{
const struct ina238_data *data = drvdata;
bool has_power_highest = data->config->has_power_highest;
bool has_energy = data->config->has_energy;
switch (type) {
case hwmon_in:
switch (attr) {
case hwmon_in_input:
case hwmon_in_max_alarm:
case hwmon_in_min_alarm:
return 0444;
case hwmon_in_max:
case hwmon_in_min:
return 0644;
default:
return 0;
}
case hwmon_curr:
switch (attr) {
case hwmon_curr_input:
case hwmon_curr_max_alarm:
case hwmon_curr_min_alarm:
return 0444;
case hwmon_curr_max:
case hwmon_curr_min:
return 0644;
default:
return 0;
}
case hwmon_power:
switch (attr) {
case hwmon_power_input:
case hwmon_power_max_alarm:
return 0444;
case hwmon_power_max:
return 0644;
case hwmon_power_input_highest:
if (has_power_highest)
return 0444;
return 0;
default:
return 0;
}
case hwmon_energy64:
/* hwmon_energy_input */
if (has_energy)
return 0444;
return 0;
case hwmon_temp:
switch (attr) {
case hwmon_temp_input:
case hwmon_temp_max_alarm:
return 0444;
case hwmon_temp_max:
return 0644;
default:
return 0;
}
default:
return 0;
}
}
#define INA238_HWMON_IN_CONFIG (HWMON_I_INPUT | \
HWMON_I_MAX | HWMON_I_MAX_ALARM | \
HWMON_I_MIN | HWMON_I_MIN_ALARM)
static const struct hwmon_channel_info * const ina238_info[] = {
HWMON_CHANNEL_INFO(in,
/* 0: shunt voltage */
INA238_HWMON_IN_CONFIG,
/* 1: bus voltage */
INA238_HWMON_IN_CONFIG),
HWMON_CHANNEL_INFO(curr,
/* 0: current through shunt */
HWMON_C_INPUT | HWMON_C_MIN | HWMON_C_MIN_ALARM |
HWMON_C_MAX | HWMON_C_MAX_ALARM),
HWMON_CHANNEL_INFO(power,
/* 0: power */
HWMON_P_INPUT | HWMON_P_MAX |
HWMON_P_MAX_ALARM | HWMON_P_INPUT_HIGHEST),
HWMON_CHANNEL_INFO(energy64,
HWMON_E_INPUT),
HWMON_CHANNEL_INFO(temp,
/* 0: die temperature */
HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MAX_ALARM),
NULL
};
static const struct hwmon_ops ina238_hwmon_ops = {
.is_visible = ina238_is_visible,
.read = ina238_read,
.write = ina238_write,
};
static const struct hwmon_chip_info ina238_chip_info = {
.ops = &ina238_hwmon_ops,
.info = ina238_info,
};
static int ina238_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct device *hwmon_dev;
struct ina238_data *data;
enum ina238_ids chip;
int config;
int ret;
chip = (uintptr_t)i2c_get_match_data(client);
data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->client = client;
/* set the device type */
data->config = &ina238_config[chip];
mutex_init(&data->config_lock);
data->regmap = devm_regmap_init_i2c(client, &ina238_regmap_config);
if (IS_ERR(data->regmap)) {
dev_err(dev, "failed to allocate register map\n");
return PTR_ERR(data->regmap);
}
/* Setup CONFIG register */
config = data->config->config_default;
if (data->config->current_lsb) {
data->voltage_lsb[0] = INA238_SHUNT_VOLTAGE_LSB;
data->current_lsb = data->config->current_lsb;
} else {
/* load shunt value */
if (device_property_read_u32(dev, "shunt-resistor", &data->rshunt) < 0)
data->rshunt = INA238_RSHUNT_DEFAULT;
if (data->rshunt == 0) {
dev_err(dev, "invalid shunt resister value %u\n", data->rshunt);
return -EINVAL;
}
/* load shunt gain value */
if (device_property_read_u32(dev, "ti,shunt-gain", &data->gain) < 0)
data->gain = 4; /* Default of ADCRANGE = 0 */
if (data->gain != 1 && data->gain != 2 && data->gain != 4) {
dev_err(dev, "invalid shunt gain value %u\n", data->gain);
return -EINVAL;
}
/* Setup SHUNT_CALIBRATION register with fixed value */
ret = regmap_write(data->regmap, INA238_SHUNT_CALIBRATION,
INA238_CALIBRATION_VALUE);
if (ret < 0) {
dev_err(dev, "error configuring the device: %d\n", ret);
return -ENODEV;
}
if (chip == sq52206) {
if (data->gain == 1) /* ADCRANGE = 10/11 is /1 */
config |= SQ52206_CONFIG_ADCRANGE_HIGH;
else if (data->gain == 2) /* ADCRANGE = 01 is /2 */
config |= SQ52206_CONFIG_ADCRANGE_LOW;
} else if (data->gain == 1) { /* ADCRANGE = 1 is /1 */
config |= INA238_CONFIG_ADCRANGE;
}
data->voltage_lsb[0] = INA238_SHUNT_VOLTAGE_LSB * data->gain / 4;
data->current_lsb = DIV_U64_ROUND_CLOSEST(250ULL * INA238_FIXED_SHUNT * data->gain,
data->rshunt);
}
ret = regmap_write(data->regmap, INA238_CONFIG, config);
if (ret < 0) {
dev_err(dev, "error configuring the device: %d\n", ret);
return -ENODEV;
}
/* Setup ADC_CONFIG register */
ret = regmap_write(data->regmap, INA238_ADC_CONFIG,
INA238_ADC_CONFIG_DEFAULT);
if (ret < 0) {
dev_err(dev, "error configuring the device: %d\n", ret);
return -ENODEV;
}
/* Setup alert/alarm configuration */
config = INA238_DIAG_ALERT_DEFAULT;
if (device_property_read_bool(dev, "ti,alert-polarity-active-high"))
config |= INA238_DIAG_ALERT_APOL;
ret = regmap_write(data->regmap, INA238_DIAG_ALERT, config);
if (ret < 0) {
dev_err(dev, "error configuring the device: %d\n", ret);
return -ENODEV;
}
data->voltage_lsb[1] = data->config->bus_voltage_lsb;
data->power_lsb = DIV_ROUND_CLOSEST(data->current_lsb *
data->config->power_calculate_factor,
100);
data->energy_lsb = data->power_lsb * 16;
hwmon_dev = devm_hwmon_device_register_with_info(dev, client->name, data,
&ina238_chip_info, NULL);
if (IS_ERR(hwmon_dev))
return PTR_ERR(hwmon_dev);
if (data->rshunt)
dev_info(dev, "power monitor %s (Rshunt = %u uOhm, gain = %u)\n",
client->name, data->rshunt, data->gain);
return 0;
}
static const struct i2c_device_id ina238_id[] = {
{ "ina228", ina228 },
{ "ina237", ina237 },
{ "ina238", ina238 },
{ "ina700", ina700 },
{ "ina780", ina780 },
{ "sq52206", sq52206 },
{ }
};
MODULE_DEVICE_TABLE(i2c, ina238_id);
static const struct of_device_id __maybe_unused ina238_of_match[] = {
{
.compatible = "ti,ina228",
.data = (void *)ina228
},
{
.compatible = "ti,ina237",
.data = (void *)ina237
},
{
.compatible = "ti,ina238",
.data = (void *)ina238
},
{
.compatible = "ti,ina700",
.data = (void *)ina700
},
{
.compatible = "ti,ina780",
.data = (void *)ina780
},
{
.compatible = "silergy,sq52206",
.data = (void *)sq52206
},
{ }
};
MODULE_DEVICE_TABLE(of, ina238_of_match);
static struct i2c_driver ina238_driver = {
.driver = {
.name = "ina238",
.of_match_table = of_match_ptr(ina238_of_match),
},
.probe = ina238_probe,
.id_table = ina238_id,
};
module_i2c_driver(ina238_driver);
MODULE_AUTHOR("Nathan Rossi <nathan.rossi@digi.com>");
MODULE_DESCRIPTION("ina238 driver");
MODULE_LICENSE("GPL");