blob: a02fdbc61256209d42342f192dbe2496b28e8aad [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/*
* PWM controller driver for Amlogic Meson SoCs.
*
* This PWM is only a set of Gates, Dividers and Counters:
* PWM output is achieved by calculating a clock that permits calculating
* two periods (low and high). The counter then has to be set to switch after
* N cycles for the first half period.
* The hardware has no "polarity" setting. This driver reverses the period
* cycles (the low length is inverted with the high length) for
* PWM_POLARITY_INVERSED. This means that .get_state cannot read the polarity
* from the hardware.
* Setting the duty cycle will disable and re-enable the PWM output.
* Disabling the PWM stops the output immediately (without waiting for the
* current period to complete first).
*
* The public S912 (GXM) datasheet contains some documentation for this PWM
* controller starting on page 543:
* https://dl.khadas.com/Hardware/VIM2/Datasheet/S912_Datasheet_V0.220170314publicversion-Wesion.pdf
* An updated version of this IP block is found in S922X (G12B) SoCs. The
* datasheet contains the description for this IP block revision starting at
* page 1084:
* https://dn.odroid.com/S922X/ODROID-N2/Datasheet/S922X_Public_Datasheet_V0.2.pdf
*
* Copyright (c) 2016 BayLibre, SAS.
* Author: Neil Armstrong <narmstrong@baylibre.com>
* Copyright (C) 2014 Amlogic, Inc.
*/
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/math64.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pwm.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#define REG_PWM_A 0x0
#define REG_PWM_B 0x4
#define PWM_LOW_MASK GENMASK(15, 0)
#define PWM_HIGH_MASK GENMASK(31, 16)
#define REG_MISC_AB 0x8
#define MISC_B_CLK_EN_SHIFT 23
#define MISC_A_CLK_EN_SHIFT 15
#define MISC_CLK_DIV_WIDTH 7
#define MISC_B_CLK_DIV_SHIFT 16
#define MISC_A_CLK_DIV_SHIFT 8
#define MISC_B_CLK_SEL_SHIFT 6
#define MISC_A_CLK_SEL_SHIFT 4
#define MISC_CLK_SEL_MASK 0x3
#define MISC_B_EN BIT(1)
#define MISC_A_EN BIT(0)
#define MESON_NUM_PWMS 2
#define MESON_NUM_MUX_PARENTS 4
static struct meson_pwm_channel_data {
u8 reg_offset;
u8 clk_sel_shift;
u8 clk_div_shift;
u8 clk_en_shift;
u32 pwm_en_mask;
} meson_pwm_per_channel_data[MESON_NUM_PWMS] = {
{
.reg_offset = REG_PWM_A,
.clk_sel_shift = MISC_A_CLK_SEL_SHIFT,
.clk_div_shift = MISC_A_CLK_DIV_SHIFT,
.clk_en_shift = MISC_A_CLK_EN_SHIFT,
.pwm_en_mask = MISC_A_EN,
},
{
.reg_offset = REG_PWM_B,
.clk_sel_shift = MISC_B_CLK_SEL_SHIFT,
.clk_div_shift = MISC_B_CLK_DIV_SHIFT,
.clk_en_shift = MISC_B_CLK_EN_SHIFT,
.pwm_en_mask = MISC_B_EN,
}
};
struct meson_pwm_channel {
unsigned long rate;
unsigned int hi;
unsigned int lo;
struct clk_mux mux;
struct clk_divider div;
struct clk_gate gate;
struct clk *clk;
};
struct meson_pwm_data {
const char *const parent_names[MESON_NUM_MUX_PARENTS];
};
struct meson_pwm {
const struct meson_pwm_data *data;
struct meson_pwm_channel channels[MESON_NUM_PWMS];
void __iomem *base;
/*
* Protects register (write) access to the REG_MISC_AB register
* that is shared between the two PWMs.
*/
spinlock_t lock;
};
static inline struct meson_pwm *to_meson_pwm(struct pwm_chip *chip)
{
return pwmchip_get_drvdata(chip);
}
static int meson_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
{
struct meson_pwm *meson = to_meson_pwm(chip);
struct meson_pwm_channel *channel = &meson->channels[pwm->hwpwm];
struct device *dev = pwmchip_parent(chip);
int err;
err = clk_prepare_enable(channel->clk);
if (err < 0) {
dev_err(dev, "failed to enable clock %s: %d\n",
__clk_get_name(channel->clk), err);
return err;
}
return 0;
}
static void meson_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
{
struct meson_pwm *meson = to_meson_pwm(chip);
struct meson_pwm_channel *channel = &meson->channels[pwm->hwpwm];
clk_disable_unprepare(channel->clk);
}
static int meson_pwm_calc(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
struct meson_pwm *meson = to_meson_pwm(chip);
struct meson_pwm_channel *channel = &meson->channels[pwm->hwpwm];
unsigned int cnt, duty_cnt;
unsigned long fin_freq;
u64 duty, period, freq;
duty = state->duty_cycle;
period = state->period;
/*
* Note this is wrong. The result is an output wave that isn't really
* inverted and so is wrongly identified by .get_state as normal.
* Fixing this needs some care however as some machines might rely on
* this.
*/
if (state->polarity == PWM_POLARITY_INVERSED)
duty = period - duty;
freq = div64_u64(NSEC_PER_SEC * 0xffffULL, period);
if (freq > ULONG_MAX)
freq = ULONG_MAX;
fin_freq = clk_round_rate(channel->clk, freq);
if (fin_freq == 0) {
dev_err(pwmchip_parent(chip), "invalid source clock frequency\n");
return -EINVAL;
}
dev_dbg(pwmchip_parent(chip), "fin_freq: %lu Hz\n", fin_freq);
cnt = div_u64(fin_freq * period, NSEC_PER_SEC);
if (cnt > 0xffff) {
dev_err(pwmchip_parent(chip), "unable to get period cnt\n");
return -EINVAL;
}
dev_dbg(pwmchip_parent(chip), "period=%llu cnt=%u\n", period, cnt);
if (duty == period) {
channel->hi = cnt;
channel->lo = 0;
} else if (duty == 0) {
channel->hi = 0;
channel->lo = cnt;
} else {
duty_cnt = div_u64(fin_freq * duty, NSEC_PER_SEC);
dev_dbg(pwmchip_parent(chip), "duty=%llu duty_cnt=%u\n", duty, duty_cnt);
channel->hi = duty_cnt;
channel->lo = cnt - duty_cnt;
}
channel->rate = fin_freq;
return 0;
}
static void meson_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
{
struct meson_pwm *meson = to_meson_pwm(chip);
struct meson_pwm_channel *channel = &meson->channels[pwm->hwpwm];
struct meson_pwm_channel_data *channel_data;
unsigned long flags;
u32 value;
int err;
channel_data = &meson_pwm_per_channel_data[pwm->hwpwm];
err = clk_set_rate(channel->clk, channel->rate);
if (err)
dev_err(pwmchip_parent(chip), "setting clock rate failed\n");
spin_lock_irqsave(&meson->lock, flags);
value = FIELD_PREP(PWM_HIGH_MASK, channel->hi) |
FIELD_PREP(PWM_LOW_MASK, channel->lo);
writel(value, meson->base + channel_data->reg_offset);
value = readl(meson->base + REG_MISC_AB);
value |= channel_data->pwm_en_mask;
writel(value, meson->base + REG_MISC_AB);
spin_unlock_irqrestore(&meson->lock, flags);
}
static void meson_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
{
struct meson_pwm *meson = to_meson_pwm(chip);
unsigned long flags;
u32 value;
spin_lock_irqsave(&meson->lock, flags);
value = readl(meson->base + REG_MISC_AB);
value &= ~meson_pwm_per_channel_data[pwm->hwpwm].pwm_en_mask;
writel(value, meson->base + REG_MISC_AB);
spin_unlock_irqrestore(&meson->lock, flags);
}
static int meson_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
struct meson_pwm *meson = to_meson_pwm(chip);
struct meson_pwm_channel *channel = &meson->channels[pwm->hwpwm];
int err = 0;
if (!state->enabled) {
if (state->polarity == PWM_POLARITY_INVERSED) {
/*
* This IP block revision doesn't have an "always high"
* setting which we can use for "inverted disabled".
* Instead we achieve this by setting mux parent with
* highest rate and minimum divider value, resulting
* in the shortest possible duration for one "count"
* and "period == duty_cycle". This results in a signal
* which is LOW for one "count", while being HIGH for
* the rest of the (so the signal is HIGH for slightly
* less than 100% of the period, but this is the best
* we can achieve).
*/
channel->rate = ULONG_MAX;
channel->hi = ~0;
channel->lo = 0;
meson_pwm_enable(chip, pwm);
} else {
meson_pwm_disable(chip, pwm);
}
} else {
err = meson_pwm_calc(chip, pwm, state);
if (err < 0)
return err;
meson_pwm_enable(chip, pwm);
}
return 0;
}
static u64 meson_pwm_cnt_to_ns(struct pwm_chip *chip, struct pwm_device *pwm,
u32 cnt)
{
struct meson_pwm *meson = to_meson_pwm(chip);
struct meson_pwm_channel *channel;
unsigned long fin_freq;
/* to_meson_pwm() can only be used after .get_state() is called */
channel = &meson->channels[pwm->hwpwm];
fin_freq = clk_get_rate(channel->clk);
if (fin_freq == 0)
return 0;
return div64_ul(NSEC_PER_SEC * (u64)cnt, fin_freq);
}
static int meson_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
struct pwm_state *state)
{
struct meson_pwm *meson = to_meson_pwm(chip);
struct meson_pwm_channel_data *channel_data;
struct meson_pwm_channel *channel;
u32 value;
if (!state)
return 0;
channel = &meson->channels[pwm->hwpwm];
channel_data = &meson_pwm_per_channel_data[pwm->hwpwm];
value = readl(meson->base + REG_MISC_AB);
state->enabled = value & channel_data->pwm_en_mask;
value = readl(meson->base + channel_data->reg_offset);
channel->lo = FIELD_GET(PWM_LOW_MASK, value);
channel->hi = FIELD_GET(PWM_HIGH_MASK, value);
state->period = meson_pwm_cnt_to_ns(chip, pwm, channel->lo + channel->hi);
state->duty_cycle = meson_pwm_cnt_to_ns(chip, pwm, channel->hi);
state->polarity = PWM_POLARITY_NORMAL;
return 0;
}
static const struct pwm_ops meson_pwm_ops = {
.request = meson_pwm_request,
.free = meson_pwm_free,
.apply = meson_pwm_apply,
.get_state = meson_pwm_get_state,
};
static const struct meson_pwm_data pwm_meson8b_data = {
.parent_names = { "xtal", NULL, "fclk_div4", "fclk_div3" },
};
/*
* Only the 2 first inputs of the GXBB AO PWMs are valid
* The last 2 are grounded
*/
static const struct meson_pwm_data pwm_gxbb_ao_data = {
.parent_names = { "xtal", "clk81", NULL, NULL },
};
static const struct meson_pwm_data pwm_axg_ee_data = {
.parent_names = { "xtal", "fclk_div5", "fclk_div4", "fclk_div3" },
};
static const struct meson_pwm_data pwm_axg_ao_data = {
.parent_names = { "xtal", "axg_ao_clk81", "fclk_div4", "fclk_div5" },
};
static const struct meson_pwm_data pwm_g12a_ao_ab_data = {
.parent_names = { "xtal", "g12a_ao_clk81", "fclk_div4", "fclk_div5" },
};
static const struct meson_pwm_data pwm_g12a_ao_cd_data = {
.parent_names = { "xtal", "g12a_ao_clk81", NULL, NULL },
};
static const struct of_device_id meson_pwm_matches[] = {
{
.compatible = "amlogic,meson8b-pwm",
.data = &pwm_meson8b_data
},
{
.compatible = "amlogic,meson-gxbb-pwm",
.data = &pwm_meson8b_data
},
{
.compatible = "amlogic,meson-gxbb-ao-pwm",
.data = &pwm_gxbb_ao_data
},
{
.compatible = "amlogic,meson-axg-ee-pwm",
.data = &pwm_axg_ee_data
},
{
.compatible = "amlogic,meson-axg-ao-pwm",
.data = &pwm_axg_ao_data
},
{
.compatible = "amlogic,meson-g12a-ee-pwm",
.data = &pwm_meson8b_data
},
{
.compatible = "amlogic,meson-g12a-ao-pwm-ab",
.data = &pwm_g12a_ao_ab_data
},
{
.compatible = "amlogic,meson-g12a-ao-pwm-cd",
.data = &pwm_g12a_ao_cd_data
},
{},
};
MODULE_DEVICE_TABLE(of, meson_pwm_matches);
static int meson_pwm_init_channels(struct pwm_chip *chip)
{
struct meson_pwm *meson = to_meson_pwm(chip);
struct clk_parent_data mux_parent_data[MESON_NUM_MUX_PARENTS] = {};
struct device *dev = pwmchip_parent(chip);
unsigned int i;
char name[255];
int err;
for (i = 0; i < MESON_NUM_MUX_PARENTS; i++) {
mux_parent_data[i].index = -1;
mux_parent_data[i].name = meson->data->parent_names[i];
}
for (i = 0; i < chip->npwm; i++) {
struct meson_pwm_channel *channel = &meson->channels[i];
struct clk_parent_data div_parent = {}, gate_parent = {};
struct clk_init_data init = {};
snprintf(name, sizeof(name), "%s#mux%u", dev_name(dev), i);
init.name = name;
init.ops = &clk_mux_ops;
init.flags = 0;
init.parent_data = mux_parent_data;
init.num_parents = MESON_NUM_MUX_PARENTS;
channel->mux.reg = meson->base + REG_MISC_AB;
channel->mux.shift =
meson_pwm_per_channel_data[i].clk_sel_shift;
channel->mux.mask = MISC_CLK_SEL_MASK;
channel->mux.flags = 0;
channel->mux.lock = &meson->lock;
channel->mux.table = NULL;
channel->mux.hw.init = &init;
err = devm_clk_hw_register(dev, &channel->mux.hw);
if (err)
return dev_err_probe(dev, err,
"failed to register %s\n", name);
snprintf(name, sizeof(name), "%s#div%u", dev_name(dev), i);
init.name = name;
init.ops = &clk_divider_ops;
init.flags = CLK_SET_RATE_PARENT;
div_parent.index = -1;
div_parent.hw = &channel->mux.hw;
init.parent_data = &div_parent;
init.num_parents = 1;
channel->div.reg = meson->base + REG_MISC_AB;
channel->div.shift = meson_pwm_per_channel_data[i].clk_div_shift;
channel->div.width = MISC_CLK_DIV_WIDTH;
channel->div.hw.init = &init;
channel->div.flags = 0;
channel->div.lock = &meson->lock;
err = devm_clk_hw_register(dev, &channel->div.hw);
if (err)
return dev_err_probe(dev, err,
"failed to register %s\n", name);
snprintf(name, sizeof(name), "%s#gate%u", dev_name(dev), i);
init.name = name;
init.ops = &clk_gate_ops;
init.flags = CLK_SET_RATE_PARENT | CLK_IGNORE_UNUSED;
gate_parent.index = -1;
gate_parent.hw = &channel->div.hw;
init.parent_data = &gate_parent;
init.num_parents = 1;
channel->gate.reg = meson->base + REG_MISC_AB;
channel->gate.bit_idx = meson_pwm_per_channel_data[i].clk_en_shift;
channel->gate.hw.init = &init;
channel->gate.flags = 0;
channel->gate.lock = &meson->lock;
err = devm_clk_hw_register(dev, &channel->gate.hw);
if (err)
return dev_err_probe(dev, err, "failed to register %s\n", name);
channel->clk = devm_clk_hw_get_clk(dev, &channel->gate.hw, NULL);
if (IS_ERR(channel->clk))
return dev_err_probe(dev, PTR_ERR(channel->clk),
"failed to register %s\n", name);
}
return 0;
}
static int meson_pwm_probe(struct platform_device *pdev)
{
struct pwm_chip *chip;
struct meson_pwm *meson;
int err;
chip = devm_pwmchip_alloc(&pdev->dev, MESON_NUM_PWMS, sizeof(*meson));
if (IS_ERR(chip))
return PTR_ERR(chip);
meson = to_meson_pwm(chip);
meson->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(meson->base))
return PTR_ERR(meson->base);
spin_lock_init(&meson->lock);
chip->ops = &meson_pwm_ops;
meson->data = of_device_get_match_data(&pdev->dev);
err = meson_pwm_init_channels(chip);
if (err < 0)
return err;
err = devm_pwmchip_add(&pdev->dev, chip);
if (err < 0)
return dev_err_probe(&pdev->dev, err,
"failed to register PWM chip\n");
return 0;
}
static struct platform_driver meson_pwm_driver = {
.driver = {
.name = "meson-pwm",
.of_match_table = meson_pwm_matches,
},
.probe = meson_pwm_probe,
};
module_platform_driver(meson_pwm_driver);
MODULE_DESCRIPTION("Amlogic Meson PWM Generator driver");
MODULE_AUTHOR("Neil Armstrong <narmstrong@baylibre.com>");
MODULE_LICENSE("Dual BSD/GPL");